CN106669728A - Integral-type low-temperature SCR denitration catalyst and preparation method thereof - Google Patents
Integral-type low-temperature SCR denitration catalyst and preparation method thereof Download PDFInfo
- Publication number
- CN106669728A CN106669728A CN201710055550.7A CN201710055550A CN106669728A CN 106669728 A CN106669728 A CN 106669728A CN 201710055550 A CN201710055550 A CN 201710055550A CN 106669728 A CN106669728 A CN 106669728A
- Authority
- CN
- China
- Prior art keywords
- temperature scr
- scr denitration
- low temperature
- oxide
- integrated low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 39
- 238000002360 preparation method Methods 0.000 title abstract description 9
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 claims abstract description 35
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims abstract description 34
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 34
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical class [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000003365 glass fiber Substances 0.000 claims abstract description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 19
- 235000011187 glycerol Nutrition 0.000 claims abstract description 17
- OWCYYNSBGXMRQN-UHFFFAOYSA-N holmium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ho+3].[Ho+3] OWCYYNSBGXMRQN-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000004408 titanium dioxide Substances 0.000 claims abstract description 17
- 238000000034 method Methods 0.000 claims abstract description 11
- JYTUFVYWTIKZGR-UHFFFAOYSA-N holmium oxide Inorganic materials [O][Ho]O[Ho][O] JYTUFVYWTIKZGR-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000011572 manganese Substances 0.000 claims description 9
- 238000001035 drying Methods 0.000 claims description 7
- 230000032683 aging Effects 0.000 claims description 5
- 238000001354 calcination Methods 0.000 claims description 3
- 238000000748 compression moulding Methods 0.000 claims description 3
- DQMUQFUTDWISTM-UHFFFAOYSA-N O.[O-2].[Fe+2].[Fe+2].[O-2] Chemical compound O.[O-2].[Fe+2].[Fe+2].[O-2] DQMUQFUTDWISTM-UHFFFAOYSA-N 0.000 claims 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims 3
- 239000001913 cellulose Substances 0.000 claims 2
- 229920002678 cellulose Polymers 0.000 claims 2
- 239000006210 lotion Substances 0.000 claims 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 claims 2
- 238000010792 warming Methods 0.000 claims 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims 1
- 238000003483 aging Methods 0.000 claims 1
- 229940084030 carboxymethylcellulose calcium Drugs 0.000 claims 1
- 239000011521 glass Substances 0.000 claims 1
- 229910052748 manganese Inorganic materials 0.000 claims 1
- GEYXPJBPASPPLI-UHFFFAOYSA-N manganese(III) oxide Inorganic materials O=[Mn]O[Mn]=O GEYXPJBPASPPLI-UHFFFAOYSA-N 0.000 claims 1
- 239000000463 material Substances 0.000 claims 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 abstract description 15
- 239000001768 carboxy methyl cellulose Substances 0.000 abstract description 15
- 235000010948 carboxy methyl cellulose Nutrition 0.000 abstract description 15
- 239000008112 carboxymethyl-cellulose Substances 0.000 abstract description 15
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 abstract description 14
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 abstract description 14
- 230000000694 effects Effects 0.000 abstract description 11
- 238000006243 chemical reaction Methods 0.000 abstract description 6
- 238000000465 moulding Methods 0.000 abstract description 5
- 150000002697 manganese compounds Chemical class 0.000 abstract 1
- 239000000203 mixture Substances 0.000 description 16
- 239000002994 raw material Substances 0.000 description 11
- 239000007790 solid phase Substances 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000012495 reaction gas Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000004898 kneading Methods 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 239000010881 fly ash Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000004071 soot Substances 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010531 catalytic reduction reaction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/002—Mixed oxides other than spinels, e.g. perovskite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8621—Removing nitrogen compounds
- B01D53/8625—Nitrogen oxides
- B01D53/8628—Processes characterised by a specific catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/90—Injecting reactants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/889—Manganese, technetium or rhenium
- B01J23/8892—Manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/02—Other waste gases
- B01D2258/0283—Flue gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Catalysts (AREA)
Abstract
本发明公开了一种整体式低温SCR脱硝催化剂及其制备方法,该催化剂包括:二氧化钛24~48%、锰的氧化物12~16%、三氧化二钬1~10%、三氧化二铁5~9%、玻璃纤维3~8%、羧甲基纤维素2~5%、甘油3~6%、活性碳粉0.7~2%及水21~26%;制法为将二氧化钛、锰的氧化物、三氧化二钬、三氧化二铁、玻璃纤维、羧甲基纤维素和活性碳粉混合,加入甘油和水,制得膏体;将膏体陈化、模压成型、干燥、煅烧即可。优点为该脱硝催化剂具有良好的低温活性,即在120℃条件下,NOx转化率能够达95%左右,脱硝效率高,且机械性能强;同时,其制法可操作性强,能够获得理想的催化剂成型效果,工艺简单、成品率高。The invention discloses an integral low-temperature SCR denitrification catalyst and a preparation method thereof. The catalyst comprises: 24-48% of titanium dioxide, 12-16% of manganese oxide, 1-10% of holmium trioxide, 5% of ferric oxide ~9%, glass fiber 3~8%, carboxymethyl cellulose 2~5%, glycerin 3~6%, activated carbon powder 0.7~2% and water 21~26%; the preparation method is to oxidize titanium dioxide and manganese compound, holmium oxide, ferric oxide, glass fiber, carboxymethyl cellulose and activated carbon powder, add glycerin and water to make a paste; age the paste, mold it, dry and calcinate . The advantage is that the denitration catalyst has good low-temperature activity, that is, at 120°C, the NOx conversion rate can reach about 95%, the denitration efficiency is high, and the mechanical properties are strong; at the same time, the preparation method is strong in operability and can obtain ideal Excellent catalyst molding effect, simple process and high yield.
