[go: up one dir, main page]

CN106681133A - Method for identifying hydroelectric generating set model improved type subspace closed loop - Google Patents

Method for identifying hydroelectric generating set model improved type subspace closed loop Download PDF

Info

Publication number
CN106681133A
CN106681133A CN201611246230.1A CN201611246230A CN106681133A CN 106681133 A CN106681133 A CN 106681133A CN 201611246230 A CN201611246230 A CN 201611246230A CN 106681133 A CN106681133 A CN 106681133A
Authority
CN
China
Prior art keywords
closed
model
algorithm
parameters
loop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611246230.1A
Other languages
Chinese (zh)
Other versions
CN106681133B (en
Inventor
郭琦
刘昌玉
田田
李伟
袁艺
刘肖
王吉
颜秋容
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China South Power Grid International Co ltd
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Power Grid Technology Research Center of China Southern Power Grid Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology, Power Grid Technology Research Center of China Southern Power Grid Co Ltd filed Critical Huazhong University of Science and Technology
Priority to CN201611246230.1A priority Critical patent/CN106681133B/en
Publication of CN106681133A publication Critical patent/CN106681133A/en
Application granted granted Critical
Publication of CN106681133B publication Critical patent/CN106681133B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/36Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
    • G05B11/42Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential for obtaining a characteristic which is both proportional and time-dependent, e.g. P. I., P. I. D.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种水电机组模型改进型子空间闭环辨识方法,属于水电机组模型建模与辨识技术领域,将基于PSO参数优化的预测形式简约子空间辨识方法应用于水电机组模型闭环辨识,包含以下步骤:(1)建立带有输出频率噪声的水轮机调速闭环系统模型;(2)考虑了预测形式简约子空间辨识方法(PARSIM‑K)中参数p、f对辨识的影响,并用PSO算法优化参数p、f;(3)使用改进后的算法辨识闭环水电机组空载模型。该方法具有算法快速、可靠性高、易于编程实现等优点,能够根据实际中不同的水电机组模型优化出合适的算法参数,改进后的算法有效提高了辨识精度。

The invention discloses an improved subspace closed-loop identification method for a hydroelectric unit model, which belongs to the technical field of hydroelectric unit model modeling and identification, and applies the simplified subspace identification method based on PSO parameter optimization to the hydroelectric unit model closed-loop identification, including The following steps are as follows: (1) Establish a hydraulic turbine speed regulation closed-loop system model with output frequency noise; (2) Consider the influence of parameters p and f on the identification in the predictive form parsimony subspace identification method (PARSIM‑K), and use the PSO algorithm Optimize the parameters p, f; (3) use the improved algorithm to identify the no-load model of the closed-loop hydroelectric unit. This method has the advantages of fast algorithm, high reliability, and easy programming, etc. It can optimize the appropriate algorithm parameters according to different hydroelectric unit models in practice, and the improved algorithm effectively improves the identification accuracy.

Description

一种水电机组模型改进型子空间闭环辨识方法An improved subspace closed-loop identification method for hydroelectric unit models

技术领域technical field

本发明属于水电机组模型建模与辨识技术领域,具体涉及一种水电机组模型改进型子空间闭环辨识方法。The invention belongs to the technical field of hydroelectric unit model modeling and identification, and in particular relates to an improved subspace closed-loop identification method for a hydroelectric unit model.

背景技术Background technique

随着电力系统规模的日益扩大,系统的安全性和稳定性对水电机组模型的精准性提出了更高的要求。水轮机调速系统具有非最小相位、非线性、复杂性独有的特点,因此,对水电机组模型进行较为准确的辨识对水力发电大规模并网、及时调整含有水力发电的电力系统的调度策略以及实现其安全、稳定、经济运行具有重要的现实意义。With the increasing scale of the power system, the safety and stability of the system put forward higher requirements for the accuracy of the hydroelectric unit model. The hydraulic turbine speed control system has the unique characteristics of non-minimum phase, nonlinearity, and complexity. Therefore, a more accurate identification of the model of the hydroelectric unit is essential for large-scale grid connection of hydropower generation, timely adjustment of dispatching strategies for power systems containing hydropower generation, and It is of great practical significance to realize its safe, stable and economical operation.

对负载模型可进行开环辨识,但空载工况时,频率死区为0,机组频率跟踪电网频率,空载模型辨识属于闭环辨识。以往的水电机组模型辨识研究侧重于开环辨识方法,相比较而言,闭环辨识方法较为匮乏。相比于开环辨识,闭环辨识方便、快速,且在工业中应用广泛。但是,目前用于水电机组空载模型辨识的方法是基于闭环转开环的辨识方法。Open-loop identification can be performed on the load model, but in the no-load condition, the frequency dead zone is 0, the unit frequency tracks the grid frequency, and the no-load model identification belongs to closed-loop identification. Previous studies on model identification of hydroelectric units focused on open-loop identification methods. In comparison, closed-loop identification methods are scarce. Compared with open-loop identification, closed-loop identification is convenient, fast, and widely used in industry. However, the current identification method for hydroelectric unit no-load model is based on the identification method of closed-loop to open-loop.

