[go: up one dir, main page]

CN106701703A - Oxidase and application thereof - Google Patents

Oxidase and application thereof Download PDF

Info

Publication number
CN106701703A
CN106701703A CN201710006566.9A CN201710006566A CN106701703A CN 106701703 A CN106701703 A CN 106701703A CN 201710006566 A CN201710006566 A CN 201710006566A CN 106701703 A CN106701703 A CN 106701703A
Authority
CN
China
Prior art keywords
acid
ester
alpha
hydroxy
ala
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710006566.9A
Other languages
Chinese (zh)
Other versions
CN106701703B (en
Inventor
蔡宇杰
沈天成
冯佳婷
白亚军
郑晓晖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhuohong Chaoyuan Biotechnology Zhengzhou Co ltd
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN201710006566.9A priority Critical patent/CN106701703B/en
Publication of CN106701703A publication Critical patent/CN106701703A/en
Application granted granted Critical
Publication of CN106701703B publication Critical patent/CN106701703B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • C12P41/002Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by oxidation/reduction reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/03Oxidoreductases acting on the CH-OH group of donors (1.1) with a oxygen as acceptor (1.1.3)
    • C12Y101/03015(S)-2-Hydroxy-acid oxidase (1.1.3.15)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本发明涉及一种来源于奇异变形杆菌(Proteus mirabilis)的L‑α‑羟酸氧化酶基因的获得及其克隆表达,属于生物工程领域。公开了其底物特异性,同时该L‑α‑羟酸氧化酶可以氧化(S)‑α‑羟酸酯,可应用于光学纯(R)‑α‑羟酸酯的制备。The invention relates to the acquisition and clone expression of an L-alpha-hydroxyacid oxidase gene derived from Proteus mirabilis, belonging to the field of bioengineering. Its substrate specificity is disclosed, and at the same time, the L-α-hydroxy acid oxidase can oxidize (S)-α-hydroxy acid ester, and can be applied to the preparation of optically pure (R)-α-hydroxy acid ester.

Description

一种氧化酶及其应用A kind of oxidase and its application

技术领域technical field

本发明克隆表达了一种L-α-羟酸氧化酶,并公开了其核苷酸序列和氨基酸序列及酶学性质和应用,属于工业微生物领域。The invention clones and expresses an L-α-hydroxyacid oxidase, discloses its nucleotide sequence, amino acid sequence, enzymatic properties and application, and belongs to the field of industrial microorganisms.

背景技术Background technique

L-α-羟酸氧化酶(L-α-hydroxyacid oxidase)是一种以FMN(FAD)为辅酶的脱氢酶(Aliphatic l-α-hydroxyacid oxidase from rat livers purification andproperties.Biochimica et Biophysica Acta(BBA)-Enzymology 1968,167:9-22),通常包含有乙醇酸氧化酶(glycolate oxidase)(Preparation and some properties ofcrystalline glycolic acid oxidase of spinach.J.Biol.Chem.1958,231(1):135–57)、L-乳酸氧化酶(L-lactate oxidase)(Conversion of L-lactate oxidase to a longchain alpha-hydroxyacid oxidase by site-directed mutagenesis of alanine 95toglycine.J Biol Chem.1996 8;271(45):28300-28305)。可用于生物传感器中测定乳酸的含量,或氧化L-乳酸生产丙酮酸。也有被用于光学纯α-羟酸的制备(中国专利201210109290.4)L-α-hydroxyacid oxidase (L-α-hydroxyacid oxidase) is a dehydrogenase with FMN (FAD) as a coenzyme (Aliphatic l-α-hydroxyacid oxidase from rat livers purification and properties. Biochimica et Biophysica Acta (BBA )-Enzymology 1968,167:9-22), usually contains glycolate oxidase (glycolate oxidase) (Preparation and some properties ofcrystalline glycolic acid oxidase of spinach.J.Biol.Chem.1958,231(1):135– 57), L-lactate oxidase (Conversion of L-lactate oxidase to a longchain alpha-hydroxyacid oxidase by site-directed mutagenesis of alanine 95toglycine.J Biol Chem.1996 8;271(45):28300 -28305). It can be used in biosensors to determine the content of lactic acid, or to oxidize L-lactic acid to produce pyruvate. It is also used in the preparation of optically pure α-hydroxy acids (Chinese patent 201210109290.4)

目前为止,已经在恶臭假单胞菌(Pseudomonas putida),绿色气球菌(Aerococcusviridians),链球菌属(Streptococcus sp.),片球菌属(Pediococcus sp.),乳酸乳球菌(Lactococus lactis),迟钝爱德华菌(Edwardsiella tarda),耻垢分枝杆菌(Mycobacterium smegmatis),运动发酵单胞菌(Zymomonas mobilis)和过氧化醋杆菌(Acetobacter peroxidans)等细菌中克隆表达得到了L-乳酸氧化酶。L-乳酸氧化酶也在一些真菌中检测到,例如白地霉(Geotrichum candidum)和解脂耶氏酵母(Yarrowialipolytica)。(Search for Lactate Oxidase Producer Microorganisms,AppliedBiochemistry and Microbiology,2007,43(2)178–181)So far, it has been tested in Pseudomonas putida, Aerococcus viridians, Streptococcus sp., Pediococcus sp., Lactococcus lactis, Edwardsimus spp. L-lactate oxidase was cloned and expressed in bacteria such as Edwardsiella tarda, Mycobacterium smegmatis, Zymomonas mobilis and Acetobacter peroxidans. L-lactate oxidase has also been detected in some fungi such as Geotrichum candidum and Yarrowia lipolytica. (Search for Lactate Oxidase Producer Microorganisms, Applied Biochemistry and Microbiology, 2007, 43(2)178–181)