Description
技术领域technical field
本发明属于催化剂技术领域,尤其涉及一种整体式低温SCR脱硝催化剂及其制备方法。The invention belongs to the technical field of catalysts, and in particular relates to an integral low-temperature SCR denitration catalyst and a preparation method thereof.
背景技术Background technique
氨气选择性催化还原法(NH3-SCR)是目前最高效、应用最广泛的烟气脱硝技术,诸如火电厂和柴油引擎等在内的固定源和移动源尾气的氮氧化物(NOx)脱除均采用此法。催化剂是NH3-SCR脱硝技术的核心部分,目前商用催化剂多为V2O5-WO3(MoO3)/TiO2催化剂,其工作温度一般在300~450℃范围内,属中温段催化剂。然而,我国的整体式脱硝催化剂的制备原料和设备仍然主要依赖于引进国外先进技术,整体式催化剂的成型制备技术仍然落后于国外,并且存在较大差距。Ammonia Selective Catalytic Reduction (NH 3 -SCR) is currently the most efficient and widely used flue gas denitrification technology. Nitrogen oxides (NO x ) were removed using this method. Catalyst is the core part of NH 3 -SCR denitrification technology. At present, most commercial catalysts are V 2 O 5 -WO 3 (MoO 3 )/TiO 2 catalysts, whose working temperature is generally in the range of 300-450°C, which is a medium-temperature catalyst. However, the raw materials and equipment for the preparation of monolithic denitration catalysts in my country still mainly rely on the introduction of foreign advanced technology, and the molding and preparation technology of monolithic catalysts still lags behind foreign countries, and there is a big gap.
目前我国的SCR脱硝工艺多釆用高温高尘布置,运行过程中商用的整体式催化剂长期受到烟尘和飞灰的冲刷,容易造成磨损和堵塞,烟尘和飞灰中的SO2、水蒸气、碱土金属、重金属等又会造成整体式催化剂的中毒失活。因而,研究和开发适用于低温低尘布置工艺的整体式低温SCR脱硝催化剂具有极其重要的现实意义和发展前景。At present, China's SCR denitrification process mostly adopts high-temperature and high-dust arrangement. During the operation, the commercial monolithic catalyst is washed by soot and fly ash for a long time, which is easy to cause wear and blockage. SO 2 , water vapor, and alkaline earth in the soot and fly ash Metals, heavy metals, etc. will cause the poisoning and deactivation of the monolithic catalyst. Therefore, the research and development of an integrated low-temperature SCR denitrification catalyst suitable for low-temperature and low-dust arrangement technology has extremely important practical significance and development prospects.
发明内容Contents of the invention
发明目的:本发明的第一目的是提供一种具有良好低温活性的整体式低温SCR脱硝催化剂;本发明的另一目的是提供该催化剂的制备方法。Purpose of the invention: the first purpose of the present invention is to provide a monolithic low-temperature SCR denitration catalyst with good low-temperature activity; another purpose of the present invention is to provide a preparation method of the catalyst.
