CN106702065A - 一种新型气基竖炉制备海绵铁的系统与方法 - Google Patents
一种新型气基竖炉制备海绵铁的系统与方法 Download PDFInfo
- Publication number
- CN106702065A CN106702065A CN201611185879.7A CN201611185879A CN106702065A CN 106702065 A CN106702065 A CN 106702065A CN 201611185879 A CN201611185879 A CN 201611185879A CN 106702065 A CN106702065 A CN 106702065A
- Authority
- CN
- China
- Prior art keywords
- gas
- cooling
- primordial
- shaft kiln
- sponge iron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 105
- 229910052742 iron Inorganic materials 0.000 title claims abstract description 52
- 238000000034 method Methods 0.000 title claims abstract description 38
- 239000007789 gas Substances 0.000 claims abstract description 252
- 238000001816 cooling Methods 0.000 claims abstract description 68
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 58
- 239000001257 hydrogen Substances 0.000 claims abstract description 55
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 46
- 238000000746 purification Methods 0.000 claims abstract description 41
- 238000004519 manufacturing process Methods 0.000 claims abstract description 31
- 238000006722 reduction reaction Methods 0.000 claims abstract description 27
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 22
- 229910002091 carbon monoxide Inorganic materials 0.000 claims abstract description 22
- 239000008188 pellet Substances 0.000 claims abstract description 12
- 238000010438 heat treatment Methods 0.000 claims abstract description 6
- 239000000446 fuel Substances 0.000 claims abstract description 3
- 238000000926 separation method Methods 0.000 claims description 15
- 239000002253 acid Substances 0.000 claims description 11
- 238000006477 desulfuration reaction Methods 0.000 claims description 11
- 230000023556 desulfurization Effects 0.000 claims description 11
- 239000007788 liquid Substances 0.000 claims description 11
- 238000005261 decarburization Methods 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- 150000002431 hydrogen Chemical class 0.000 claims description 9
- 230000001186 cumulative effect Effects 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 239000000112 cooling gas Substances 0.000 abstract description 8