子空间辨识方法是通过SVD降阶状态空间模型和对数据矩阵的线性投影来实现辨识的。预测形式简约子空间辨识方法(PARSIM-K) 是一种优化的子空间辨识方法。预测形式简约子空间辨识方法(PARSIM-K)是一种子空间闭环辨识方法,例如参考文献(PannocchiaG,Calosi M.A predictor form PARSIMonious algorithm for closed-loop subspaceidentification.Journal of Process Control,2010,20:517-524)对PARSIM-K进行了较为具体的介绍,具体来说,该方法主要分为两个步骤:1)估计[(ΓfLz),HK f,GK f]项;2)实现加权SVD和估计系统矩阵。该算法充分利用和开发了Hf和Gf是下三角Toeplitz矩阵的特点,有效解决了噪声和输入数据相关性的闭环辨识问题,提高了计算效率,保证了算法的一致性,从而实现对带有频率噪声的水电机组空载模型辨识。但是,由于PARSIM-K算法参数少,算法的辨识结果受参数p、f影响较大,使得目前PARSIM-K算法在可靠性和精度上都还存在不足,难以满足目前水电机组模型闭环辨识的要求。The subspace identification method realizes the identification through the SVD reduced-order state-space model and the linear projection to the data matrix. Predictive Form Reduced Subspace Identification Method (PARSIM-K) is an optimized subspace identification method. Predictor form PARSIMonious algorithm for closed-loop subspace identification (PARSIM-K) is a subspace closed-loop identification method, such as references (PannocchiaG, Calosi MA predictor form PARSIMonious algorithm for closed-loop subspace identification. Journal of Process Control, 2010, 20: 517-524 ) made a more specific introduction to PARSIM-K. Specifically, the method is mainly divided into two steps: 1) Estimation [(Γ f L z ), H K f , G K f ] term; 2) Realization of weighted SVD and estimated system matrix. This algorithm makes full use of and develops the characteristics of H f and G f being the lower triangular Toeplitz matrix, effectively solves the closed-loop identification problem of the correlation between noise and input data, improves the calculation efficiency, and ensures the consistency of the algorithm, so as to realize the No-load model identification of hydroelectric units with frequency noise. However, due to the small number of parameters of the PARSIM-K algorithm, the identification results of the algorithm are greatly affected by the parameters p and f, so that the current PARSIM-K algorithm still has insufficient reliability and accuracy, and it is difficult to meet the requirements of the closed-loop identification of the current hydroelectric unit model .

发明内容Contents of the invention

针对目前水电机组模型闭环辨识方法的不足,本发明提出一种水电机组模型改进型子空间闭环辨识方法,其基于PSO参数优化的预测形式简约子空间辨识方法(PARSIM-K)对水电机组模型进行辨识,该方法充分利用马尔克夫矩阵参数的Toplitz结构和SVD降阶,获得扩展可观测矩阵,估计系统矩阵,并用PSO对参数p、f进行优化,从而可以大大提高水电机组模型闭环辨识的可靠性和精确度。Aiming at the deficiency of current hydroelectric unit model closed-loop identification method, the present invention proposes an improved subspace closed-loop identification method for hydroelectric unit model, which is based on PSO parameter optimization prediction form parsimony subspace identification method (PARSIM-K) for hydroelectric unit model Identification, this method makes full use of the Toplitz structure of the Markov matrix parameters and SVD reduction order to obtain the extended observable matrix, estimate the system matrix, and optimize the parameters p and f with PSO, which can greatly improve the reliability of the closed-loop identification of the hydroelectric unit model and precision.

为实现上述目的,按照本发明,提供一种水电机组模型改进型子空间闭环辨识方法,包括如下步骤:In order to achieve the above object, according to the present invention, an improved subspace closed-loop identification method for a hydroelectric unit model is provided, which includes the following steps:

S1建立带有输出频率噪声的水轮机调速闭环系统模型;S1 establishes a hydraulic turbine speed regulation closed-loop system model with output frequency noise;

S2确定激励信号和机组频率噪声信号,并采集导叶开度和机组频率数;S2 determines the excitation signal and unit frequency noise signal, and collects guide vane opening and unit frequency;

S3优化PARSIM-K算法中的参数p、f,获得优化后的参数p、f,其中f和p分别表示未来时域参数和过去时域参数;S3 optimizes the parameters p and f in the PARSIM-K algorithm, and obtains the optimized parameters p and f, where f and p represent future time domain parameters and past time domain parameters respectively;

S4以优化后的参数p、f实现对PARSIM-K算法进行改进,并使用改进后的PARSIM-K算法辨识闭环水电机组空载模型,即可实现对水电机组空载模型的闭环辨识。S4 improves the PARSIM-K algorithm with the optimized parameters p and f, and uses the improved PARSIM-K algorithm to identify the no-load model of the closed-loop hydropower unit, so that the closed-loop identification of the no-load model of the hydropower unit can be realized.

作为本发明的进一步优选,其中,所述用PSO优化PARSIM-K算法中的参数p、f的具体过程为:As a further preference of the present invention, wherein, the specific process of the parameter p, f in the described PSO optimization PARSIM-K algorithm is:

S31设置初始粒子位置、速度范围和学习因子;S31 sets the initial particle position, velocity range and learning factor;

S32评价粒子,根据适应度评价函数计算当前粒子的个体极值和群体极值;S32 evaluates the particle, calculates the individual extremum and group extremum of the current particle according to the fitness evaluation function;

S33更新粒子;S33 update particles;

S34估计[(ΓfLz),HK f,GK f]项,实现加权SVD和估计系统矩阵,并更新个体极值和群体极值;S34 Estimate [(Γ f L z ), H K f , G K f ] item, realize weighted SVD and estimate system matrix, and update individual extremum and group extremum;

S35检测是否符合结束条件,若当前迭代次数达到最大次数,则结束,输出最优解的粒子即参数p、f,并得到最佳估计模型,否则转到步骤S32。S35 checks whether the end condition is met, if the current iteration number reaches the maximum number, then end, output the particles of the optimal solution, namely parameters p, f, and obtain the best estimated model, otherwise go to step S32.

