CN106663475A - 分散在金属合金基质中的陶瓷核燃料 - Google Patents
分散在金属合金基质中的陶瓷核燃料 Download PDFInfo
- Publication number
- CN106663475A CN106663475A CN201580019557.2A CN201580019557A CN106663475A CN 106663475 A CN106663475 A CN 106663475A CN 201580019557 A CN201580019557 A CN 201580019557A CN 106663475 A CN106663475 A CN 106663475A
- Authority
- CN
- China
- Prior art keywords
- fuel
- nuclear fuel
- metal
- mixture
- raw material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 56
- 239000003758 nuclear fuel Substances 0.000 title claims abstract description 29
- 239000011159 matrix material Substances 0.000 title claims abstract description 25
- 229910001092 metal group alloy Inorganic materials 0.000 title description 7
- 239000000446 fuel Substances 0.000 claims abstract description 93
- 229910052751 metal Inorganic materials 0.000 claims abstract description 57
- 239000002184 metal Substances 0.000 claims abstract description 57
- 239000002245 particle Substances 0.000 claims abstract description 57
- 238000000034 method Methods 0.000 claims abstract description 54
- 239000002915 spent fuel radioactive waste Substances 0.000 claims abstract description 24
- 238000002347 injection Methods 0.000 claims abstract description 19
- 239000007924 injection Substances 0.000 claims abstract description 19
- 238000004519 manufacturing process Methods 0.000 claims abstract description 19
- 239000011195 cermet Substances 0.000 claims abstract description 14
- 239000000203 mixture Substances 0.000 claims description 34
- 239000002994 raw material Substances 0.000 claims description 20
- 229910052770 Uranium Inorganic materials 0.000 claims description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 15
- 238000002844 melting Methods 0.000 claims description 13
- 230000008018 melting Effects 0.000 claims description 13
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 9
- 229910052726 zirconium Inorganic materials 0.000 claims description 9
- 238000005096 rolling process Methods 0.000 claims description 8
- 230000008014 freezing Effects 0.000 claims description 6
- 238000007710 freezing Methods 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 5
- ZCUFMDLYAMJYST-UHFFFAOYSA-N thorium dioxide Chemical compound O=[Th]=O ZCUFMDLYAMJYST-UHFFFAOYSA-N 0.000 claims description 5
- 229910003452 thorium oxide Inorganic materials 0.000 claims description 5
- HPWBMQLLXMZFDK-UHFFFAOYSA-N [O--].[O--].[O--].[Am+3].[Am+3] Chemical compound [O--].[O--].[O--].[Am+3].[Am+3] HPWBMQLLXMZFDK-UHFFFAOYSA-N 0.000 claims description 3
- 238000002485 combustion reaction Methods 0.000 claims description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 2
- 230000008859 change Effects 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 239000011733 molybdenum Substances 0.000 claims description 2
- 239000001301 oxygen Substances 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- DNYWZCXLKNTFFI-UHFFFAOYSA-N uranium Chemical compound [U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U] DNYWZCXLKNTFFI-UHFFFAOYSA-N 0.000 claims 9
- 238000003756 stirring Methods 0.000 claims 2
- 229910052695 Americium Inorganic materials 0.000 claims 1
- LXQXZNRPTYVCNG-UHFFFAOYSA-N americium atom Chemical compound [Am] LXQXZNRPTYVCNG-UHFFFAOYSA-N 0.000 claims 1
- 150000001875 compounds Chemical class 0.000 claims 1
- 239000004744 fabric Substances 0.000 claims 1
- 239000008240 homogeneous mixture Substances 0.000 claims 1
- 229910052573 porcelain Inorganic materials 0.000 claims 1
- 238000005266 casting Methods 0.000 abstract description 13
- 230000008569 process Effects 0.000 abstract description 6
- 238000010310 metallurgical process Methods 0.000 abstract 1
- 239000000243 solution Substances 0.000 abstract 1
- 239000008188 pellet Substances 0.000 description 17
- 230000005855 radiation Effects 0.000 description 10
- 229910052778 Plutonium Inorganic materials 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 230000004992 fission Effects 0.000 description 8
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 8
- 238000004064 recycling Methods 0.000 description 7
- 230000008901 benefit Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- OYEHPCDNVJXUIW-UHFFFAOYSA-N plutonium atom Chemical compound [Pu] OYEHPCDNVJXUIW-UHFFFAOYSA-N 0.000 description 6
- 238000004925 denaturation Methods 0.000 description 5
- 230000036425 denaturation Effects 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 230000012010 growth Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 230000035755 proliferation Effects 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- 239000004449 solid propellant Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 241000030614 Urania Species 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000004663 powder metallurgy Methods 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- 238000012958 reprocessing Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- FCTBKIHDJGHPPO-UHFFFAOYSA-N uranium dioxide Inorganic materials O=[U]=O FCTBKIHDJGHPPO-UHFFFAOYSA-N 0.000 description 2
- 238000009736 wetting Methods 0.000 description 2
- 229910000897 Babbitt (metal) Inorganic materials 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- 101000911390 Homo sapiens Coagulation factor VIII Proteins 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000005247 gettering Methods 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 102000057593 human F8 Human genes 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 230000000155 isotopic effect Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000009853 pyrometallurgy Methods 0.000 description 1
- 230000003134 recirculating effect Effects 0.000 description 1
- 229940047431 recombinate Drugs 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 229910002058 ternary alloy Inorganic materials 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C3/00—Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
