CN106688084A - Manufacturing method of nitride semiconductor laminated body and nitride semiconductor laminated body - Google Patents
Manufacturing method of nitride semiconductor laminated body and nitride semiconductor laminated body Download PDFInfo
- Publication number
- CN106688084A CN106688084A CN201580048531.0A CN201580048531A CN106688084A CN 106688084 A CN106688084 A CN 106688084A CN 201580048531 A CN201580048531 A CN 201580048531A CN 106688084 A CN106688084 A CN 106688084A
- Authority
- CN
- China
- Prior art keywords
- nitride semiconductor
- semiconductor layer
- layer
- forming step
- gan
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/301—AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02664—Aftertreatments
- H01L21/02694—Controlling the interface between substrate and epitaxial layer, e.g. by ion implantation followed by annealing
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/301—AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C23C16/303—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02455—Group 13/15 materials
- H01L21/02458—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02494—Structure
- H01L21/02496—Layer structure
- H01L21/02505—Layer structure consisting of more than two layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/015—Manufacture or treatment of FETs having heterojunction interface channels or heterojunction gate electrodes, e.g. HEMT
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
- H10D30/471—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
- H10D30/475—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
- H10D30/471—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
- H10D30/475—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs
- H10D30/4755—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs having wide bandgap charge-carrier supplying layers, e.g. modulation doped HEMTs such as n-AlGaAs/GaAs HEMTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/82—Heterojunctions
- H10D62/824—Heterojunctions comprising only Group III-V materials heterojunctions, e.g. GaN/AlGaN heterojunctions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/85—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
- H10D62/8503—Nitride Group III-V materials, e.g. AlN or GaN
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/85—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
- H10D62/854—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs further characterised by the dopants
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Junction Field-Effect Transistors (AREA)
- Recrystallisation Techniques (AREA)
Abstract
Description
技术领域technical field
本发明涉及以例如HEMT(High Electron Mobility Transistor:高电子迁移率晶体管)等半导体开关元件为代表的氮化物半导体层叠体的制造方法和氮化物半导体层叠体。The present invention relates to a method for manufacturing a nitride semiconductor laminate represented by a semiconductor switching element such as a HEMT (High Electron Mobility Transistor: High Electron Mobility Transistor), and the nitride semiconductor laminate.
背景技术Background technique
以GaN(氮化镓)为代表的作为III-V族化合物半导体的氮化物半导体,近年来被期待应用于在功率器件等中使用的开关元件。这是因为,氮化物半导体与以往的使用Si(硅)的半导体相比具有带隙大至3.4eV左右、绝缘击穿电场高至约10倍、电子饱和速度大约2.5倍等适合于功率器件的特性。提出了在例如SiC(碳化硅)、Al2O3(蓝宝石)、Si等衬底上设置有GaN/AlGaN的异质结构的开关元件(参照例如美国专利第6,849,882号说明书(专利文献1))。此外,AlGaN是GaN与AlN(氮化铝)的混合物。Nitride semiconductors, which are group III-V compound semiconductors represented by GaN (gallium nitride), are expected to be applied to switching elements used in power devices and the like in recent years. This is because the nitride semiconductor has a band gap as large as about 3.4eV, an insulation breakdown electric field about 10 times higher, and an electron saturation speed about 2.5 times higher than the conventional semiconductor using Si (silicon). It is suitable for power devices. characteristic. A switching element having a GaN/AlGaN heterostructure provided on a substrate such as SiC (silicon carbide), Al 2 O 3 (sapphire), or Si has been proposed (see, for example, US Patent No. 6,849,882 (Patent Document 1)) . In addition, AlGaN is a mixture of GaN and AlN (aluminum nitride).
在上述开关元件中,除了由作为GaN的结晶结构的纤锌矿型的C轴方向上的非对称性结构引起的自发极化以外,还由于由AlGaN和GaN的晶格失配引起的压电效应所导致的极化,产生1×1012cm-2至1×1013cm-2左右的高电子密度的二维电子气。该开关元件通过对上述二维电子气的电子密度进行控制来切换规定的电极之间被电连接的状态(导通状态)与规定的电极之间不被电连接的状态(关断状态)。In the above-mentioned switching element, in addition to the spontaneous polarization caused by the asymmetric structure in the c-axis direction of the wurtzite structure which is the crystal structure of GaN, piezoelectricity caused by the lattice mismatch between AlGaN and GaN The polarization caused by the effect produces a two-dimensional electron gas with a high electron density of about 1×10 12 cm -2 to 1×10 13 cm -2 . The switching element switches between a state in which predetermined electrodes are electrically connected (on state) and a state in which predetermined electrodes are not electrically connected (off state) by controlling the electron density of the two-dimensional electron gas.
以下,参照图7、图8对上述那样的开关元件的典型结构的一个例子进行说明。图7、图8是用于表示以往的开关元件1000的典型结构的示意性截面图。另外,图7表示导通状态的开关元件1000。另一方面,图8表示关断状态的开关元件1000。Hereinafter, an example of a typical structure of the switching element as described above will be described with reference to FIGS. 7 and 8 . 7 and 8 are schematic cross-sectional views showing a typical structure of a conventional switching element 1000 . In addition, FIG. 7 shows the switching element 1000 in the on state. On the other hand, FIG. 8 shows the switching element 1000 in the OFF state.
如图7和图8所示,开关元件1000包括:衬底1001;在该衬底1001的上表面形成的缓冲层1002;在该缓冲层1002的上表面形成且由无掺杂的GaN构成的电子渡越层1003;在该电子渡越层1003的上表面形成且由AlGaN构成的电子供给层1004;源极电极1005;漏极电极1006;和栅极电极1007。该源极电极1005、漏极电极1006和栅极电极1007形成在电子供给层1004的上表面。此外,栅极电极1007位于源极电极1005与漏极电极1006之间。As shown in FIG. 7 and FIG. 8, the switching element 1000 includes: a substrate 1001; a buffer layer 1002 formed on the upper surface of the substrate 1001; electron transit layer 1003 ; electron supply layer 1004 formed on the upper surface of electron transit layer 1003 and composed of AlGaN; source electrode 1005 ; drain electrode 1006 ; and gate electrode 1007 . The source electrode 1005 , drain electrode 1006 and gate electrode 1007 are formed on the upper surface of the electron supply layer 1004 . In addition, the gate electrode 1007 is located between the source electrode 1005 and the drain electrode 1006 .
该开关元件1000为常导通型。因此,如图7所示,即使栅极电极1007的电位为与源极电极1005相同的电位,即使栅极电极1007为开路,在电子渡越层1003和电子供给层1004接合的界面附近也产生二维电子气层1008,开关元件1000也成为导通状态。在导通状态的开关元件1000中,如果漏极电极1006的电位比源极电极1005的电位高,则在源极电极1005与漏极电极1006之间流动电流。The switching element 1000 is a normally-on type. Therefore, as shown in FIG. 7, even if the potential of the gate electrode 1007 is the same as the potential of the source electrode 1005, even if the gate electrode 1007 is open, an electric shock occurs near the interface where the electron transit layer 1003 and the electron supply layer 1004 join. The two-dimensional electron gas layer 1008 and the switching element 1000 are also turned on. In the switching element 1000 in the ON state, if the potential of the drain electrode 1006 is higher than the potential of the source electrode 1005 , a current flows between the source electrode 1005 and the drain electrode 1006 .
另一方面,如图8所示,当栅极电极1007的电位以源极电极1005的电位为基准低于阈值电压时,在栅极电极1007的下方,在电子渡越层1003和电子供给层1004接合的界面附近不再产生二维电子气层1008。也就是说,形成位于栅极电极1007的下方的耗尽区域1009。由此,开关元件1000成为关断状态,在源极电极1005与漏极电极1006之间不流动电流。On the other hand, as shown in FIG. 8, when the potential of the gate electrode 1007 is lower than the threshold voltage with reference to the potential of the source electrode 1005, under the gate electrode 1007, in the electron transit layer 1003 and the electron supply layer The two-dimensional electron gas layer 1008 is no longer generated near the interface joined by 1004 . That is, a depletion region 1009 located below the gate electrode 1007 is formed. As a result, the switching element 1000 is turned off, and no current flows between the source electrode 1005 and the drain electrode 1006 .
作为通过使上述二维电子气层1008中的电子密度和迁移率增大来实现导通电阻的降低的方法,可以考虑使用由AlGaN和AlN构成的电子供给层代替由AlGaN构成的电子供给层1004的方法。As a method of reducing the on-resistance by increasing the electron density and mobility in the above-mentioned two-dimensional electron gas layer 1008, it may be considered to use an electron supply layer composed of AlGaN and AlN instead of the electron supply layer 1004 composed of AlGaN. Methods.
以下,参照图9对具有由AlGaN和AlN构成的电子供给层的开关元件的一个例子进行说明。图9是用于对具有由AlGaN和AlN构成的电子供给层2004的开关元件2000进行说明的示意性截面图。另外,关于图9所示的开关元件2000,对与图7和图8所示的开关元件1000同样的部分,标注相同的符号并且省略重复的说明。Hereinafter, an example of a switching element having an electron supply layer made of AlGaN and AlN will be described with reference to FIG. 9 . FIG. 9 is a schematic cross-sectional view for explaining a switching element 2000 having an electron supply layer 2004 made of AlGaN and AlN. In addition, regarding the switching element 2000 shown in FIG. 9 , the same parts as those of the switching element 1000 shown in FIGS. 7 and 8 are denoted by the same reference numerals and overlapping descriptions are omitted.
如图9所示,开关元件2000包括衬底1001、缓冲层1002、电子渡越层1003、电子供给层2004、源极电极1005、漏极电极1006和栅极电极1007。该电子供给层2004包括由AlN构成的间隔层2004A和由AlGaN构成的势垒层2004B。As shown in FIG. 9 , the switching element 2000 includes a substrate 1001 , a buffer layer 1002 , an electron transit layer 1003 , an electron supply layer 2004 , a source electrode 1005 , a drain electrode 1006 , and a gate electrode 1007 . The electron supply layer 2004 includes a spacer layer 2004A made of AlN and a barrier layer 2004B made of AlGaN.
上述间隔层2004A的带隙与电子渡越层1003的带隙之差大于间隔层2004A的带隙与势垒层2004B的带隙之差。此外,间隔层2004A与电子渡越层1003的晶格失配大于间隔层2004A与势垒层2004B的晶格失配。其结果,二维电子气层1008中的电子密度和迁移率增大,导通电阻降低。The difference between the bandgap of the spacer layer 2004A and the bandgap of the electron transit layer 1003 is greater than the difference between the bandgap of the spacer layer 2004A and the bandgap of the barrier layer 2004B. In addition, the lattice mismatch between the spacer layer 2004A and the electron transit layer 1003 is larger than the lattice mismatch between the spacer layer 2004A and the barrier layer 2004B. As a result, the electron density and mobility in the two-dimensional electron gas layer 1008 increase, and the on-resistance decreases.
现有技术文献prior art literature
专利文献patent documents
专利文献1:美国专利第6,849,882号说明书Patent Document 1: Specification of US Patent No. 6,849,882
发明内容Contents of the invention
发明要解决的技术问题The technical problem to be solved by the invention
但是,在上述开关元件2000中,在形成间隔层2004A时,基底的电子渡越层1003被分解,在电子渡越层1003的上表面(电子渡越层1003与间隔层2004A的界面)产生凹凸。进一步,在电子渡越层1003的上表面形成的间隔层2004A极薄为5nm以下,因此,受到电子渡越层1003的上表面的凹凸的影响,厚度变得不均匀。而且,当这样电子渡越层1003和间隔层2004A的面内方向的状态变得不均匀时,会产生电子的迁移率降低等开关元件2000的特性劣化。However, in the switching element 2000 described above, when the spacer layer 2004A is formed, the underlying electron transit layer 1003 is decomposed, and unevenness occurs on the upper surface of the electron transit layer 1003 (the interface between the electron transit layer 1003 and the spacer layer 2004A). . Furthermore, since the spacer layer 2004A formed on the upper surface of the electron transit layer 1003 is extremely thin at 5 nm or less, its thickness becomes uneven due to the unevenness of the upper surface of the electron transit layer 1003 . Furthermore, when the states of the electron transit layer 1003 and the spacer layer 2004A in the in-plane direction become uneven in this way, the characteristics of the switching element 2000 deteriorate, such as a reduction in electron mobility.
这样,上述电子渡越层1003的上表面的凹凸引起开关元件2000的特性劣化,因此是问题。In this way, the unevenness of the upper surface of the electron transit layer 1003 causes deterioration of the characteristics of the switching element 2000, which is a problem.
在此,参照图10对在上述电子渡越层1003的上表面产生凹凸的现象进行说明。图10是用于对在开关元件2000中的电子渡越层1003的上表面产生凹凸的现象进行说明的示意性截面图。另外,图10表示由AlN构成的间隔层2004A的形成方法是作为半导体元件的量产方法最被广泛使用的MOCVD(Metal Organic Chemical Vapor Deposition:有机金属气相沉积)法的情况。进一步,图10表示用于将作为液体的有机金属材料输送到反应炉的载气是从防止原料和生成物的氧化的观点出发最被广泛使用的H2(氢)的情况。Here, a phenomenon in which unevenness occurs on the upper surface of the electron transit layer 1003 will be described with reference to FIG. 10 . FIG. 10 is a schematic cross-sectional view for explaining a phenomenon in which unevenness is generated on the upper surface of the electron transit layer 1003 in the switching element 2000 . 10 shows that the formation method of the spacer layer 2004A made of AlN is the MOCVD (Metal Organic Chemical Vapor Deposition) method most widely used as a mass production method of semiconductor elements. Furthermore, FIG. 10 shows a case where the carrier gas for transporting the liquid organometallic material to the reaction furnace is H 2 (hydrogen), which is most widely used from the viewpoint of preventing oxidation of raw materials and products.