作为本发明的进一步优选,所述适应度评价函数为其中,L表示采样数据个数,k表示第k次迭代,j表示第j个采样数据,y(j)为实际测量输出数据,yk(j)表示输入为实际测量输入时估计模型的的输出数据。As a further preference of the present invention, the fitness evaluation function is Among them, L represents the number of sampled data, k represents the k-th iteration, j represents the j-th sampled data, y(j) is the actual measurement output data, y k (j) represents the estimated model when the input is the actual measurement input Output Data.

作为本发明的进一步优选,机组输出频率噪声为均值为0、方差为定值的白噪声。As a further preference of the present invention, the unit output frequency noise is white noise with a mean value of 0 and a constant variance.

在闭环辨识中噪声是不可忽略的因素,且带有噪声的系统模型更符合实际情况。本方案中,所建立的水轮机调速闭环系统模型考虑了频率噪声对闭环辨识的影响,建立了带有输出频率噪声的水轮机调速系统模型,机组输出频率噪声为均值为0、方差为定值的白噪声。Noise is a non-negligible factor in closed-loop identification, and the system model with noise is more in line with the actual situation. In this scheme, the established water turbine speed control closed-loop system model takes into account the influence of frequency noise on closed-loop identification, and establishes a water turbine speed control system model with output frequency noise. The mean value of the unit output frequency noise is 0, and the variance is a constant value. of white noise.

作为本发明的进一步优选,其中,确定频率给定阶跃信号为激励信号,从而使导叶开度信号满足持续激励条件rank(UL)≥f+p。As a further preference of the present invention, wherein the given frequency step signal is determined as the excitation signal, so that the guide vane opening signal satisfies the continuous excitation condition rank(UL ) ≥f +p.

总体而言,通过本发明所构思的以上技术方案与现有技术相比,具有以下有益效果:Generally speaking, compared with the prior art, the above technical solution conceived by the present invention has the following beneficial effects:

1)本发明的方法提出了直接适用于水电机组模型闭环辨识方法,不需要使用以往的开环辨识或闭环转开环辨识方法,并考虑了机组频率噪声对闭环辨识影响;1) The method of the present invention proposes a closed-loop identification method directly applicable to hydroelectric unit models, without using the previous open-loop identification or closed-loop to open-loop identification methods, and considers the influence of unit frequency noise on closed-loop identification;

2)本发明的方法改进了预测形式简约子空间辨识方法,将PSO算法对参数p、f进行优化,提高了算法的精确度与可靠性;2) The method of the present invention improves the prediction form contracted subspace identification method, optimizes the parameters p and f by the PSO algorithm, and improves the accuracy and reliability of the algorithm;

3)本发明的方法算法复杂度低,易于编程和工程应用。3) The method algorithm of the present invention has low complexity and is easy to program and apply in engineering.

附图说明Description of drawings

参照下面的说明,结合附图,可以对本发明有最佳的理解。在附图中,相同的部分可由相同的标号表示。The invention can be best understood by referring to the following description taken in conjunction with the accompanying drawings. In the drawings, the same parts may be denoted by the same reference numerals.

图1为建立的带噪声的水轮机系统模型框图;Fig. 1 is the block diagram of the hydraulic turbine system model with noise established;

图2为控制器与执行机构结构框图;Figure 2 is a structural block diagram of the controller and the actuator;

图3为水轮机发电机与负荷模型;Fig. 3 is the hydro turbine generator and load model;

图4为算法流程框图;Fig. 4 is algorithm flow chart;

具体实施方式detailed description

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及示例性实施例,对本发明进行进一步详细说明。应当理解,此处所描述的示例性实施例仅用以解释本发明,并不用于限定本发明的适用范围。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and exemplary embodiments. It should be understood that the exemplary embodiments described here are only used to explain the present invention, and are not intended to limit the applicable scope of the present invention.

本发明实施例的一种水电机组模型改进型子空间闭环辨识方法,其在分析水轮机调速闭环系统和机组输出频率噪声对闭环辨识的影响的基础上,应用PSO算法对预测形式简约子空间辨识方法的参数p、f进行迭代优化,并将优化后的预测形式简约子空间辨识方法应用于水电机组空载模型的闭环辨识。An improved subspace closed-loop identification method for a hydroelectric unit model according to an embodiment of the present invention. On the basis of analyzing the influence of the hydraulic turbine speed regulation closed-loop system and the output frequency noise of the unit on the closed-loop identification, the PSO algorithm is used to identify the reduced subspace of the prediction form. The parameters p and f of the method are iteratively optimized, and the optimized predictive form reduction subspace identification method is applied to the closed-loop identification of the no-load model of the hydroelectric unit.

具体地,本实施例的水电机组模型改进型子空间闭环辨识方法具体包括以下步骤:Specifically, the improved subspace closed-loop identification method of the hydroelectric unit model in this embodiment specifically includes the following steps:

步骤1建立带有频率噪声的水轮机调速闭环系统模型,并设置模型参数。Step 1 establishes the model of the hydraulic turbine speed regulation closed-loop system with frequency noise, and sets the model parameters.

本实施例中建立的系统模型框图如图1所示。图2是PID控制器模型和电液随动系统模型。图3是水轮发电机和负荷模型。参数变量定义如表1:The block diagram of the system model established in this embodiment is shown in FIG. 1 . Figure 2 is the PID controller model and electro-hydraulic servo system model. Figure 3 is the turbine generator and load model. Parameter variables are defined in Table 1:

表1带噪声的水轮机调节系统模型参数变量定义Table 1 Definition of parameters and variables of the model of hydraulic turbine regulating system with noise

图1中,x是机组频率;xr是机组给定频率;yPID是PID控制器输出信号;y是接力器导叶开度。In Figure 1, x is the frequency of the unit; x r is the given frequency of the unit; y PID is the output signal of the PID controller; y is the opening of the servomotor guide vane.