- G21C3/02—Fuel elements
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C21/00—Apparatus or processes specially adapted to the manufacture of reactors or parts thereof
- G21C21/02—Manufacture of fuel elements or breeder elements contained in non-active casings
- G21C21/16—Manufacture of fuel elements or breeder elements contained in non-active casings by casting or dipping techniques
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C19/00—Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
- G21C19/42—Reprocessing of irradiated fuel
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C21/00—Apparatus or processes specially adapted to the manufacture of reactors or parts thereof
- G21C21/02—Manufacture of fuel elements or breeder elements contained in non-active casings
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C3/00—Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
- G21C3/42—Selection of substances for use as reactor fuel
- G21C3/58—Solid reactor fuel Pellets made of fissile material
- G21C3/62—Ceramic fuel
- G21C3/64—Ceramic dispersion fuel, e.g. cermet
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Plasma & Fusion (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Dispersion Chemistry (AREA)
- Powder Metallurgy (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Treatment Of Steel In Its Molten State (AREA)
- Monitoring And Testing Of Nuclear Reactors (AREA)
Abstract
描述了用于制造金属燃料的系统和方法。用于制造金属‑燃料基质金属陶瓷核燃料的方法可包括粉碎的陶瓷颗粒与金属快速反应堆燃料结合经由底部浇铸或注射铸造或粉末冶金工艺。添加至所述金属燃料的粉碎的陶瓷颗粒的最大量不得超出将无法产生金属燃料的连续基质的量。在短暂的辐射时间段之后,不论哪种制造工艺,所述燃料的微观结构可以与不含粉碎的陶瓷颗粒的注射铸造燃料的微观结构基本相同。因此,不含粉碎的陶瓷颗粒的注射铸造燃料的广泛现有的数据库可以是预期辐射性能的优异指标。每种工艺可助于解决废核燃料问题并且可以在所述工艺期间使Pu239变性。
Description
发明领域
本发明涉及核燃料,并且更具体地,涉及金属核燃料。
发明背景
世界电力需求到2030年预计将高达两倍,到2050年预计将高达四倍。世界电力需求增长预计将来自发达国家,并且在甚至更大的程度上,将来自发展中国家。为了满足这种需求的快速增长,核电可能是现实的、具有成本效益的能源。
来自其他来源的增长的能源供应(例如来自天然气发电的贡献)可能受到高和不稳定的气体价格、温室气体排放以及对长期依赖不稳定供应来源的担忧的制约。与此同时,替代能源的形式(太阳、风、生物质、水力发电等)在满足某些增长的需求方面可能是有用的。然而,它们不能充分地缩放并且无法在大多数市场中提供足够的额外发电能力以满足新的电力需求的任何显著部分。
燃煤电厂可提供一些额外的供应,但是由于负面的环境影响,燃烧大量的煤存在严重的政治障碍。
常规的核电厂也可满足部分增长的需求。然而,常规的核电厂有许多技术和公众接受障碍需要克服。可能还需要新型的核燃料。
某些基于快速反应堆的发电厂可具有通过基于火法冶金再循环技术的封闭式燃料循环支持的20年再加料(refueling)间隔。可使用用于初始芯负载的铀(U)/钚(Pu)/锆(Zr)组合物或浓缩U/Zr组合物的金属合金燃料形式。可采用远程注射铸造工艺来制造燃料细棒(fuel pin)。存在对于燃料稳态、瞬态和安全性能的非常广泛的辐射数据库。三元合金再循环细棒可以是高度放射性的并且在1500-1600℃的温度下在屏蔽(shielding)之后使用远程操作来制造它们的技术是成熟的。
优选实施方案的详细描述
本发明的实施方案可以包括用于制造并入陶瓷颗粒的金属核燃料的方法。在某些实施方案中,所述陶瓷颗粒可以包括粉碎的轻水反应堆(LWR)废核燃料(SNF)。在某些实施方案中,所述陶瓷颗粒可以包括氧化钍和/或氧化镅。在某些实施方案中,可将来自废反应堆燃料的材料添加到合金混合物中。例如,陶瓷颗粒(如轻水反应堆废核燃料)可以被粉碎并分散在金属合金基质中。
将美国专利号8,571,167、美国公开号2011/0194666和美国公开号2011/0206173各自通过引用其整体并入本文中。
在某些实施方案中,陶瓷氧化物LWR-SNF颗粒可以在以下三种工艺中的任一种中与金属快速反应堆燃料组合:
1.底部浇铸燃料芯块(slug)。可在环形(或圆柱形)燃料芯块的底部浇铸之前将SNR燃料颗粒添加至熔融的金属燃料装料(charge)。所述装料可以用双频率感应加热,使得频率上的变化将提供SNF颗粒在熔体内的混合。
2.固体燃料芯块的注射铸造。可在固体圆柱形燃料芯块的注射铸造之前将SNF燃料颗粒添加至熔融的金属燃料装料。所述装料将如在1中描述的那样加热。
3.粉末冶金工艺。SNF燃料颗粒可以与通过粉末冶金工艺制造的金属燃料颗粒组合(共混)。
可以添加至金属燃料的SNF燃料颗粒的最大量必须产生金属燃料的连续基质。
在短暂的辐射期之后,无论使用哪种制造工艺,所述燃料的微观结构可以与不含粉碎的陶瓷颗粒的注射浇铸燃料的微观结构相同、基本上相同和/或功能上相同。因此,不含SNF颗粒的注射浇铸燃料的广泛数据库可以是预期辐射性能的优异指标。
下面描述用于生产燃料棒的工艺的细节和每种工艺的属性。每种工艺可以通过在多次再循环中焚烧超铀元素来助于解决SNF问题并且它们全部可以在所述工艺中使Pu239变性。在某些实施方案中,可以使用再加工的金属燃料来生产燃料棒。
底部浇铸
在某些系统中,底部浇铸技术可用于生产用于插入钢包燃料细棒中的芯块。所述芯块可以是环形的、锆(Zr)-护套(sheath)的芯块。当辐射时,如此制造的细棒可以迅速地重组成通过原始的注射铸造制造工艺所生产的传统形态,使得对于这样的燃料细棒的现有的广泛的性能数据库继续适用。
尽管以下讨论涉及形成环形燃料细棒的示例性实施方案,但是可以理解底部浇铸可用于形成各种燃料细棒中的任一种,包括圆柱形或其他形状的燃料细棒。
可以将用于环形燃料细棒的原料装入底部浇铸坩埚中并且可在感应炉中熔融。熔融的时间、温度、压力和其他操作条件可基于投入的原料选择。可选择所述原料以产生所需的金属铀(U)和超铀元素加钼(Mo)和/或锆(Zr)的组合物。在某些实施方案中,所述原料可以包括,例如铀、锆、超铀元素、再加工的金属燃料及其组合。在某些实施方案中,可以将预先形成的薄壁锆管紧贴地插入石墨模具中的紧密配合的孔中。棒可居中地位于所述石墨模具中的孔中。所述坩埚的底部中的塞子可以升高,因此金属合金熔体可以流入所述模具中并固化。
通过这种方式,在某些实施方案中可以产生被径向封装在Zr护套中的环形燃料细棒芯块。可将所述环形燃料细棒芯块从所述模具中移出并插入紧密配合的钢包层中。可以焊接上端盖。这样的细棒束可以被组装成多细棒燃料组件。
在某些实施方案中,在金属熔体已变得熔融之后,可以将粉碎的陶瓷颗粒的装料添加至所述熔体。可以调谐感应炉的频率,以形成熔融的金属的滚动流动状态。所述滚动流动状态可以用于将所述陶瓷颗粒均匀地混合到熔融的金属相中。从目前的注射铸造工艺中,铀(U)/钚(Pu)/锆(Zr)和铀(U)/锆(Zr)的感应加热被称为通过调节频率来建立滚动流动状态的能力。
在一段时间之后,滚动可能会停止。可以选择用于滚动的时间段来实现混合物的均匀或接近均匀的混合。可以如上所述地进行底部浇铸。
冷冻、优选快速冷冻混合物可以防止低密度陶瓷与金属相再分离。可选择冷冻的时间和温度以防止再分离。
所得的燃料芯块可以是金属陶瓷组合物的Zr护套的环形芯块,其中可裂变轴承金属合金形成连续基质并且大部分的可裂变物质保留在金属相中。可选择金属燃料与陶瓷的比率,使得在辐射时,所述燃料细棒产生金属燃料的连续基质以确保足够的导热率。在某些实施方案中,分散的陶瓷颗粒可包括具有高于约90%的氧化铀与约6%的裂变产物和约1.5%的超铀元素的组合物。如通常当使用轻水反应堆废核燃料时所需的,这些铸造操作可以远程进行。
存在环形燃料形式的许多潜在的操作益处,而且增加管理废核燃料的能力可能是额外的益处。
注射铸造
在某些系统中,已知的注射铸造技术已被用于生产用于插入钢包燃料细棒中的固体(即非环形的)芯块。所述芯块可以是插入宽松配合的钢包层中的固体燃料芯块并且与钠结合以在芯块和包层之间获得良好的导热率。当辐射时,如此制造的细棒可以迅速地重组成通过注射铸造制造工艺所生产的传统的裂变气体填充的多孔形态,这适用现有的广泛的性能数据库。
在某些实施方案中,注射铸造方法可以被修改以将陶瓷颗粒物(例如粉碎的轻水反应堆废核燃料)并入金属燃料细棒中。可将用于燃料细棒的原料装入坩埚中并且可在感应炉中熔融。可选择所述原料以产生所需的金属铀(U)、超铀元素和/或锆(Zr)的组合物。
在某些实施方案中,在金属熔体已变得熔融之后,可以将粉碎的陶瓷颗粒的装料添加至所述熔体。可以调谐感应炉的频率,以形成熔融的金属的滚动流动状态。所述滚动流动状态可以用于将所述陶瓷颗粒均匀地混合到金属相中。
在一段时间之后,滚动可能会停止。可以选择用于滚动的时间段来实现混合物的均匀或接近均匀的混合。可进行注射模塑工艺以迫使熔体进入模具中。
在模具内冷冻、优选快速冷冻混合物可以防止低密度陶瓷与金属相再分离。可选择冷冻的时间和温度以防止再分离。
所得的燃料芯块可以是金属陶瓷组合物的固体燃料细棒,其中可裂变轴承金属基质超过约50体积%并且大部分的可裂变物质保留在金属相中。可选择金属燃料与陶瓷的比率,使得在照射时,所述燃料细棒产生连续的、裂变气体浸渍的金属燃料的基质以确保足够的导热率。在某些实施方案中,分散的陶瓷颗粒可包括具有高于约90%的氧化铀与约6%的裂变产物和约1.5%的超铀元素的组合物。如通常当使用轻水反应堆废核燃料时所需的,这些注射铸造操作可以远程进行。
粉末燃料冶金
粉末冶金可以便于金属陶瓷燃料组合物的制造,其中可以将陶瓷颗粒嵌入金属相基质中。这种能力,就如同底部浇铸和注射铸造金属陶瓷燃料细棒制造的制造方法,可允许粉碎的陶瓷燃料(例如轻水反应堆废核燃料)的选项并将粉碎的陶瓷燃料引入支持基于快速反应堆的发电厂的封闭的燃料循环中。这可提供管理困难的轻水反应堆核废料处置问题的有效方法。通过约束陶瓷相的体积分数,可以保持先前燃料性能数据库的适用性。
燃料特性
在所有三个实施方案中,可能存在必须强制的陶瓷体积分数的界限以保持与金属燃料相关的先前数据库的适用性并保持导热率的可接受范围以及达到可裂变密度的必要水平。对于浓缩U/Zr的初始燃料负载而言,所述陶瓷体积分数可以使得连续的金属基质存在。对于U/Pu/Zr的再循环燃料负载而言,所述陶瓷重量分数可为约10重量%(刚足以恢复燃烧掉的重金属重量分数)。
已经建立的用于粉碎轻水反应堆废核燃料、捕获释放的气态裂变产物和定制粒度分布的方法是已知的。粒度可平均为约1至约100微米。陶瓷颗粒在如此铸造的细棒中的均匀分布可以是本公开内容的相关考虑因素。
至于润湿,通常在通过目前的注射铸造制造工艺制造的燃料细棒中发现因杂质导致的少量的陶瓷夹杂物。润湿可通过这些工艺来实现。
至于颗粒结块,即使在制造过程中发生陶瓷颗粒的结块,一定程度的结块也可能不会显著降低堆芯(incore)性能,因为不可能通过颗粒结块在燃料中形成高可裂变密度“热点”,因为在轻水反应堆废核燃料颗粒中的浓缩程度可以是约1至2%,而在金属基质中其可以大于约10%。结块可能会形成局部“冷点”,这不会出现任何性能问题。即使制造工艺产生不够完美的均匀化,也不可能出现热点问题。