如图10所示,当想要在由GaN构成的电子渡越层1003的上表面形成由AlN构成的间隔层2004A时,构成电子渡越层1003的GaN被分解为Ga(镓)和N(氮)。这是因为,为了使构成间隔层2004A的AlN生长而需要的衬底温度(900℃以上)高于构成电子渡越层1003的GaN发生热分解的衬底温度(800℃以上)。由GaN的热分解产生的N变成气体的N2(氮)而脱离,或者与周围的H2反应变成NH3(氨)而脱离。As shown in FIG. 10, when it is desired to form a spacer layer 2004A composed of AlN on the upper surface of an electron transit layer 1003 composed of GaN, GaN constituting the electron transit layer 1003 is decomposed into Ga (gallium) and N ( nitrogen). This is because the substrate temperature (900° C. or higher) required to grow AlN constituting the spacer layer 2004A is higher than the substrate temperature (800° C. or higher) at which GaN constituting the electron transit layer 1003 thermally decomposes. N generated by thermal decomposition of GaN is desorbed as gaseous N 2 (nitrogen), or reacts with surrounding H 2 to become NH 3 (ammonia) and desorbs.
这样,在上述N从电子渡越层1003脱离时,在GaN的周围存在丰富的作为载气的H2,H(氢)与由热分解生成的N变得容易结合,因此,N的消耗被促进,热分解被促进。In this way, when the above-mentioned N desorbs from the electron transit layer 1003, there is abundant H 2 as a carrier gas around GaN, and H (hydrogen) is easily combined with N generated by thermal decomposition. Therefore, the consumption of N is suppressed. Promoted, thermal decomposition is promoted.
此外,从抑制气相中的原料的反应而促进衬底1001上的原料的反应的观点出发,优选使反应炉内为低压(例如0.1气压以下)而使上述AlN生长,但是当使反应炉内为低压时,N2和NH3的脱离被促进,因此,热分解被促进。In addition, from the viewpoint of suppressing the reaction of the raw materials in the gas phase and accelerating the reaction of the raw materials on the substrate 1001, it is preferable to grow the above-mentioned AlN by keeping the inside of the reaction furnace at a low pressure (for example, 0.1 atmosphere or less). At low pressure, the detachment of N2 and NH3 is promoted, thus, thermal decomposition is promoted.
这样的热分解被促进,由此,在电子渡越层1003的上表面产生凹凸。Such thermal decomposition is promoted, thereby causing unevenness on the upper surface of the electron transit layer 1003 .
因此,本发明要解决的技术问题在于提供能够抑制在特定的氮化物半导体层的上表面产生凹凸的氮化物半导体层叠体的制造方法和氮化物半导体层叠体。Therefore, the technical problem to be solved by the present invention is to provide a method for producing a nitride semiconductor laminate and a nitride semiconductor laminate capable of suppressing the occurrence of unevenness on the upper surface of a specific nitride semiconductor layer.
另外,作为上述氮化物半导体层叠体的一个例子,有包括衬底和层叠在该衬底上的多个氮化物半导体层的氮化物半导体层叠衬底。In addition, as an example of the above-mentioned nitride semiconductor stacked body, there is a nitride semiconductor stacked substrate including a substrate and a plurality of nitride semiconductor layers stacked on the substrate.
此外,作为上述氮化物半导体层叠体的另一个例子,有使用上述氮化物半导体层叠衬底形成的氮化物半导体层叠器件(例如开关元件)。In addition, as another example of the aforementioned nitride semiconductor stacked body, there is a nitride semiconductor stacked device (for example, a switching element) formed using the aforementioned nitride semiconductor stacked substrate.
此外,图9的开关元件2000是为了使本发明要解决的技术问题明确且为了方便而示出的,不是公知技术。In addition, the switching element 2000 in FIG. 9 is shown for the sake of clarifying the technical problem to be solved by the present invention and for convenience, and is not a known technology.
用于解决技术问题的手段Means used to solve technical problems
为了解决上述技术问题,本发明的氮化物半导体层叠体的制造方法的特征在于,包括:In order to solve the above-mentioned technical problems, the method for manufacturing a nitride semiconductor laminate of the present invention is characterized by comprising:
在反应炉内在衬底的上方形成第1氮化物半导体层的第1氮化物半导体层形成工序;A first nitride semiconductor layer forming step of forming a first nitride semiconductor layer above a substrate in a reaction furnace;
在上述第1氮化物半导体层的上方形成第2氮化物半导体层的第2氮化物半导体层形成工序;和a second nitride semiconductor layer forming step of forming a second nitride semiconductor layer above the first nitride semiconductor layer; and
在上述第2氮化物半导体层的上表面形成与上述第2氮化物半导体层相比带隙大的第3氮化物半导体层的第3氮化物半导体层形成工序,a third nitride semiconductor layer forming step of forming a third nitride semiconductor layer having a larger bandgap than that of the second nitride semiconductor layer on the upper surface of the second nitride semiconductor layer,
上述第2氮化物半导体层形成工序与上述第3氮化物半导体层形成工序之间不被中断,上述第3氮化物半导体层形成工序与上述第2氮化物半导体层形成工序连续地被实施。There is no interruption between the second nitride semiconductor layer forming step and the third nitride semiconductor layer forming step, and the third nitride semiconductor layer forming step and the second nitride semiconductor layer forming step are performed continuously.
在一个实施方式的氮化物半导体层叠体的制造方法中,In the method of manufacturing a nitride semiconductor laminate according to one embodiment,
上述第2氮化物半导体层形成工序具有:The above-mentioned second nitride semiconductor layer forming step has:
形成第4氮化物半导体层的第4氮化物半导体层形成工序;和a fourth nitride semiconductor layer forming step of forming a fourth nitride semiconductor layer; and
在上述第4氮化物半导体层的上方形成第5氮化物半导体层的第5氮化物半导体层形成工序,a fifth nitride semiconductor layer forming step of forming a fifth nitride semiconductor layer above the fourth nitride semiconductor layer,
上述第5氮化物半导体层形成工序的衬底温度比上述第4氮化物半导体层形成工序的衬底温度高,The substrate temperature in the step of forming the fifth nitride semiconductor layer is higher than the temperature of the substrate in the step of forming the fourth nitride semiconductor layer,
上述第5氮化物半导体层形成工序的炉内压力比上述第4氮化物半导体层形成工序的炉内压力低。The furnace pressure in the fifth nitride semiconductor layer forming step is lower than the furnace pressure in the fourth nitride semiconductor layer forming step.
在一个实施方式的氮化物半导体层叠体的制造方法中,In the method of manufacturing a nitride semiconductor laminate according to one embodiment,
上述第2氮化物半导体层形成工序具有在上述第4氮化物半导体层与上述第5氮化物半导体层之间形成第6氮化物半导体层的第6氮化物半导体层形成工序,The second nitride semiconductor layer forming step includes a sixth nitride semiconductor layer forming step of forming a sixth nitride semiconductor layer between the fourth nitride semiconductor layer and the fifth nitride semiconductor layer,
上述第6氮化物半导体层形成工序的衬底温度,从与上述第4氮化物半导体层形成工序的衬底温度相同的温度逐渐变化至与上述第5氮化物半导体层形成工序的衬底温度相同的温度,The substrate temperature in the sixth nitride semiconductor layer forming step is gradually changed from the same substrate temperature as in the fourth nitride semiconductor layer forming step to the same substrate temperature as in the fifth nitride semiconductor layer forming step. temperature,
上述第6氮化物半导体层形成工序的炉内压力,从与上述第4氮化物半导体层形成工序的炉内压力相同的压力逐渐变化至与上述第5氮化物半导体层形成工序的炉内压力相同的压力。The pressure in the furnace in the sixth nitride semiconductor layer forming step is gradually changed from the same pressure in the furnace in the fourth nitride semiconductor layer forming step to the same furnace pressure in the fifth nitride semiconductor layer forming step as described above. pressure.
在一个实施方式的氮化物半导体层叠体的制造方法中,In the method of manufacturing a nitride semiconductor laminate according to one embodiment,
上述第2氮化物半导体层由GaN构成,The second nitride semiconductor layer is made of GaN,
上述第3氮化物半导体层由AlxGa1-xN(0<x<1)构成。The third nitride semiconductor layer is composed of AlxGa1 - xN (0<x<1).
本发明的氮化物半导体层叠体的特征在于,包括:The nitride semiconductor laminate of the present invention is characterized by comprising:
衬底;Substrate;
在上述衬底的上方形成的第1氮化物半导体层;a first nitride semiconductor layer formed over the substrate;
在上述第1氮化物半导体层的上方形成的第2氮化物半导体层;和a second nitride semiconductor layer formed above the first nitride semiconductor layer; and
形成在上述第2氮化物半导体层的上表面,与上述第2氮化物半导体层相比带隙大的第3氮化物半导体层,a third nitride semiconductor layer having a larger bandgap than that of the second nitride semiconductor layer is formed on the upper surface of the second nitride semiconductor layer,
上述第2氮化物半导体层和上述第3氮化物半导体层,以上述第2氮化物半导体层的形成与上述第3氮化物半导体层的形成之间不被中断,上述第3氮化物半导体层的形成与上述第2氮化物半导体层的形成连续地被实施的方式形成。The second nitride semiconductor layer and the third nitride semiconductor layer are formed without interruption between the formation of the second nitride semiconductor layer and the formation of the third nitride semiconductor layer. The formation is carried out continuously with the formation of the above-mentioned second nitride semiconductor layer.
在一个实施方式的氮化物半导体层叠体中,In the nitride semiconductor stacked body of one embodiment,
上述第2氮化物半导体层具有:The above-mentioned second nitride semiconductor layer has:
碳浓度小于5×1016/cm3的第4氮化物半导体层;和a fourth nitride semiconductor layer having a carbon concentration of less than 5×10 16 /cm 3 ; and
形成在上述第4氮化物半导体层的上方,碳浓度为5×1016/cm3以上且小于1×1018/cm3的第5氮化物半导体层。A fifth nitride semiconductor layer having a carbon concentration of 5×10 16 /cm 3 to less than 1×10 18 /cm 3 is formed on the fourth nitride semiconductor layer.
一个实施方式的氮化物半导体层叠体包括在上述第4氮化物半导体层与上述第5氮化物半导体层之间形成的第6氮化物半导体层,A nitride semiconductor laminate according to one embodiment includes a sixth nitride semiconductor layer formed between the fourth nitride semiconductor layer and the fifth nitride semiconductor layer,
上述第6氮化物半导体层的碳浓度,在上述第4氮化物半导体层与上述第6氮化物半导体层的界面附近与上述第4氮化物半导体层的碳浓度大致相等,并且在上述第5氮化物半导体层与上述第6氮化物半导体层的界面附近与上述第5氮化物半导体层的碳浓度大致相等,并且随着从上述第6氮化物半导体层的下部侧向上述第6氮化物半导体层的上部侧前进而逐渐增加。The carbon concentration of the sixth nitride semiconductor layer is substantially equal to the carbon concentration of the fourth nitride semiconductor layer in the vicinity of the interface between the fourth nitride semiconductor layer and the sixth nitride semiconductor layer, and in the vicinity of the interface of the fifth nitride semiconductor layer. The vicinity of the interface between the compound semiconductor layer and the sixth nitride semiconductor layer is substantially equal to the carbon concentration of the fifth nitride semiconductor layer, and the carbon concentration increases from the lower side of the sixth nitride semiconductor layer to the sixth nitride semiconductor layer. The upper side advances and gradually increases.
在一个实施方式的氮化物半导体层叠体中,In the nitride semiconductor stacked body of one embodiment,
上述第2氮化物半导体层由GaN构成,The second nitride semiconductor layer is made of GaN,
上述第3氮化物半导体层由AlxGa1-xN(0<x<1)构成。The third nitride semiconductor layer is composed of AlxGa1 - xN (0<x<1).
在一个实施方式的氮化物半导体层叠体中,In the nitride semiconductor stacked body of one embodiment,
在上述第3氮化物半导体层的上表面,由原子力显微镜得到的表面粗糙度在1μm见方的扫描范围内为0.5nm以下。On the upper surface of the third nitride semiconductor layer, the surface roughness obtained by an atomic force microscope is 0.5 nm or less in a scanning range of 1 μm square.
发明效果Invention effect
本发明的氮化物半导体层叠体的制造方法,第2氮化物半导体层形成工序与第3氮化物半导体层形成工序之间不被中断,第3氮化物半导体层形成工序与第2氮化物半导体层形成工序连续地被实施,因此,能够抑制在第2氮化物半导体的上表面产生凹凸。因此,能够抑制在特定的氮化物半导体层的上表面产生凹凸。In the method for producing a nitride semiconductor laminate of the present invention, there is no interruption between the step of forming the second nitride semiconductor layer and the step of forming the third nitride semiconductor layer, and the step of forming the third nitride semiconductor layer and the step of forming the second nitride semiconductor layer Since the forming process is performed continuously, it is possible to suppress occurrence of unevenness on the upper surface of the second nitride semiconductor. Therefore, it is possible to suppress occurrence of unevenness on the upper surface of a specific nitride semiconductor layer.