技术方案:本发明整体式低温SCR脱硝催化剂,按质量百分比计包括如下原料:二氧化钛24~48%、锰的氧化物12~16%、三氧化二钬1~10%、三氧化二铁5~9%、玻璃纤维3~8%、羧甲基纤维素2~5%、甘油3~6%、活性碳粉0.7~2%及水21~26%。Technical solution: The integral low-temperature SCR denitrification catalyst of the present invention comprises the following raw materials in terms of mass percentage: 24-48% of titanium dioxide, 12-16% of manganese oxide, 1-10% of holmium trioxide, 5-5% of ferric oxide 9%, glass fiber 3-8%, carboxymethyl cellulose 2-5%, glycerin 3-6%, activated carbon powder 0.7-2% and water 21-26%.
本发明通过添加玻璃纤维、羧甲基纤维素、甘油、活性碳粉及水,进一步提高了原料间的粘结性,增大了催化剂的比表面积,使制备的整体式低温SCR脱硝催化剂不仅具有良好低温活性且机械性能强。优选的,原料可包括:二氧化钛29~31%、锰的氧化物12~14%、三氧化二钬6~8%、三氧化二铁7~9%、玻璃纤维5~7%、羧甲基纤维素2~4%、甘油5~6%、活性碳粉0.8~1%及水23~25%。By adding glass fiber, carboxymethyl cellulose, glycerin, activated carbon powder and water, the present invention further improves the cohesiveness between raw materials, increases the specific surface area of the catalyst, and makes the prepared monolithic low-temperature SCR denitrification catalyst not only have Good low temperature activity and strong mechanical properties. Preferably, the raw materials may include: 29-31% of titanium dioxide, 12-14% of manganese oxide, 6-8% of holmium trioxide, 7-9% of ferric oxide, 5-7% of glass fiber, carboxymethyl Cellulose 2-4%, glycerin 5-6%, activated carbon powder 0.8-1% and water 23-25%.
进一步说,本发明采用的锰的氧化物至少包括MnO2、Mn2O3或Mn3O4中的一种。玻璃纤维的粒径为100~200目。Furthermore, the manganese oxide used in the present invention includes at least one of MnO 2 , Mn 2 O 3 or Mn 3 O 4 . The particle size of the glass fiber is 100-200 mesh.
本发明制备整体式低温SCR脱硝催化剂的方法,包括如下步骤:The method for preparing the monolithic low-temperature SCR denitration catalyst of the present invention comprises the following steps:
(1)按质量百分比将二氧化钛、锰的氧化物、三氧化二钬、三氧化二铁、玻璃纤维、羧甲基纤维素和活性碳粉混合,加入甘油和水,制得膏体;(1) Titanium dioxide, manganese oxide, holmium sesquioxide, ferric oxide, glass fiber, carboxymethyl cellulose and activated carbon powder are mixed by mass percentage, and glycerin and water are added to prepare a paste;
(2)将上述膏体陈化、模压成型、干燥及煅烧后,即制得整体式低温SCR脱硝催化剂。(2) After the above paste is aged, molded, dried and calcined, an integral low-temperature SCR denitration catalyst is prepared.
再进一步说,步骤(2)中,陈化5~7h,加强膏体的可塑性;模压成型是在10~12MPa条件下进行。Furthermore, in step (2), the paste is aged for 5-7 hours to enhance the plasticity of the paste; compression molding is carried out under the condition of 10-12 MPa.
更进一步说,步骤(2)中,干燥是先在50~70℃下干燥11~13h,然后在70~90℃下干燥7~9h,最后在100~120℃下干燥3~5h,本发明采用三段式干燥方式,防止水分过快蒸发,以免坯体开裂。而煅烧先以4~6℃/min的速率升温至200~400℃并维持2~4h,再以4~6℃/min的速率升温至400~600℃并维持4~6h。本发明采用4~6℃/min的速率进行升温,进一步提高了脱硝催化剂的机械强度。Furthermore, in step (2), the drying is first dried at 50-70°C for 11-13 hours, then dried at 70-90°C for 7-9 hours, and finally dried at 100-120°C for 3-5 hours. The three-stage drying method is adopted to prevent the water from evaporating too quickly, so as to prevent the green body from cracking. For calcination, the temperature is raised to 200-400°C at a rate of 4-6°C/min and maintained for 2-4 hours, and then the temperature is raised to 400-600°C at a rate of 4-6°C/min and maintained for 4-6 hours. In the present invention, the temperature is raised at a rate of 4-6° C./min, which further improves the mechanical strength of the denitrification catalyst.