- 238000005265 energy consumption Methods 0.000 abstract description 3
- 238000000605 extraction Methods 0.000 abstract 1
- 238000004064 recycling Methods 0.000 abstract 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 12
- 239000003034 coal gas Substances 0.000 description 10
- 229910002092 carbon dioxide Inorganic materials 0.000 description 7
- 229910000831 Steel Inorganic materials 0.000 description 5
- 238000005255 carburizing Methods 0.000 description 5
- 238000000197 pyrolysis Methods 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 239000001569 carbon dioxide Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 230000018044 dehydration Effects 0.000 description 3
- 238000006297 dehydration reaction Methods 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 239000002737 fuel gas Substances 0.000 description 3
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- 239000005864 Sulphur Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000009628 steelmaking Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 241000251323 Matthiola oxyceras Species 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000008246 gaseous mixture Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000005453 pelletization Methods 0.000 description 1
- 238000009687 sponge iron process Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B13/00—Making spongy iron or liquid steel, by direct processes
- C21B13/02—Making spongy iron or liquid steel, by direct processes in shaft furnaces
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B13/00—Making spongy iron or liquid steel, by direct processes
- C21B13/0073—Selection or treatment of the reducing gases
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture Of Iron (AREA)
Abstract
本发明涉及一种新型气基竖炉制备海绵铁的系统与方法。所述方法包括气基竖炉制备海绵铁:热态还原气和氧化球团在气基竖炉中发生还原反应,得到海绵铁;炉顶气及冷却气尾气的循环利用:热态还原气发生还原反应后,作为炉顶气从气基竖炉的顶部输出,然后经气体净化单元处理后得到净化炉顶气,将30~50%体积比的净化炉顶气送入提氢装置中,得到氢气和富一氧化碳气体,将富一氧化碳气体送入冷却段中与海绵铁进行换热,得到的冷却气尾气输出至加热装置中作为燃料进行燃烧。本发明的方法可以有效降低气基竖炉制备海绵铁工艺的能耗,并降低冷却段排出气体的能量损失,节省设备费用,简化处理流程。
Description
技术领域
本发明涉及冶金技术领域,具体涉及一种新型气基竖炉制备海绵铁的系统与方法。
背景技术
直接还原铁又称海绵铁,是一种重要的可代替废钢且优于废钢的炼钢原料,可稀释废钢中的杂质元素成分,为电炉炼钢提供必不可少的纯净铁原料。钢铁企业发展直接还原铁技术,能更好地适应时代对企业向紧凑化、高效化、洁净化方向发展的要求。