本发明首次从Kerstersia gyiorum DSM 16618中克隆表达出一种新型的L-α-羟酸氧化酶,该酶不仅可以氧化(S)-α-羟酸,而且可以氧化(S)-α-羟酸酯,可应用于光学纯(R)-α-羟酸酯和(R)-α-羟酸的制备。The present invention clones and expresses a novel L-α-hydroxyacid oxidase from Kerstersia gyiorum DSM 16618 for the first time, which can not only oxidize (S)-α-hydroxyacid, but also oxidize (S)-α-hydroxyacid Esters, which can be applied to the preparation of optically pure (R)-α-hydroxy acid esters and (R)-α-hydroxy acids.

发明内容Contents of the invention

本发明从奇异变形杆菌(Proteus mirabilis)中克隆得到了一种以FMN为辅酶的L-α-羟酸氧化酶的基因,利用大肠杆菌工程菌异源表达,公开了其相关的酶学特性,并进行了应用研究The present invention clones a gene of L-alpha-hydroxyacid oxidase with FMN as a coenzyme from Proteus mirabilis, utilizes Escherichia coli engineering bacteria for heterologous expression, and discloses its related enzymatic characteristics, and applied research

本发明的技术方案如下:Technical scheme of the present invention is as follows:

1、菌株1. Strains

本发明L-α-羟酸氧化酶基因的来源菌株为:Proteus mirabilis ATCC 25933,购自美国ATCC菌种库。The source strain of the L-α-hydroxyacid oxidase gene of the present invention is: Proteus mirabilis ATCC 25933, purchased from the American ATCC strain bank.

2、L-α-羟酸氧化酶基因的克隆2. Cloning of L-α-hydroxyacid oxidase gene

提取Proteus mirabilis ATCC 25933菌体基因组总DNA。设计特异性引物,应用PCR方法,扩增出L-α-羟酸氧化酶基因全长编码框序列。并构建重组质粒。The total genomic DNA of Proteus mirabilis ATCC 25933 was extracted. Design specific primers and use PCR method to amplify the full-length coding frame sequence of L-α-hydroxyacid oxidase gene. and construct recombinant plasmids.

3、L-α-羟酸氧化酶表达与纯化3. Expression and purification of L-α-hydroxyacid oxidase

将重组质粒导入E.coli BL21(DE3)中,诱导表达。菌体破碎后得到粗酶液,纯化后冷冻干燥备用。The recombinant plasmid was introduced into E.coli BL21(DE3) to induce expression. The crude enzyme solution was obtained after the bacterial cells were crushed, which was purified and freeze-dried for later use.

4、L-α-羟酸氧化酶的酶学性质分析4. Analysis of enzymatic properties of L-α-hydroxyacid oxidase

以L-乳酸为底物研究pH对本发明所述L-α-羟酸氧化酶酶活的影响。Using L-lactic acid as a substrate, the effect of pH on the enzyme activity of L-α-hydroxyacid oxidase described in the present invention was studied.

以L-乳酸为底物研究温度对本发明所述L-α-羟酸氧化酶酶活的影响。The effect of temperature on the enzyme activity of L-α-hydroxyacid oxidase of the present invention was studied by using L-lactic acid as a substrate.

L-α-羟酸氧化酶的底物特异性分析:所用的底物有L-乳酸、乙醇酸、L-苯乳酸、L-酒石酸、L-苹果酸、L-对羟基苯乳酸、L-丹参素、L-扁桃酸。Substrate specificity analysis of L-α-hydroxyacid oxidase: the substrates used are L-lactic acid, glycolic acid, L-phenyllactic acid, L-tartaric acid, L-malic acid, L-p-hydroxyphenyllactic acid, L- Danshensu, L-mandelic acid.

酶活测定方法为:根据Characterization of a Lactate Oxidase from aStrain of Gram Negative Bacterium from Soil,Applied Biochemistry andBiotechnology,56,1996,278-288。所述方法进行。The enzyme activity determination method is: according to Characterization of a Lactate Oxidase from a Strain of Gram Negative Bacterium from Soil, Applied Biochemistry and Biotechnology, 56, 1996, 278-288. The method is carried out.

5、L-α-羟酸氧化酶拆分混旋的α-羟酸酯5. L-α-hydroxyacid oxidase resolves swirling α-hydroxyesters

拆分α-羟酸酯(alpha-hydroxy esters)的方法为:取纯化好的酶0.1克于50mL三角瓶中,加入溶有α-羟酸酯5mM的pH 7的磷酸盐缓冲液中,于30℃,150rpm水浴摇床中转化16h,转化后液相色谱分析上清液。(S)-α-羟酸酯中的α-羟基被脱氢氧化成对应的α-酮酸酯,(R)-α-羟酸酯不被氧化。The method for splitting α-hydroxy esters (alpha-hydroxy esters) is: take 0.1 g of the purified enzyme in a 50 mL Erlenmeyer flask, add 5 mM of α-hydroxy esters into a pH 7 phosphate buffer, and 30° C., 150 rpm in a water-bath shaker for 16 h, and the supernatant was analyzed by liquid chromatography after conversion. The α-hydroxyl group in the (S)-α-hydroxy ester is dehydrogenated to the corresponding α-ketoester, and the (R)-α-hydroxy ester is not oxidized.