此外,堆芯肿胀可能不会导致颗粒结块。在第一个约1%至1.5%的堆芯燃耗期间,可形成裂变气体的微泡并导致韧性金属相基质流入约25%的自由体积。所述自由体积存在于环形细棒的中心孔中、燃料芯块和用于注射铸造细棒的包层之间的间隙中以及粉末冶金生产的燃料中的开口孔隙中。金属基质的流动可以随其携带嵌入的陶瓷颗粒,使得颗粒之间的平均分隔距离增加。不会引起结块。
所述陶瓷颗粒可以主要是U238。U238可以是处于上升的功率瞬态的负多普勒反应性反馈的来源。在某些反应堆设计中,低导热率的陶瓷颗粒的热时间常数可以延迟负反应性反馈的迅速性(promptness)。然而,对其他类别的快速反应堆瞬态性能的影响可以因若干原因而忽略不计。首先,多普勒可能不是那些(小的)快速反应堆中的主导反应性反馈。径向热膨胀可能反而占主导地位。其次,在再循环负载中,超过约80%的U238(在初始燃料装料中超过约65%)可能保留在金属陶瓷燃料的金属相基质中,其中热源加热(thermalheating)可以是瞬时的或几乎瞬时的。来自金属相的迅速反馈可主导来自陶瓷相的稍微延迟的反馈。此外,所述陶瓷颗粒可以是非常小的,从约1至约几百微米,并且可以很好地结合至周围的金属相。因此,所述陶瓷颗粒的热时间延迟可以是相当小的。
安全措施与防扩散益处
将粉碎的轻水反应堆废核燃料颗粒引入金属合金燃料细棒中可提供防扩散益处。该益处对于低于20%的浓缩铀且不含超铀元素(其本身是非放射性的)的第一芯负载可能是特别有利的。对于初始芯而言,在辐射后,所得的燃料组合物可以包括富含Pu239的钚,但缺少具有Pu240和241的实质性污染物,而与此相反,再循环芯可以是对于武器用途而言没有吸引力的钚同位素的混合物。所以将粉碎的LWR SNF添加至初始负载可以提供若干个防扩散益处。
首先,来自粉碎的轻水反应堆废核燃料的氧化物颗粒包含裂变产物,所述裂变产物提供辐射场以自保护初始芯装料,其最初是非放射性金属合金浓缩铀U/Zr,在装运到反应堆期间不受辐射场保护的新鲜燃料。
重要的是,所述陶瓷颗粒可以含有Pu240和241同位素。所述颗粒尺寸可以是足够小的并且燃料温度可以是足够高的,使得在堆芯辐射轰击下,同位素的显著迁移可贯穿所有的颗粒/基质界面发生。因此,Pu240和241原子可进入金属基质并且可以与所述金属基质中的新鲜增殖的Pu239紧密混合,反之亦然。(任何迁移至所述金属相的氧可以被Zr“吸杂(getter)”)。因此,仅在反应堆中短暂暴露之后,所述新增殖的Pu239可能已被Pu240和241污染,使得它对于核武器中的用途而言不具吸引力。
在初始芯负载中在Pu240和241的情况下的“变性”可以是显著的,因为在该初始负载中陶瓷体积分数可以接近约50%,其中重金属重量分数约为35%。在轻水反应堆废核燃料中,钚重量分数约为1.5%且钚重量分数和Pu239的(240+241)/(239+240+241)同位素污染物可约为40%。而在多次再循环之后获得的相应的快速反应堆渐近组成比率可约为25%。
在达到约8原子%燃耗的第一个20年辐射运动之后,初始燃料装料可能已经在可裂变组合物为全U235到全Pu的路径上进展了约10%。Pu239组合物可从富含239朝显示出Pu239的渐近(240+241)污染物演变。
在第一个20年辐射运动之后,金属相中的初始燃料装料可能为燃料中的Pu239原子的增殖装料贡献例如(燃料的100-35wt%)×(燃料中的13wt%可裂变)×(可裂变中的1/10Pu)=0.00845。
对于燃料中的每个Pu原子而言,陶瓷可能为(240+241)原子的装料贡献例如(燃料的35wt%)×(燃料中的1.5%Pu)×(Pu中40%的240+241)=0.0021。
因此,如果发生充分混合,则在排放时金属陶瓷燃料的(240+241)/(239+240+241)比率可以是约例如(0.0021)/(0.00845+0.0021)=0.199。这可以被认为是已经如渐近数(asymptotic number)那样变性。同位素混合可以根据燃料细棒中的温度和温度梯度、强烈的辐射场以及暴露于这些条件的持续时间发生。贯穿陶瓷/金属界面的同位素迁移可以形成与增殖的Pu239的均匀混合。这样,显著的内在变性甚至可用于第一燃料负载。对于再循环燃料负载而言,该效果可能会减小,因为陶瓷重量分数可被减少至约8至10wt%,但那时Pu可能已经变性并且再循环燃料可能负载有在再循环过程中保留的放射性裂变产物。
尽管前面的描述涉及本发明的优选实施方案,但是应注意,其他的变体和修改对于本领域术人员将是明确的,并且其可以在不脱离本发明的精神或范围的情况下进行。此外,即使上文没有明确说明,结合本发明的一个实施方案所描述的特征也可以与其他实施方案结合使用。
Claims (26)
1.制造金属陶瓷金属燃料基质核燃料细棒的方法,所述方法包括:
使一种或多种金属核燃料原料熔融以形成熔融的金属熔体;
将陶瓷颗粒添加到所述熔融的金属熔体中以形成混合物;
剧烈搅拌所述混合物;
将所述混合物底部浇铸到模具中;和
使所述混合物在所述模具中固化以形成金属陶瓷金属燃料基质核燃料细棒。
2.权利要求1的方法,其中所述搅拌包括使所述混合物滚动以获得基本均匀的颗粒分布。
3.权利要求1的方法,其中所述陶瓷颗粒包括粉碎的轻水反应堆废核燃料、氧化钍、氧化镅及其组合。
4.权利要求1的方法,其中所述陶瓷颗粒包括氧化钍、氧化镅及其组合。
5.权利要求1的方法,其中所述模具包括圆柱形孔,其中棒在所述圆柱形孔的大致中心处。
6.权利要求5的方法,其中所得到的金属陶瓷金属燃料基质核燃料细棒是环形金属陶瓷金属燃料基质核燃料细棒。
7.权利要求1的方法,其中所述模具包括一个或多个紧贴地设置在所述模具内的孔中的锆管。
8.权利要求7的方法,其中所得到的燃料细棒是锆护套的金属陶瓷金属燃料基质核燃料细棒。
9.权利要求1的方法,其中所述金属陶瓷金属燃料基质内的陶瓷颗粒分布在通过快速冷冻使所述混合物固化之后保持均匀。
10.权利要求1的方法,其中所述一种或多种金属核燃料原料包括铀。
11.权利要求1的方法,其中所述一种或多种金属核燃料原料包括(i)铀,和(ii)锆或钼。
12.权利要求1的方法,其中所述一种或多种金属核燃料原料包括铀和超铀元素的混合物。
13.制造金属陶瓷金属燃料基质核燃料细棒的方法,所述方法包括:
使一种或多种金属核燃料原料熔融以形成熔融的金属熔体;
将陶瓷颗粒添加到所述熔融的金属熔体中以形成混合物;
剧烈搅拌所述混合物;
将所述混合物注射铸造到模具中;和
使所述混合物在所述模具中固化以形成金属陶瓷金属燃料基质核燃料细棒。
14.权利要求13的方法,其中所述搅拌包括使所述熔融的金属熔体滚动以实现将所述陶瓷颗粒均匀混合到所述熔融的金属熔体中。
15.权利要求13的方法,其中粉碎的陶瓷颗粒包括轻水反应堆废核燃料。
16.权利要求13的方法,其中粉碎的陶瓷颗粒包括氧化钍。
17.权利要求13的方法,其中通过冷冻使所述使混合物固化。
18.权利要求13的方法,其中所述一种或多种金属核燃料原料包括铀。
19.权利要求13的方法,其中所述一种或多种金属核燃料原料包括铀和锆。
20.权利要求13的方法,其中所述一种或多种金属核燃料原料包括铀和超铀元素的混合物。
21.制造金属核燃料细棒的方法,所述方法包括:
添加颗粒状金属核燃料原料;
将陶瓷颗粒添加至所述颗粒状金属核燃料原料;
将粉碎的陶瓷颗粒共混至所述颗粒状金属核燃料原料以形成均匀混合物;和
将所述混合物压入钢包层中。
22.权利要求21的方法,其中所述陶瓷颗粒包括粉碎的轻水反应堆废核燃料。
23.权利要求21的方法,其中所述粉碎的陶瓷颗粒包括氧化钍、氧化镅及其组合。
24.权利要求21的方法,其中所述一种或多种金属核燃料原料包括铀的颗粒。
25.权利要求21的方法,其中所述一种或多种金属核燃料原料包括铀和锆的颗粒。
26.权利要求21的方法,其中所述一种或多种金属核燃料原料包括铀和超铀元素颗粒的混合物。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201461979260P | 2014-04-14 | 2014-04-14 | |
US61/979260 | 2014-04-14 | ||
PCT/US2015/024714 WO2015160571A1 (en) | 2014-04-14 | 2015-04-07 | Ceramic nuclear fuel dispersed in a metallic alloy matrix |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106663475A true CN106663475A (zh) | 2017-05-10 |
Family
ID=54265635
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201580019557.2A Pending CN106663475A (zh) | 2014-04-14 | 2015-04-07 | 分散在金属合金基质中的陶瓷核燃料 |
Country Status (8)
Country | Link |
---|---|
US (1) | US10424415B2 (zh) |
JP (6) | JP6850128B2 (zh) |
KR (1) | KR102374678B1 (zh) |
CN (1) | CN106663475A (zh) |
CA (3) | CA3194114A1 (zh) |
GB (3) | GB2538687B (zh) |
RU (1) | RU2684645C2 (zh) |
WO (1) | WO2015160571A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107123455A (zh) * | 2017-05-27 | 2017-09-01 | 中国工程物理研究院材料研究所 | 一种多孔燃料核心惰性基弥散燃料芯块的制备方法 |
CN109801717A (zh) * | 2019-03-20 | 2019-05-24 | 中国人民解放军国防科技大学 | 一种减小pci效应的液态铅铋冷却小型反应堆用燃料棒 |
CN109994235A (zh) * | 2017-12-29 | 2019-07-09 | 中国核动力研究设计院 | 一种uo2燃料芯块的制备方法 |
CN110828001A (zh) * | 2019-10-23 | 2020-02-21 | 中国工程物理研究院材料研究所 | 一种提高铀装量的热导率改进型二氧化铀基燃料芯块及其制备方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6001457B2 (ja) | 2010-02-22 | 2016-10-05 | アドバンスト・リアクター・コンセプツ・エルエルシー | 長い燃料交換間隔を有する小型の高速中性子スペクトル原子力発電所の高速中性子スペクトル原子炉システム、原子力を提供する方法、及び、炉心の締め付けのためのシステム |
GB2538687B (en) | 2014-04-14 | 2020-12-30 | Advanced Reactor Concepts LLC | Ceramic nuclear fuel dispersed in a metallic alloy matrix |
EP3401924B1 (en) | 2017-05-12 | 2019-12-11 | Westinghouse Electric Sweden AB | A nuclear fuel pellet, a fuel rod, and a fuel assembly |
RU2755261C1 (ru) * | 2021-03-10 | 2021-09-14 | Акционерное общество "Обнинское научно-производственное предприятие "Технология" им. А.Г.Ромашина" | Атомная электростанция с керамическим реактором на быстрых нейтронах |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4971753A (en) * | 1989-06-23 | 1990-11-20 | General Electric Company | Nuclear fuel element, and method of forming same |
US20020181642A1 (en) * | 2001-06-04 | 2002-12-05 | Swaminathan Vaidyanathan | Zirconium-alloy clad fuel rods containing metal oxide for mitigation of secondary hydriding |
US20100303193A1 (en) * | 2009-06-01 | 2010-12-02 | Advanced Reactor Concepts LLC | Particulate metal fuels used in power generation, recycling systems, and small modular reactors |
US20110194666A1 (en) * | 2010-01-13 | 2011-08-11 | Advanced Reactor Concepts LLC | Sheathed, annular metal nuclear fuel |