步骤2选定持续激励信号和机组输出频率噪声信号。Step 2 selects the continuous excitation signal and the unit output frequency noise signal.

本实施例中,根据持续激励信号的定义和工程实际要求来选定水电机组空载模型仿真激励信号。In this embodiment, the simulation excitation signal of the no-load model of the hydroelectric unit is selected according to the definition of the continuous excitation signal and the actual requirements of the project.

持续激励信号定义为:输入信号u是长度为L的确定性序列,满足u∈Rm,如果式(1)成立,则u是hm阶持续激励的。The continuous excitation signal is defined as: the input signal u is a deterministic sequence of length L, which satisfies u∈R m . If formula (1) holds, then u is continuous excitation of order hm.

PARSIM-K算法要求输入序列u是f+p阶持续激励,且选定的激励信号既能够保证系统稳定,又满足激励阶次的要求。本实施例中,选用频率给定阶跃信号为激励信号,仿真中检测模型输入(导叶开度信号u)是否满足持续激励条件rank(UL)≥f+p。The PARSIM-K algorithm requires that the input sequence u is a continuous excitation of order f+p, and the selected excitation signal can not only ensure the stability of the system, but also meet the requirements of the excitation order. In this embodiment, the given frequency step signal is selected as the excitation signal, and whether the model input (guide vane opening signal u) satisfies the continuous excitation condition rank(UL ) ≥f +p is checked in the simulation.

另外,本实施例中,根据信噪比等选定水电机组空载模型仿真频率噪声信号。在闭环辨识中噪声是不可忽略的因素,且带有噪声的系统模型更符合实际情况。因此,本实施例中建立了带有输出噪声的水轮机调速系统模型,其中机组输出频率噪声设置为均值为0、方差为定值(例如)的限带白噪声。具体地,式(2)为输出信噪比定义,在采集输出数据后,可确定机组频率的噪声方差。In addition, in this embodiment, the no-load model of the hydroelectric unit is selected according to the signal-to-noise ratio to simulate the frequency noise signal. Noise is a non-negligible factor in closed-loop identification, and the system model with noise is more in line with the actual situation. Therefore, in the present embodiment, a water turbine speed-governing system model with output noise is established, wherein the unit output frequency noise is set to mean value 0 and variance to be a constant value (for example ) band-limited white noise. Specifically, Equation (2) defines the output signal-to-noise ratio, and after the output data is collected, the noise variance of the unit frequency can be determined.

SNR=10*lg(var(y)/var(o))=20*lg(V(y)/V(o)) (2)SNR=10*lg(var(y)/var(o))=20*lg(V(y)/V(o)) (2)

其中,var表示方差;V表示信号幅值;y为输出;o为输出噪声,假定为均值为0、方差为定值的白噪声。Among them, var represents the variance; V represents the signal amplitude; y is the output; o is the output noise, which is assumed to be white noise with a mean value of 0 and a constant variance.

步骤3用PSO算法优化PARSIM-K算法中的参数p、f,获得优化后的参数p、f。Step 3: Use the PSO algorithm to optimize the parameters p and f in the PARSIM-K algorithm to obtain the optimized parameters p and f.

本方案中,考虑了PARSIM-K算法中参数p、f对辨识的影响。具体地,首先,本实施例中,预测器形式的线性时不变系统为:In this scheme, the influence of parameters p and f in the PARSIM-K algorithm on identification is considered. Specifically, first, in this embodiment, the linear time-invariant system in the form of a predictor is:

xk+1=AKxk+BKuk+Kyk (3a)x k+1 =A K x k +B K u k +Ky k (3a)

yk=Cxk+Duk+ek (3b)y k =Cx k +Du k +e k (3b)

其中,x∈Rn表示状态;u∈Rm表示输入;y∈Rl表示输出;e∈Rl表示新息;K表示卡尔曼滤波增益矩阵;AK=A-KC;BK=B-KD。且模型满足如下假设:Among them, x∈R n represents state; u∈R m represents input; y∈R l represents output; e∈R l represents new information; K represents Kalman filter gain matrix; A K =A-KC; B K =B -KD. And the model satisfies the following assumptions:

a)矩阵(A,B)是可控的,矩阵(A,C)是可观测的,矩阵AK=A-KC是严格赫尔维兹(Hurwitz)矩阵(离散意义上的)。a) The matrix (A, B) is controllable, the matrix (A, C) is observable, and the matrix A K =A-KC is a strict Hurwitz matrix (in a discrete sense).

b)新息{ek}是固定的、零均值、白噪声过程,其自方差为:当i≠j时,ε(eje'j)=Re,ε(eie'j)=0。其中,Re正定。b) The new information {e k } is a fixed, zero-mean, white noise process, and its self-variance is: when i≠j, ε(e j e' j )=R e ,ε(e i e' j ) =0. Among them, R e is positive definite.

c)数据通过L个采样时间收集。在开环系统中,如下条件成立:对于所有的i和j,ε(uie'j)=0。在闭环系统中,如果D=0,则当i<j 时,ε(uie'j)=0,即可通过反馈yi来估计ui;如果D=0,则当i≤j时,ε(uie'j)=0,即可通过反馈yi-1(或更早的输出)来估计uic) Data is collected over L sampling times. In an open-loop system, the following condition holds: ε(u i e' j )=0 for all i and j. In a closed-loop system, if D=0, then when i<j, ε(u i e' j )=0, that is, u i can be estimated by feeding back y i ; if D=0, then when i≤j , ε(u i e' j )=0, that is, u i can be estimated by feeding back y i-1 (or earlier output).

d)输入{uk}是准稳定且f+p阶持续激励。其中,f和p分别表示未来时域参数和过去时域参数。d) The input {u k } is quasi-stable and f+p order continuous excitation. Among them, f and p represent the future time-domain parameters and the past time-domain parameters respectively.