本发明的氮化物半导体层叠体,第2氮化物半导体层和第3氮化物半导体层以第2氮化物半导体层的形成与第3氮化物半导体层的形成之间不被中断,第3氮化物半导体层的形成与第2氮化物半导体层的形成连续地被实施的方式形成,因此,能够抑制在第2氮化物半导体的上表面产生凹凸。因此,能够抑制在特定的氮化物半导体层的上表面产生凹凸。In the nitride semiconductor laminate of the present invention, the formation of the second nitride semiconductor layer and the third nitride semiconductor layer are not interrupted between the formation of the second nitride semiconductor layer and the formation of the third nitride semiconductor layer, and the third nitride semiconductor layer Since the formation of the semiconductor layer and the formation of the second nitride semiconductor layer are performed consecutively, it is possible to suppress the occurrence of unevenness on the upper surface of the second nitride semiconductor layer. Therefore, it is possible to suppress occurrence of unevenness on the upper surface of a specific nitride semiconductor layer.
附图说明Description of drawings
图1是本发明的第1实施方式的开关元件的示意截面图。FIG. 1 is a schematic cross-sectional view of a switching element according to a first embodiment of the present invention.
图2是用于对本发明的第1实施方式的电子渡越层形成工序和电子供给层形成工序进行说明的时序图。2 is a timing chart for explaining an electron transit layer forming step and an electron supply layer forming step according to the first embodiment of the present invention.
图3是本发明的第2实施方式的开关元件的示意截面图。3 is a schematic cross-sectional view of a switching element according to a second embodiment of the present invention.
图4是用于对本发明的第2实施方式的电子渡越层形成工序和电子供给层形成工序进行说明的时序图。4 is a timing chart for explaining an electron transit layer forming step and an electron supply layer forming step according to the second embodiment of the present invention.
图5是本发明的第3实施方式的开关元件的示意截面图。5 is a schematic cross-sectional view of a switching element according to a third embodiment of the present invention.
图6是用于对本发明的第3实施方式的电子渡越层形成工序和电子供给层形成工序进行说明的时序图。6 is a timing chart for explaining an electron transit layer forming step and an electron supply layer forming step according to a third embodiment of the present invention.
图7是以往的导通状态的开关元件的示意截面图。7 is a schematic cross-sectional view of a conventional switching element in an on state.
图8是以往的关断状态的开关元件的示意截面图。FIG. 8 is a schematic cross-sectional view of a conventional switching element in an off state.
图9是参考例的开关元件的示意截面图。9 is a schematic cross-sectional view of a switching element of a reference example.
图10是用于对在上述参考例的电子渡越层的上表面产生凹凸的现象进行说明的示意截面图。FIG. 10 is a schematic cross-sectional view for explaining a phenomenon in which unevenness occurs on the upper surface of the electron transit layer of the above reference example.
具体实施方式detailed description
以下,参照附图,对本发明的一个实施方式的氮化物半导体层叠体(特别是氮化物半导体层叠衬底)及其制造方法进行说明。另外,以下为了说明的具体化,列举利用了本发明的一个实施方式的氮化物半导体层叠衬底的作为氮化物半导体层叠器件的开关元件为例进行说明。此外,在以下的说明中参照的各截面图,为了说明方便起见,以强调主要部分的方式进行了表示,因此,附图上的各构成要素的尺寸比和实际的尺寸比未必一致。此外,在以下的说明中参照的各图中,从使得说明容易理解的观点出发,对相同的构成要素标注了相同的符号。Hereinafter, a nitride semiconductor stacked body (in particular, a nitride semiconductor stacked substrate) and a method of manufacturing the same according to an embodiment of the present invention will be described with reference to the drawings. In addition, in the following, for concrete description, a switching element as a nitride semiconductor multilayer device using the nitride semiconductor multilayer substrate according to one embodiment of the present invention will be described as an example. In addition, each cross-sectional view referred to in the following description is shown with emphasis on main parts for convenience of description, and therefore the dimensional ratio of each component on the drawings does not necessarily match the actual dimensional ratio. In addition, in each drawing referred to in the following description, the same code|symbol is attached|subjected to the same component from a viewpoint of making description easy to understand.
此外,以下,对于构成本发明的实施方式的氮化物半导体层叠衬底的各个层,例示了构成该层的元素(材料),其主旨是表示出构成该层的主要元素,而不是表示该层完全不包含该元素以外的元素(例如杂质等)。In addition, below, for each layer constituting the nitride semiconductor multilayer substrate according to the embodiment of the present invention, the elements (materials) constituting the layer are exemplified, and the gist is to show the main elements constituting the layer, not the Elements other than this element (for example, impurities, etc.) are not contained at all.
[第1实施方式][the first embodiment]
首先,参照附图对本发明的第1实施方式的氮化物半导体层叠衬底及其制造方法进行说明。First, the nitride semiconductor multilayer substrate and its manufacturing method according to the first embodiment of the present invention will be described with reference to the drawings.
图1是用于表示使用本发明的第1实施方式的氮化物半导体层叠衬底10A的开关元件SA的结构的示意性截面图。1 is a schematic cross-sectional view showing the structure of a switching element SA using a nitride semiconductor multilayer substrate 10A according to a first embodiment of the present invention.
如图1所示,本发明的第1实施方式的氮化物半导体层叠衬底10A包括:衬底11;在该衬底11的上表面形成的缓冲层12;在该缓冲层12的上表面形成的电子渡越层13;和在电子渡越层13的上表面形成的电子供给层14。该衬底11上的各层的形成在未图示的反应炉内进行。此外,电子供给层14的下表面与电子渡越层13的上表面接触,在电子渡越层13与电子供给层14之间不存在其它层。另外,缓冲层12是第1氮化物半导体层的一个例子。此外,电子渡越层13是第2氮化物半导体层的一个例子。此外,电子供给层14是第3氮化物半导体层的一个例子。As shown in FIG. 1 , a nitride semiconductor stacked substrate 10A according to the first embodiment of the present invention includes: a substrate 11 ; a buffer layer 12 formed on the upper surface of the substrate 11 ; The electron transit layer 13; and the electron supply layer 14 formed on the upper surface of the electron transit layer 13. Formation of each layer on the substrate 11 is carried out in a reaction furnace not shown. In addition, the lower surface of the electron supply layer 14 is in contact with the upper surface of the electron transit layer 13 , and no other layers exist between the electron transit layer 13 and the electron supply layer 14 . In addition, the buffer layer 12 is an example of the first nitride semiconductor layer. In addition, the electron transit layer 13 is an example of the second nitride semiconductor layer. In addition, the electron supply layer 14 is an example of the third nitride semiconductor layer.
上述衬底11例如由Si、SiC、Al2O3、GaN、AlN、ZnO(氧化锌)、GaAs(砷化镓)等构成。此外,缓冲层12例如由InXAlYGa1-X-YN构成(其中,0≤X+Y≤1,并且0≤X≤1,并且0≤Y≤1)。另外,衬底11和缓冲层12可以由相同的氮化物半导体构成。此外,衬底11和缓冲层12如果能够抑制氮化物半导体层叠衬底10A的翘曲和裂缝,则不限定于上述的材料,无论选择何种材料都可以。此外,在缓冲层12的上部,为了提高耐压,可以形成碳浓度为5×1016/cm3以上的耐压GaN层。The substrate 11 is made of, for example, Si, SiC, Al 2 O 3 , GaN, AlN, ZnO (zinc oxide), GaAs (gallium arsenide), or the like. Further, the buffer layer 12 is composed of, for example, InXAlYGa1 - XYN (wherein, 0≤X+ Y≤1 , and 0≤X≤1, and 0≤Y≤1). In addition, substrate 11 and buffer layer 12 may be composed of the same nitride semiconductor. In addition, substrate 11 and buffer layer 12 are not limited to the above-mentioned materials as long as warping and cracking of nitride semiconductor multilayer substrate 10A can be suppressed, and any material may be selected. In addition, on the upper portion of the buffer layer 12, in order to increase the withstand voltage, a withstand voltage GaN layer having a carbon concentration of 5×10 16 /cm 3 or more may be formed.
上述电子渡越层13例如由厚度为1μm以上5μm以下的无掺杂的GaN构成。此外,电子渡越层13由基底GaN层13A和在该基底GaN层13A的上表面形成的沟道GaN层13C构成。该基底GaN层13A和沟道GaN层13C的形成条件彼此不同。此外,基底GaN层13A的碳浓度小于5×1016/cm3。另一方面,沟道GaN层13C的碳浓度为5×1016/cm3以上1×1018/cm3以上。另外,基底GaN层13A为第4氮化物半导体层的一个例子。此外,沟道GaN层13C为第5氮化物半导体层的一个例子。The electron transit layer 13 is made of, for example, undoped GaN having a thickness of not less than 1 μm and not more than 5 μm. Furthermore, the electron transit layer 13 is composed of a base GaN layer 13A and a channel GaN layer 13C formed on the upper surface of the base GaN layer 13A. The formation conditions of the base GaN layer 13A and the channel GaN layer 13C are different from each other. In addition, the carbon concentration of base GaN layer 13A is less than 5×10 16 /cm 3 . On the other hand, the carbon concentration of channel GaN layer 13C is not less than 5×10 16 /cm 3 and not less than 1×10 18 /cm 3 . In addition, base GaN layer 13A is an example of a fourth nitride semiconductor layer. In addition, the channel GaN layer 13C is an example of the fifth nitride semiconductor layer.
在上述基底GaN层13A的碳浓度为5×1016/cm3以上的情况下,在基底GaN层13A与缓冲层12的界面,位错、纳米管等的弯曲变小,该位错、纳米管等延伸到二维电子气区域,对器件特性造成不良影响。另外,在缓冲层12的上部形成有上述耐压GaN层的情况下,当基底GaN层13A的碳浓度为5×1016/cm3以上时,在基底GaN层13A与上述耐压GaN层的界面,位错、纳米管等的弯曲也变小。In the case where the carbon concentration of the base GaN layer 13A is 5×10 16 /cm 3 or more, at the interface between the base GaN layer 13A and the buffer layer 12, dislocations, bending of nanotubes, etc. become small, and the dislocations, nanotubes, etc. Tubes and the like extend into the two-dimensional electron gas region, causing adverse effects on device characteristics. In addition, when the above-mentioned withstand voltage GaN layer is formed on the upper portion of the buffer layer 12, when the carbon concentration of the base GaN layer 13A is 5×10 16 /cm 3 or more, the gap between the base GaN layer 13A and the above-mentioned withstand voltage GaN layer Bending of interfaces, dislocations, nanotubes, etc. also becomes smaller.
在上述沟道GaN层13C的碳浓度小于5×1016/cm3的情况下,虽然详细的理由不明,但是沟道GaN层13C与间隔层14A的界面的平坦性降低,二维电子气区域的电子的迁移率降低。此外,在沟道GaN层13C的碳浓度为1×1018/cm3以上的情况下,相反由于过剩的碳,沟道GaN层13C与间隔层14A的界面的平坦性变差,二维电子气区域的电子的迁移率降低。另外,当在沟道GaN层13C与势垒层14B之间不设置间隔层14A的情况下,沟道GaN层13C与势垒层14B的界面的平坦性也变差。When the carbon concentration of the above-mentioned channel GaN layer 13C is less than 5×10 16 /cm 3 , although the detailed reason is unknown, the flatness of the interface between the channel GaN layer 13C and the spacer layer 14A decreases, and the two-dimensional electron gas region The mobility of the electrons is reduced. In addition, when the carbon concentration of the channel GaN layer 13C is 1×10 18 /cm 3 or more, on the contrary, due to excess carbon, the flatness of the interface between the channel GaN layer 13C and the spacer layer 14A deteriorates, and two-dimensional electrons The mobility of electrons in the gas region decreases. In addition, when the spacer layer 14A is not provided between the channel GaN layer 13C and the barrier layer 14B, the flatness of the interface between the channel GaN layer 13C and the barrier layer 14B also deteriorates.
上述电子供给层14具有:例如5nm以下的由AlN构成的间隔层14A;和例如5nm以上100nm以下的由AlZGa1-ZN(其中0<Z<1)构成的势垒层14B。此外,间隔层14A的带隙比基底GaN层13A和沟道GaN层13C中的任一者的带隙都大。此外,势垒层14B的带隙也比基底GaN层13A和沟道GaN层13C中的任一者的带隙都大。也就是说,电子供给层14具有比电子渡越层13大的带隙。在此,进一步优选上述AlZGa1-ZN的组成比Z满足0.1≤Z≤0.5。The electron supply layer 14 has: a spacer layer 14A made of AlN, for example 5nm or less; and a barrier layer 14B made of AlZGa1 -ZN (where 0< Z <1) for example, 5nm or more and 100nm or less. In addition, the bandgap of the spacer layer 14A is larger than that of any one of the base GaN layer 13A and the channel GaN layer 13C. In addition, the bandgap of the barrier layer 14B is also larger than that of either the base GaN layer 13A or the channel GaN layer 13C. That is, the electron supply layer 14 has a larger band gap than the electron transit layer 13 . Here, it is more preferable that the Al Z Ga 1-Z N composition ratio Z satisfies 0.1≦Z≦0.5.
此外,上述开关元件SA具有氮化物半导体层叠衬底10A、源极电极21、漏极电极22和栅极电极23。Furthermore, the switching element SA described above has a nitride semiconductor multilayer substrate 10A, a source electrode 21 , a drain electrode 22 , and a gate electrode 23 .
上述源极电极21、漏极电极22和栅极电极23形成在电子供给层14的上表面。此外,栅极电极23配置在源极电极21与漏极电极22之间。The aforementioned source electrode 21 , drain electrode 22 and gate electrode 23 are formed on the upper surface of the electron supply layer 14 . In addition, the gate electrode 23 is arranged between the source electrode 21 and the drain electrode 22 .