2014年,全世界直接还原铁产量为7455万吨。其中,由气基竖炉法生产的约占80%。典型的工艺包括MIDREX工艺、HYLⅢ(Energiron)工艺和PERED工艺。其中,MIDREX工艺包括一个流程分支,即炉顶煤气冷却流程。该流程中,炉顶煤气经洗涤冷却、加压后作为冷却气通入竖炉冷却段下部,与竖炉内的海绵铁完成热交换,之后从竖炉冷却段上部排出,再经洗涤冷却、气液分离、加压后与天然气混合,进入转化炉制取还原气。该工艺可放宽对铁矿石硫含量的要求,竖炉炉顶煤气中30%~70%的硫在冷却过程中被海绵铁脱除。但是,冷却气排出后温度为450~600℃左右,该部分显热没有得到利用,且增加了生产工艺的投资费用。
直接还原铁的出料方式有两种:热出料生产热压块(HBI)和热态直接还原铁(HDRI),以及冷出料生产冷态直接还原铁(CDRI)。热出料的直接还原铁只适合直接还原铁厂和电炉厂距离很近的大型综合钢铁企业,而绝大多数直接还原厂不具备这种条件。因此CDRI能避免铁块再氧化,以保证产品的质量。生产CDRI时,在竖炉下部冷却段通入冷却气体,将直接还原铁冷却至50℃以下再排出。同时在冷却段对产品渗碳,以减轻熔分单元的能耗负担。
现有技术中,气基竖炉制备直接还原铁过程存在下述问题:①还原气体由还原段底部进入竖炉,而还原反应需要高温还原气,故要求还原气加热设备规模大、能耗高,其中直接还原铁的显热没有得到利用。②冷却气体从冷却段上部出气口排出,温度很高,但是没有得到很好地利用。③由于循环冷却气中H2/CO的值比较高,气体中CO含量比较低,对于冷却段直接还原铁的渗碳效果不是十分理想。
发明内容
本发明提出了一种新型气基竖炉制备海绵铁的系统与方法,本发明可以有效降低气基竖炉制备海绵铁工艺的能耗,并降低冷却段排出气体的能量损失,节省设备费用,简化处理流程。
本发明提供了一种新型气基竖炉制备海绵铁的系统,包括提氢装置、加热装置、气基竖炉、气体净化单元。
所述提氢装置具有净化炉顶气入口、氢气出口、富一氧化碳气体出口。
所述加热装置具有混合气体入口、冷却气尾气入口、热态还原气出口。所述混合气体入口与所述提氢装置的氢气出口通过还原气体管连接。
所述气基竖炉由上部的还原段和下部的冷却段构成,具有热态还原气入口、富一氧化碳气体入口、氧化球团入口、炉顶气出口、冷却气尾气出口。所述热态还原气入口与所述加热装置的热态还原气出口连接,所述富一氧化碳气体入口与所述提氢装置的富一氧化碳气体出口连接,所述冷却气尾气出口与所述加热装置的冷却气尾气入口连接。
所述气体净化单元具有炉顶气入口、净化炉顶气出口。所述炉顶气入口与所述气基竖炉的炉顶气出口连接,所述净化炉顶气出口与所述提氢装置的净化炉顶气入口连接,并且,所述净化炉顶气出口与所述加热装置的混合气体出口通过所述还原气体管连接。
进一步的,所述气体净化单元包括依次连接的水洗塔和/或气液分离装置和/或压缩机和/或脱硫脱碳装置。
优选的,所述富一氧化碳气体入口具有两个,分别设置在所述冷却段的底部和所述冷却段底部以上1/3~1/2处。所述冷却气尾气出口设置在所述冷却段的顶部。
本发明还提供了一种利用上述系统制备海绵铁的方法,包括步骤:
气基竖炉制备海绵铁:热态还原气和氧化球团在气基竖炉中发生还原反应,得到海绵铁;
炉顶气及冷却气尾气的循环利用:所述热态还原气发生还原反应后,作为炉顶气从气基竖炉的顶部输出,然后经所述气体净化单元处理后得到净化炉顶气,将30~50%体积比的所述净化炉顶气送入所述提氢装置中,得到氢气和富一氧化碳气体,将所述富一氧化碳气体送入所述冷却段中与所述海绵铁进行换热,得到的冷却气尾气输出至所述加热装置中作为燃料进行燃烧。
上述制备海绵铁的方法中,所述冷却气尾气的温度为450~600℃。
上述制备海绵铁的方法中,所述富一氧化碳气体的温度为35~55℃。所述富一氧化碳气体中一氧化碳的体积占比≥70%。
上述制备海绵铁的方法中,所述炉顶气从气基竖炉的顶部输出时的温度为350~550℃。
上述制备海绵铁的方法中,所述炉顶气中H2和CO的体积占所述炉顶气总体积的百分数为60~75%。
上述制备海绵铁的方法中,所述热态还原气中H2和CO的体积占所述热态还原气总体积的百分数≥90%。
上述制备海绵铁的方法中,所述热态还原气由新鲜还原气、所述提氢装置输出的氢气、50~70%体积比的所述净化炉顶气混合后,并经由所述加热装置加热得到。
本发明可充分利用冷却气尾气中较高的物理热,做为加热装置的燃料气,可以减少燃料气体加热的成本。并且,不用再进行冷却循环,减少了冷却段冷却洗涤、气液分离、压缩等装置等的投资费用。
附图说明
图1为本发明实施例一种新型气基竖炉制备海绵铁的系统示意图。
图2为本发明实施例利用图1所示的系统制备海绵铁的方法流程示意图。
附图中的附图标记如下:
1、提氢装置;2、加热装置;3、气基竖炉;4、水洗塔;5、气液分离装置;6、压缩机;7、脱硫脱碳装置。
具体实施方式
以下结合附图和实施例,对本发明的具体实施方式进行更加详细的说明,以便能够更好地理解本发明的方案以及其各个方面的优点。然而,以下描述的具体实施方式和实施例仅是说明的目的,而不是对本发明的限制。