有益效果:与现有技术相比,本发明的显著优点为:该整体式SCR脱硝催化剂具有良好的低温活性,即在120℃条件下,NOx转化率能够高达95%左右,脱硝效率高,且机械性能强;同时,该制法可操作性强,能够获得理想的催化剂成型效果,工艺简单、成品率高。Beneficial effects: Compared with the prior art, the significant advantages of the present invention are: the integral SCR denitration catalyst has good low-temperature activity, that is, under the condition of 120°C, the NO x conversion rate can be as high as about 95%, and the denitration efficiency is high. And the mechanical performance is strong; at the same time, the preparation method has strong operability, can obtain an ideal catalyst forming effect, and has a simple process and a high yield.
具体实施方式detailed description
下面结合实施例对本发明的技术方案作进一步说明。The technical solutions of the present invention will be further described below in conjunction with the examples.
实施例1Example 1
(1)混料:将48%二氧化钛、16%锰的氧化物、1%三氧化二钬、5%三氧化二铁、3%玻璃纤维、2%羧甲基纤维素和1%活性碳粉混合,均匀搅拌15min,配制成固相混合物;其中,锰的氧化物至少包括MnO2、Mn2O3或Mn3O4中的一种。(1) Mixture: 48% titanium dioxide, 16% manganese oxide, 1% holmium sesquioxide, 5% ferric oxide, 3% glass fiber, 2% carboxymethyl cellulose and 1% activated carbon powder Mix and stir evenly for 15 minutes to prepare a solid-phase mixture; wherein, the manganese oxide includes at least one of MnO 2 , Mn 2 O 3 or Mn 3 O 4 .
(2)捏合:将3%甘油和21%水加入固相混合物中,经过30min捏合后,得到质地均匀的泥团。(2) Kneading: Add 3% glycerin and 21% water into the solid-phase mixture, and knead for 30 minutes to obtain a mud ball with uniform texture.
(3)练泥:在2MPa的外压下练泥4次,得到紧实的塑性膏体。(3) Mud practice: practice mud 4 times under an external pressure of 2MPa to obtain a compact plastic paste.
(4)陈化:将塑性膏体在常温下密封陈化5h。(4) Aging: Seal and age the plastic paste at room temperature for 5 hours.
(5)成型:将步骤(5)得到的膏体在10MPa的压力下进行模压定型,脱模后得到蜂窝状成型坯体。(5) Molding: the paste obtained in step (5) is molded and shaped under a pressure of 10 MPa, and a honeycomb molded green body is obtained after demoulding.
(6)干燥:将成型坯体先在50℃下干燥11h,然后在70℃下干燥7h,最后在100℃下干燥3h(6) Drying: Dry the molded body at 50°C for 11h, then at 70°C for 7h, and finally at 100°C for 3h
(7)焙烧:将干燥后的成型坯体先以4℃/min的速率升温至200℃并维持2h,再以4℃/min的速率升温至400℃并维持4h,待自然冷却后即获得整体式蜂窝状低温SCR脱硝催化剂的成品。(7) Roasting: The dried molded body is first heated to 200°C at a rate of 4°C/min and maintained for 2h, then raised to 400°C at a rate of 4°C/min and maintained for 4h, and obtained after natural cooling The finished product of integral honeycomb low-temperature SCR denitration catalyst.
将实施例1制备的整体式低温SCR脱硝催化剂置于模拟反应器中进行活性评价,反应气组成为Ф(NO)=Ф(NH3)=0.08%(体积分数),Ф(O2)=5%(体积分数),N2为平衡气,空速4000h-1,在120℃条件下,测得整体式低温SCR催化剂的NOx转化率为80%。The integrated low-temperature SCR denitration catalyst prepared in Example 1 was placed in a simulated reactor for activity evaluation, and the reaction gas composition was Ф(NO)=Ф(NH 3 )=0.08% (volume fraction), Ф(O 2 )= 5% (volume fraction), N 2 as balance gas, space velocity 4000h -1 , and under the condition of 120°C, the measured NOx conversion rate of the monolithic low-temperature SCR catalyst is 80%.
实施例2Example 2
(1)混料:将24%二氧化钛、12%锰的氧化物、8%三氧化二钬、9%三氧化二铁、8%玻璃纤维、5%羧甲基纤维素和2%活性碳粉混合,均匀搅拌20min,配制成固相混合物;其中,锰的氧化物至少包括MnO2、Mn2O3或Mn3O4中的一种。(1) Mixture: 24% titanium dioxide, 12% manganese oxide, 8% holmium sesquioxide, 9% ferric oxide, 8% glass fiber, 5% carboxymethyl cellulose and 2% activated carbon powder Mix and stir evenly for 20 minutes to prepare a solid-phase mixture; wherein, the manganese oxide includes at least one of MnO 2 , Mn 2 O 3 or Mn 3 O 4 .