子空间辨识算法的基本思想是将测得的输入、输出数据分为过去和未来两部分。对已知长为L(L>>max(f,p))输出序列y和状态序列x进行如下定义:The basic idea of the subspace identification algorithm is to divide the measured input and output data into past and future parts. Define the output sequence y and the state sequence x of known length L(L>>max(f, p)) as follows:

yfi=[yp+i-1 yp+i ... yL-f+i-1],ypi=[yi-1 yi ... yL-f-p+i-1]y fi =[y p+i-1 y p+i ... y L-f+i-1 ], y pi =[y i-1 y i ... y Lf-p+i-1 ]

Yf=[yT f1 yT f2 ... yT ff]T,Yp=[yT p1 yT p2 ... yT pf]T Y f = [y T f1 y T f2 ... y T ff ] T , Y p = [y T p1 y T p2 ... y T pf ] T

Xk-p=[xk-p xk-p+1 ... xk-p+L-1],Xk=[xk xk+1 ... xk+L-1]X kp = [x kp x k-p+1 ... x k-p+L-1 ], X k = [x k x k+1 ... x k+L-1 ]

其中,i=1,…,L。输入数据u和新息e类似定义,可得到块Hankel矩阵Uf∈Rmf×N、Up∈Rmp×N、Ef∈Rlf×N、Ep∈Rlp×N、Yf∈Rlf×N、Yp∈Rlp×N(N=L-f-p+1)。Wherein, i=1,...,L. The input data u and the innovation e are similarly defined, and the block Hankel matrix U f ∈ R mf×N , U p ∈ R mp×N , E f ∈ R lf×N , E p ∈ R lp×N , Y f ∈ R lf×N , Y p ∈ R lp×N (N=Lf−p+1).

若令xf=AK pxp+LzZp,由式(3)迭代推导知:If let x f =A K p x p +L z Z p , iteratively derived from formula (3):

Yf=ΓK fxf+HK fUf+GK fYf+Ef Y f =Γ K f x f +H K f U f +G K f Y f +E f

=ΓK f(AK pxp+LzZp)+HK fUf+GK fYf+Ef =Γ K f (A K p x p +L z Z p )+H K f U f +G K f Y f +E f

(4) (4)

其中,xf=xf1∈Rn×NLz为逆扩展可控矩阵,ΓK f为扩展可观测矩阵,HK f和GK f均为下三角Toeplitz矩阵。矩阵具体结构如下:Among them, x f =x f1 ∈ R n×N , L z is the inverse extended controllable matrix, Γ K f is the extended observable matrix, H K f and G K f are lower triangular Toeplitz matrices. The specific structure of the matrix is as follows:

其中, in,

本实施例中,PARSIM-K算法具体通过步骤3.1)和步骤3.2)实现。In this embodiment, the PARSIM-K algorithm is specifically implemented through steps 3.1) and 3.2).

3.1)估计[(ΓfLz),HK f,GK f]项。3.1) Estimate the [(Γ f L z ), H K f , G K f ] term.

矩阵HK f和GK f是严格的分块下三角结构,由式(4)知:The matrices H K f and G K f are strictly block lower triangular structures, known from formula (4):

yf1=ΓK f1(AK pxp+LzZp)+HK f1uf1+ef1 (5a)y f1 =Γ K f1 (A K p x p +L z Z p )+H K f1 u f1 +e f1 (5a)

当i=2,…,f时,yfi=ΓK fi(AK pxp+LzZp)+HK fiuf1+GK fiyf1+yfi+efi When i=2,...,f, y fi =Γ K fi (A K p x p +L z Z p )+H K fi u f1 +G K fi y f1 +y fi +e fi

(5b)(5b)

其中,yf2=HK f1uf2;当i=3,…,f时,Among them, y f2 =H K f1 u f2 ; when i=3,...,f,

由于AK是严格赫尔维兹矩阵,假设选择的参数p足够大,使得则由式(5)估计[(ΓfiLz),HK fi,GK fi]项。Since A K is a strict Hulvitz matrix, it is assumed that the selected parameter p is large enough such that Then the [(Γ fi L z ), H K fi , G K fi ] term is estimated by formula (5).

3.2)实现加权SVD和估计系统矩阵。3.2) Realize weighted SVD and estimate system matrix.

对矩阵实现加权SVD:pair matrix Implement weighted SVD:

其中,(Un,Sn,Vn)是与n个最大奇异值相关联的SVD项,Rn表示与剩余(fl-n)个SVD项相关联的误差,权矩阵W1=I、 Wherein, (U n , S n , V n ) are the SVD items associated with the n largest singular values, R n represents the error associated with the remaining (fl-n) SVD items, and the weight matrix W 1 =I,

最后,对进行最小二乘法计算得到系统估计矩阵。Finally, yes with The least square method is used to calculate the system estimation matrix.