CN103596646A (zh) * | 2011-04-08 | 2014-02-19 | 希尔莱特有限责任公司 | 核燃料及其制备方法 |
Family Cites Families (216)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1565771A (en) | 1925-12-15 | Strong | ||
US1624704A (en) | 1926-03-15 | 1927-04-12 | Lamore Tile Machine Company | Pneumatic core for block machines |
US2894889A (en) | 1949-07-19 | 1959-07-14 | Jr Samuel H Paine | Jacketed uranium slugs and method |
US2939803A (en) * | 1956-01-06 | 1960-06-07 | Gordon N Steele | Method of impregnating a porous material |
GB831679A (en) * | 1957-05-21 | 1960-03-30 | Norton Grinding Wheel Co Ltd | Ceramic nuclear fuel element |
US2952056A (en) | 1957-10-10 | 1960-09-13 | Arthur B Shuck | Apparatus and method for injection casting |
US3197375A (en) | 1958-10-28 | 1965-07-27 | Dow Chemical Co | Nuclear power reactor |
US3098024A (en) | 1959-01-27 | 1963-07-16 | Engelhard Ind Inc | Composite fuel elements for nuclear reactors |
US2983663A (en) | 1959-02-10 | 1961-05-09 | Charles H Bassett | Fuel element for nuclear reactors |
US2992179A (en) | 1959-03-17 | 1961-07-11 | Charles H Bassett | Fuel element for nuclear reactors |
US3028330A (en) * | 1959-04-07 | 1962-04-03 | Rnb Corp | Nuclear fuel elements having an autogenous matrix and method of making the same |
US2941933A (en) * | 1959-11-30 | 1960-06-21 | William E Roake | Fuel element for nuclear reactor |
NL261178A (zh) | 1960-03-07 | 1900-01-01 | ||
US3177578A (en) * | 1961-03-28 | 1965-04-13 | Martin Marietta Corp | Method of making a fibrous fissionable member |
DE1464128A1 (de) | 1961-06-27 | 1969-03-27 | Westinghouse Electric Corp | Langgestreckte Bauelemente und Verfahren zu ihrer Herstellung |
US3158547A (en) * | 1961-06-30 | 1964-11-24 | Air Reduction | Method of encapsulating a graphite body containing metallic and ceramic particles |
US3178354A (en) | 1961-07-25 | 1965-04-13 | Jackson & Moreland Inc | Steam cooled nuclear reactor system with improved fuel element assembly |
US3180632A (en) | 1961-10-02 | 1965-04-27 | North American Aviation Inc | Coated crucible and crucible and mold coating method |
NL299736A (zh) | 1962-10-26 | |||
NL301862A (zh) * | 1962-12-26 | 1900-01-01 | ||
DE1199748B (de) | 1963-05-15 | 1965-09-02 | Kernforschung Mit Beschraenkte | Verfahren zum Aufarbeiten von bestrahlten Kernbrennstoffen |
US3372213A (en) * | 1963-12-16 | 1968-03-05 | Sumitomo Electric Industries | Method of manufacturing oxide nuclear fuel containing a boride |
US3328133A (en) | 1964-02-10 | 1967-06-27 | Japan Atomic Energy Res Inst | Method for direct recovery of plutonium from irradiated nuclear fuel |
GB1051954A (zh) | 1964-04-08 | |||
NL133131C (zh) | 1964-06-11 | |||
US3413383A (en) * | 1964-10-28 | 1968-11-26 | Hitachi Ltd | Vibratory compaction method for the fabrication of ceramic nuclear fuel elements |
US3215608A (en) | 1965-02-19 | 1965-11-02 | Ralph W Guenther | Nuclear reactor core clamping system |
US4147590A (en) | 1965-09-01 | 1979-04-03 | The United States Of America As Represented By The United States Department Of Energy | Nuclear propulsion apparatus with alternate reactor segments |
GB1198051A (en) | 1966-06-21 | 1970-07-08 | Atomic Energy Authority Uk | Improvements in or relating to Ceramic Nuclear Fuel Materials |
US3501411A (en) * | 1967-06-21 | 1970-03-17 | Grace W R & Co | Process of preparing nuclear fuel |
US3404200A (en) * | 1967-08-08 | 1968-10-01 | Atomic Energy Commission Usa | Method of preparing a cermet nuclear fuel |
US3506235A (en) | 1967-09-12 | 1970-04-14 | Atomic Energy Commission | Fuel casting apparatus with collapsible core |
GB1246275A (en) | 1967-12-20 | 1971-09-15 | Atomic Energy Authority Uk | Improvements in or relating to nuclear reactor fuel elements |
GB1238166A (zh) * | 1968-03-23 | 1971-07-07 | ||
US3505170A (en) | 1968-04-10 | 1970-04-07 | Atomic Energy Commission | Fuel subassembly for a liquid-metal-cooled fast reactor |
US3579390A (en) * | 1968-12-20 | 1971-05-18 | Nasa | Method of making a cermet |
DE1926827A1 (de) | 1969-05-27 | 1970-12-03 | Kernforschungsanlage Juelich | Verfahren zum Aufarbeiten von Brenn- und/oder Brutelementen fuer Kernreaktoren |
BE754855A (fr) | 1969-08-14 | 1971-02-15 | Westinghouse Electric Corp | Element combustible a pression interne |
US3682774A (en) | 1969-09-26 | 1972-08-08 | North American Rockwell | Core clamping system for a nuclear reactor |
US3660075A (en) | 1969-10-16 | 1972-05-02 | Atomic Energy Commission | CRUCIBLE COATING FOR PREPARATION OF U AND P ALLOYS CONTAINING Zr OR Hf |
US3708393A (en) | 1970-12-01 | 1973-01-02 | Atomic Energy Commission | Radial restraint mechanism for reactor core |
US3778348A (en) | 1971-02-12 | 1973-12-11 | Atomic Energy Commission | Nuclear fuel element with axially aligned fuel pellets and fuel microspheres therein |
US3683975A (en) | 1971-02-12 | 1972-08-15 | Atomic Energy Commission | Method of vibratory loading nuclear fuel elements |
US3823067A (en) | 1971-08-02 | 1974-07-09 | United Nuclear Corp | Shaped nuclear fissionable bodies |
JPS549279B2 (zh) | 1972-07-12 | 1979-04-23 | ||
SE383223B (sv) | 1973-02-02 | 1976-03-01 | Atomenergi Ab | Kernbrensleelement for kraftreaktorer. |
CA987135A (en) * | 1973-06-28 | 1976-04-13 | Alan M. Ross | Uranium-base alloys |
US3969186A (en) | 1974-02-11 | 1976-07-13 | General Electric Company | Nuclear fuel element |
US3925151A (en) | 1974-02-11 | 1975-12-09 | Gen Electric | Nuclear fuel element |
US4050638A (en) | 1974-04-24 | 1977-09-27 | Ngk Insulators, Ltd. | Radioactive matter containing waste gas treating installation |
JPS50152097A (zh) | 1974-05-29 | 1975-12-06 | ||
US4000617A (en) | 1975-01-27 | 1977-01-04 | General Atomic Company | Closed cycle gas turbine system |
US4057465A (en) | 1975-08-08 | 1977-11-08 | Westinghouse Electric Corporation | Nuclear reactor auxiliary heat removal system |