此外,上述源极电极21、漏极电极22和栅极电极23各自由Ti、Al、Cu、Au、Pt、W、Ta、Ru、Ir、Pd、Hf等金属元素、包含这些金属元素中的至少2种的合金、或包含这些金属元素中的至少1种的氮化物等构成。源极电极21、漏极电极22和栅极电极23各自既可以由单层构成,也可以由组成不同的多个层构成。In addition, the above-mentioned source electrode 21, drain electrode 22, and gate electrode 23 are each made of metal elements such as Ti, Al, Cu, Au, Pt, W, Ta, Ru, Ir, Pd, Hf, etc., including metal elements among these metal elements. An alloy of at least two kinds, or a nitride containing at least one of these metal elements, or the like. Each of the source electrode 21, the drain electrode 22, and the gate electrode 23 may be composed of a single layer, or may be composed of a plurality of layers with different compositions.
上述开关元件SA为常导通型。因此,即使栅极电极23的电位为与源极电极21相同的电位,即使栅极电极23为开路,在沟道GaN层13C与间隔层14A的界面附近也产生二维电子气层15,开关元件SA也成为导通状态。在开关元件SA成为导通状态时,如果漏极电极22的电位比源极电极21的电位高,则在源极电极21与漏极电极22之间流动电流。另一方面,当栅极电极23的电位以源极电极21的电位为基准低于阈值电压时,在栅极电极23的下方,在沟道GaN层13C与间隔层14A的界面附近不再产生二维电子气层15。也就是说,在栅极电极23下形成与图7的耗尽区域1009同样的区域,开关元件SA成为关断状态。在开关元件SA成为关断状态时,在源极电极21与漏极电极22之间不流动电流。The above-mentioned switching element SA is a normally-on type. Therefore, even if the potential of the gate electrode 23 is the same as that of the source electrode 21, even if the gate electrode 23 is open, the two-dimensional electron gas layer 15 is generated near the interface between the channel GaN layer 13C and the spacer layer 14A, and the switch The element SA is also turned on. When the switching element SA is turned on, if the potential of the drain electrode 22 is higher than the potential of the source electrode 21 , a current flows between the source electrode 21 and the drain electrode 22 . On the other hand, when the potential of the gate electrode 23 is lower than the threshold voltage on the basis of the potential of the source electrode 21 , below the gate electrode 23 , no longer occurs in the vicinity of the interface between the channel GaN layer 13C and the spacer layer 14A. Two-dimensional electron gas layer 15. That is, a region similar to the depletion region 1009 in FIG. 7 is formed under the gate electrode 23, and the switching element SA is turned off. When the switching element SA is turned off, no current flows between the source electrode 21 and the drain electrode 22 .
这样,在上述氮化物半导体层叠衬底10A中,需要在由GaN构成的电子渡越层13的上表面形成电子供给层14。假设在电子渡越层13形成后,提高衬底温度,降低炉内压力(收纳衬底11的上述反应炉内的压力)后,开始电子供给层14的形成,则在提高衬底温度、降低炉内压力的期间,形成电子渡越层13的GaN会热分解。当这样时,会在电子渡越层13的上表面(界面)产生凹凸。Thus, in the aforementioned nitride semiconductor multilayer substrate 10A, it is necessary to form the electron supply layer 14 on the upper surface of the electron transit layer 13 made of GaN. Assuming that after the formation of the electron transit layer 13, the substrate temperature is increased, the pressure in the furnace is lowered (the pressure in the reaction furnace containing the substrate 11), and then the formation of the electron supply layer 14 is started. During the pressure in the furnace, GaN forming the electron transit layer 13 is thermally decomposed. In this case, irregularities are generated on the upper surface (interface) of the electron transit layer 13 .
因此,在本发明的第1实施方式的氮化物半导体层叠衬底10A中,形成能够抑制构成电子渡越层13的GaN的热分解的电子渡越层13和电子供给层14。以下参照附图进行说明。Therefore, in the nitride semiconductor multilayer substrate 10A according to the first embodiment of the present invention, the electron transit layer 13 and the electron supply layer 14 capable of suppressing thermal decomposition of GaN constituting the electron transit layer 13 are formed. The following description will be made with reference to the drawings.
图2是表示电子渡越层形成工序和电子供给层形成工序中的衬底温度、炉内压力和原料气体的供给量的变化的时序图。在该电子渡越层形成工序和电子供给层形成工序中,电子渡越层13和电子供给层14利用MOCVD法形成。此外,在上述反应炉内在衬底11的上表面形成缓冲层12的缓冲层形成工序后,在上述反应炉内依次进行电子渡越层形成工序和电子供给层形成工序。此外,图2的横轴表示时间,越靠该横轴的图2中的右侧,时间越靠后。此外,图2的纵轴表示衬底温度、炉内压力或原料气体的供给量。在图2的纵轴表示衬底温度时,越靠该纵轴的图2中的上侧,衬底温度越高。此外,在图2的纵轴表示炉内压力时,越靠该纵轴的图2中的上侧,炉内压力越高。此外,在图2的纵轴表示原料气体的供给量时,越靠该纵轴的图2中的上侧,原料气体的供给量越多。另外,上述缓冲层形成工序是第1氮化物半导体层形成工序的一个例子。此外,上述电子渡越层形成工序是第2氮化物半导体层形成工序的一个例子。此外,上述电子供给层形成工序是第3氮化物半导体层形成工序的一个例子。FIG. 2 is a time chart showing changes in substrate temperature, furnace pressure, and supply amount of source gases in an electron transit layer forming step and an electron supply layer forming step. In the electron transit layer forming step and the electron supply layer forming step, the electron transit layer 13 and the electron supply layer 14 are formed by MOCVD. In addition, after the buffer layer forming step of forming the buffer layer 12 on the upper surface of the substrate 11 in the reaction furnace, the electron transit layer forming step and the electron supply layer forming step are sequentially performed in the reaction furnace. In addition, the horizontal axis of FIG. 2 represents time, and the closer to the right side in FIG. 2 of the horizontal axis, the later the time. In addition, the vertical axis of FIG. 2 represents the substrate temperature, the pressure in the furnace, or the supply amount of the source gas. When the vertical axis of FIG. 2 represents the substrate temperature, the higher the vertical axis in FIG. 2 , the higher the substrate temperature. In addition, when the vertical axis of FIG. 2 represents the furnace internal pressure, the higher the vertical axis in FIG. 2 is, the higher the furnace internal pressure is. In addition, when the vertical axis of FIG. 2 represents the supply amount of the raw material gas, the supply amount of the raw material gas increases toward the upper side in FIG. 2 of the vertical axis. In addition, the above buffer layer forming step is an example of the first nitride semiconductor layer forming step. In addition, the above-mentioned electron transit layer forming step is an example of the second nitride semiconductor layer forming step. In addition, the above-mentioned electron supply layer forming step is an example of the third nitride semiconductor layer forming step.
如图2所示,首先在缓冲层12之上形成由GaN构成的基底GaN层13A(基底GaN层形成工序)。具体而言,通过分别向上述反应炉内供给作为Ga的原料的TMG(三甲基镓)和作为N的原料的NH3,形成由GaN构成的基底GaN层13A。此时,作为载气使用H2,衬底温度为T1,炉内压力为P1。该衬底温度T1例如为600℃以上1300℃以下,更加优选为700℃以上1200℃以下。此外,炉内压力P1例如为0.15气压以上。另外,上述基底GaN层形成工序为第4氮化物半导体层形成工序的一个例子。As shown in FIG. 2 , first, an underlying GaN layer 13A made of GaN is formed on the buffer layer 12 (the underlying GaN layer forming step). Specifically, base GaN layer 13A made of GaN is formed by supplying TMG (trimethylgallium) as a raw material of Ga and NH 3 as a raw material of N into the reaction furnace. At this time, H2 was used as the carrier gas, the substrate temperature was T1, and the furnace pressure was P1. The substrate temperature T1 is, for example, 600°C to 1300°C, more preferably 700°C to 1200°C. In addition, the furnace internal pressure P1 is 0.15 atmospheric pressure or more, for example. In addition, the above-mentioned underlying GaN layer forming step is an example of the fourth nitride semiconductor layer forming step.
当上述基底GaN层13A的形成结束时,停止TMG的供给,转变至沟道GaN层形成工序的条件。此时,衬底温度从T1向T2转变,炉内压力从P1向P2转变。在此,上述T2高于上述T1,例如为900℃以上1400℃以下,更优选为900℃以上1200℃以下。此外,上述P2低于上述P1,例如为0.15气压以下。此外,关于作为原料气体的TMG、NH3的供给量,当设在基底GaN层形成工序中分别为TMG1、NH31,在沟道GaN层形成工序中分别为TMG2、NH32时,优选TMG2<TMG1、NH32<NH31。这是因为,电子供给层14与电子渡越层13相比非常薄,因此,抑制生长速度使膜质稳定。另外,上述沟道GaN层形成工序是第5氮化物半导体层形成工序的一个例子。When the formation of the base GaN layer 13A is completed, the supply of TMG is stopped, and the conditions of the channel GaN layer formation step are changed. At this time, the substrate temperature changes from T1 to T2, and the furnace pressure changes from P1 to P2. Here, the above T2 is higher than the above T1, for example, 900°C to 1400°C, more preferably 900°C to 1200°C. In addition, the said P2 is lower than the said P1, for example, it is 0.15 atmosphere or less. In addition, when the supply amounts of TMG and NH 3 as raw material gases are respectively TMG1 and NH 3 1 in the base GaN layer forming step and TMG2 and NH 3 2 in the channel GaN layer forming step, it is preferable TMG2 <TMG1, NH32 <NH31. This is because the electron supply layer 14 is much thinner than the electron transit layer 13 , so the growth rate is suppressed and the film quality is stabilized. In addition, the above-mentioned channel GaN layer forming step is an example of the fifth nitride semiconductor layer forming step.
然后,在上述衬底温度稳定在T2、炉内压力稳定在P2、TMG的供给量稳定在TMG2、NH3的供给量稳定在NH32后,形成沟道GaN层13C(沟道GaN层形成工序)。在此,沟道GaN层13C的碳浓度由于将压力从P1降低到P2的影响而处于变得比基底GaN层13A大的趋势。Then, after the substrate temperature is stabilized at T2, the furnace pressure is stabilized at P2, the supply rate of TMG is stabilized at TMG2, and the supply rate of NH3 is stabilized at NH32 , the channel GaN layer 13C is formed (channel GaN layer formation process). Here, the carbon concentration of the channel GaN layer 13C is in a tendency to become larger than that of the base GaN layer 13A due to the influence of lowering the pressure from P1 to P2.
当上述沟道GaN层13C的形成结束时,将NH3的供给量维持在NH32,将衬底温度维持在T2,将炉内压力维持在P2,另一方面,停止TMG的供给,开始供给作为Al的材料的TMA(三甲基铝),由此形成间隔层14A(间隔层形成工序)。在间隔层14A的形成开始时,衬底温度T2、炉内压力P2已经变成适合于间隔层14A和势垒层14B的形成的条件,不需要为了特别花费时间的衬底温度和炉内压力的调整而中断形成。When the formation of the above-mentioned channel GaN layer 13C is completed, the supply amount of NH 3 is maintained at NH 3 2 , the substrate temperature is maintained at T2, and the pressure in the furnace is maintained at P2. On the other hand, the supply of TMG is stopped, and the TMA (trimethylaluminum) which is a material of Al is supplied, thereby forming the spacer layer 14A (spacer layer forming step). When the formation of the spacer layer 14A starts, the substrate temperature T2 and the furnace pressure P2 have become conditions suitable for the formation of the spacer layer 14A and the barrier layer 14B, and there is no need to adjust the substrate temperature and furnace pressure for a particularly time-consuming process. The formation is interrupted by the adjustment.
当上述间隔层14A的形成结束时,再次开始TMG的供给,形成势垒层14B(势垒层形成工序)。此时的TMG的供给量当设为与沟道GaN层形成工序的TMG的供给量相同的TMG2时,不改变质量流量控制器的设定而仅通过阀的开闭即可进行从沟道GaN层形成工序到势垒层形成工序的TMG供给量的控制,因此优选。When the formation of the spacer layer 14A is completed, the supply of TMG is restarted to form the barrier layer 14B (barrier layer forming step). When the supply amount of TMG at this time is set to TMG2 which is the same as the supply amount of TMG in the channel GaN layer formation process, the flow rate from the channel GaN can be achieved only by opening and closing the valve without changing the setting of the mass flow controller. Control of the TMG supply amount from the layer formation step to the barrier layer formation step is therefore preferable.
如以上那样,在本发明的第1实施方式的氮化物半导体层叠衬底10A中,通过在电子渡越层13的形成中途将衬底温度和炉内压力变更为电子供给层14的衬底温度和炉内压力,能够在电子渡越层形成工序与电子供给层形成工序之间不产生中断而与电子渡越层形成工序连续地进行电子供给层形成工序。由此,电子渡越层13的上表面处的GaN的热分解被抑制,难以产生电子渡越层13的上表面(界面)的凹凸。其结果,由原子力显微镜得到的氮化物半导体层叠衬底10A的表面粗糙度(例如算术平均粗糙度Ra)、即由原子力显微镜得到的势垒层14B的上表面的表面粗糙度(例如算术平均粗糙度Ra)在1μm见方的扫描范围内为0.5nm以下。As described above, in the nitride semiconductor multilayer substrate 10A according to the first embodiment of the present invention, by changing the substrate temperature and furnace pressure to the substrate temperature of the electron supply layer 14 during the formation of the electron transit layer 13 and furnace pressure, the electron supply layer forming step can be performed continuously with the electron transit layer forming step without interruption between the electron transit layer forming step and the electron supply layer forming step. Accordingly, thermal decomposition of GaN on the upper surface of the electron transit layer 13 is suppressed, and unevenness of the upper surface (interface) of the electron transit layer 13 is less likely to occur. As a result, the surface roughness (for example, the arithmetic mean roughness Ra) of the nitride semiconductor laminated substrate 10A obtained by the atomic force microscope, that is, the surface roughness (for example, the arithmetic mean roughness Ra) of the upper surface of the barrier layer 14B obtained by the atomic force microscope Degree Ra) is 0.5nm or less in the scanning range of 1μm square.