上述对PARSIM-K算法分析可知,设定好参数p、f后,用测得的输入、输出数据可进行矩阵运算,得到辨识结果。对不同的闭环系统,适用于该系统的参数p、f也不同。参数设置过小,可能导致辨识结果误差较大;参数设置过大,则会增加不必要的计算。因此,将PARSIM-K算法应用于不同闭环系统时,有必要选择合适的算法参数p、f。本方案中PSO算法参数变量定义如表2。The above analysis of the PARSIM-K algorithm shows that after the parameters p and f are set, the measured input and output data can be used to perform matrix operations to obtain identification results. For different closed-loop systems, the parameters p and f applicable to the system are also different. If the parameter setting is too small, it may lead to large errors in the identification results; if the parameter setting is too large, unnecessary calculations will be added. Therefore, when applying the PARSIM-K algorithm to different closed-loop systems, it is necessary to select appropriate algorithm parameters p and f. The definitions of PSO algorithm parameter variables in this scheme are shown in Table 2.

表2 PSO算法参数变量定义Table 2 PSO algorithm parameter variable definition

对水电机组空载模型进行仿真,一个实施例中,PSO优化后的PARSIM-K算法参数为p=f=29。改进算法流程图如图4所示。To simulate the no-load model of the hydroelectric unit, in one embodiment, the parameter of the PARSIM-K algorithm after PSO optimization is p=f=29. The flow chart of the improved algorithm is shown in Figure 4.

对不同的闭环系统,适用于该系统的参数p、f也不同。PSO优化PARSIM-K算法参数p、f的步骤如下:For different closed-loop systems, the parameters p and f applicable to the system are also different. The steps of PSO to optimize parameters p and f of PARSIM-K algorithm are as follows:

步骤(3.3.1)初始化。设置初始粒子位置、速度范围、学习因子等。Step (3.3.1) initialization. Set the initial particle position, velocity range, learning factor, etc.

步骤(3.3.2)评价粒子。根据适应度评价函数计算当前粒子的个体极值和群体极值。适应度评价函数为其中,L表示采样数据个数;k表示第k次迭代;j表示第j个采样数据;y(j)为实际测量输出数据;yk(j)表示输入为实际测量输入时估计模型的的输出数据。Step (3.3.2) evaluates the particles. Calculate the individual extremum and group extremum of the current particle according to the fitness evaluation function. The fitness evaluation function is Among them, L represents the number of sampled data; k represents the k-th iteration; j represents the j-th sampled data; y(j) is the actual measurement output data; y k (j) represents the estimated model when the input is the actual measurement input Output Data.

步骤(3.3.3)粒子的更新。速度更新方程和位置更新方程分别为 其中,v是速度;x是位置;i表示第i个采样数据c1、c2是学习因子;rand1,2是[0,1]之间的随机数;pbest、gbest分别表示个体极值和群体极值。Step (3.3.3) update of particles. The speed update equation and position update equation are respectively Among them, v is the speed; x is the position; i represents the i-th sampled data c 1 and c 2 are the learning factors; rand 1, 2 are random numbers between [0,1]; pbest and gbest respectively represent the individual extremum and group extremum.

步骤(3.3.4)估计[(ΓfLz),HK f,GK f]项,实现加权SVD和估计系统矩阵。更新个体极值和群体极值。Step (3.3.4) Estimate the [(Γ f L z ), H K f , G K f ] term, realize weighted SVD and estimate the system matrix. Update individual extremum and group extremum.

步骤(3.3.5)检测是否符合结束条件。若当前迭代次数达到最大次数,则结束,输出最优解的粒子(即参数p、f),并得到最佳估计模型,否则转到步骤(3.3.2)。Step (3.3.5) detects whether the end condition is met. If the current number of iterations reaches the maximum number, then end, output the particles of the optimal solution (ie parameters p, f), and obtain the best estimated model, otherwise go to step (3.3.2).

步骤4将PSO算法优化后的参数p、f代入PARSIM-K算法中,重复步骤3.1和3.2,应用于闭环水电机组空载模型的辨识中从而实现水电机组空载模型的闭环辨识。Step 4 Substitute the parameters p and f optimized by the PSO algorithm into the PARSIM-K algorithm, repeat steps 3.1 and 3.2, and apply it to the identification of the no-load model of the closed-loop hydropower unit to realize the closed-loop identification of the no-load model of the hydropower unit.

为验证本发明方法的有效性,可以随机选取两组参数(参数1是p=28、f=14,参数2是p=25、f=48)与PSO优化后的参数进行对比。水电机组空载模型采用离散模型a0、a1、b0和b1是待辨识参数,并定义了如下两种模型精度评价指标。In order to verify the effectiveness of the method of the present invention, two groups of parameters can be randomly selected (parameter 1 is p=28, f=14, parameter 2 is p=25, f=48) and compared with the parameters after PSO optimization. The no-load model of the hydroelectric unit adopts the discrete model a 0 , a 1 , b 0 and b 1 are the parameters to be identified, and the following two model accuracy evaluation indexes are defined.

均方根误差(root mean square error,RMSE):Root mean square error (root mean square error, RMSE):

平均绝对百分比误差(mean absolute percentage error,MAPE):Mean absolute percentage error (mean absolute percentage error, MAPE):

表3是真实参数和估计模型参数的对比。Table 3 is a comparison of real parameters and estimated model parameters.

由表3可知,采用PSO优化参数的PARSIM-K算法的估计模型参数与真实参数值最接近,且频率曲线与实际曲线吻合度较高;参数1和参数2算法的估计模型参数值与真实参数值均有较大误差,特别是,参数b0和b1已严重偏离真实值,参数2的估计模型输出频率曲线稳态值已偏离实际频率曲线稳态值。It can be seen from Table 3 that the estimated model parameters of the PARSIM-K algorithm using PSO optimized parameters are closest to the real parameter values, and the frequency curve is in good agreement with the actual curve; In particular, the parameters b 0 and b 1 have seriously deviated from the true value, and the steady-state value of the estimated model output frequency curve of parameter 2 has deviated from the actual steady-state value of the frequency curve.