JPS5847039B2 (ja) | 1977-04-01 | 1983-10-20 | 石川島播磨重工業株式会社 | 核燃料の処理方法及び核方法に用いる処理装置 |
US4131511A (en) | 1977-02-04 | 1978-12-26 | Combustion Engineering, Inc. | Nuclear fuel element |
JPS53134189A (en) | 1977-04-27 | 1978-11-22 | Toshiba Corp | Nuclear fuel element |
US4473410A (en) | 1977-08-01 | 1984-09-25 | General Electric Company | Nuclear fuel element having a composite coating |
JPS5433991A (en) | 1977-08-19 | 1979-03-13 | Hitachi Ltd | Fast breeder |
US4257846A (en) | 1978-01-19 | 1981-03-24 | Westinghouse Electric Corp. | Bi-brayton power generation with a gas-cooled nuclear reactor |
SU714505A1 (ru) | 1978-01-19 | 1980-02-05 | Государственный Научно-Исследовательский Институт Им. Г.М.Кржижановского | Ядерна энергетическа установка |
US4292127A (en) | 1978-04-14 | 1981-09-29 | United Kingdom Atomic Energy Authority | Nuclear fuel pins |
US4229942A (en) | 1978-06-06 | 1980-10-28 | Kms Fusion, Inc. | Radiolytic dissociative gas power conversion cycles |
USRE31697E (en) | 1978-06-06 | 1984-10-09 | Kms Fusion, Inc. | Radiolytic dissociative gas power conversion cycles |
US4257847A (en) | 1978-10-06 | 1981-03-24 | The United States Of America As Represented By The United States Department Of Energy | Nuclear breeder reactor fuel element with axial tandem stacking and getter |
JPS55101894A (en) | 1979-01-31 | 1980-08-04 | Tokyo Shibaura Electric Co | Fuel assembly |
JPS57184510A (en) | 1981-05-07 | 1982-11-13 | Nippon Kokan Kk <Nkk> | Automatic measuring method of pressing center of extrusion press and its device |
FR2533354A1 (fr) | 1982-09-22 | 1984-03-23 | Commissariat Energie Atomique | Circuit caloporteur secondaire pour un reacteur nucleaire a metal liquide |
JPS5983082A (ja) | 1982-11-04 | 1984-05-14 | 株式会社日立製作所 | 高速増殖炉の炉心構造 |
JPS5987696A (ja) | 1982-11-10 | 1984-05-21 | アドバンスト・マイクロ・デイバイシズ・インコ−ポレ−テツド | センス率の制御装置 |
US4548347A (en) | 1982-11-30 | 1985-10-22 | The United States Of America As Represented By The United States Department Of Energy | Automated fuel pin loading system |
SE436078B (sv) | 1983-03-30 | 1984-11-05 | Asea Atom Ab | Brenslestav for kernreaktor brenslestav for kernreaktor |
JPS59185692A (ja) | 1983-04-06 | 1984-10-22 | Ricoh Co Ltd | ジアゾ系感熱記録材料 |
US4853177A (en) | 1983-05-06 | 1989-08-01 | The Babcock & Wilcox Company | Void plug for annular fuel pellets |
US4526741A (en) | 1983-06-10 | 1985-07-02 | The United States Of America As Represented By The United States Department Of Energy | Fuel assembly for the production of tritium in light water reactors |
US4624828A (en) | 1983-12-29 | 1986-11-25 | Battelle Memorial Institute | Metal-actinide nitride nuclear fuel |
JPS60181694A (ja) | 1984-02-28 | 1985-09-17 | 株式会社日立製作所 | 燃料要素の製造方法およびその装置 |
US4687605A (en) | 1985-02-19 | 1987-08-18 | Westinghouse Electric Corp. | Manufacturing automation system for nuclear fuel rod production |
US4717534A (en) | 1985-02-19 | 1988-01-05 | Westinghouse Electric Corp. | Nuclear fuel cladding containing a burnable absorber |
US4687629A (en) | 1986-01-27 | 1987-08-18 | Westinghouse Electric Corp. | Fuel rod with annular nuclear fuel pellets having same U-235 enrichment and different annulus sizes for graduated enrichment loading |
JPS62207995A (ja) | 1986-03-07 | 1987-09-12 | 株式会社東芝 | 高速増殖炉 |
JPS633292A (ja) | 1986-06-24 | 1988-01-08 | 株式会社東芝 | 高速増殖炉 |
JPS6373191A (ja) | 1986-09-17 | 1988-04-02 | 株式会社東芝 | 高速増殖炉の運転方法 |
SU1764783A1 (ru) | 1986-12-08 | 1992-09-30 | Центральный научно-исследовательский дизельный институт | Способ лить чугунных полых заготовок |
GB8707614D0 (en) | 1987-03-31 | 1987-05-07 | Nat Nuclear Corp Ltd | Reactivity control in nuclear reactors |
US4778648A (en) | 1987-04-24 | 1988-10-18 | Westinghouse Electric Corp. | Zirconium cladded pressurized water reactor nuclear fuel element |
US4759911A (en) | 1987-04-27 | 1988-07-26 | The Babcock & Wilcox Company | Gas cooled nuclear fuel element |
GB2234849B (en) | 1987-07-28 | 1991-05-01 | Nat Nuclear Corp Ltd | Nuclear reactor-based power source |
JPS6473290A (en) | 1987-09-16 | 1989-03-17 | Westinghouse Electric Corp | Liquid metal fast furnace |
USH689H (en) | 1987-11-24 | 1989-10-03 | The United States of America as reprsented by the United States Department of Energy | Fuel pin |
JP2510648B2 (ja) | 1988-01-22 | 1996-06-26 | 株式会社日立製作所 | 燃料要素 |
US4814046A (en) | 1988-07-12 | 1989-03-21 | The United States Of America As Represented By The United States Department Of Energy | Process to separate transuranic elements from nuclear waste |
JPH02236197A (ja) * | 1988-08-25 | 1990-09-19 | Kobe Steel Ltd | Mox燃料ペレットおよびその充填方法 |
JPH02184792A (ja) | 1989-01-11 | 1990-07-19 | Hitachi Ltd | 原子炉の炉心 |
US5044911A (en) | 1989-04-06 | 1991-09-03 | United States Department Of Energy | Apparatus for injection casting metallic nuclear energy fuel rods |
US4997596A (en) | 1989-09-18 | 1991-03-05 | General Electric Company | Fissionable nuclear fuel composition |
DE3938345A1 (de) | 1989-11-17 | 1991-05-23 | Interatom | Fluessigmetallgekuehlter kernreaktor |
US5112534A (en) | 1990-03-05 | 1992-05-12 | The United States Of America As Represented By The United States Department Of Energy | Yttrium and rare earth stabilized fast reactor metal fuel |
US6113982A (en) | 1990-06-25 | 2000-09-05 | Lanxide Technology Company, Lp | Composite bodies and methods for making same |
FR2665290B1 (fr) | 1990-07-24 | 1994-06-10 | Toshiba Kk | Reacteur rapide. |
DE69119156T2 (de) * | 1990-08-03 | 1997-01-09 | Toshiba Kawasaki Kk | Die Transmutation transuranischer Elemente ermöglichender Reaktorkern, die Transmutation transuranischer Elemente ermöglichender Brennstab und die Transmutation transuranischer Elemente ermöglichendes Brennstabbündel |
DE4032521A1 (de) | 1990-10-11 | 1992-04-16 | Mannesmann Ag | Stranggiesskokille |
JP2500390B2 (ja) | 1990-12-14 | 1996-05-29 | 動力炉・核燃料開発事業団 | 深海調査船用原子炉 |