产物(R)-α-羟酸酯的光学纯度通过对映体过量值(%e.e)来评价:The optical purity of the product (R)-α-hydroxyester was assessed by enantiomeric excess (%e.e):

对映体过量值%e.e=[(SR-SS)/(SR+SS)]×100%Enantiomeric excess value %ee=[(S R -S S )/(S R +S S )]×100%

(R)-α-羟酸酯得率(%)=(SR/S0)×100%(R)-α-hydroxy acid ester yield (%)=(S R /S 0 )×100%

式中SS为反应后(S)-对映体的峰面积,SR为反应后(R)-对映体的液相色谱峰面积,S0为反应前(S)-和(R)-对映体的液相色谱峰面积之和。In the formula, S S is the peak area of the (S)-enantiomer after the reaction, S R is the liquid chromatography peak area of the ( R)-enantiomer after the reaction, and S is the front of the reaction (S)- and (R) - The sum of the liquid chromatography peak areas of the enantiomers.

产物测定液相色谱条件为:Chiralcel OD-H手性柱(4.6×250mm),流动相体积比为正己烷:异丙醇:三氟乙酸=80:20:0.1,流速为0.5mL/min,柱温25℃,检测波长210nm,进样量20μL。The liquid chromatography conditions for product determination are: Chiralcel OD-H chiral column (4.6×250mm), the mobile phase volume ratio is n-hexane:isopropanol:trifluoroacetic acid=80:20:0.1, and the flow rate is 0.5mL/min, The column temperature is 25°C, the detection wavelength is 210nm, and the injection volume is 20μL.

所述的α-羟酸酯为下列之一:丹参素冰片酯、丹参素异丙酯、苯乳酸冰片酯、苯乳酸异丙酯、对羟基苯乳酸冰片酯、对羟基苯乳酸异丙酯、扁桃酸冰片酯、扁桃酸异丙酯、丹参素细辛醇酯、乳酸冰片酯、苯乳酸细辛醇酯、对羟基苯乳酸细辛醇酯。The α-hydroxy acid ester is one of the following: bornyl danshensu, isopropyl danshensu, bornyl phenyl lactate, isopropyl phenyl lactate, bornyl p-hydroxybenzoate, isopropyl p-hydroxyphenyl lactate, Bornyl Mandelate, Isopropyl Mandelate, Danshensu Asaryl Octyl Ester, Bornyl Lactate, Asaryl Octyl Phenyl Lactate, Asaryl Octyl P-Hydroxyphenyl Lactate.

所述的α-羟酸酯,根据中国专利200610042787.3、201410180490.8、201410175950.8和20140699506.6公布的方法合成。The α-hydroxy acid ester is synthesized according to the methods published in Chinese patents 200610042787.3, 201410180490.8, 201410175950.8 and 20140699506.6.

本发表明的有益之处:从奇异变形杆菌中克隆表达出一种新型的L-α-羟酸氧化酶,该酶可以氧化(S)-α-羟酸和(S)-α-羟酸酯,可用于规模化制备手性纯(R)-α-羟酸酯,具有重要的工业应用价值。Advantages of the present invention: Cloning and expressing a novel L-α-hydroxyacid oxidase from Proteus mirabilis, which can oxidize (S)-α-hydroxyacid and (S)-α-hydroxyacid The ester can be used for large-scale preparation of chiral pure (R)-α-hydroxy acid ester, and has important industrial application value.

具体实施方式detailed description

实施例1Example 1

本实施例为本发明所述L-α-羟酸氧化酶基因的克隆与大肠杆菌工程菌构建。This example is the cloning of the L-α-hydroxyacid oxidase gene of the present invention and the construction of Escherichia coli engineering bacteria.

1、Proteus mirabilis ATCC 25933DNA的提取1. Extraction of Proteus mirabilis ATCC 25933 DNA

将Proteus mirabilis ATCC 25933菌株在LB培养基中培养12h,12,000rmp/min离心10min得到菌体,应用细菌基因组DNA抽提试剂盒(TaKaRa公司)按照其操作提取菌体基因组总DNA,放冰箱备用。The Proteus mirabilis ATCC 25933 strain was cultured in LB medium for 12 hours, centrifuged at 12,000rmp/min for 10 minutes to obtain the bacteria, and the bacterial genome DNA extraction kit (TaKaRa Company) was used to extract the total genomic DNA of the bacteria according to its operation, and stored in the refrigerator for later use.

2、大肠杆菌感受态制备2. Competent preparation of Escherichia coli

(1)接种E.coli DH5α和BL21(DE3)分别于含有20mL LB培养基的250mL摇瓶中,37℃、200rpm/min培养过夜。(1) Inoculate E. coli DH5α and BL21(DE3) into 250 mL shake flasks containing 20 mL LB medium respectively, and culture overnight at 37° C. and 200 rpm/min.

(2)按1%接种量接种于50mL LB培养基中,37℃培养至OD600约0.6(约2~3h)。(2) Inoculate in 50 mL LB medium according to 1% inoculum amount, and culture at 37°C until OD 600 is about 0.6 (about 2-3 hours).

(3)将菌液转移到50mL预冷的离心管中,冰上放置30min,8000rpm/min、4℃离心5min。(3) Transfer the bacterial solution to a 50 mL pre-cooled centrifuge tube, place on ice for 30 min, and centrifuge at 8000 rpm/min at 4°C for 5 min.

(4)弃上清,加入5mL预冷的0.1mol/L CaCl2溶液,使菌体悬浮,冰上放置20min,8000rpm/min、4℃离心5min。重复2次。(4) Discard the supernatant, add 5 mL of pre-cooled 0.1 mol/L CaCl 2 solution to suspend the cells, place on ice for 20 min, and centrifuge at 8000 rpm/min at 4°C for 5 min. Repeat 2 times.