表3真实模型和估计模型参数Table 3 True model and estimated model parameters

表4是模型精度指标对比。由表4可知,PSO优化参数后算法的估计模型其模型精度指标RMSE和MAPE均小于参数1和参数2的模型精度,表明PSO优化参数的PARSIM-K算法有效提高了算法辨识精度。Table 4 is a comparison of model accuracy indicators. It can be seen from Table 4 that the model accuracy indicators RMSE and MAPE of the algorithm estimation model after PSO optimized parameters are both smaller than the model accuracy of parameters 1 and 2, indicating that the PARSIM-K algorithm with PSO optimized parameters can effectively improve the algorithm identification accuracy.

表4模型精度指标对比Table 4 Comparison of model accuracy indicators

本实施例中基于PSO优化参数的PARSIM-K方法闭环辨识出的水电机组空载估计模型与真实模型高度吻合,与未优化参数的PARSIM-K方法相比展示了本发明方法的优越性。In this embodiment, the no-load estimation model of the hydroelectric unit based on the closed-loop identification of the PARSIM-K method with PSO optimized parameters is highly consistent with the real model, which demonstrates the superiority of the method of the present invention compared with the PARSIM-K method with unoptimized parameters.

本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。Those skilled in the art can easily understand that the above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention, All should be included within the protection scope of the present invention.

Claims (5)

1. A method for identifying an improved subspace closed loop of a hydroelectric generating set model comprises the following steps:
s1, establishing a water turbine speed regulation closed-loop system model with output frequency noise;
s2, determining an excitation signal and a unit frequency noise signal, and acquiring the opening of a guide vane and the unit frequency;
s3, optimizing parameters p and f in the PARSIM-K algorithm, and obtaining the optimized parameters p and f, wherein f and p respectively represent future time domain parameters and past time domain parameters;
s4, improving the PARSIM-K algorithm by the optimized parameters p and f, and identifying the no-load model of the closed-loop hydroelectric generating set by using the improved PARSIM-K algorithm, so that the closed-loop identification of the no-load model of the hydroelectric generating set can be realized.
2. The improved subspace closed-loop identification method of the hydroelectric generating set model according to claim 1, wherein the parameters p and f in the optimized PARSIM-K algorithm in the step S3 are realized through a PSO algorithm, and the specific process is as follows:
s31 setting initial particle position, speed range and learning factor;
s32, evaluating the particles, and calculating the individual extreme value and the group extreme value of the current particles according to the fitness evaluation function;
s33 updating the particles;
s34 estimates [ ((S))fLz),HK f,GK f]Item, realizing weighted SVD and estimation system matrix, and updating individual extreme value and group extreme value;
s35, whether the end condition is met is detected, if the current iteration times reach the maximum times, the process is ended, the particles of the optimal solution, namely the parameters p and f, are output, the optimal estimation model is obtained, and if not, the process goes to the step S32.
3. The method according to claim 2, wherein the fitness evaluation function isWherein, L represents the number of sampling data, k represents the kth iteration, j represents the jth sampling data, y (j) is the actual measurement output data, y (j)k(j) Representing the output data of the estimation model at the input of the actual measurement.
4. The improved subspace closed-loop identification method of the hydroelectric generating set model according to claim 2 or 3, wherein the set output frequency noise is white noise with a mean value of 0 and a variance of a fixed value.
5. The method according to any one of claims 1 to 4, wherein a frequency-given step signal is determined as the excitation signal, such that a guide vane opening signal satisfies a continuous excitation condition rank (U)L)≥f+p。
CN201611246230.1A 2016-12-29 2016-12-29 A kind of Hydropower Unit model refinement type subspace closed-loop identification method Active CN106681133B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611246230.1A CN106681133B (en) 2016-12-29 2016-12-29 A kind of Hydropower Unit model refinement type subspace closed-loop identification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611246230.1A CN106681133B (en) 2016-12-29 2016-12-29 A kind of Hydropower Unit model refinement type subspace closed-loop identification method

Publications (2)

Publication Number Publication Date
CN106681133A true CN106681133A (en) 2017-05-17
CN106681133B CN106681133B (en) 2019-06-28

Family

ID=58872434

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611246230.1A Active CN106681133B (en) 2016-12-29 2016-12-29 A kind of Hydropower Unit model refinement type subspace closed-loop identification method

Country Status (1)

Country Link
CN (1) CN106681133B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107798199A (en) * 2017-11-09 2018-03-13 华中科技大学 A kind of Hydropower Unit parameter closed-loop identification method
CN111523749A (en) * 2020-02-28 2020-08-11 华中科技大学 Intelligent identification method for hydroelectric generating set model
CN113138556A (en) * 2021-06-22 2021-07-20 浙江中控技术股份有限公司 High-precision closed-loop system identification method
CN114841010A (en) * 2022-05-19 2022-08-02 南方电网科学研究院有限责任公司 Equivalent conductance matrix storage quantization method, device, equipment and readable storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5161100A (en) * 1990-02-26 1992-11-03 Gas Services, Inc. Closed loop proportional-integral fluid flow controller and method
US20040153173A1 (en) * 2003-02-03 2004-08-05 Chang Pyung Hun Method for tuning PID controllers applicable to nonlinear systems
CN103590969A (en) * 2013-11-20 2014-02-19 华中科技大学 PID hydraulic turbine governor parameter optimization method based on multi-working-condition time domain response
CN104107042A (en) * 2014-07-10 2014-10-22 杭州电子科技大学 Electromyographic signal gait recognition method based on particle swarm optimization and support vector machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5161100A (en) * 1990-02-26 1992-11-03 Gas Services, Inc. Closed loop proportional-integral fluid flow controller and method
US20040153173A1 (en) * 2003-02-03 2004-08-05 Chang Pyung Hun Method for tuning PID controllers applicable to nonlinear systems
CN103590969A (en) * 2013-11-20 2014-02-19 华中科技大学 PID hydraulic turbine governor parameter optimization method based on multi-working-condition time domain response
CN104107042A (en) * 2014-07-10 2014-10-22 杭州电子科技大学 Electromyographic signal gait recognition method based on particle swarm optimization and support vector machine