此外,通过抑制在上述电子渡越层13的上表面(界面)产生凹凸,能够使例如5nm以下的极薄的间隔层14A的厚度均匀。由此,电子渡越层13和间隔层14A的面内方向的状态变得均匀,因此,能够抑制二维电子气15中的电子的迁移率下降等开关元件SA的特性劣化的产生。In addition, by suppressing occurrence of unevenness on the upper surface (interface) of the electron transit layer 13 , the thickness of the extremely thin spacer layer 14A of, for example, 5 nm or less can be made uniform. Accordingly, the in-plane states of the electron transit layer 13 and the spacer layer 14A become uniform, thereby suppressing deterioration of the characteristics of the switching element SA such as a decrease in the mobility of electrons in the two-dimensional electron gas 15 .
在上述第1实施方式中,在衬底11的上表面形成了缓冲层12,但是也可以在衬底11的上方形成缓冲层。即,也可以在衬底11上隔着其它层形成缓冲层。In the first embodiment described above, the buffer layer 12 was formed on the upper surface of the substrate 11 , but the buffer layer may also be formed on the upper surface of the substrate 11 . That is, a buffer layer may be formed on the substrate 11 through another layer.
在上述第1实施方式中,电子供给层14可以具有由InJAlLGa1-J-LN(其中0<J+L≤1且0≤J<1、0<L≤1)构成的势垒层来代替由AlZGa1-ZN(其中0<Z<1)构成的势垒层14B。In the above-mentioned first embodiment, the electron supply layer 14 may have a potential barrier composed of In J Al L Ga 1-JL N (where 0<J+L≤1 and 0≤J<1, 0<L≤1). layer instead of the barrier layer 14B composed of AlZGa1 -ZN (where 0< Z <1).
[第2实施方式][the second embodiment]
接着,参照附图对本发明的第2实施方式的氮化物半导体层叠衬底及其制造方法进行说明。Next, a nitride semiconductor multilayer substrate and a manufacturing method thereof according to a second embodiment of the present invention will be described with reference to the drawings.
图3是用于表示使用本发明的第2实施方式的氮化物半导体层叠衬底10B的开关元件SB的结构的示意性截面图。此外,图4是表示上述氮化物半导体层叠衬底10B的电子渡越层形成工序和电子供给层形成工序中的衬底温度、炉内压力、原料气体的供给量的变化的时序图。另外,图3和图4是用与上述第1实施方式的图1和图2的方法同样的方法对本发明的第2实施方式的氮化物半导体层叠衬底10B的结构和制造方法进行表示的图。此外,在以下的氮化物半导体层叠衬底10B的说明中,对于与上述第1实施方式的结构部相同的结构部,有时省略重复的说明。3 is a schematic cross-sectional view showing the structure of a switching element SB using a nitride semiconductor multilayer substrate 10B according to a second embodiment of the present invention. 4 is a timing chart showing changes in the substrate temperature, furnace pressure, and supply amount of source gases in the electron transit layer forming step and the electron supply layer forming step of the nitride semiconductor multilayer substrate 10B. In addition, FIGS. 3 and 4 are diagrams showing the structure and manufacturing method of the nitride semiconductor laminated substrate 10B according to the second embodiment of the present invention by the same method as the method shown in FIGS. 1 and 2 of the first embodiment described above. . In addition, in the following description of the nitride semiconductor multilayer substrate 10B, overlapping descriptions of structural parts that are the same as those of the above-mentioned first embodiment may be omitted in some cases.
如图3所示,本发明的第2实施方式的氮化物半导体层叠衬底10B包括:衬底11;在该衬底11的上表面形成的缓冲层12;在该缓冲层12的上表面形成的电子渡越层213;和在该电子渡越层213的上表面形成的电子供给层14。As shown in FIG. 3 , a nitride semiconductor stacked substrate 10B according to the second embodiment of the present invention includes: a substrate 11 ; a buffer layer 12 formed on the upper surface of the substrate 11 ; The electron transit layer 213; and the electron supply layer 14 formed on the upper surface of the electron transit layer 213.
此外,上述开关元件SB包括氮化物半导体层叠衬底10B、源极电极21、漏极电极22和栅极电极23。In addition, the switching element SB described above includes a nitride semiconductor stacked substrate 10B, a source electrode 21 , a drain electrode 22 , and a gate electrode 23 .
上述源极电极21、漏极电极22和栅极电极23形成在电子供给层14的上表面。此外,栅极电极23配置在源极电极21与漏极电极22之间。The aforementioned source electrode 21 , drain electrode 22 and gate electrode 23 are formed on the upper surface of the electron supply layer 14 . In addition, the gate electrode 23 is arranged between the source electrode 21 and the drain electrode 22 .
此外,上述氮化物半导体层叠衬底10B,在基底GaN层13A、倾斜(slope)GaN层13B和沟道GaN层13C构成电子渡越层213这一点与上述第1实施方式的氮化物半导体层叠衬底10A不同。该基底GaN层13A、倾斜GaN层13B和沟道GaN层13C的形成条件彼此不同。此外,间隔层14A的带隙比基底GaN层13A、倾斜GaN层13B和沟道GaN层13C中的任一者的带隙都大。此外,势垒层14B的带隙也比基底GaN层13A、倾斜GaN层13B和沟道GaN层13C中的任一者的带隙都大。即,电子供给层14具有比电子渡越层213大的带隙。另外,倾斜GaN层13B是第6氮化物半导体层的一个例子。In addition, the above-mentioned nitride semiconductor laminated substrate 10B is different from the nitride semiconductor laminated substrate of the above-mentioned first embodiment in that the electron transit layer 213 is constituted by the base GaN layer 13A, the slope GaN layer 13B, and the channel GaN layer 13C. Bottom 10A is different. The formation conditions of the base GaN layer 13A, the slope GaN layer 13B, and the channel GaN layer 13C are different from each other. In addition, the bandgap of the spacer layer 14A is larger than that of any one of the base GaN layer 13A, the sloped GaN layer 13B, and the channel GaN layer 13C. In addition, the bandgap of the barrier layer 14B is also larger than that of any of the base GaN layer 13A, the sloped GaN layer 13B, and the channel GaN layer 13C. That is, the electron supply layer 14 has a larger bandgap than the electron transit layer 213 . In addition, the gradient GaN layer 13B is an example of a sixth nitride semiconductor layer.
上述倾斜GaN层13B是能够通过在上述第1实施方式中从基底GaN层形成工序向沟道GaN形成工序的形成条件转变的步骤中使TMG和NH3向反应炉内的供给继续进行而形成的层。The sloped GaN layer 13B can be formed by continuously supplying TMG and NH 3 to the reaction furnace in the step of changing the formation conditions from the base GaN layer formation step to the channel GaN formation step in the first embodiment. Floor.
以下,使用图4具体地对上述氮化物半导体层叠衬底10B的电子渡越层213和电子供给层14的形成方法进行说明。Hereinafter, a method for forming the electron transit layer 213 and the electron supply layer 14 of the above-mentioned nitride semiconductor multilayer substrate 10B will be specifically described with reference to FIG. 4 .
如图4所示,首先,利用与上述第1实施方式的基底GaN层13A的形成方法同样的形成方法,在缓冲层12之上形成基底GaN层13A(基底GaN层形成工序)。As shown in FIG. 4 , first, the underlying GaN layer 13A is formed on the buffer layer 12 by the same formation method as that of the underlying GaN layer 13A in the first embodiment (the underlying GaN layer forming step).
当上述基底GaN层13A的形成结束时,将衬底温度等转变至用于形成沟道GaN层13C的衬底温度等。此时,衬底温度从T1向T2,炉内压力从P1向P2,TMG的供给量从TMG1向TMG2,NH3的供给量从NH31向NH32花费一定时间缓慢地转变。在该转变的期间,TMG和NH3向反应炉内的供给继续,由此形成倾斜GaN层13B(倾斜GaN层形成工序)。在此,在基底GaN层13A与倾斜GaN层13B的界面附近,倾斜GaN层13B的碳浓度与基底GaN层13A的碳浓度大致相等。此外,在沟道GaN层13C与倾斜GaN层13B的界面附近,倾斜GaN层13B的碳浓度与沟道GaN层13C的碳浓度大致相等。此外,倾斜GaN层13B的碳浓度随着从倾斜GaN层13B的下部侧向倾斜GaN层13B的上部侧前进而逐渐增加。When the formation of the above-described base GaN layer 13A is completed, the substrate temperature and the like are shifted to the substrate temperature and the like for forming the channel GaN layer 13C. At this time, the substrate temperature changes from T1 to T2, the furnace pressure changes from P1 to P2, the supply of TMG changes from TMG1 to TMG2, and the supply of NH 3 changes slowly from NH 3 1 to NH 3 2 over a certain period of time. During this transition, the supply of TMG and NH 3 into the reaction furnace is continued, whereby the sloped GaN layer 13B is formed (the sloped GaN layer forming step). Here, in the vicinity of the interface between base GaN layer 13A and sloped GaN layer 13B, the carbon concentration of sloped GaN layer 13B is substantially equal to the carbon concentration of base GaN layer 13A. In addition, in the vicinity of the interface between the channel GaN layer 13C and the sloped GaN layer 13B, the carbon concentration of the sloped GaN layer 13B is substantially equal to the carbon concentration of the channel GaN layer 13C. In addition, the carbon concentration of the sloped GaN layer 13B gradually increases as proceeding from the lower side of the sloped GaN layer 13B to the upper side of the sloped GaN layer 13B.
当上述倾斜GaN层13B的形成结束时,保持将TMG的供给量维持在TMG2、将NH3的供给量维持在NH32、将衬底温度维持在T2、将炉内压力维持在P2的状态,形成沟道GAN层13C(沟道GaN层形成工序)。在此,沟道GaN层13C的碳浓度由于将炉内压力从P1降低到P2的影响而处于变得比基底GaN层13A大的趋势。When the above-mentioned formation of the sloped GaN layer 13B is completed, the supply amount of TMG is maintained at TMG2, the supply amount of NH3 is maintained at NH32 , the substrate temperature is maintained at T2, and the furnace pressure is maintained at P2. , forming the channel GAN layer 13C (channel GaN layer forming step). Here, the carbon concentration of the channel GaN layer 13C tends to become larger than that of the base GaN layer 13A due to the influence of lowering the furnace pressure from P1 to P2.
当上述沟道GaN层13C的形成结束时,与上述第1实施方式的间隔层14A的形成方法同样地,停止TMG的供给,开始TMA的供给,形成间隔层14A(间隔层形成工序)。在沟道GaN层13C的形成结束时,衬底温度为T2,炉内压力为P2。该衬底温度T2和炉内压力P2适合于间隔层14A和势垒层14B的形成,因此,在沟道GaN层13C的形成后,不中断而连续地形成间隔层14A。When the formation of the channel GaN layer 13C is completed, the supply of TMG is stopped and the supply of TMA is started to form the spacer layer 14A in the same manner as the method for forming the spacer layer 14A in the first embodiment (spacer layer forming step). At the end of the formation of the channel GaN layer 13C, the substrate temperature is T2 and the furnace pressure is P2. The substrate temperature T2 and the furnace pressure P2 are suitable for the formation of the spacer layer 14A and the barrier layer 14B. Therefore, the spacer layer 14A is formed continuously without interruption after the formation of the channel GaN layer 13C.
当上述间隔层14A的形成结束时,与上述第1实施方式的势垒层14B的形成方法同样地,再次开始TMG的供给,形成势垒层14B(势垒层形成工序)。此时的TMG的供给量当设为与沟道GaN层形成工序的TMG的供给量相同的TMG2时,不改变质量流量控制器的设定而仅通过阀的开闭即可进行从沟道GaN层形成工序到势垒层形成工序的TMG供给量的控制,因此优选。When the formation of the spacer layer 14A is completed, the supply of TMG is restarted to form the barrier layer 14B in the same manner as the method for forming the barrier layer 14B in the first embodiment (barrier layer forming step). When the supply amount of TMG at this time is set to TMG2 which is the same as the supply amount of TMG in the channel GaN layer formation process, the flow rate from the channel GaN can be achieved only by opening and closing the valve without changing the setting of the mass flow controller. Control of the TMG supply amount from the layer formation step to the barrier layer formation step is therefore preferable.
如以上那样,在本发明的第2实施方式的氮化物半导体层叠衬底10B中,与上述第1实施方式同样,通过在电子渡越层213的形成中途将衬底温度和炉内压力变更为电子供给层14的衬底温度和炉内压力,能够在电子渡越层形成工序与电子供给层形成工序之间不产生中断而与电子渡越层形成工序连续地进行电子供给层形成工序。由此,电子渡越层13的上表面处的GaN的热分解被抑制,难以产生电子渡越层13的上表面(界面)的凹凸。其结果,由原子力显微镜得到的氮化物半导体层叠衬底10A的表面粗糙度(例如算术平均粗糙度Ra)、即由原子力显微镜得到的势垒层14B的上表面的表面粗糙度(例如算术平均粗糙度Ra)在1μm见方的扫描范围内为0.5nm以下。As described above, in the nitride semiconductor multilayer substrate 10B according to the second embodiment of the present invention, as in the above-mentioned first embodiment, by changing the substrate temperature and the pressure in the furnace during the formation of the electron transit layer 213 to The substrate temperature and furnace pressure of the electron supply layer 14 allow the electron supply layer forming step to be performed continuously with the electron transit layer forming step without interruption between the electron transit layer forming step and the electron supply layer forming step. Accordingly, thermal decomposition of GaN on the upper surface of the electron transit layer 13 is suppressed, and unevenness of the upper surface (interface) of the electron transit layer 13 is less likely to occur. As a result, the surface roughness (for example, the arithmetic mean roughness Ra) of the nitride semiconductor laminated substrate 10A obtained by the atomic force microscope, that is, the surface roughness (for example, the arithmetic mean roughness Ra) of the upper surface of the barrier layer 14B obtained by the atomic force microscope Degree Ra) is 0.5nm or less in the scanning range of 1μm square.