(2)捏合:将6%甘油和26%水加入固相混合物中,经过40min捏合后,得到质地均匀的泥团。(2) Kneading: Add 6% glycerin and 26% water into the solid-phase mixture, and knead for 40 minutes to obtain a mud ball with uniform texture.
(3)练泥:在3MPa的外压下练泥5次,得到紧实的塑性膏体。(3) Mud practice: practice mud 5 times under an external pressure of 3MPa to obtain a compact plastic paste.
(4)陈化:将塑性膏体在常温下密封陈化7h,进一步加强膏体的可塑性。(4) Aging: Seal and age the plastic paste at room temperature for 7 hours to further enhance the plasticity of the paste.
(5)成型:将步骤(5)得到的膏体在12MPa的压力下进行模压定型,脱模后得到蜂窝状成型坯体。(5) Molding: the paste obtained in step (5) is molded and shaped under a pressure of 12 MPa, and a honeycomb shaped green body is obtained after demoulding.
(6)干燥:将成型坯体先在70℃下干燥13h,然后在90℃下干燥9h,最后在120℃下干燥5h(6) Drying: Dry the molded body at 70°C for 13h, then at 90°C for 9h, and finally at 120°C for 5h
(7)焙烧:将干燥后的成型坯体先以6℃/min的速率升温至400℃并维持4h,再以6℃/min的速率升温至600℃并维持6h,待自然冷却后即获得整体式蜂窝状低温SCR脱硝催化剂的成品。(7) Roasting: The dried molded body is first heated to 400°C at a rate of 6°C/min and maintained for 4h, then raised to 600°C at a rate of 6°C/min and maintained for 6h, and then obtained after natural cooling The finished product of integral honeycomb low-temperature SCR denitration catalyst.
将实施例2制成的整体式低温SCR脱硝催化剂置于模拟反应器中进行活性评价,反应气组成为Ф(NO)=Ф(NH3)=0.08%(体积分数),Ф(O2)=5%(体积分数),N2为平衡气,空速4000h-1,在120℃条件下,测得整体式低温SCR催化剂的NOx转化率为85%。The monolithic low-temperature SCR denitration catalyst prepared in Example 2 was placed in a simulated reactor for activity evaluation, and the reaction gas composition was Ф(NO)=Ф(NH 3 )=0.08% (volume fraction), Ф(O 2 ) =5% (volume fraction), N 2 is the balance gas, the space velocity is 4000h -1 , and under the condition of 120°C, the measured NO x conversion rate of the monolithic low-temperature SCR catalyst is 85%.
实施例3Example 3
(1)混料:将30%二氧化钛、13%锰的氧化物、7%三氧化二钬、9%三氧化二铁、6%玻璃纤维、3%羧甲基纤维素和1%活性碳粉混合,均匀搅拌20min,配制成固相混合物;其中,锰的氧化物至少包括MnO2、Mn2O3或Mn3O4中的一种。(1) Mixture: 30% titanium dioxide, 13% manganese oxide, 7% holmium sesquioxide, 9% ferric oxide, 6% glass fiber, 3% carboxymethyl cellulose and 1% activated carbon powder Mix and stir evenly for 20 minutes to prepare a solid-phase mixture; wherein, the manganese oxide includes at least one of MnO 2 , Mn 2 O 3 or Mn 3 O 4 .
(2)捏合:将6%甘油和25%水加入固相混合物中,经过40min捏合后,得到质地均匀的泥团。(2) Kneading: Add 6% glycerin and 25% water into the solid-phase mixture, and knead for 40 minutes to obtain a mud ball with uniform texture.
(3)练泥:在2MPa的外压下练泥5次,得到紧实的塑性膏体。(3) Mud practice: practice mud 5 times under an external pressure of 2MPa to obtain a compact plastic paste.
(4)陈化:将塑性膏体在常温下密封陈化6h,进一步加强膏体的可塑性。(4) Aging: Seal and age the plastic paste at room temperature for 6 hours to further enhance the plasticity of the paste.
(5)成型:将步骤(5)得到的膏体在10MPa的压力下进行模压定型,脱模后得到蜂窝状成型坯体。(5) Molding: the paste obtained in step (5) is molded and shaped under a pressure of 10 MPa, and a honeycomb molded green body is obtained after demoulding.
(6)干燥:将成型坯体先在60℃下干燥12h,然后在80℃下干燥8h,最后在110℃下干燥4h。(6) Drying: The molded body was first dried at 60°C for 12 hours, then at 80°C for 8 hours, and finally at 110°C for 4 hours.