JPH04270992A (ja) | 1991-02-27 | 1992-09-28 | Toshiba Corp | 免震高速増殖炉 |
JP3031644B2 (ja) | 1991-07-31 | 2000-04-10 | 株式会社日立製作所 | 燃料集合体及び炉心 |
JP2703428B2 (ja) | 1991-08-29 | 1998-01-26 | 株式会社東芝 | 小型高速炉 |
JPH0713662B2 (ja) | 1992-01-06 | 1995-02-15 | 財団法人電力中央研究所 | 小型液体金属冷却高速炉 |
US5219519A (en) | 1992-02-21 | 1993-06-15 | General Electric Company | Increased fuel column height for boiling water reactor fuel rods |
US5317611A (en) | 1992-05-05 | 1994-05-31 | Westinghouse Electric Corp. | Stackable truncated conical shell fuel element and an assembly thereof for a nuclear thermal engine |
US5420897A (en) * | 1992-07-30 | 1995-05-30 | Kabushiki Kaisha Toshiba | Fast reactor having reflector control system |
US5377246A (en) | 1992-10-28 | 1994-12-27 | General Electric Company | Elliptical metal fuel/cladding barrier and related method for improving heat transfer |
JPH06194477A (ja) | 1992-12-24 | 1994-07-15 | Hitachi Ltd | 核燃料棒 |
US5519748A (en) | 1993-04-23 | 1996-05-21 | General Electric Company | Zircaloy tubing having high resistance to crack propagation |
US5437747A (en) | 1993-04-23 | 1995-08-01 | General Electric Company | Method of fabricating zircalloy tubing having high resistance to crack propagation |
JPH06324169A (ja) | 1993-05-14 | 1994-11-25 | Central Res Inst Of Electric Power Ind | 高速増殖炉用金属燃料被覆管 |
US5341407A (en) | 1993-07-14 | 1994-08-23 | General Electric Company | Inner liners for fuel cladding having zirconium barriers layers |
JP2668646B2 (ja) | 1993-11-17 | 1997-10-27 | 動力炉・核燃料開発事業団 | 高速炉炉心 |
US5419886A (en) | 1994-03-08 | 1995-05-30 | Rockwell International Corporation | Method for generation of finely divided reactive plutonium oxide powder |
JPH07294676A (ja) | 1994-04-27 | 1995-11-10 | Toshiba Corp | 燃料集合体および原子炉の炉心 |
US5742653A (en) | 1994-05-19 | 1998-04-21 | General Electric Company | Vertical and lateral restraint stabilizer for core shroud of boiling water reactor |
US5608768A (en) | 1995-01-17 | 1997-03-04 | General Electric Company | Threaded fuel rod end plugs and related method |
US5502754A (en) | 1995-02-02 | 1996-03-26 | General Electric Company | Lateral restraint for core plate of boiling water reactor |
JP3735392B2 (ja) * | 1995-02-24 | 2006-01-18 | 株式会社東芝 | 使用済燃料の再処理方法 |
JPH0933687A (ja) | 1995-07-25 | 1997-02-07 | Hitachi Ltd | 使用済原子燃料の再処理方法 |
JPH0943391A (ja) | 1995-07-27 | 1997-02-14 | Toshiba Corp | 核燃料リサイクルシステム |
JPH0943389A (ja) | 1995-07-27 | 1997-02-14 | Toshiba Corp | アクチニドリサイクルシステム |
US5828715A (en) | 1995-08-22 | 1998-10-27 | Hitachi, Ltd. | Fuel rods, its manufacturing method and fuel assembly |
JPH09119994A (ja) | 1995-08-22 | 1997-05-06 | Hitachi Ltd | 燃料棒及びその製造方法並びに燃料集合体 |
FR2744557B1 (fr) * | 1996-02-07 | 1998-02-27 | Commissariat Energie Atomique | Materiau combustible nucleaire composite et procede de fabrication du materiau |
JPH09251088A (ja) | 1996-03-14 | 1997-09-22 | Toshiba Corp | 核燃料要素 |
US6056703A (en) | 1996-04-03 | 2000-05-02 | Rush Presbyterian-St Luke's Medical Center | Method and apparatus for characterizing gastrointestinal sounds |
US5711826A (en) | 1996-04-12 | 1998-01-27 | Crs Holdings, Inc. | Functionally gradient cladding for nuclear fuel rods |
US5822388A (en) | 1996-11-15 | 1998-10-13 | Combustion Engineering Inc. | MOX fuel arrangement for nuclear core |
JPH10170677A (ja) | 1996-12-06 | 1998-06-26 | Kawasaki Heavy Ind Ltd | 高速炉燃料集合体のグリッドスペーサの構造 |
JPH10319169A (ja) | 1997-05-21 | 1998-12-04 | Japan Atom Energy Res Inst | ヘリウム冷却高速増殖炉 |
RU2124767C1 (ru) | 1997-08-26 | 1999-01-10 | Государственный научный центр РФ Всероссийский научно-исследовательский институт неорганических материалов им.акад. А.А.Бочвара | Твэл ядерного реактора |
US6091791A (en) | 1997-08-29 | 2000-07-18 | General Electric Company | Shroud attachment for a boiling water reactor |
JPH11326571A (ja) | 1998-05-14 | 1999-11-26 | Central Res Inst Of Electric Power Ind | 原子炉用金属燃料要素 |
US6297419B1 (en) * | 1998-05-29 | 2001-10-02 | British Nuclear Fuels Plc | Method of waste treatment |
US6230480B1 (en) | 1998-08-31 | 2001-05-15 | Rollins, Iii William Scott | High power density combined cycle power plant |
KR100293482B1 (ko) * | 1998-09-08 | 2001-07-12 | 이종훈 | 핵연료소결체의제조방법 |
US6233298B1 (en) | 1999-01-29 | 2001-05-15 | Adna Corporation | Apparatus for transmutation of nuclear reactor waste |
US6243433B1 (en) | 1999-05-14 | 2001-06-05 | General Electic Co. | Cladding for use in nuclear reactors having improved resistance to stress corrosion cracking and corrosion |
US6298108B1 (en) | 1999-07-21 | 2001-10-02 | Yousef M. Farawila | Nuclear fuel rod with upward-shifted pellet stack and a device to realize same |
AU7845900A (en) | 1999-09-29 | 2001-04-30 | Siemens Corporate Research, Inc. | Multi-modal cardiac diagnostic decision support system and method |
JP2001181060A (ja) * | 1999-12-27 | 2001-07-03 | Nuclear Fuel Ind Ltd | 粒子分散型セラミックスの製造方法 |
US7139352B2 (en) * | 1999-12-28 | 2006-11-21 | Kabushiki Kaisha Toshiba | Reactivity control rod for core |
US6343107B1 (en) | 2000-02-01 | 2002-01-29 | General Electric Company | Shroud repair apparatus |
FR2805075B1 (fr) | 2000-02-15 | 2002-05-10 | Franco Belge Combustibles | Procede de controle d'une operation de fermeture etanche par soudage de l'extremite d'un canal de remplissage traversant le bouchon superieur d'un crayon de combustible nucleaire |
EP1315556B1 (en) | 2000-09-04 | 2009-12-02 | Pebble Bed Modular Reactor (Proprietary) Limited | Nuclear reactor |
JP2002131459A (ja) | 2000-10-25 | 2002-05-09 | Central Res Inst Of Electric Power Ind | 原子炉用金属燃料要素 |
JP2002181976A (ja) | 2000-12-14 | 2002-06-26 | Central Res Inst Of Electric Power Ind | 原子炉及びこれを備える原子力プラント |
US6888713B2 (en) | 2000-12-21 | 2005-05-03 | Douglas Wayne Stamps | Device and method to mitigate hydrogen explosions in vacuum furnaces |
JP4312969B2 (ja) * | 2001-03-02 | 2009-08-12 | 東京電力株式会社 | 使用済原子燃料の再処理方法 |