(5)弃上清,加入1.5mL预冷的0.1mol/L CaCl2溶液(含15%甘油),轻轻悬浮菌体,然后按每个离心管(1.5mL)加入100μL菌液分装,-70℃冰箱保藏备用。(5) Discard the supernatant, add 1.5 mL of pre-cooled 0.1 mol/L CaCl 2 solution (containing 15% glycerol), gently suspend the bacteria, and then add 100 μL of the bacteria solution to each centrifuge tube (1.5 mL) to pack, Store in -70°C refrigerator for later use.

3、L-α-羟酸氧化酶基因的克隆3. Cloning of L-α-hydroxyacid oxidase gene

(1)引物设计(1) Primer design

设计引物序列为:The primer sequences were designed as:

引物1:5'GCCGGGATCCATGAAACATACATTGTTAAAAAC 3'Primer 1: 5'GCCGGGATCCATGAAACATACATTGTTAAAAAC 3'

引物2:5'GCCGTCTAGATCGTTTTTAACAATGTATGTTTCAT 3'Primer 2: 5'GCCGTCTAGATCGTTTTTAACAATGTATGTTTCAT 3'

(2)PCR扩增(2) PCR amplification

用以上合成的两条引物,以Proteus mirabilis ATCC 25933的基因组DNA为模板进行PCR扩增。Using the two primers synthesized above, the genomic DNA of Proteus mirabilis ATCC 25933 was used as a template for PCR amplification.

本步骤中扩增体系为:In this step, the amplification system is:

扩增程序为:The amplification procedure is:

98℃,10min98℃, 10min

98℃,10sec;55℃,15sec;72℃,2min反应30个循环98°C, 10sec; 55°C, 15sec; 72°C, 2min for 30 cycles

72℃,10min72℃, 10min

PCR产物送华大基因测序后得到该L-α-羟酸氧化酶的基因序列,如SEQID NO:1所示。根据该基因序列得到的氨基酸序列如SEQ ID NO:2所示。The PCR product was sent to BGI for sequencing to obtain the gene sequence of the L-α-hydroxyacid oxidase, as shown in SEQ ID NO:1. The amino acid sequence obtained according to the gene sequence is shown in SEQ ID NO:2.

(3)双酶切和连接(3) Double digestion and ligation

将pColdⅡ质粒和PCR产物进行双酶切,酶切体系为:10×cut buffer 3μl,DNA 4μl,酶BamHI和XbaI各0.5μl,无菌水2μl共30μl。37℃水浴下双酶切1h。将DNA片段克隆到pColdⅡ载体上,并转化到E.coli DH5α感受态细胞中。连接体系:10×DNA ligase buffer2.5μl,DNA片段8μl,载体DNA 2μl,T4 DNA ligase 1μl,无菌水11.5μl共25μl。16℃水浴下连接12h-16h。The pColdⅡ plasmid and PCR product were subjected to double enzyme digestion. The enzyme digestion system was: 10×cut buffer 3 μl, DNA 4 μl, enzymes BamHI and XbaI 0.5 μl each, sterile water 2 μl, a total of 30 μl. Double enzyme digestion was carried out in a water bath at 37°C for 1 hour. The DNA fragment was cloned into pColdⅡ vector and transformed into E.coli DH5α competent cells. Ligation system: 10×DNA ligase buffer 2.5 μl, DNA fragment 8 μl, carrier DNA 2 μl, T4 DNA ligase 1 μl, sterile water 11.5 μl, a total of 25 μl. Connect in a water bath at 16°C for 12h-16h.

(4)转化(4) Conversion

步骤:step:

1在连接体系中加入100μl DH5α感受态细菌,轻混匀,冰浴30min。1 Add 100 μl DH5α competent bacteria to the connection system, mix gently, and ice-bath for 30 minutes.

2放入预热的42℃水浴中,放置90s进行热休克处理。2 Place in a preheated 42°C water bath for 90 seconds for heat shock treatment.

3立即冰浴2min。3 immediately ice bath 2min.

4加入1ml不含抗生素的LB培养液,37℃培养1h使菌体复苏。4 Add 1ml of LB culture medium without antibiotics, incubate at 37°C for 1 hour to recover the bacteria.

5将菌体均匀涂布在含抗生素的LB平板上。5 Spread the bacteria evenly on the LB plate containing antibiotics.

6培养24h长势良好。挑单菌落进行菌落PCR,核酸电泳验证,提取重组质粒。将重组质粒导入BL21大肠杆菌感受态中,保存备用。6 After 24 hours of cultivation, it grows well. Pick a single colony for colony PCR, nucleic acid electrophoresis verification, and extract recombinant plasmids. The recombinant plasmid was introduced into BL21 Escherichia coli competent and stored for future use.

实施例2Example 2

本实施例为本发明所述L-α-羟酸氧化酶的诱导表达及分离纯化。This example is the induced expression and isolation and purification of the L-α-hydroxyacid oxidase of the present invention.