如图1所示,为本发明实施例提供的一种新型气基竖炉制备海绵铁的系统。该系统包括提氢装置1、加热装置2、气基竖炉3、水洗塔4、气液分离装置5、压缩机6、脱硫脱碳装置7。其中,各个装置之间的连接关系如下:
提氢装置1具有净化炉顶气入口、氢气出口、富一氧化碳气体出口。
加热装置2具有混合气体入口、冷却气尾气入口、热态还原气出口,用于加热混合气体。本发明实施例中选用管式炉。其中,混合气体入口与提氢装置1的氢气出口通过还原气体管连接。
气基竖炉3由上部的还原段301和下部的冷却段302构成。其具有热态还原气入口、富一氧化碳气体入口、氧化球团入口、炉顶气出口、冷却气尾气出口,用于还原氧化球团并进行换热。其中,氧化球团入口位于气基竖炉3的顶部。热态还原气入口与加热装置2的热态还原气出口连接。热态还原气入口位于还原段301的底部。富一氧化碳气体入口与提氢装置1的富一氧化碳气体出口连接。本发明实施例中,设置有两个富一氧化碳气体入口,分别位于冷却段302的底部和冷却段302底部以上1/3~1/2处。冷却气尾气出口与加热装置2的冷却气尾气入口连接。并且,该冷却气尾气出口设置在冷却段302的顶部。
水洗塔4、气液分离装置5、压缩机6、脱硫脱碳装置7通过气体流道依次连接。其中,水洗塔4具有炉顶气入口,脱硫脱碳装置7具有净化炉顶气出口。其中,炉顶气入口与气基竖炉3的炉顶气出口连接。净化炉顶气出口与提氢装置1的净化炉顶气入口连接。并且,净化炉顶气出口与加热装置2的混合气体出口通过还原气体管连接。
如图2所示,为本发明实施例中利用图1所示的系统制备海绵铁的系统与方法流程示意图。包括以下步骤:
(1)气基竖炉制备海绵铁
将新鲜还原气、提氢装置1输出的氢气、50~70%体积比的净化炉顶气在还原气体管中混合均匀,得到混合气体。其中,新鲜还原气为焦炉煤气、热解煤气或是煤制气等具有还原剂作用的气体。
将混合气体送入管式炉2中加热升温至900~1000℃,可得热态还原气。其中H2和CO的体积占热态还原气总体积的90%以上。热态还原气从还原段301的底部围管进入气基竖炉3中,并与从气基竖炉3顶部送入的含铁氧化球团逆流接触,发生还原反应,从而得到高温海绵铁。其中,高温海绵铁缓慢运行至气基竖炉3的底部排出炉外。
(2)炉顶气的处理
上述步骤中,热态还原气还原含铁氧化球团后的炉顶气,从气基竖炉3的顶部的出气口排出。炉顶气排出时的温度为350~550℃。炉顶气中,H2和CO的体积占炉顶气总体积的60~75%。该炉顶气依次被送入水洗塔4、气液分离装置5、压缩机6、脱硫脱碳装置7中,进行水洗、分离、压缩、脱硫脱二氧化碳净化处理,得到净化炉顶气。
经上述装置处理后的净化炉顶气分成两部分。一部分净化炉顶气送入提氢装置1中,被分成氢气和富一氧化碳气体,氢气与剩余净化炉顶气送至还原气体管中混合,实现还原气的循环利用。其中,进入提氢装置1的净化炉顶气的体积占净化炉顶气总体积的30~50%,可以缩小提氢装置规模,减小设备投入的成本。
(3)冷却气尾气的处理
上述步骤得到的富一氧化碳气体的温度为35~55℃,其中一氧化碳的体积比为70%以上。该富一氧化碳气体从冷却段302经由富一氧化碳气体入口送入气基竖炉3中。本发明实施例中设置的两个富一氧化碳气体入口,可使富一氧化碳气体的温度分布更加均匀,冷却更加迅速,可以快速并且均匀的冷却高温海绵铁到合适温度,使冷却更加充分。
富一氧化碳气体进入气基竖炉3中后,和其中的高温海绵铁进行热交换,在冷却段302将高温海绵铁冷却至50℃以下,并发生渗碳反应。然后,富一氧化碳气体作为冷却气尾气从冷却气出口输出,温度为450~600℃,并送至管式炉2中,作为燃料气在管式炉2中进行燃烧供热。并且,该冷却气尾气出口设置在冷却段302顶部。
实施例1
选取某厂热解煤气,其中CO和H2的体积占比为90%,H2/CO=1.5。将热解煤气、提氢装置输出的氢气、60%体积比的净化炉顶气混合,送入管式炉,加热到900℃,从还原段底部围管进入气基竖炉。热态还原气在还原段将氧化球团还原为海绵铁。还原后的炉顶气从炉顶气出口输出气基竖炉,温度为350℃,其中H2和CO的体积比为65%,H2/CO=1.8。依次将炉顶气送入水洗塔除尘冷却、气液分离装置脱水、压缩机加压、脱硫脱碳装置脱除二氧化碳和硫化氢。经处理的炉顶气分为两部分。40%体积比的净化炉顶气在提氢装置将氢气分离,得到富一氧化碳气体和氢气。富一氧化碳气体中一氧化碳的体积比为76%。60%体积比的净化炉顶气与新加入的煤制气混合。富一氧化碳气体分别从两个富一氧化碳气体入口进入气基竖炉,温度为30℃,对自上而下运行的高温海绵铁进行逆流降温和渗碳,之后从冷却气尾气出口作为冷却气尾气输出,温度为500℃,进入管式炉燃烧。
实施例2
选取某厂焦炉煤气,其中CO和H2的体积占比为90%,H2/CO=8.0。将热解煤气、提氢装置输出的氢气、70%体积比的净化炉顶气混合,送入管式炉,加热到1000℃,从还原段底部围管进入气基竖炉。热态还原气在还原段将氧化球团还原为海绵铁。还原后的炉顶气从炉顶气出口输出气基竖炉,温度为550℃,其中H2和CO的体积比为60%,H2/CO=2.0。依次将炉顶气送入水洗塔除尘冷却、气液分离装置脱水、压缩机加压、脱硫脱碳装置脱除二氧化碳和硫化氢。经处理的炉顶气分为两部分。30%的净化炉顶气在提氢装置将氢气分离,得到富一氧化碳气体和氢气。富一氧化碳气体中一氧化碳的体积比为77%。70%净化炉顶气与新加入的煤制气混合。富一氧化碳气体分别从两个富一氧化碳气体入口进入气基竖炉,温度为55℃,对自上而下运行的高温海绵铁进行逆流降温和渗碳,之后从冷却气尾气出口作为冷却气尾气输出,温度为600℃,进入管式炉燃烧。