(7)焙烧:将干燥后的成型坯体先以5℃/min的速率升温至300℃并维持3h,再以5℃/min的速率升温至500℃并维持5h,待自然冷却后即获得整体式蜂窝状低温SCR脱硝催化剂的成品。(7) Roasting: The dried molded body is first heated to 300°C at a rate of 5°C/min and maintained for 3h, then raised to 500°C at a rate of 5°C/min and maintained for 5h, and obtained after natural cooling The finished product of integral honeycomb low-temperature SCR denitration catalyst.
将实施例3制成的整体式低温SCR脱硝催化剂置于模拟反应器中进行活性评价,反应气组成为Ф(NO)=Ф(NH3)=0.08%(体积分数),Ф(O2)=5%(体积分数),N2为平衡气,空速4000h-1。该条件下,测得整体式低温SCR催化剂的NOx转化率为95%。The monolithic low-temperature SCR denitration catalyst prepared in Example 3 was placed in a simulated reactor for activity evaluation, and the reaction gas composition was Ф(NO)=Ф(NH 3 )=0.08% (volume fraction), Ф(O 2 ) =5% (volume fraction), N 2 is the balance gas, and the space velocity is 4000h -1 . Under this condition, the measured NOx conversion rate of the monolithic low-temperature SCR catalyst is 95%.
实施例4Example 4
步骤与实施例3基本相同,不同之处在于各原料的组分含量,具体为:24%二氧化钛、12%锰的氧化物、10%三氧化二钬、7%三氧化二铁、8%玻璃纤维、5%羧甲基纤维素、6%甘油、2%活性碳粉及26%水。The steps are basically the same as in Example 3, except that the component content of each raw material is specifically: 24% titanium dioxide, 12% manganese oxide, 10% holmium sesquioxide, 7% ferric oxide, 8% glass Fiber, 5% carboxymethyl cellulose, 6% glycerin, 2% activated charcoal powder and 26% water.
实施例5Example 5
步骤与实施例3基本相同,不同之处在于各原料的组分含量,具体为:29%二氧化钛、14%锰的氧化物、8%三氧化二钬、9%三氧化二铁、5%玻璃纤维、4%羧甲基纤维素、5%甘油、1%活性碳粉及25%水。The steps are basically the same as in Example 3, except that the component content of each raw material is specifically: 29% titanium dioxide, 14% manganese oxide, 8% holmium sesquioxide, 9% ferric oxide, 5% glass Fiber, 4% Carboxymethyl Cellulose, 5% Glycerin, 1% Activated Carbon Powder and 25% Water.
实施例6Example 6
步骤与实施例3基本相同,不同之处在于各原料的组分含量,具体为:31%二氧化钛、14%锰的氧化物、7.2%三氧化二钬、7%三氧化二铁、7%玻璃纤维、2%羧甲基纤维素、6%甘油、0.8%活性碳粉及25%水。The steps are basically the same as in Example 3, except that the component content of each raw material is specifically: 31% titanium dioxide, 14% manganese oxide, 7.2% holmium sesquioxide, 7% ferric oxide, 7% glass Fiber, 2% carboxymethyl cellulose, 6% glycerin, 0.8% activated carbon powder and 25% water.
实施例7Example 7
步骤与实施例3基本相同,不同之处在于各原料的组分含量,具体为:31%二氧化钛、12%锰的氧化物、6%三氧化二钬、9%三氧化二铁、7%玻璃纤维、4%羧甲基纤维素、6%甘油、1%活性碳粉及24%水。The steps are basically the same as in Example 3, except that the component content of each raw material is specifically: 31% titanium dioxide, 12% manganese oxide, 6% holmium oxide, 9% ferric oxide, 7% glass Fiber, 4% carboxymethyl cellulose, 6% glycerin, 1% activated charcoal powder and 24% water.
对比例1Comparative example 1
步骤与实施例3基本相同,不同之处在于各原料的组分含量,具体为:22%二氧化钛、25%锰的氧化物、0.5%三氧化二钬、15%三氧化二铁、1%玻璃纤维、10%羧甲基纤维素、1%甘油、7%活性碳粉及18.5%水。The steps are basically the same as in Example 3, the difference being the component content of each raw material, specifically: 22% titanium dioxide, 25% manganese oxide, 0.5% holmium oxide, 15% ferric oxide, 1% glass Fiber, 10% carboxymethyl cellulose, 1% glycerin, 7% activated carbon powder and 18.5% water.