1、加500μl重组菌液到50ml LB培养液中。37℃培养2.5h,15℃下静置0.5h。再加20μl 0.5M的IPTG,15℃下冷诱导培养24h。将发酵液进行离心(8000rmp/min,10min)得到菌体,用磷酸氢二钠-磷酸二氢钠缓冲溶液(20mmol/L,pH 7.0)复溶菌体,超声破碎仪破碎,离心(8000rmp/min,10min)收集上清得到粗酶液。1. Add 500μl of recombinant bacteria solution to 50ml of LB culture solution. Cultivate at 37°C for 2.5h, and stand at 15°C for 0.5h. Then add 20 μl of 0.5M IPTG, and incubate at 15°C for 24 hours. Centrifuge the fermentation broth (8000rmp/min, 10min) to obtain the thallus, redissolve the thallus with disodium hydrogen phosphate-sodium dihydrogen phosphate buffer solution (20mmol/L, pH 7.0), break it with an ultrasonic breaker, and centrifuge (8000rmp/min , 10 min) to collect the supernatant to obtain the crude enzyme solution.

2、将步骤1得到的粗酶液采用AKTA avant 150蛋白纯化系统操作进行镍柱纯化,洗脱方法为:将A1、A2、B1、B2四根管路都放进水里,设置system flow 20ml/min流速,进行排气。然后设置system flow 1ml/min、flow path(column position 3)、delta pressure0.3、pre-pressure 0.5、Gradient 0、inset A1,待水滴均匀流出后装柱子,平衡十分钟之后把A1放进结合液中,B1放进洗脱液中,再进行排气一次,平衡二十分钟,然后上样粗酶液,用500mM的高浓度咪唑缓冲液(B1所处溶液)梯度洗脱目的蛋白,将吸附在离子柱上的蛋白洗脱下来得到纯化的酶。纯化后的酶经冷冻干燥备用。2. Use the AKTA avant 150 protein purification system to purify the crude enzyme liquid obtained in step 1 with a nickel column. The elution method is: put the four pipelines A1, A2, B1, and B2 into water, and set the system flow to 20ml /min flow rate, exhaust. Then set system flow 1ml/min, flow path (column position 3), delta pressure 0.3, pre-pressure 0.5, Gradient 0, inset A1, install the column after the water droplets flow out evenly, and put A1 into the binding solution after ten minutes of equilibration , put B1 into the eluent, exhaust once more, and equilibrate for 20 minutes, then load the crude enzyme solution, and use 500mM high-concentration imidazole buffer solution (the solution where B1 is located) to gradiently elute the target protein, and the adsorbed The protein is eluted on the ion column to obtain the purified enzyme. The purified enzyme was freeze-dried for further use.

实施例3Example 3

本实施例为本发明所述L-α-羟酸氧化酶的最适温度。以L-乳酸为底物,将底物与pH为8.0的磷酸缓冲液在30-60℃不同的温度条件下水浴15min,测定L-α-羟酸氧化酶的酶活,确定酶的最适反应温度为50℃。This example is the optimal temperature of the L-α-hydroxyacid oxidase of the present invention. Using L-lactic acid as the substrate, put the substrate and phosphate buffer solution with a pH of 8.0 in a water bath for 15 minutes under different temperature conditions of 30-60°C, measure the enzyme activity of L-α-hydroxyacid oxidase, and determine the optimal activity of the enzyme. The reaction temperature was 50°C.

实施例4Example 4

本实施例为本发明所述L-α-羟酸氧化酶的最适pH值。以L-乳酸为底物,将底物在pH 3-9,50℃水浴15min测定酶的酶活,结果发现在pH 8.0条件下L-α-羟酸氧化酶酶活最高。This example is the optimum pH value of the L-α-hydroxyacid oxidase of the present invention. Using L-lactic acid as the substrate, the enzyme activity of the substrate was measured at pH 3-9 in a 50°C water bath for 15 minutes. It was found that the enzyme activity of L-α-hydroxyacid oxidase was the highest at pH 8.0.

实施例5Example 5

本实施例为本发明所述L-α-羟酸氧化酶与不同底物的反应特性列于表2中。In this example, the reaction characteristics of the L-α-hydroxyacid oxidase of the present invention with different substrates are listed in Table 2.

表2 L-α-羟酸氧化酶对不同底物的活性Table 2 Activities of L-α-hydroxyacid oxidase on different substrates

实施例6Example 6

根据发明内容中的方法拆分各种外消旋α-羟酸酯,结果如下表所示:According to the method in the summary of the invention, various racemic α-hydroxy acid esters are resolved, and the results are shown in the table below:

表3拆分各种外消旋α-羟酸酯的效果Table 3 The effect of resolving various racemic α-hydroxy esters

由上表可以看出,当在反应时间充分时,可以得到各类高光学纯的(R)-α-羟酸酯,该酶的光学专一性非常好。It can be seen from the above table that when the reaction time is sufficient, various types of highly optically pure (R)-α-hydroxyesters can be obtained, and the optical specificity of the enzyme is very good.

SEQUENCE LISTINGSEQUENCE LISTING

<110> 江南大学<110> Jiangnan University

<120> 一种氧化酶及其应用<120> A kind of oxidase and its application

<130> No<130> No

<160> 2<160> 2

<170> PatentIn version 3.5<170> PatentIn version 3.5

<210> 1<210> 1

<211> 1194<211> 1194

<212> DNA<212>DNA

<213> Proteus mirabilis ATCC 25933<213> Proteus mirabilis ATCC 25933

<400> 1<400> 1

atgaaacata cattgttaaa aacgaccgca attgctatgg cattaagtgt gggagttgta 60atgaaacata cattgttaaa aacgaccgca attgctatgg cattaagtgt gggagttgta 60

caagcagctg aatataaagc aagtaccgca gaaggtccaa tcaaaatagt taatttaaaa 120caagcagctg aatataaagc aagtaccgca gaaggtccaa tcaaaatagt taatttaaaa 120