实施例3
选取某厂煤制气,其中CO和H2的体积占比为88%,H2/CO=1.0。将热解煤气、提氢装置输出的氢气、50%体积比的净化炉顶气混合,送入管式炉,加热到930℃,从还原段底部围管进入气基竖炉。热态还原气在还原段将氧化球团还原为海绵铁。还原后的炉顶气从炉顶气出口输出气基竖炉,温度为450℃,其中H2和CO的体积比为75%,H2/CO=1.5。依次将炉顶气送入水洗塔除尘冷却、气液分离装置脱水、压缩机加压、脱硫脱碳装置脱除二氧化碳和硫化氢。经处理的炉顶气分为两部分。50%体积比的净化炉顶气在提氢装置将氢气分离,得到富一氧化碳气体和氢气。富一氧化碳气体中一氧化碳的体积比为77%。50%体积比的净化炉顶气与新加入的煤制气混合。富一氧化碳气体分别从两个富一氧化碳气体入口进入气基竖炉,温度为50℃,对自上而下运行的高温海绵铁进行逆流降温和渗碳,之后从冷却气尾气出口作为冷却气尾气输出,温度为450℃,进入管式炉燃烧。
最后应说明的是:显然,上述实施例仅仅是为清楚地说明本发明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明的保护范围之中。
Claims (10)
1.一种新型气基竖炉制备海绵铁的系统,包括提氢装置、加热装置、气基竖炉、气体净化单元,其特征在于,
所述提氢装置具有净化炉顶气入口、氢气出口、富一氧化碳气体出口;
所述加热装置具有混合气体入口、冷却气尾气入口、热态还原气出口;所述混合气体入口与所述提氢装置的氢气出口通过还原气体管连接;
所述气基竖炉由上部的还原段和下部的冷却段构成,具有热态还原气入口、富一氧化碳气体入口、氧化球团入口、炉顶气出口、冷却气尾气出口;所述热态还原气入口与所述加热装置的热态还原气出口连接,所述富一氧化碳气体入口与所述提氢装置的富一氧化碳气体出口连接,所述冷却气尾气出口与所述加热装置的冷却气尾气入口连接;
所述气体净化单元具有炉顶气入口、净化炉顶气出口;所述炉顶气入口与所述气基竖炉的炉顶气出口连接,所述净化炉顶气出口与所述提氢装置的净化炉顶气入口连接,并且,所述净化炉顶气出口与所述加热装置的混合气体出口通过所述还原气体管连接。
2.根据权利要求1所述的系统,其特征在于,所述气体净化单元包括依次连接的水洗塔和/或气液分离装置和/或压缩机和/或脱硫脱碳装置。
3.根据权利要求1所述的系统,其特征在于,所述富一氧化碳气体入口具有两个,分别设置在所述冷却段的底部和所述冷却段底部以上1/3~1/2处;所述冷却气尾气出口设置在所述冷却段的顶部。
4.一种利用权利要求1-3之一所述的系统制备海绵铁的方法,其特征在于,包括步骤:
气基竖炉制备海绵铁:热态还原气和氧化球团在气基竖炉中发生还原反应,得到海绵铁;
炉顶气及冷却气尾气的循环利用:所述热态还原气发生还原反应后,作为炉顶气从气基竖炉的顶部输出,然后经所述气体净化单元处理后得到净化炉顶气,将30~50%体积比的所述净化炉顶气送入所述提氢装置中,得到氢气和富一氧化碳气体,将所述富一氧化碳气体送入所述冷却段中与所述海绵铁进行换热,得到的冷却气尾气输出至所述加热装置中作为燃料进行燃烧。
5.根据权利要求4所述的方法,其特征在于,所述冷却气尾气的温度为450~600℃。
6.根据权利要求4所述的方法,其特征在于,所述富一氧化碳气体的温度为35~55℃;所述富一氧化碳气体中一氧化碳的体积占比≥70%。
7.根据权利要求4所述的方法,其特征在于,所述炉顶气从气基竖炉的顶部输出时的温度为350~550℃。
8.根据权利要求4所述的方法,其特征在于,所述炉顶气中H2和CO的体积占所述炉顶气总体积的百分数为60~75%。
9.根据权利要求4所述的方法,其特征在于,所述热态还原气中H2和CO的体积占所述热态还原气总体积的百分数≥90%。
10.根据权利要求4所述的方法,其特征在于,所述热态还原气由新鲜还原气、所述提氢装置输出的氢气、50~70%体积比的所述净化炉顶气混合后,并经由所述加热装置加热得到。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611185879.7A CN106702065A (zh) | 2016-12-20 | 2016-12-20 | 一种新型气基竖炉制备海绵铁的系统与方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611185879.7A CN106702065A (zh) | 2016-12-20 | 2016-12-20 | 一种新型气基竖炉制备海绵铁的系统与方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106702065A true CN106702065A (zh) | 2017-05-24 |