此外,通过抑制在上述电子渡越层213的上表面(界面)产生凹凸,能够使例如5nm以下的极薄的间隔层14A的厚度均匀。由此,电子渡越层213和间隔层14A的面内方向的状态变得均匀,因此,能够抑制电子的迁移率降低等开关元件SB的特性劣化的产生。In addition, by suppressing occurrence of unevenness on the upper surface (interface) of the electron transit layer 213 , the thickness of the extremely thin spacer layer 14A of, for example, 5 nm or less can be made uniform. Thereby, the states of the electron transit layer 213 and the spacer layer 14A in the in-plane direction become uniform, and thus it is possible to suppress the occurrence of deterioration in the characteristics of the switching element SB, such as a decrease in the mobility of electrons.
进一步,通过在上述基底GaN层13A与沟道GaN层13C之间形成倾斜GaN层13B,能抑制电子渡越层213的内部的凹凸。因此,关于结晶性和缺陷,能够使电子渡越层213对电子供给层14产生的不良影响减小。Furthermore, by forming the inclined GaN layer 13B between the base GaN layer 13A and the channel GaN layer 13C, it is possible to suppress irregularities inside the electron transit layer 213 . Therefore, with regard to crystallinity and defects, adverse effects of the electron transit layer 213 on the electron supply layer 14 can be reduced.
此外,在上述倾斜GaN层形成工序中,使衬底温度、炉内压力和原料气体的供给量缓慢变化,因此,衬底温度、炉内压力和原料气体的供给量的过冲和下冲的发生被抑制。In addition, in the above-mentioned gradient GaN layer formation process, the substrate temperature, furnace pressure, and source gas supply rate are gradually changed, so the overshoot and undershoot of the substrate temperature, furnace pressure, and source gas supply rate occurrence is suppressed.
[第3实施方式][the third embodiment]
接着,参照附图对本发明的第3实施方式的氮化物半导体层叠衬底及其制造方法进行说明。Next, a nitride semiconductor multilayer substrate and a manufacturing method thereof according to a third embodiment of the present invention will be described with reference to the drawings.
图5是用于表示使用本发明的第3实施方式的氮化物半导体层叠衬底10C的开关元件SC的结构的示意性截面图。此外,图6是表示上述氮化物半导体层叠衬底10C的电子渡越层形成工序和电子供给层形成工序中的衬底温度、炉内压力、原料气体的供给量的变化的时序图。另外,图5和图6是用与上述第1实施方式的图1和图2的方法同样的方法对本发明的第3实施方式的氮化物半导体层叠衬底10C的结构和制造方法进行表示的图。此外,在以下的氮化物半导体层叠衬底10C的说明中,对于与上述第1实施方式的结构部相同的结构部,有时省略重复的说明。5 is a schematic cross-sectional view showing the structure of a switching element SC using a nitride semiconductor multilayer substrate 10C according to a third embodiment of the present invention. 6 is a timing chart showing changes in the substrate temperature, furnace pressure, and supply amount of source gases in the electron transit layer forming step and the electron supply layer forming step of the nitride semiconductor multilayer substrate 10C. In addition, FIGS. 5 and 6 are diagrams showing the structure and manufacturing method of a nitride semiconductor laminated substrate 10C according to a third embodiment of the present invention in the same manner as those shown in FIGS. 1 and 2 of the first embodiment described above. . In addition, in the following description of the nitride semiconductor multilayer substrate 10C, overlapping descriptions of structural parts that are the same as those of the above-mentioned first embodiment may be omitted in some cases.
如图5所示,本发明的第3实施方式的氮化物半导体层叠衬底10C具有:衬底11;在该衬底11的上表面形成的缓冲层12;在该缓冲层12的上表面形成的电子渡越层13;和在该电子渡越层13的上表面形成的势垒层14B。此外,势垒层14B的下表面与电子渡越层13的上表面接触,在电子渡越层13与势垒层14B之间不存在其它层。另外,势垒层14B是第3氮化物半导体层的一个例子。As shown in FIG. 5 , a nitride semiconductor stacked substrate 10C according to the third embodiment of the present invention has: a substrate 11 ; a buffer layer 12 formed on the upper surface of the substrate 11 ; The electron transit layer 13; and the barrier layer 14B formed on the upper surface of the electron transit layer 13. In addition, the lower surface of the barrier layer 14B is in contact with the upper surface of the electron transit layer 13 , and no other layer exists between the electron transit layer 13 and the barrier layer 14B. In addition, the barrier layer 14B is an example of a third nitride semiconductor layer.
此外,上述开关元件SC具有氮化物半导体层叠衬底10C、源极电极21、漏极电极22和栅极电极23。Furthermore, the above-mentioned switching element SC has a nitride semiconductor multilayer substrate 10C, a source electrode 21 , a drain electrode 22 , and a gate electrode 23 .
上述源极电极21、漏极电极22和栅极电极23形成在势垒层14B的上表面。另外,栅极电极23配置在源极电极21与漏极电极22之间。The aforementioned source electrode 21 , drain electrode 22 , and gate electrode 23 are formed on the upper surface of the barrier layer 14B. In addition, the gate electrode 23 is arranged between the source electrode 21 and the drain electrode 22 .
此外,上述氮化物半导体层叠衬底10C,在基底GaN层13A、倾斜GaN层13B和沟道GaN层13C构成电子渡越层213这一点和仅由势垒层14B构成电子供给层这一点,与上述第1实施方式的氮化物半导体层叠衬底10A不同。In addition, the above-mentioned nitride semiconductor laminated substrate 10C is different from the point that the base GaN layer 13A, the sloped GaN layer 13B, and the channel GaN layer 13C constitute the electron transit layer 213 and that only the barrier layer 14B constitutes the electron supply layer. The nitride semiconductor multilayer substrate 10A of the above-mentioned first embodiment is different.
以下,使用图5具体地对上述氮化物半导体层叠衬底10B的电子渡越层213和电子供给层14的形成方法进行说明。Hereinafter, a method for forming the electron transit layer 213 and the electron supply layer 14 of the above-mentioned nitride semiconductor multilayer substrate 10B will be specifically described with reference to FIG. 5 .
如图6所示,首先,利用与上述第2实施方式的基底GaN层13A的形成方法同样的形成方法在缓冲层12之上形成基底GaN层13A(基底GaN层形成工序)。As shown in FIG. 6 , first, an underlying GaN layer 13A is formed on the buffer layer 12 by the same formation method as the formation method of the underlying GaN layer 13A in the above-mentioned second embodiment (the underlying GaN layer forming step).
当上述基底GaN层13A的形成结束时,将衬底温度等转变至用于形成沟道GaN层13C的衬底温度等。此时,衬底温度从T1向T2、炉内压力从P1向P2、TMG的供给量从TMG1向TMG2、NH3的供给量从NH31向NH32花费一定时间缓慢地转变。在该转变的期间,TMG和NH3向反应炉内的供给继续,由此形成倾斜GaN层13B(倾斜GaN层形成工序)。在此,在基底GaN层13A与倾斜GaN层13B的界面附近,倾斜GaN层13B的碳浓度与基底GaN层13A的碳浓度大致相等。此外,在沟道GaN层13C与倾斜GaN层13B的界面附近,倾斜GaN层13B的碳浓度与沟道GaN层13C的碳浓度大致相等。此外,倾斜GaN层13B的碳浓度随着从倾斜GaN层13B的下部侧向倾斜GaN层13B的上部侧前进而逐渐增加。When the formation of the above-described base GaN layer 13A is completed, the substrate temperature and the like are shifted to the substrate temperature and the like for forming the channel GaN layer 13C. At this time, the substrate temperature changes from T1 to T2, the furnace pressure changes from P1 to P2, the supply rate of TMG changes from TMG1 to TMG2, and the supply rate of NH3 changes slowly from NH31 to NH32 over a certain period of time. During this transition, the supply of TMG and NH 3 into the reaction furnace is continued, whereby the sloped GaN layer 13B is formed (the sloped GaN layer forming step). Here, in the vicinity of the interface between base GaN layer 13A and sloped GaN layer 13B, the carbon concentration of sloped GaN layer 13B is substantially equal to the carbon concentration of base GaN layer 13A. In addition, in the vicinity of the interface between the channel GaN layer 13C and the sloped GaN layer 13B, the carbon concentration of the sloped GaN layer 13B is substantially equal to the carbon concentration of the channel GaN layer 13C. In addition, the carbon concentration of the sloped GaN layer 13B gradually increases as proceeding from the lower side of the sloped GaN layer 13B to the upper side of the sloped GaN layer 13B.
当上述倾斜GaN层13B的形成结束时,保持将TMG的供给量维持在TMG2、将NH3的供给量维持在NH32、将衬底温度维持在T2、将炉内压力维持在P2的状态,形成沟道GAN层13C(沟道GaN层形成工序)。在此,沟道GaN层13C的碳浓度由于将炉内压力从P1降低到P2的影响而处于变得比基底GaN层13A大的趋势。When the above-mentioned formation of the sloped GaN layer 13B is completed, the supply amount of TMG is maintained at TMG2, the supply amount of NH3 is maintained at NH32 , the substrate temperature is maintained at T2, and the furnace pressure is maintained at P2. , forming the channel GAN layer 13C (channel GaN layer forming step). Here, the carbon concentration of the channel GaN layer 13C tends to become larger than that of the base GaN layer 13A due to the influence of lowering the furnace pressure from P1 to P2.
当上述沟道GaN层13C的形成结束时,在将TMG的供给量维持在TMG2、将NH3的供给量维持在NH32、将衬底温度维持在T2、将炉内压力维持在P2的同时,开始供给作为Al的材料的TMA,由此形成作为电子供给层的势垒层14B(势垒层形成工序)。此时的TMG的供给量当设为与沟道GaN层形成工序的TMG的供给量相同的TMG2时,不改变质量流量控制器的设定而仅通过阀的开闭即可进行从沟道GaN层形成工序到势垒层形成工序的TMG供给量的控制,因此优选。When the formation of the above-mentioned channel GaN layer 13C is completed, the supply amount of TMG is maintained at TMG2, the supply amount of NH3 is maintained at NH32 , the substrate temperature is maintained at T2, and the furnace pressure is maintained at P2. Simultaneously, the supply of TMA which is a material of Al is started, whereby the barrier layer 14B which is an electron supply layer is formed (barrier layer forming process). When the supply amount of TMG at this time is set to TMG2 which is the same as the supply amount of TMG in the channel GaN layer formation process, the flow rate from the channel GaN can be achieved only by opening and closing the valve without changing the setting of the mass flow controller. Control of the TMG supply amount from the layer formation step to the barrier layer formation step is therefore preferable.
如以上那样,在本发明的第2实施方式的氮化物半导体层叠衬底10C中,与上述第1实施方式同样,通过在电子渡越层213的形成中途将衬底温度和炉内压力变更为电子供给层14的衬底温度和炉内压力,能够在电子渡越层形成工序与电子供给层形成工序之间不产生中断而与电子渡越层形成工序连续地进行电子供给层形成工序。由此,电子渡越层13的上表面处的GaN的热分解被抑制,难以产生电子渡越层13的上表面(界面)的凹凸。其结果,由原子力显微镜得到的氮化物半导体层叠衬底10A的表面粗糙度(例如算术平均粗糙度Ra)、即由原子力显微镜得到的势垒层14B的上表面的表面粗糙度(例如算术平均粗糙度Ra)在1μm见方的扫描范围内为0.5nm以下。As described above, in the nitride semiconductor multilayer substrate 10C according to the second embodiment of the present invention, as in the above-mentioned first embodiment, by changing the substrate temperature and the pressure in the furnace during the formation of the electron transit layer 213 to The substrate temperature and furnace pressure of the electron supply layer 14 allow the electron supply layer forming step to be performed continuously with the electron transit layer forming step without interruption between the electron transit layer forming step and the electron supply layer forming step. Accordingly, thermal decomposition of GaN on the upper surface of the electron transit layer 13 is suppressed, and unevenness of the upper surface (interface) of the electron transit layer 13 is less likely to occur. As a result, the surface roughness (for example, the arithmetic mean roughness Ra) of the nitride semiconductor laminated substrate 10A obtained by the atomic force microscope, that is, the surface roughness (for example, the arithmetic mean roughness Ra) of the upper surface of the barrier layer 14B obtained by the atomic force microscope Degree Ra) is 0.5nm or less in the scanning range of 1μm square.
此外,通过抑制在上述电子渡越层213的上表面(界面)产生凹凸,能够使例如5nm以下的极薄的间隔层14A的厚度均匀。由此,电子渡越层213和间隔层14A的面内方向的状态变得均匀,因此,能够抑制电子的迁移率降低等开关元件SB的特性劣化的产生。In addition, by suppressing occurrence of unevenness on the upper surface (interface) of the electron transit layer 213 , the thickness of the extremely thin spacer layer 14A of, for example, 5 nm or less can be made uniform. Thereby, the states of the electron transit layer 213 and the spacer layer 14A in the in-plane direction become uniform, and thus it is possible to suppress the occurrence of deterioration in the characteristics of the switching element SB, such as a decrease in the mobility of electrons.