对比例2Comparative example 2
步骤与实施例3基本相同,不同之处在于各原料的组分含量,具体为:52%二氧化钛、8%锰的氧化物、12%三氧化二钬、3%三氧化二铁、12%玻璃纤维、1%羧甲基纤维素、9%甘油、0.5%活性碳粉及2.5%水。The steps are basically the same as in Example 3, except that the component content of each raw material is specifically: 52% titanium dioxide, 8% manganese oxide, 12% holmium oxide, 3% ferric oxide, 12% glass Fiber, 1% carboxymethyl cellulose, 9% glycerin, 0.5% activated carbon powder and 2.5% water.
将实施例4-7及对比例1-2制成的整体式低温SCR脱硝催化剂置于模拟反应器中进行活性评价,反应气组成为Ф(NO)=Ф(NH3)=0.08%(体积分数),Ф(O2)=5%(体积分数),N2为平衡气,空速4000h-1。该条件下,测得整体式低温SCR催化剂的NOx转化率如表1所示。The monolithic low-temperature SCR denitrification catalysts made in Examples 4-7 and Comparative Examples 1-2 were placed in a simulated reactor for activity evaluation, and the reaction gas composition was Ф(NO)=Ф(NH 3 )=0.08% (volume fraction), Ф(O 2 )=5% (volume fraction), N 2 is the balance gas, and the space velocity is 4000h -1 . Under this condition, the measured NO x conversion rate of the monolithic low-temperature SCR catalyst is shown in Table 1.
表1:Table 1:
通过表1可知,采用本发明含量范围内的原料制备的脱硝催化剂具有优越的低温活性,其脱硝率高,且机械性能强。It can be seen from Table 1 that the denitration catalyst prepared by using the raw materials within the content range of the present invention has excellent low-temperature activity, high denitration rate, and strong mechanical properties.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710055550.7A CN106669728A (en) | 2017-01-25 | 2017-01-25 | Integral-type low-temperature SCR denitration catalyst and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710055550.7A CN106669728A (en) | 2017-01-25 | 2017-01-25 | Integral-type low-temperature SCR denitration catalyst and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106669728A true CN106669728A (en) | 2017-05-17 |
Family
ID=58860024
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710055550.7A Pending CN106669728A (en) | 2017-01-25 | 2017-01-25 | Integral-type low-temperature SCR denitration catalyst and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106669728A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109174118A (en) * | 2018-11-07 | 2019-01-11 | 浙江工业大学 | A kind of activated carbon loaded iron-manganese-titanium denitrating catalyst and its preparation method and application |
CN110496606A (en) * | 2019-08-30 | 2019-11-26 | 南昌航空大学 | A kind of synthetic preparation method of new mercury removal material |
CN111774054A (en) * | 2020-06-23 | 2020-10-16 | 东南大学 | A kind of low-temperature water-resistant SCR denitration catalyst and preparation method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101703927A (en) * | 2009-11-17 | 2010-05-12 | 山东理工大学 | Preparation process of nano catalyst honeycomb |
CN101711978A (en) * | 2009-11-28 | 2010-05-26 | 江苏中科节能环保技术有限公司 | High mechanical property and low cost SCR denitration catalyst and preparation method thereof |
CN102380384A (en) * | 2011-07-22 | 2012-03-21 | 丁珂 | Preparation method of novel environmentally-friendly non-toxic catalyst |
CN102872919A (en) * | 2012-09-27 | 2013-01-16 | 浙江天蓝环保技术股份有限公司 | Preparation process of honeycomb SCR (selective catalytic reduction) denitration catalyst |
CN103464194A (en) * | 2013-09-05 | 2013-12-25 | 浙江天蓝环保技术股份有限公司 | SCR (Selective catalytic reduction) monolithic honeycombed catalyst for low-temperature flue gas de-nitrification and preparation method thereof |
CN105879879A (en) * | 2016-05-23 | 2016-08-24 | 东南大学 | High-sulfur-resistant ultralow-temperature SCR (Selective Catalytic Reduction) denitration catalyst and preparation method thereof |
-
2017
- 2017-01-25 CN CN201710055550.7A patent/CN106669728A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101703927A (en) * | 2009-11-17 | 2010-05-12 | 山东理工大学 | Preparation process of nano catalyst honeycomb |
CN101711978A (en) * | 2009-11-28 | 2010-05-26 | 江苏中科节能环保技术有限公司 | High mechanical property and low cost SCR denitration catalyst and preparation method thereof |
CN102380384A (en) * | 2011-07-22 | 2012-03-21 | 丁珂 | Preparation method of novel environmentally-friendly non-toxic catalyst |
CN102872919A (en) * | 2012-09-27 | 2013-01-16 | 浙江天蓝环保技术股份有限公司 | Preparation process of honeycomb SCR (selective catalytic reduction) denitration catalyst |