Family
ID=58939389
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611185879.7A Pending CN106702065A (zh) | 2016-12-20 | 2016-12-20 | 一种新型气基竖炉制备海绵铁的系统与方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106702065A (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111270036A (zh) * | 2020-04-05 | 2020-06-12 | 上海泰普星坦新材料有限公司 | 一种氢能直接还原生产海绵铁的系统和工艺方法 |
CN111270037A (zh) * | 2020-04-05 | 2020-06-12 | 上海泰普星坦新材料有限公司 | 富氢合成气直接还原生产海绵铁的系统和工艺方法 |
CN111926135A (zh) * | 2020-07-14 | 2020-11-13 | 钢研晟华科技股份有限公司 | 一种氢基竖炉直接还原系统及还原方法 |
CN116287521A (zh) * | 2023-04-13 | 2023-06-23 | 中冶赛迪工程技术股份有限公司 | 富氢石化尾气耦合炉顶煤气回用方法与竖炉回路流程系统 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1504582A (zh) * | 2002-12-03 | 2004-06-16 | 中国科学院过程工程研究所 | 气基还原炼铁方法及其装置 |
CN101358258A (zh) * | 2007-08-02 | 2009-02-04 | 北京神雾热能技术有限公司 | 煤制还原气气基竖炉直接还原冶金方法及系统 |
CN101935732A (zh) * | 2010-08-11 | 2011-01-05 | 中冶赛迪上海工程技术有限公司 | 一种气基还原竖炉还原煤气的入炉方法 |
CN102876828A (zh) * | 2012-09-26 | 2013-01-16 | 北京神雾环境能源科技集团股份有限公司 | 一种与气基竖炉配套的还原气净化工艺及系统 |
CN103088182A (zh) * | 2011-11-01 | 2013-05-08 | 中冶赛迪工程技术股份有限公司 | 一种直接还原竖炉的冷却方法 |
CN103608468A (zh) * | 2011-05-13 | 2014-02-26 | 米德雷克斯技术公司 | 使用焦炉气和氧气炼钢炉气将氧化铁还原为金属铁的系统和方法 |
CN103667573A (zh) * | 2013-12-13 | 2014-03-26 | 王少立 | 用焦炉煤气生产直接还原铁短流程工艺 |
CN104087699A (zh) * | 2014-07-18 | 2014-10-08 | 北京神雾环境能源科技集团股份有限公司 | 气基竖炉制备海绵铁的方法和系统 |
CN104087701A (zh) * | 2014-07-18 | 2014-10-08 | 北京神雾环境能源科技集团股份有限公司 | 气基竖炉制备海绵铁的方法和系统 |
CN206256095U (zh) * | 2016-12-20 | 2017-06-16 | 江苏省冶金设计院有限公司 | 一种新型气基竖炉制备海绵铁的系统 |
-
2016
- 2016-12-20 CN CN201611185879.7A patent/CN106702065A/zh active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1504582A (zh) * | 2002-12-03 | 2004-06-16 | 中国科学院过程工程研究所 | 气基还原炼铁方法及其装置 |
CN101358258A (zh) * | 2007-08-02 | 2009-02-04 | 北京神雾热能技术有限公司 | 煤制还原气气基竖炉直接还原冶金方法及系统 |
CN101935732A (zh) * | 2010-08-11 | 2011-01-05 | 中冶赛迪上海工程技术有限公司 | 一种气基还原竖炉还原煤气的入炉方法 |
CN103608468A (zh) * | 2011-05-13 | 2014-02-26 | 米德雷克斯技术公司 | 使用焦炉气和氧气炼钢炉气将氧化铁还原为金属铁的系统和方法 |
CN103088182A (zh) * | 2011-11-01 | 2013-05-08 | 中冶赛迪工程技术股份有限公司 | 一种直接还原竖炉的冷却方法 |
CN102876828A (zh) * | 2012-09-26 | 2013-01-16 | 北京神雾环境能源科技集团股份有限公司 | 一种与气基竖炉配套的还原气净化工艺及系统 |
CN103667573A (zh) * | 2013-12-13 | 2014-03-26 | 王少立 | 用焦炉煤气生产直接还原铁短流程工艺 |