gccatggaag cacaggtaga agcaaatatg gataaaggtg ctttcggtta tattcgtggc 180gccatggaag cacaggtaga agcaaatatg gataaaggtg ctttcggtta tattcgtggc 180

ggggctgagg atgaaaataa tttaagagca aatactcgag catttgataa aaaatatatt 240ggggctgagg atgaaaataa tttaagagca aatactcgag catttgataa aaaatatatt 240

atgccccgtt cattacaagg tattgagttt tcagatatta atctaaaaac agaattttta 300atgccccgtt cattacaagg tattgagttt tcagattatta atctaaaaac agaattttta 300

ggtattaaat tagatacgcc tattattcag gcaccgatgg cagcacaagg gcttgctcat 360ggtattaaat tagatacgcc tattattcag gcaccgatgg cagcacaagg gcttgctcat 360

caacaaggcg aagttgccac agcaaaaggt atggcgaaag cgggttctat tttctcatta 420caacaaggcg aagttgccac agcaaaaggt atggcgaaag cgggttctat tttctcatta 420

agtacttatg gtaataaaac cattaaagaa gttgcgcaag cacaaccggg ttatccgttc 480agtacttatg gtaataaaac cattaaagaa gttgcgcaag cacaaccggg ttatccgttc 480

ttttttcagc tatatatgag taaaaacgac gcgtttaatc agtatatttt atcgcaagca 540ttttttcagc tatatatgag taaaaacgac gcgtttaatc agtatatttt atcgcaagca 540

aaacagtatg gcgcgaaagg cattattatg actatcgact cctctgttgg tggttatcgt 600aaacagtatg gcgcgaaagg cattattatg actatcgact cctctgttgg tggttatcgt 600

gaagatgatg tcaaaaacaa ctttcaattt ccgttaggtt ttgccaattt ggaagcattc 660gaagatgatg tcaaaaacaa ctttcaattt ccgttaggtt ttgccaattt ggaagcattc 660

gccaaaatca gtgatgataa atcaaaaaca ggtaaaggtt cgggtattag tgaaatctat 720gccaaaatca gtgatgataa atcaaaaaca ggtaaaggtt cgggtattag tgaaatctat 720

gctcaagcta aacaagcatt tactcctgct gatattcaat atgtgaaaaa gatgtcaggt 780gctcaagcta aacaagcatt tactcctgct gatattcaat atgtgaaaaa gatgtcaggt 780

ttaccagtca ttgtgaaagg tattgaatca cctgaagatg ccgatactgc aattaaagcg 840ttaccagtca ttgtgaaagg tattgaatca cctgaagatg ccgatactgc aattaaagcg 840

ggtgctgatg cgatttgggt gtctaatcat ggtggtcgtc agttagatag tgcaccagca 900ggtgctgatg cgatttgggt gtctaatcat ggtggtcgtc agttagatag tgcaccagca 900

accattgatg tattgccagc tattgctaaa gtcgtgaaca aacgtgttcc tatcgttttc 960accattgatg tattgccagc tattgctaaa gtcgtgaaca aacgtgttcc tatcgttttc 960

gatagtggtg ttcgtcgtgg ctcacatgtc tttaaagcgt tagcgagtgg tgcagatgtt 1020gtagtggtg ttcgtcgtgg ctcacatgtc tttaaagcgt tagcgagtgg tgcagatgtt 1020

gttgctgtgg ggcgtccaat tctttatgga ttaaatttag gcggtgctga aggtgttaat 1080gttgctgtgg ggcgtccaat tctttatgga ttaaatttag gcggtgctga aggtgttaat 1080

tcagttatcc agcaattaaa taaagagtta agaattaata tgatgttagg tggtgcaaga 1140tcagttatcc agcaattaaa taaagagtta agaattaata tgatgttagg tggtgcaaga 1140

aacgtcaaag aaattcaagc aacgcacttg tatacagatg ctgactttaa ataa 1194aacgtcaaag aaattcaagc aacgcacttg tatacagatg ctgactttaa ataa 1194

<210> 2<210> 2

<211> 397<211> 397

<212> PRT<212> PRT

<213> Proteus mirabilis ATCC 25933<213> Proteus mirabilis ATCC 25933

<400> 2<400> 2

Met Lys His Thr Leu Leu Lys Thr Thr Ala Ile Ala Met Ala Leu SerMet Lys His Thr Leu Leu Lys Thr Thr Ala Ile Ala Met Ala Leu Ser

1 5 10 151 5 10 15

Val Gly Val Val Gln Ala Ala Glu Tyr Lys Ala Ser Thr Ala Glu GlyVal Gly Val Val Gln Ala Ala Glu Tyr Lys Ala Ser Thr Ala Glu Gly

20 25 30 20 25 30

Pro Ile Lys Ile Val Asn Leu Lys Ala Met Glu Ala Gln Val Glu AlaPro Ile Lys Ile Val Asn Leu Lys Ala Met Glu Ala Gln Val Glu Ala

35 40 45 35 40 45

Asn Met Asp Lys Gly Ala Phe Gly Tyr Ile Arg Gly Gly Ala Glu AspAsn Met Asp Lys Gly Ala Phe Gly Tyr Ile Arg Gly Gly Ala Glu Asp

50 55 60 50 55 60

Glu Asn Asn Leu Arg Ala Asn Thr Arg Ala Phe Asp Lys Lys Tyr IleGlu Asn Asn Leu Arg Ala Asn Thr Arg Ala Phe Asp Lys Lys Tyr Ile