JP3530939B2 (ja) | 2001-08-09 | 2004-05-24 | 東京工業大学長 | 原子炉プラント |
US6840913B2 (en) | 2001-03-09 | 2005-01-11 | Biomedical Acoustic Research Corp. | Acoustic detection of gastric motility dysfunction |
US20050013402A1 (en) | 2001-10-11 | 2005-01-20 | Kriel Willem Adriaan Odendaal | Method of operating a nuclear power plant |
JP2004101199A (ja) | 2002-09-04 | 2004-04-02 | Japan Nuclear Cycle Development Inst States Of Projects | 振動充填型原子炉燃料棒 |
RU2244347C2 (ru) | 2002-10-24 | 2005-01-10 | Открытое акционерное общество "Машиностроительный завод" | Стержневой тепловыделяющий элемент водоводяного энергетического реактора |
US6909765B2 (en) | 2003-02-03 | 2005-06-21 | Westinghouse Electric Company Llc | Method of uprating an existing nuclear power plant |
US6768781B1 (en) | 2003-03-31 | 2004-07-27 | The Boeing Company | Methods and apparatuses for removing thermal energy from a nuclear reactor |
US7333584B2 (en) | 2004-01-14 | 2008-02-19 | Hitachi - Ge Nuclear Energy, Ltd. | Nuclear power plant and operation method thereof |
DE112005000402T5 (de) | 2004-02-18 | 2008-06-12 | Ebara Corp. | Verfahren und Vorrichtung zur Wasserstoffproduktion |
JP2005232522A (ja) | 2004-02-18 | 2005-09-02 | Ebara Corp | 原子力発電プラントにおける水素製造システム |
JP4247410B2 (ja) | 2004-07-16 | 2009-04-02 | 独立行政法人 日本原子力研究開発機構 | 使用済み燃料の再利用方法及び高速炉の炉心構造 |
US7521007B1 (en) | 2004-10-04 | 2009-04-21 | The United States Of America As Represented By The United States Department Of Energy | Methods and apparatuses for the development of microstructured nuclear fuels |
US7614233B2 (en) | 2005-01-28 | 2009-11-10 | Hitachi-Ge Nuclear Energy, Ltd. | Operation method of nuclear power plant |
JP2006226905A (ja) | 2005-02-18 | 2006-08-31 | Japan Nuclear Cycle Development Inst States Of Projects | 金属燃料高速炉炉心 |
US20080144762A1 (en) * | 2005-03-04 | 2008-06-19 | Holden Charles S | Non Proliferating Thorium Nuclear Fuel Inert Metal Matrix Alloys for Fast Spectrum and Thermal Spectrum Thorium Converter Reactors |
JP2006284429A (ja) * | 2005-04-01 | 2006-10-19 | Nuclear Fuel Ind Ltd | 金属燃料製造用モールドホルダー及びモールドホルダー用撹拌治具 |
JP2006328260A (ja) | 2005-05-27 | 2006-12-07 | Japan Electronic Materials Corp | 熱交換媒体 |
US20070064861A1 (en) * | 2005-08-22 | 2007-03-22 | Battelle Energy Alliance, Llc | High-density, solid solution nuclear fuel and fuel block utilizing same |
US7961835B2 (en) | 2005-08-26 | 2011-06-14 | Keller Michael F | Hybrid integrated energy production process |
FR2895137B1 (fr) * | 2005-12-19 | 2008-02-15 | Commissariat Energie Atomique | Procede de fabrication d'un materiau dense pour combustible nucleaire et produit susceptible d'etre obtenu par ce procede. |
JP4724848B2 (ja) | 2006-04-21 | 2011-07-13 | 独立行政法人 日本原子力研究開発機構 | 核熱利用コンバインドブレイトンサイクル発電システム装置 |
JP5062806B2 (ja) | 2006-04-27 | 2012-10-31 | 東京エレクトロン株式会社 | 群管理システム、プロセス情報管理装置、制御装置、およびプログラム |
FR2901627B1 (fr) * | 2006-05-24 | 2009-05-01 | Commissariat Energie Atomique | Procede de retraitement d'un combustible nucleaire use et de preparation d'un oxyde mixte d'uranium et de plutonium |
KR100804406B1 (ko) | 2006-07-15 | 2008-02-15 | 한국원자력연구원 | 이중 냉각 핵연료봉의 상, 하부 봉단마개 |
EP1909294A1 (en) * | 2006-10-03 | 2008-04-09 | The European Atomic Energy Community (EURATOM), represented by the European Commission | High burn-up nuclear fuel pellets |
JP4936906B2 (ja) | 2007-01-11 | 2012-05-23 | 株式会社東芝 | 原子力システム |
US20080240334A1 (en) * | 2007-03-30 | 2008-10-02 | Battelle Memorial Institute | Fuel elements for nuclear reactor system |
US20090022259A1 (en) * | 2007-07-20 | 2009-01-22 | General Electric Company | Fuel rod with wear-inhibiting coating |
JP4825763B2 (ja) | 2007-09-21 | 2011-11-30 | 株式会社東芝 | 反射体制御方式の高速炉 |
EA010962B1 (ru) | 2007-11-28 | 2008-12-30 | Общество С Ограниченной Ответственностью "Ринкоэнерго" | Энергоблок атомной электростанции и способ его эксплуатации |
JP5090946B2 (ja) * | 2008-02-01 | 2012-12-05 | 白川 利久 | Bwrの核燃料棒および核燃料集合体 |
JP5006233B2 (ja) * | 2008-03-18 | 2012-08-22 | 白川 利久 | トリウム系核燃料を用いた増殖可能な核燃料集合体。 |
US8535604B1 (en) * | 2008-04-22 | 2013-09-17 | Dean M. Baker | Multifunctional high strength metal composite materials |
JP4909951B2 (ja) | 2008-07-14 | 2012-04-04 | 株式会社東芝 | 中性子遮蔽体 |
US8333230B2 (en) | 2008-07-17 | 2012-12-18 | Battelle Energy Alliance, Llc | Casting methods |
DE102008055468B4 (de) * | 2008-12-01 | 2010-09-02 | Nukem Technologies Gmbh | Verfahren und Anordnung zur Herstellung von Brennstoffkernen |
JP5014318B2 (ja) | 2008-12-04 | 2012-08-29 | 日本電信電話株式会社 | スペクトル配置方法、制御局装置、送信局装置、受信局装置及び通信システム |
KR101023233B1 (ko) * | 2009-04-06 | 2011-03-21 | 한국수력원자력 주식회사 | 무연삭 환형 핵연료 소결체 제조방법 |
US9567876B2 (en) | 2009-06-05 | 2017-02-14 | Gas Technology Institute | Reactor system and solid fuel composite therefor |
FR2949598B1 (fr) * | 2009-09-02 | 2013-03-29 | Commissariat Energie Atomique | Procede de preparation d'un combustible nucleaire poreux a base d'au moins un actinide mineur |
FR2953637B1 (fr) * | 2009-12-04 | 2012-03-23 | Commissariat Energie Atomique | Crayon de combustible nucleaire et procede de fabrication de pastilles d'un tel crayon |
US20110194667A1 (en) | 2010-02-08 | 2011-08-11 | Battelle Energy Alliance, Llc | Dopants for high burnup in metallic nuclear fuels |
JP6001457B2 (ja) | 2010-02-22 | 2016-10-05 | アドバンスト・リアクター・コンセプツ・エルエルシー | 長い燃料交換間隔を有する小型の高速中性子スペクトル原子力発電所の高速中性子スペクトル原子炉システム、原子力を提供する方法、及び、炉心の締め付けのためのシステム |
US20110317794A1 (en) * | 2010-06-03 | 2011-12-29 | Francesco Venneri | Nuclear fuel assembly and related methods for spent nuclear fuel reprocessing and management |
US9466398B2 (en) * | 2010-09-27 | 2016-10-11 | Purdue Research Foundation | Ceramic-ceramic composites and process therefor, nuclear fuels formed thereby, and nuclear reactor systems and processes operated therewith |
WO2012044237A1 (en) * | 2010-09-27 | 2012-04-05 | Diamorph Ab | Nitride nuclear fuel and method for its production |