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GABRIELE PANNOCCHIA等: "A predictor form PARSIMonsious algorithm for closed-loop subspace identification", 《JOURNAL OF PROCESS CONTROL》 *
GABRIELE PANNOCCHIA等: "Closed-Loop PARSIMonious Subspace Identification: Theory and Application to MPC", 《PROCEEDINGS OF THE 9TH INTERNATIONAL SYMPOSIUM ON DYNAMICS AND CONTROL OF PROCESS SYSTEM》 *
徐兴等: "基于改进闭环子空间辨识的电动轮汽车纵向力估计", 《江苏大学学报》 *
衷路生等: "PSO优化的LS-SVM在列车弓网系统的建模研究", 《华东交通大学学报》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107798199A (en) * 2017-11-09 2018-03-13 华中科技大学 A kind of Hydropower Unit parameter closed-loop identification method
CN107798199B (en) * 2017-11-09 2020-07-07 华中科技大学 Hydroelectric generating set parameter closed-loop identification method
CN111523749A (en) * 2020-02-28 2020-08-11 华中科技大学 Intelligent identification method for hydroelectric generating set model
CN111523749B (en) * 2020-02-28 2022-05-13 华中科技大学 Intelligent identification method for hydroelectric generating set model
CN113138556A (en) * 2021-06-22 2021-07-20 浙江中控技术股份有限公司 High-precision closed-loop system identification method
CN114841010A (en) * 2022-05-19 2022-08-02 南方电网科学研究院有限责任公司 Equivalent conductance matrix storage quantization method, device, equipment and readable storage medium

Also Published As

Publication number Publication date
CN106681133B (en) 2019-06-28

Similar Documents

Publication Publication Date Title
CN107590317B (en) A Dynamic Estimation Method for Generators Considering Model Parameter Uncertainty
CN106681133B (en) A kind of Hydropower Unit model refinement type subspace closed-loop identification method
CN107478990B (en) A Dynamic Estimation Method for Electromechanical Transient Process of Generator
CN111812975A (en) A Generalized Predictive Control Method for Speed Regulation System of Pumped Storage Units Based on Fuzzy Model Identification
CN103853881A (en) Water turbine parameter identification method based on self-adaptive chaotic and differential evolution particle swarm optimization
CN113189871B (en) A coordinated control strategy for flexible operation of thermal power units
CN105610360B (en) A kind of synchronous generator excited system parameter identification method
CN103984986B (en) The self study arma modeling ultrashort-term wind power prediction method of real time correction
CN113010844B (en) Participation factor calculation method based on subspace dynamic mode decomposition
CN110716430B (en) A fast attracting repetitive control method of servo system using equivalent disturbance compensation
CN107657349B (en) A method for extracting power generation scheduling rules by stages in reservoirs
CN112465034A (en) Method and system for establishing T-S fuzzy model based on hydraulic generator
CN106097157A (en) A kind of synchronous generator excited system identification of Model Parameters optimization method
CN112911497A (en) Real-time prediction method and system for track of cooperative unmanned aerial vehicle
CN117335425A (en) A power flow calculation method based on GA-BP neural network
CN112947606A (en) Boiler liquid level control system and method based on BP neural network PID predictive control
CN106599541B (en) An Online Structure and Parameter Identification Method for Dynamic Power Load Model
Xu et al. Short-term wind speed prediction based on GRU
CN110361974B (en) Optimization method of turbine speed control system based on BP-FOA hybrid algorithm
CN110021931B (en) Electric power system auxiliary prediction state estimation method considering model uncertainty
CN111125880A (en) A method for generating power system simulation data from the perspective of transient stability
CN112560330B (en) Simulation data generation method and system for electricity utilization behavior prediction
CN114357867A (en) Primary frequency modulation control method and device based on hydraulic turbine simulation intelligent solution
CN113741170A (en) Aero-engine direct thrust inverse control method based on deep neural network
CN108280534A (en) Gas well yield reduction rate prediction method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210827

Address after: 510700 3rd, 4th and 5th floors of building J1 and 3rd floor of building J3, No.11 Kexiang Road, Science City, Luogang District, Guangzhou City, Guangdong Province

Patentee after: China South Power Grid International Co.,Ltd.

Patentee after: HUAZHONG University OF SCIENCE AND TECHNOLOGY

Address before: 510623 floor 13-21, West Tower, Yuedian building, No. 8, shuijungang, Dongfeng East Road, Yuexiu District, Guangzhou, Guangdong

Patentee before: POWER GRID TECHNOLOGY RESEARCH CENTER. CHINA SOUTHERN POWER GRID

Patentee before: HUAZHONG University OF SCIENCE AND TECHNOLOGY

TR01 Transfer of patent right