65 70 75 8065 70 75 80

Met Pro Arg Ser Leu Gln Gly Ile Glu Phe Ser Asp Ile Asn Leu LysMet Pro Arg Ser Leu Gln Gly Ile Glu Phe Ser Asp Ile Asn Leu Lys

85 90 95 85 90 95

Thr Glu Phe Leu Gly Ile Lys Leu Asp Thr Pro Ile Ile Gln Ala ProThr Glu Phe Leu Gly Ile Lys Leu Asp Thr Pro Ile Ile Gln Ala Pro

100 105 110 100 105 110

Met Ala Ala Gln Gly Leu Ala His Gln Gln Gly Glu Val Ala Thr AlaMet Ala Ala Gln Gly Leu Ala His Gln Gln Gly Glu Val Ala Thr Ala

115 120 125 115 120 125

Lys Gly Met Ala Lys Ala Gly Ser Ile Phe Ser Leu Ser Thr Tyr GlyLys Gly Met Ala Lys Ala Gly Ser Ile Phe Ser Leu Ser Thr Tyr Gly

130 135 140 130 135 140

Asn Lys Thr Ile Lys Glu Val Ala Gln Ala Gln Pro Gly Tyr Pro PheAsn Lys Thr Ile Lys Glu Val Ala Gln Ala Gln Pro Gly Tyr Pro Phe

145 150 155 160145 150 155 160

Phe Phe Gln Leu Tyr Met Ser Lys Asn Asp Ala Phe Asn Gln Tyr IlePhe Phe Gln Leu Tyr Met Ser Lys Asn Asp Ala Phe Asn Gln Tyr Ile

165 170 175 165 170 175

Leu Ser Gln Ala Lys Gln Tyr Gly Ala Lys Gly Ile Ile Met Thr IleLeu Ser Gln Ala Lys Gln Tyr Gly Ala Lys Gly Ile Ile Met Thr Ile

180 185 190 180 185 190

Asp Ser Ser Val Gly Gly Tyr Arg Glu Asp Asp Val Lys Asn Asn PheAsp Ser Ser Val Gly Gly Tyr Arg Glu Asp Asp Val Lys Asn Asn Phe

195 200 205 195 200 205

Gln Phe Pro Leu Gly Phe Ala Asn Leu Glu Ala Phe Ala Lys Ile SerGln Phe Pro Leu Gly Phe Ala Asn Leu Glu Ala Phe Ala Lys Ile Ser

210 215 220 210 215 220

Asp Asp Lys Ser Lys Thr Gly Lys Gly Ser Gly Ile Ser Glu Ile TyrAsp Asp Lys Ser Lys Thr Gly Lys Gly Ser Gly Ile Ser Glu Ile Tyr

225 230 235 240225 230 235 240

Ala Gln Ala Lys Gln Ala Phe Thr Pro Ala Asp Ile Gln Tyr Val LysAla Gln Ala Lys Gln Ala Phe Thr Pro Ala Asp Ile Gln Tyr Val Lys

245 250 255 245 250 255

Lys Met Ser Gly Leu Pro Val Ile Val Lys Gly Ile Glu Ser Pro GluLys Met Ser Gly Leu Pro Val Ile Val Lys Gly Ile Glu Ser Pro Glu

260 265 270 260 265 270

Asp Ala Asp Thr Ala Ile Lys Ala Gly Ala Asp Ala Ile Trp Val SerAsp Ala Asp Thr Ala Ile Lys Ala Gly Ala Asp Ala Ile Trp Val Ser

275 280 285 275 280 285

Asn His Gly Gly Arg Gln Leu Asp Ser Ala Pro Ala Thr Ile Asp ValAsn His Gly Gly Arg Gln Leu Asp Ser Ala Pro Ala Thr Ile Asp Val

290 295 300 290 295 300

Leu Pro Ala Ile Ala Lys Val Val Asn Lys Arg Val Pro Ile Val PheLeu Pro Ala Ile Ala Lys Val Val Asn Lys Arg Val Pro Ile Val Phe

305 310 315 320305 310 315 320

Asp Ser Gly Val Arg Arg Gly Ser His Val Phe Lys Ala Leu Ala SerAsp Ser Gly Val Arg Arg Gly Ser His Val Phe Lys Ala Leu Ala Ser

325 330 335 325 330 335

Gly Ala Asp Val Val Ala Val Gly Arg Pro Ile Leu Tyr Gly Leu AsnGly Ala Asp Val Val Ala Val Gly Arg Pro Ile Leu Tyr Gly Leu Asn

340 345 350 340 345 350

Leu Gly Gly Ala Glu Gly Val Asn Ser Val Ile Gln Gln Leu Asn LysLeu Gly Gly Ala Glu Gly Val Asn Ser Val Ile Gln Gln Leu Asn Lys

355 360 365 355 360 365

Glu Leu Arg Ile Asn Met Met Leu Gly Gly Ala Arg Asn Val Lys GluGlu Leu Arg Ile Asn Met Met Leu Gly Gly Ala Arg Asn Val Lys Glu

370 375 380 370 375 380

Ile Gln Ala Thr His Leu Tyr Thr Asp Ala Asp Phe LysIle Gln Ala Thr His Leu Tyr Thr Asp Ala Asp Phe Lys

385 390 395385 390 395

Claims (5)