CN103464194A (en) * | 2013-09-05 | 2013-12-25 | 浙江天蓝环保技术股份有限公司 | SCR (Selective catalytic reduction) monolithic honeycombed catalyst for low-temperature flue gas de-nitrification and preparation method thereof |
CN105879879A (en) * | 2016-05-23 | 2016-08-24 | 东南大学 | High-sulfur-resistant ultralow-temperature SCR (Selective Catalytic Reduction) denitration catalyst and preparation method thereof |
Non-Patent Citations (3)
Title |
---|
《环境保护》编委会编: "《环境保护》", 31 May 2010, 中国电力出版社 * |
YIWEN ZHU等: ""Novel holmium-modified Fe-Mn/TiO2 catalystswith a broad temperature window and high sulfur dioxide tolerance for low-temperature SCR"", 《CATALYSIS COMMUNICATIONS》 * |
齐立强,曾芳主编: "《环境及化学类专业火电厂实习教程》", 30 October 2011, 中国水利水电出版社 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109174118A (en) * | 2018-11-07 | 2019-01-11 | 浙江工业大学 | A kind of activated carbon loaded iron-manganese-titanium denitrating catalyst and its preparation method and application |
CN110496606A (en) * | 2019-08-30 | 2019-11-26 | 南昌航空大学 | A kind of synthetic preparation method of new mercury removal material |
CN111774054A (en) * | 2020-06-23 | 2020-10-16 | 东南大学 | A kind of low-temperature water-resistant SCR denitration catalyst and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103464194B (en) | A kind of SCR integral honeycomb Catalysts and its preparation method for low-temperature denitration of flue gas | |
CN101947443B (en) | Cellular Mn-Ti-based catalyst for low-temperature selective catalytic reduction denitration reaction and preparation method and using method | |
CN102921405B (en) | A kind of SiO2 added denitrification catalyst and preparation method thereof | |
CN106423193B (en) | Honeycomb manganese-based denitration catalyst and preparation method thereof | |
CN104588000A (en) | Carbon-base honeycomb-structure low-temperature denitrification catalyst and preparation method thereof | |
WO2019006895A1 (en) | Preparation method and use of trifolium-shaped catalyst for cooperatively controlling nox and cvocs | |
CN101513620A (en) | Preparation method for titanium dioxide group catalyst carrier | |
CN101857458B (en) | Preparation method of Ce-Fe-Zr combined metal oxide honeycomb ceramics type integral oxygen carrier | |
CN105126816A (en) | Smoke denitration catalyst and preparing method thereof | |
CN103877970B (en) | A kind of cellular exhaust gas denitration catalyst | |
CN107235489A (en) | A kind of preparation method of high-specific surface area Alveolate activated carbon | |
CN106669728A (en) | Integral-type low-temperature SCR denitration catalyst and preparation method thereof | |
CN103263914A (en) | Honeycomb-shaped SCR denitration catalysis material for cement kiln and preparation method thereof | |
CN105056967A (en) | Mn-based catalyst for low-temperature denitration and preparation method of Mn-based catalyst | |
CN110237839A (en) | Rare earth-based medium and low temperature flue gas honeycomb denitrification catalyst and preparation method thereof | |
CN107230559B (en) | A kind of preparation method of porous oxidation cerium composite material | |
CN116239118A (en) | Production method of waterproof honeycomb activated carbon | |
CN106732699A (en) | One kind is for coal steam-electric plant smoke denitration wide temperature range type Ti-base catalyst and preparation method thereof | |
CN110639535A (en) | Modification method of industrial waste red mud and high-value environment-friendly application | |
CN108905959B (en) | Method for preparing ZnO/MCM-41 desulfurizer by microwave in-situ one-step method | |
CN101138735A (en) | Catalyst for preparing bio-ethylene and molding method thereof | |
CN106807360B (en) | A kind of preparation method of sulfur resistive denitrating catalyst | |
CN105664978A (en) | Moulding preparation method for composite-carrier-supported acidified Mn-Co-Ce sulfur-tolerant catalyst for low temperature flue gas denitration | |
CN111514884A (en) | Denitration catalyst with honeycomb structure and preparation method thereof | |
CN106902807A (en) | A kind of particle type low-temperature SCR catalyst and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170517 |
|
RJ01 | Rejection of invention patent application after publication |