进一步,通过在上述基底GaN层13A与沟道GaN层13C之间形成倾斜GaN层13B,电子渡越层213的内部的凹凸被抑制。因此,关于结晶性和缺陷,能够使电子渡越层213对电子供给层14产生的不良影响减小。Further, by forming the sloped GaN layer 13B between the above-mentioned base GaN layer 13A and the channel GaN layer 13C, the unevenness inside the electron transit layer 213 is suppressed. Therefore, with regard to crystallinity and defects, adverse effects of the electron transit layer 213 on the electron supply layer 14 can be reduced.
此外,在上述倾斜GaN层形成工序中,使衬底温度、炉内压力和原料气体的供给量缓慢地变化,因此,衬底温度、炉内压力和原料气体的供给量的过冲和下冲的发生被抑制。In addition, in the above-mentioned gradient GaN layer formation process, the substrate temperature, furnace pressure, and source gas supply amount are gradually changed, so the overshoot and undershoot of the substrate temperature, furnace pressure, and source gas supply amount occurrence is suppressed.
此外,通过抑制上述电子渡越层213的上表面的凹凸,二维电子气层1008中的电子的迁移率被改善。因此,即使氮化物半导体层叠衬底10C不具有上述第1实施方式的间隔层14A,开关元件SC的导通电阻也充分降低。Furthermore, by suppressing the unevenness of the upper surface of the electron transit layer 213 described above, the mobility of electrons in the two-dimensional electron gas layer 1008 is improved. Therefore, even if the nitride semiconductor multilayer substrate 10C does not have the spacer layer 14A of the first embodiment described above, the on-resistance of the switching element SC is sufficiently reduced.
假如在上述电子渡越层213与势垒层14B之间形成了间隔层14A,则电子渡越层213与间隔层14A之间的晶格失配变大,其结果,压电效应变大,这会对长期可靠性造成不良影响。因此,不需要会带来可靠性的风险的间隔层14A的意义重大。If the spacer layer 14A is formed between the electron transit layer 213 and the barrier layer 14B, the lattice mismatch between the electron transit layer 213 and the spacer layer 14A becomes large, and as a result, the piezoelectric effect becomes large, This can adversely affect long-term reliability. Therefore, it is significant that the spacer layer 14A that poses a reliability risk is unnecessary.
对本发明的具体的实施方式进行了说明,但是本发明并不限定于上述第1~第3实施方式,能够在本发明的范围内进行各种变更而实施。例如,可以将将上述第1~第3实施方式中记载的内容适当组合而得到的方式作为本发明的一个实施方式。Although specific embodiments of the present invention have been described, the present invention is not limited to the first to third embodiments described above, and various modifications can be made within the scope of the present invention. For example, an aspect obtained by appropriately combining the contents described in the above-mentioned first to third embodiments can be considered as one embodiment of the present invention.
即,将本发明和实施方式总结如下。That is, the present invention and the embodiments are summarized as follows.
本发明的氮化物半导体层叠体的制造方法的特征在于,包括:The method for manufacturing a nitride semiconductor laminate of the present invention is characterized by comprising:
在反应炉内在衬底11的上方形成第1氮化物半导体层12的第1氮化物半导体层形成工序;a first nitride semiconductor layer forming step of forming a first nitride semiconductor layer 12 above the substrate 11 in a reaction furnace;
在上述第1氮化物半导体层12的上方形成第2氮化物半导体层13、213的第2氮化物半导体层形成工序;和a second nitride semiconductor layer forming step of forming the second nitride semiconductor layer 13, 213 above the first nitride semiconductor layer 12; and
在上述第2氮化物半导体层13、213的上表面形成与上述第2氮化物半导体层13、213相比带隙大的第3氮化物半导体层14、14B的第3氮化物半导体层形成工序,A third nitride semiconductor layer forming step of forming a third nitride semiconductor layer 14 , 14B having a larger bandgap than that of the second nitride semiconductor layer 13 , 213 on the upper surface of the second nitride semiconductor layer 13 , 213 ,
上述第2氮化物半导体层形成工序与上述第3氮化物半导体层形成工序之间不被中断,上述第3氮化物半导体层形成工序与上述第2氮化物半导体层形成工序连续地被实施。There is no interruption between the second nitride semiconductor layer forming step and the third nitride semiconductor layer forming step, and the third nitride semiconductor layer forming step and the second nitride semiconductor layer forming step are performed continuously.
根据上述技术方案,上述第2氮化物半导体层形成工序与第3氮化物半导体层形成工序之间不被中断,第3氮化物半导体层形成工序与上述第2氮化物半导体层形成工序连续地被实施,因此,能够抑制在第2氮化物半导体的上表面产生凹凸。According to the above technical solution, there is no interruption between the step of forming the second nitride semiconductor layer and the step of forming the third nitride semiconductor layer, and the step of forming the third nitride semiconductor layer and the step of forming the second nitride semiconductor layer are continuously performed. Therefore, it is possible to suppress occurrence of unevenness on the upper surface of the second nitride semiconductor.
在一个实施方式的氮化物半导体层叠体的制造方法中,In the method of manufacturing a nitride semiconductor laminate according to one embodiment,
上述第2氮化物半导体层形成工序具有:The above-mentioned second nitride semiconductor layer forming step has:
形成第4氮化物半导体层13A的第4氮化物半导体层形成工序;和a fourth nitride semiconductor layer forming step of forming the fourth nitride semiconductor layer 13A; and
在上述第4氮化物半导体层13A的上方形成第5氮化物半导体层13C的第5氮化物半导体层形成工序,a fifth nitride semiconductor layer forming step of forming a fifth nitride semiconductor layer 13C above the fourth nitride semiconductor layer 13A,
上述第5氮化物半导体层形成工序的衬底温度比上述第4氮化物半导体层形成工序的衬底温度高,The substrate temperature in the step of forming the fifth nitride semiconductor layer is higher than the temperature of the substrate in the step of forming the fourth nitride semiconductor layer,
上述第5氮化物半导体层形成工序的炉内压力比上述第4氮化物半导体层形成工序的炉内压力低。The furnace pressure in the fifth nitride semiconductor layer forming step is lower than the furnace pressure in the fourth nitride semiconductor layer forming step.
根据上述实施方式,在上述第2氮化物半导体层形成工序的后半部分,衬底温度比较高,炉内压力比较低。因此,即使在以高的衬底温度和低的炉内压力形成上述第3氮化物半导体层14、14B的情况下,也能够与第2氮化物半导体层形成工序连续地良好地进行第3氮化物半导体层形成工序。According to the above embodiment, in the second half of the second nitride semiconductor layer forming step, the substrate temperature is relatively high and the furnace pressure is relatively low. Therefore, even in the case where the above-mentioned third nitride semiconductor layers 14, 14B are formed at a high substrate temperature and a low furnace pressure, the third nitride semiconductor layer can be formed continuously and satisfactorily. Compound semiconductor layer formation process.
在一个实施方式的氮化物半导体层叠体的制造方法中,In the method of manufacturing a nitride semiconductor laminate according to one embodiment,
上述第2氮化物半导体层形成工序具有在上述第4氮化物半导体层13A与上述第5氮化物半导体层13C之间形成第6氮化物半导体层13B的第6氮化物半导体层形成工序,The second nitride semiconductor layer forming step includes a sixth nitride semiconductor layer forming step of forming a sixth nitride semiconductor layer 13B between the fourth nitride semiconductor layer 13A and the fifth nitride semiconductor layer 13C,
上述第6氮化物半导体层形成工序的衬底温度,从与上述第4氮化物半导体层形成工序的衬底温度相同的温度逐渐变化至与上述第5氮化物半导体层形成工序的衬底温度相同的温度,The substrate temperature in the sixth nitride semiconductor layer forming step is gradually changed from the same substrate temperature as in the fourth nitride semiconductor layer forming step to the same substrate temperature as in the fifth nitride semiconductor layer forming step. temperature,
上述第6氮化物半导体层形成工序的炉内压力,从与上述第4氮化物半导体层形成工序的炉内压力相同的压力逐渐变化至与上述第5氮化物半导体层形成工序的炉内压力相同的压力。The pressure in the furnace in the sixth nitride semiconductor layer forming step is gradually changed from the same pressure in the furnace in the fourth nitride semiconductor layer forming step to the same furnace pressure in the fifth nitride semiconductor layer forming step as described above. pressure.
根据上述实施方式,上述第6氮化物半导体层形成工序的衬底温度和炉内压力逐渐变化,因此,能够使第2氮化物半导体层13、213内的缺陷减少,能够提高第2氮化物半导体层13、213的结晶性。According to the above-described embodiment, the substrate temperature and furnace pressure in the sixth nitride semiconductor layer forming step are gradually changed, so defects in the second nitride semiconductor layer 13, 213 can be reduced, and the second nitride semiconductor layer can be improved. Crystallinity of layer 13,213.
此外,上述第6氮化物半导体层形成工序的衬底温度和炉内压力逐渐变化,因此,在开始第5氮化物半导体层形成工序时,能够抑制衬底温度和炉内温度的过冲和下冲的发生。In addition, since the substrate temperature and furnace pressure in the sixth nitride semiconductor layer forming step are gradually changed, at the start of the fifth nitride semiconductor layer forming step, overshoot and drop in substrate temperature and furnace temperature can be suppressed. Chong happens.
在一个实施方式的氮化物半导体层叠体的制造方法中,In the method of manufacturing a nitride semiconductor laminate according to one embodiment,
上述第2氮化物半导体层13、213由GaN构成,The second nitride semiconductor layer 13, 213 is made of GaN,
上述第3氮化物半导体层14B由AlxGa1-xN(0<x<1)构成。The third nitride semiconductor layer 14B is composed of AlxGa1 - xN (0<x<1).
根据上述实施方式,上述第2氮化物半导体层13、213与第3氮化物半导体层14B之间的晶格失配变小,因此,能够提高长期可靠性。According to the above embodiment, since the lattice mismatch between the second nitride semiconductor layer 13 and 213 and the third nitride semiconductor layer 14B is reduced, long-term reliability can be improved.
本发明的氮化物半导体层叠体的特征在于,包括:The nitride semiconductor laminate of the present invention is characterized by comprising:
衬底11;Substrate 11;
在该衬底11的上方形成的第1氮化物半导体层12;a first nitride semiconductor layer 12 formed on the substrate 11;
在上述第1氮化物半导体层12的上方形成的第2氮化物半导体层13、213;和the second nitride semiconductor layer 13, 213 formed above the first nitride semiconductor layer 12; and
形成在上述第2氮化物半导体层13、213的上表面,与上述第2氮化物半导体层13、213相比带隙大的第3氮化物半导体层14、14B,The third nitride semiconductor layer 14, 14B having a larger band gap than the second nitride semiconductor layer 13, 213 is formed on the upper surface of the second nitride semiconductor layer 13, 213,
上述第2氮化物半导体层13、213和上述第3氮化物半导体层14、14B,以上述第2氮化物半导体层13、213的形成与上述第3氮化物半导体层14、14B的形成之间不被中断,上述第3氮化物半导体层14、14B的形成与上述第2氮化物半导体层13、213的形成连续地被实施的方式形成。The second nitride semiconductor layer 13, 213 and the third nitride semiconductor layer 14, 14B are formed between the formation of the second nitride semiconductor layer 13, 213 and the formation of the third nitride semiconductor layer 14, 14B. The formation of the third nitride semiconductor layer 14 , 14B and the formation of the second nitride semiconductor layer 13 , 213 are performed continuously without interruption.
根据上述技术方案,第2氮化物半导体层13、213和上述第3氮化物半导体层14、14B,以上述第2氮化物半导体层13、213的形成与第3氮化物半导体层14、14B的形成之间不被中断,第3氮化物半导体层14、14B的形成与第2氮化物半导体层13、213的形成连续地被实施的方式形成,因此,能够抑制在第2氮化物半导体的上表面产生凹凸。According to the above-mentioned technical solution, the formation of the second nitride semiconductor layer 13, 213 and the above-mentioned third nitride semiconductor layer 14, 14B are based on the formation of the above-mentioned second nitride semiconductor layer 13, 213 and the formation of the third nitride semiconductor layer 14, 14B. The formation is not interrupted, and the formation of the third nitride semiconductor layer 14, 14B and the formation of the second nitride semiconductor layer 13, 213 are continuously formed, so that the formation of the second nitride semiconductor layer can be suppressed. The surface is uneven.
在一个实施方式的氮化物半导体层叠体中,In the nitride semiconductor stacked body of one embodiment,
上述第2氮化物半导体层13、213具有:The above-mentioned second nitride semiconductor layer 13, 213 has:
碳浓度小于5×1016/cm3的第4氮化物半导体层13A;和fourth nitride semiconductor layer 13A having a carbon concentration of less than 5×10 16 /cm 3 ; and
形成在上述第4氮化物半导体层的上方,碳浓度为5×1016/cm3以上且小于1×1018/cm3的第5氮化物半导体层13C。A fifth nitride semiconductor layer 13C having a carbon concentration of 5×10 16 /cm 3 to less than 1×10 18 /cm 3 is formed on the fourth nitride semiconductor layer.
根据上述实施方式,According to the above embodiment,
上述第4氮化物半导体层13A的碳浓度小于5×1016/cm3,由此,能够防止在第1氮化物半导体层12与第4氮化物半导体层13A的界面产生的位错、纳米管等对器件特性产生不良影响。The carbon concentration of the fourth nitride semiconductor layer 13A is less than 5×10 16 /cm 3 , thereby preventing dislocations and nanotubes occurring at the interface between the first nitride semiconductor layer 12 and the fourth nitride semiconductor layer 13A. etc. have adverse effects on device characteristics.