1. one kind derives from the L- alpha-hydroxy acid oxidizing ferment of proteus mirabilis (Proteus mirabilis), its amino acid sequence It is SEQ ID NO:Shown in 2.
2. L- alpha-hydroxy acids oxidizing ferment according to claim 1, its nucleotides sequence is classified as SEQ ID NO:Shown in 1.
3. L- alpha-hydroxy acids oxidizing ferment according to claim 1, its optimal reactive temperature is 50 DEG C, and optimal reaction pH is 8.
4. L- alpha-hydroxy acids oxidizing ferment according to claim 1, oxidable Pfansteihl, glycolic, L- phenyllactic acids, L- are to hydroxyl Phenyllactic acid, L-TARTARIC ACID, L MALIC ACID, L- mandelic acids, L- danshensus, generate corresponding ketone acid.
5. L- alpha-hydroxy acids oxidizing ferment according to claim 1, (the S)-alpha-hydroxy acid ester in oxidable racemic ' alpha '-carboxylic esters, Fractionation prepares corresponding optical voidness (R)-alpha-hydroxy acid ester and alpha-keto ester, and described alpha-hydroxy acid ester is one of following:The red sage root Plain norbornene ester, danshensu isopropyl ester, phenyllactic acid norbornene ester, phenyllactic acid isopropyl ester, para hydroxybenzene lactic acid norbornene ester, para hydroxybenzene breast Isopropyl propionate, lactic acid norbornene ester, mandelic acid norbornene ester, almond isopropyl propionate, danshensu asarum alcohol ester, phenyllactic acid asarum alcohol ester, Para hydroxybenzene lactic acid asarum alcohol ester.
CN201710006566.9A 2017-01-05 2017-01-05 A kind of oxidase and its application Active CN106701703B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710006566.9A CN106701703B (en) 2017-01-05 2017-01-05 A kind of oxidase and its application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710006566.9A CN106701703B (en) 2017-01-05 2017-01-05 A kind of oxidase and its application

Publications (2)

Publication Number Publication Date
CN106701703A true CN106701703A (en) 2017-05-24
CN106701703B CN106701703B (en) 2019-11-08

Family

ID=58907842

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710006566.9A Active CN106701703B (en) 2017-01-05 2017-01-05 A kind of oxidase and its application

Country Status (1)

Country Link
CN (1) CN106701703B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1125961A (en) * 1993-06-25 1996-07-03 纳幕尔杜邦公司 Process for the preparation of pyruvic acid
CN102660631A (en) * 2012-04-13 2012-09-12 浙江工业大学 Method for screening stereoselective alpha-hydroxy acid dehydrogenase
CN102660470A (en) * 2012-04-13 2012-09-12 浙江工业大学 Sinorhizobium fredii and its application in producing chiral alpha-hydroxy acid by biologically splitting alpha-hydroxy acid raceme

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1125961A (en) * 1993-06-25 1996-07-03 纳幕尔杜邦公司 Process for the preparation of pyruvic acid
CN102660631A (en) * 2012-04-13 2012-09-12 浙江工业大学 Method for screening stereoselective alpha-hydroxy acid dehydrogenase
CN102660470A (en) * 2012-04-13 2012-09-12 浙江工业大学 Sinorhizobium fredii and its application in producing chiral alpha-hydroxy acid by biologically splitting alpha-hydroxy acid raceme

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ETHAN S. SIMON,ET AL.: "D-Lactate Dehydrogenase Substrate Specificity and Use as a Catalyst in the Synthesis of Homochiral 2-Hydroxy Acids", 《APPLLED BTOCHEMISTRY AND BIOTECHNOLOGY》 *
无: "oxidase [Proteus mirabilis]", 《GENBANK:WP_020945115.1》 *
郝建荣,等: "α-羟酸脱氢酶催化机制及其应用前景", 《生物加工过程》 *

Also Published As

Publication number Publication date
CN106701703B (en) 2019-11-08

Similar Documents

Publication Publication Date Title
CN106754801B (en) A kind of oxidase and its application
CN106754785B (en) A kind of oxidase and its application
CN106591250A (en) Oxidase and application thereof
CN106701703B (en) A kind of oxidase and its application
CN106754798B (en) A kind of oxidase and its application
CN106754797B (en) A kind of oxidase and its application
CN106754786B (en) A kind of oxidase and its application
CN106701706B (en) A kind of oxidase and its application
CN106754796B (en) A kind of oxidase and its application
CN106754790B (en) A kind of oxidase and its application
CN106754795B (en) A kind of oxidase and its application
CN106754800B (en) A kind of oxidase and its application
CN106754794B (en) A kind of oxidase and its application
CN106754799B (en) A kind of oxidase and its application
CN106754789B (en) A kind of oxidase and its application
CN106754787B (en) A kind of oxidase and its application
CN106701700A (en) Oxidase and application thereof
CN106701702B (en) A kind of oxidase and its application
CN106754780B (en) A kind of oxidase and its application
CN106754779B (en) A kind of oxidase and its application
CN106591252B (en) A kind of oxidizing ferment and its application
CN106591251B (en) Oxidase and application thereof
CN106701704B (en) An oxidase and its application
CN106754788B (en) A kind of oxidase and its application
CN106754792B (en) A kind of oxidase and its application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230208

Address after: Floor 20, Unit 2, Building 1, Jinlan West Jingyuan, No. 56, Shinan Road, Science Avenue, High-tech Industrial Development Zone, Zhengzhou City, Henan Province, 450000

Patentee after: Zhuohong Chaoyuan Biotechnology (Zhengzhou) Co.,Ltd.

Address before: No. 1800 road 214122 Jiangsu Lihu Binhu District City of Wuxi Province

Patentee before: Jiangnan University