CN104087699A (zh) * | 2014-07-18 | 2014-10-08 | 北京神雾环境能源科技集团股份有限公司 | 气基竖炉制备海绵铁的方法和系统 |
CN104087701A (zh) * | 2014-07-18 | 2014-10-08 | 北京神雾环境能源科技集团股份有限公司 | 气基竖炉制备海绵铁的方法和系统 |
CN206256095U (zh) * | 2016-12-20 | 2017-06-16 | 江苏省冶金设计院有限公司 | 一种新型气基竖炉制备海绵铁的系统 |
Non-Patent Citations (1)
Title |
---|
郭明威等: "竖式冷却器金属化球团余热回收工艺研究", 《工业加热》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111270036A (zh) * | 2020-04-05 | 2020-06-12 | 上海泰普星坦新材料有限公司 | 一种氢能直接还原生产海绵铁的系统和工艺方法 |
CN111270037A (zh) * | 2020-04-05 | 2020-06-12 | 上海泰普星坦新材料有限公司 | 富氢合成气直接还原生产海绵铁的系统和工艺方法 |
CN111926135A (zh) * | 2020-07-14 | 2020-11-13 | 钢研晟华科技股份有限公司 | 一种氢基竖炉直接还原系统及还原方法 |
CN111926135B (zh) * | 2020-07-14 | 2022-03-29 | 钢研晟华科技股份有限公司 | 一种氢基竖炉直接还原系统及还原方法 |
CN116287521A (zh) * | 2023-04-13 | 2023-06-23 | 中冶赛迪工程技术股份有限公司 | 富氢石化尾气耦合炉顶煤气回用方法与竖炉回路流程系统 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8419825B2 (en) | Method and system for energy-optimized and CO2 emission-optimized iron production | |
CN104087699B (zh) | 气基竖炉制备海绵铁的方法和系统 | |
CN101638702B (zh) | 一种煤气作还原气的直接还原工艺出口煤气的回用方法 | |
CN113774178A (zh) | 欧冶炉与富氢碳循环高炉耦合的生产系统 | |
CN104087701B (zh) | 气基竖炉制备海绵铁的方法和系统 | |
CN102304599A (zh) | 气基还原竖炉生产直接还原铁的方法及装置 | |
CN106282546B (zh) | 一种烟气循环式预还原烧结工艺 | |
CN106702066A (zh) | 一种氢气进入气基还原竖炉制备直接还原铁的系统和方法 | |
CN106834581A (zh) | 一种还原竖炉生产海绵铁的炉顶气利用系统及方法 | |
CN106702065A (zh) | 一种新型气基竖炉制备海绵铁的系统与方法 | |
CN103276133A (zh) | 一种用天然气部分氧化生产直接还原铁的方法 | |
CN104087700A (zh) | 气基竖炉制备海绵铁的方法和系统 | |
CN206256095U (zh) | 一种新型气基竖炉制备海绵铁的系统 | |
JP2024524019A (ja) | 直接還元プロセスにおける水素ガスのリサイクル | |
CN115011746A (zh) | 一种基于co2循环的全氧/高富氧炼铁造气系统及运行方法 | |
CN205347482U (zh) | 一种利用电石炉尾气制还原气直接还原冶金的系统 | |
CN104087702B (zh) | 气基竖炉制备海绵铁的方法和系统 | |
CN106834579A (zh) | 一种天然气三重整制备直接还原铁的系统和方法 | |
CN106435081A (zh) | 一种直接还原铁的制备系统及制备方法 | |
CN209722190U (zh) | 一种拟纯氧炼铁及高炉气循环利用装置 | |
CN107400747A (zh) | 一种利用热解油气冶炼直接还原铁的系统和方法 | |
CN206607252U (zh) | 一种氢气进入气基还原竖炉制备直接还原铁的系统 | |
CN206607251U (zh) | 天然气水蒸汽重整后还原红土镍矿球团的系统 | |
CN206256150U (zh) | 利用氢气竖炉干法自重整直接还原红土镍矿的系统 | |
CN107058663A (zh) | 一种生产直接还原铁的系统及方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20170524 |
|
WD01 | Invention patent application deemed withdrawn after publication |