此外,上述第5氮化物半导体层13C的碳浓度为5×1016/cm3以上且小于1×1018/cm3,由此,能够防止第5氮化物半导体层13C与第3氮化物半导体层14、14B的界面的平坦性的降低。In addition, the carbon concentration of the fifth nitride semiconductor layer 13C is not less than 5×10 16 /cm 3 and less than 1×10 18 /cm 3 , thereby preventing the fifth nitride semiconductor layer 13C from colliding with the third nitride semiconductor layer. The flatness of the interface of the layers 14, 14B is reduced.
一个实施方式的氮化物半导体层叠体包括在上述第4氮化物半导体层13A与上述第5氮化物半导体层13C之间形成的第6氮化物半导体层13B,A nitride semiconductor laminate according to one embodiment includes a sixth nitride semiconductor layer 13B formed between the fourth nitride semiconductor layer 13A and the fifth nitride semiconductor layer 13C,
上述第6氮化物半导体层13B的碳浓度,在上述第4氮化物半导体层13A与上述第6氮化物半导体层13B的界面附近与上述第4氮化物半导体层13A的碳浓度大致相等,并且在上述第5氮化物半导体层13C与上述第6氮化物半导体层13B的界面附近与上述第5氮化物半导体层13C的碳浓度大致相等,并且随着从上述第6氮化物半导体层13B的下部侧向上述第6氮化物半导体层13B的上部侧前进而逐渐增加。The carbon concentration of the sixth nitride semiconductor layer 13B is substantially equal to the carbon concentration of the fourth nitride semiconductor layer 13A in the vicinity of the interface between the fourth nitride semiconductor layer 13A and the sixth nitride semiconductor layer 13B. The vicinity of the interface between the fifth nitride semiconductor layer 13C and the sixth nitride semiconductor layer 13B has approximately the same carbon concentration as that of the fifth nitride semiconductor layer 13C, and gradually increases from the lower side of the sixth nitride semiconductor layer 13B. The amount gradually increases toward the upper side of the sixth nitride semiconductor layer 13B.
根据上述实施方式,从与上述第4氮化物半导体层13A的碳浓度大致相等的碳浓度逐渐增加至与第5氮化物半导体层13C的碳浓度大致相等的碳浓度。因此,能够从上述第4氮化物半导体层13A的形成条件逐渐转变至第5氮化物半导体层13C的形成条件。其结果,能够使上述第2氮化物半导体层13、213内的缺陷减少,能够提高第2氮化物半导体层13、213的结晶性。According to the above embodiment, the carbon concentration is gradually increased from the carbon concentration substantially equal to that of the fourth nitride semiconductor layer 13A to the carbon concentration substantially equal to that of the fifth nitride semiconductor layer 13C. Therefore, it is possible to gradually change from the above-mentioned formation conditions of the fourth nitride semiconductor layer 13A to the formation conditions of the fifth nitride semiconductor layer 13C. As a result, defects in the second nitride semiconductor layer 13, 213 can be reduced, and the crystallinity of the second nitride semiconductor layer 13, 213 can be improved.
此外,能够从上述第4氮化物半导体层13A的形成条件逐渐转变至第5氮化物半导体层13C的形成条件,因此,在使第5氮化物半导体层13C的形成开始时,能够抑制衬底温度和炉内温度的过冲和下冲的发生。In addition, since the above-mentioned formation conditions of the fourth nitride semiconductor layer 13A can be gradually changed to the formation conditions of the fifth nitride semiconductor layer 13C, the substrate temperature can be suppressed when the formation of the fifth nitride semiconductor layer 13C is started. And the occurrence of overshoot and undershoot of the furnace temperature.
在一个实施方式的氮化物半导体层叠体中,In the nitride semiconductor stacked body of one embodiment,
上述第2氮化物半导体层13、213由GaN构成,The second nitride semiconductor layer 13, 213 is made of GaN,
上述第3氮化物半导体层14B由AlxGa1-xN(0<x<1)构成。The third nitride semiconductor layer 14B is composed of AlxGa1 - xN (0<x<1).
根据上述实施方式,上述第2氮化物半导体层13、213与第3氮化物半导体层14B之间的晶格失配变小,因此,能够提高长期可靠性。According to the above embodiment, since the lattice mismatch between the second nitride semiconductor layer 13 and 213 and the third nitride semiconductor layer 14B is reduced, long-term reliability can be improved.
在一个实施方式的氮化物半导体层叠体中,In the nitride semiconductor stacked body of one embodiment,
在上述第3氮化物半导体层14、14B的上表面,由原子力显微镜得到的表面粗糙度在1μm见方的扫描范围内为0.5nm以下。On the upper surfaces of the third nitride semiconductor layers 14 and 14B, the surface roughness obtained by an atomic force microscope is 0.5 nm or less in a scanning range of 1 μm square.
根据上述实施方式,在上述第3氮化物半导体层14、14B的上表面例如形成源极电极21、漏极电极22和栅极电极23的情况下,能够使源极电极21、漏极电极22和栅极电极23对第3氮化物半导体层14、14B的上表面的密合性提高。According to the above embodiment, when the source electrode 21, the drain electrode 22, and the gate electrode 23 are formed on the upper surface of the third nitride semiconductor layer 14, 14B, for example, the source electrode 21, the drain electrode 22 can be Adhesion with the gate electrode 23 to the upper surface of the third nitride semiconductor layer 14 , 14B is improved.
符号说明Symbol Description
10A、10B、10C 氮化物半导体层叠衬底10A, 10B, 10C Nitride semiconductor laminated substrate
11 衬底11 Substrate
12 缓冲层12 buffer layer
13、213 电子渡越层13, 213 Electron transit layer
13A 基底GaN层13A base GaN layer
13B 倾斜GaN层13B Tilted GaN layer
13C 沟道GaN层13C channel GaN layer
14 电子供给层14 electron supply layer
14A 间隔层14A spacer layer
14B 势垒层14B barrier layer
15 二维电子气15 Two-dimensional electron gas
21 源极电极21 Source electrode
22 漏极电极22 Drain electrode
23 栅极电极23 Grid electrode
SA、SB、SC 开关元件SA, SB, SC switching elements
Claims (9)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-183463 | 2014-09-09 | ||
JP2014183463 | 2014-09-09 | ||
PCT/JP2015/074363 WO2016039177A1 (en) | 2014-09-09 | 2015-08-28 | Method for producing nitride semiconductor laminate, and nitride semiconductor laminate |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106688084A true CN106688084A (en) | 2017-05-17 |
Family
ID=55458931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201580048531.0A Pending CN106688084A (en) | 2014-09-09 | 2015-08-28 | Manufacturing method of nitride semiconductor laminated body and nitride semiconductor laminated body |
Country Status (4)
Country | Link |
---|---|
US (1) | US20170256407A1 (en) |
JP (1) | JP6220982B2 (en) |
CN (1) | CN106688084A (en) |
WO (1) | WO2016039177A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023056037A (en) * | 2020-01-20 | 2023-04-18 | 株式会社東芝 | Semiconductor device and its manufacturing method |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6268229B2 (en) * | 2016-06-27 | 2018-01-24 | 株式会社サイオクス | Nitride semiconductor laminate, method for producing nitride semiconductor laminate, method for producing semiconductor laminate, and method for inspecting semiconductor laminate |
JP6819009B2 (en) * | 2017-01-16 | 2021-01-27 | 住友電工デバイス・イノベーション株式会社 | Manufacturing method of semiconductor substrate |
JP7019942B2 (en) * | 2016-09-28 | 2022-02-16 | 富士通株式会社 | Compound semiconductor substrate and its manufacturing method, compound semiconductor device and its manufacturing method, power supply device, high output amplifier |
JP6815278B2 (en) * | 2017-05-26 | 2021-01-20 | 株式会社サイオクス | Nitride semiconductor laminate, semiconductor device, nitride semiconductor laminate manufacturing method and semiconductor device manufacturing method |
EP3486939B1 (en) * | 2017-11-20 | 2020-04-01 | IMEC vzw | Method for forming a semiconductor structure for a gallium nitride channel device |
US20220020870A1 (en) * | 2019-02-05 | 2022-01-20 | Mitsubishi Electric Corporation | Semiconductor device and method of manufacturing semiconductor device |
US11101378B2 (en) | 2019-04-09 | 2021-08-24 | Raytheon Company | Semiconductor structure having both enhancement mode group III-N high electron mobility transistors and depletion mode group III-N high electron mobility transistors |
JP7258735B2 (en) | 2019-12-13 | 2023-04-17 | 株式会社東芝 | semiconductor equipment |
US11545566B2 (en) * | 2019-12-26 | 2023-01-03 | Raytheon Company | Gallium nitride high electron mobility transistors (HEMTs) having reduced current collapse and power added efficiency enhancement |
US11362190B2 (en) | 2020-05-22 | 2022-06-14 | Raytheon Company | Depletion mode high electron mobility field effect transistor (HEMT) semiconductor device having beryllium doped Schottky contact layers |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060054917A1 (en) * | 2004-09-14 | 2006-03-16 | Samsung Electro-Mechanics Co., Ltd. | Nitride semiconductor light emitting device and method of manufacturing the same |
JP4449357B2 (en) * | 2003-07-08 | 2010-04-14 | 日立電線株式会社 | Method for manufacturing epitaxial wafer for field effect transistor |
US20110215424A1 (en) * | 2010-03-08 | 2011-09-08 | Furukawa Electric Co., Ltd. | Semiconductor device and manufacturing method thereof |
JP2012119429A (en) * | 2010-11-30 | 2012-06-21 | Sanken Electric Co Ltd | Method of manufacturing semiconductor device, and semiconductor device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3679914B2 (en) * | 1997-02-12 | 2005-08-03 | 株式会社東芝 | Semiconductor light emitting device and manufacturing method thereof |
JP2005191477A (en) * | 2003-12-26 | 2005-07-14 | Hitachi Cable Ltd | Epitaxial wafer for high electron mobility transistor |
JP5870574B2 (en) * | 2011-09-21 | 2016-03-01 | 住友電気工業株式会社 | Semiconductor device and manufacturing method of semiconductor device |
-
2015
- 2015-08-28 CN CN201580048531.0A patent/CN106688084A/en active Pending
- 2015-08-28 WO PCT/JP2015/074363 patent/WO2016039177A1/en active Application Filing
- 2015-08-28 JP JP2016547370A patent/JP6220982B2/en not_active Expired - Fee Related
- 2015-08-28 US US15/507,663 patent/US20170256407A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4449357B2 (en) * | 2003-07-08 | 2010-04-14 | 日立電線株式会社 | Method for manufacturing epitaxial wafer for field effect transistor |
US20060054917A1 (en) * | 2004-09-14 | 2006-03-16 | Samsung Electro-Mechanics Co., Ltd. | Nitride semiconductor light emitting device and method of manufacturing the same |
US20110215424A1 (en) * | 2010-03-08 | 2011-09-08 | Furukawa Electric Co., Ltd. | Semiconductor device and manufacturing method thereof |
JP2012119429A (en) * | 2010-11-30 | 2012-06-21 | Sanken Electric Co Ltd | Method of manufacturing semiconductor device, and semiconductor device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023056037A (en) * | 2020-01-20 | 2023-04-18 | 株式会社東芝 | Semiconductor device and its manufacturing method |
JP7506207B2 (en) | 2020-01-20 | 2024-06-25 | 株式会社東芝 | Semiconductor device and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP6220982B2 (en) | 2017-10-25 |
WO2016039177A1 (en) | 2016-03-17 |
US20170256407A1 (en) | 2017-09-07 |
JPWO2016039177A1 (en) | 2017-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6220982B2 (en) | Method for manufacturing nitride semiconductor laminate | |
JP5785103B2 (en) | Epitaxial wafers for heterojunction field effect transistors. | |
JP6318474B2 (en) | Manufacturing method of semiconductor device | |
JP5634681B2 (en) | Semiconductor element | |
CN103066103B (en) | The substrate breakdown voltage of the group III-nitride on silicon substrate is improved one's methods | |
KR102293962B1 (en) | Semiconductor device manufacturing method, semiconductor device | |
JP5788296B2 (en) | Nitride semiconductor substrate and manufacturing method thereof | |
JP6392498B2 (en) | Compound semiconductor device and manufacturing method thereof | |
JP2003151996A (en) | Electronic device using two-dimensional electronic gas | |
JP2013145782A (en) | Epitaxial wafer for hetero-junction field effect transistor | |
CN108231556B (en) | Method for manufacturing III-V nitride semiconductor epitaxial wafers | |
JP7069584B2 (en) | Manufacturing method for board products | |
JP2006004970A (en) | Manufacturing method of nitride semiconductor film | |
JP2005277047A (en) | Semiconductor laminated structure and transistor element | |
JP5817283B2 (en) | Manufacturing method of semiconductor device | |
JP6173493B2 (en) | Epitaxial substrate for semiconductor device and method of manufacturing the same | |
JP2006261179A (en) | Semiconductor wafer and manufacturing method thereof | |
JP2015103665A (en) | Nitride semiconductor epitaxial wafer and nitride semiconductor | |
JP4947877B2 (en) | High electron mobility transistor | |
JP2016058539A (en) | Method of manufacturing high electron mobility transistor | |
JP4329984B2 (en) | III-V Group Nitride Semiconductor Layer Structure and Method for Producing the Same | |
JP2013187461A (en) | Semiconductor element and manufacturing method of the same | |
JP5455875B2 (en) | Epitaxial substrate manufacturing method | |
JP2015211184A (en) | Nitride semiconductor layered substrate and nitride semiconductor layered substrate manufacturing method | |
WO2020161791A1 (en) | Semiconductor device and method for manufacturing semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20170517 |
|
WD01 | Invention patent application deemed withdrawn after publication |