US9299464B2 (en) * | 2010-12-02 | 2016-03-29 | Ut-Battelle, Llc | Fully ceramic nuclear fuel and related methods |
US20120207261A1 (en) | 2011-02-08 | 2012-08-16 | Noel James L | Nuclear Power Facility |
WO2012129677A1 (en) * | 2011-03-28 | 2012-10-04 | Torxx Group Inc. | Ceramic encapsulations for nuclear materials and systems and methods of production and use |
US20130010914A1 (en) * | 2011-07-08 | 2013-01-10 | Battelle Energy Alliance, Llc | Composite materials, bodies and nuclear fuels including metal oxide and silicon carbide and methods of forming same |
KR101218774B1 (ko) | 2011-12-23 | 2013-01-09 | 한국원자력연구원 | 고속로용 핵연료봉 |
US10790065B2 (en) * | 2012-08-15 | 2020-09-29 | University Of Florida Research Foundation, Inc. | High density UO2 and high thermal conductivity UO2 composites by spark plasma sintering (SPS) |
EP2888456A2 (en) | 2012-08-22 | 2015-07-01 | Hi Eff Utility Rescue LLC | High efficiency power generation system and system upgrades |
WO2014039641A2 (en) * | 2012-09-05 | 2014-03-13 | Transatomic Power Corporation | Nuclear reactors and related methods and apparatus |
US10280527B2 (en) | 2012-09-13 | 2019-05-07 | Ge-Hitachi Nuclear Energy Americas Llc | Methods of fabricating metallic fuel from surplus plutonium |
KR101462738B1 (ko) * | 2012-12-31 | 2014-11-17 | 한국원자력연구원 | 세라믹 미소셀이 배치된 핵분열생성물 포획 소결체 및 이의 제조방법 |
US10020084B2 (en) | 2013-03-14 | 2018-07-10 | Energysolutions, Llc | System and method for processing spent nuclear fuel |
US10032528B2 (en) * | 2013-11-07 | 2018-07-24 | Ultra Safe Nuclear Corporation | Fully ceramic micro-encapsulated (FCM) fuel for CANDUs and other reactors |
US20150184549A1 (en) | 2013-12-31 | 2015-07-02 | General Electric Company | Methods and systems for enhancing control of power plant generating units |
GB2538687B (en) | 2014-04-14 | 2020-12-30 | Advanced Reactor Concepts LLC | Ceramic nuclear fuel dispersed in a metallic alloy matrix |
CA2975322A1 (en) | 2015-01-28 | 2016-08-04 | Advanced Reactor Concepts LLC | Fabrication of metallic nuclear fuel |
CA3024458A1 (en) | 2016-06-03 | 2018-04-26 | Advanced Reactor Concepts LLC | Upgrading power output of previously-deployed nuclear power plants |
RU2019120653A (ru) | 2016-12-11 | 2021-01-14 | Эдвансед Реактор Консептс Ллк | Энергетическая станция на основе малого модульного реактора с возможностями следования за нагрузкой и комибинированной выработки электроэнергии и тепла и способы использования |
-
2015
- 2015-04-07 GB GB1616776.9A patent/GB2538687B/en active Active
- 2015-04-07 CA CA3194114A patent/CA3194114A1/en active Pending
- 2015-04-07 KR KR1020167031261A patent/KR102374678B1/ko active Active
- 2015-04-07 JP JP2016562943A patent/JP6850128B2/ja active Active
- 2015-04-07 CA CA2944530A patent/CA2944530C/en active Active
- 2015-04-07 CA CA3194118A patent/CA3194118A1/en active Pending
- 2015-04-07 CN CN201580019557.2A patent/CN106663475A/zh active Pending
- 2015-04-07 GB GB2015054.6A patent/GB2586103B/en active Active
- 2015-04-07 WO PCT/US2015/024714 patent/WO2015160571A1/en active Application Filing
- 2015-04-07 US US14/680,732 patent/US10424415B2/en active Active
- 2015-04-07 RU RU2016143823A patent/RU2684645C2/ru active
- 2015-04-07 GB GB2015050.4A patent/GB2586102B/en active Active
-
2020
- 2020-03-05 JP JP2020037388A patent/JP7289808B2/ja active Active
- 2020-12-11 JP JP2020205476A patent/JP7579127B2/ja active Active
-
2022
- 2022-02-10 JP JP2022019605A patent/JP7238179B2/ja active Active
-
2023
- 2023-03-01 JP JP2023030884A patent/JP7506209B2/ja active Active
-
2024
- 2024-06-13 JP JP2024095570A patent/JP2024120916A/ja active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4971753A (en) * | 1989-06-23 | 1990-11-20 | General Electric Company | Nuclear fuel element, and method of forming same |
US20020181642A1 (en) * | 2001-06-04 | 2002-12-05 | Swaminathan Vaidyanathan | Zirconium-alloy clad fuel rods containing metal oxide for mitigation of secondary hydriding |
US20030133531A1 (en) * | 2001-06-04 | 2003-07-17 | General Electric Company | Zirconium-alloy clad fuel rods containing metal oxide for mitigation of secondary hydriding |
US20100303193A1 (en) * | 2009-06-01 | 2010-12-02 | Advanced Reactor Concepts LLC | Particulate metal fuels used in power generation, recycling systems, and small modular reactors |
US20110194666A1 (en) * | 2010-01-13 | 2011-08-11 | Advanced Reactor Concepts LLC | Sheathed, annular metal nuclear fuel |
CN103596646A (zh) * | 2011-04-08 | 2014-02-19 | 希尔莱特有限责任公司 | 核燃料及其制备方法 |
Non-Patent Citations (2)
Title |
---|
曲志敏等: "核燃料循环系统的放射性废物管理", 《中国核能行业协会2008年中国核能可持续发展论坛》 * |
王忠乙: "E高温核电站", 《百度文库》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107123455A (zh) * | 2017-05-27 | 2017-09-01 | 中国工程物理研究院材料研究所 | 一种多孔燃料核心惰性基弥散燃料芯块的制备方法 |
CN107123455B (zh) * | 2017-05-27 | 2019-08-09 | 中国工程物理研究院材料研究所 | 一种多孔燃料核心惰性基弥散燃料芯块的制备方法 |
CN109994235A (zh) * | 2017-12-29 | 2019-07-09 | 中国核动力研究设计院 | 一种uo2燃料芯块的制备方法 |
CN109994235B (zh) * | 2017-12-29 | 2022-03-22 | 中国核动力研究设计院 | 一种uo2燃料芯块的制备方法 |
CN109801717A (zh) * | 2019-03-20 | 2019-05-24 | 中国人民解放军国防科技大学 | 一种减小pci效应的液态铅铋冷却小型反应堆用燃料棒 |
CN109801717B (zh) * | 2019-03-20 | 2023-09-15 | 中国人民解放军国防科技大学 | 一种减小pci效应的液态铅铋冷却小型反应堆用燃料棒 |
CN110828001A (zh) * | 2019-10-23 | 2020-02-21 | 中国工程物理研究院材料研究所 | 一种提高铀装量的热导率改进型二氧化铀基燃料芯块及其制备方法 |
CN110828001B (zh) * | 2019-10-23 | 2021-09-28 | 中国工程物理研究院材料研究所 | 一种提高铀装量的热导率改进型二氧化铀基燃料芯块及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
RU2016143823A (ru) | 2018-05-14 |
JP2020106543A (ja) | 2020-07-09 |
JP2017515105A (ja) | 2017-06-08 |
CA2944530C (en) | 2023-06-20 |
JP7579127B2 (ja) | 2024-11-07 |
JP2022062224A (ja) | 2022-04-19 |
GB2538687B (en) | 2020-12-30 |
CA2944530A1 (en) | 2015-10-22 |
RU2684645C2 (ru) | 2019-04-11 |
CA3194118A1 (en) | 2015-10-22 |
GB2586103B (en) | 2021-05-05 |
GB201616776D0 (en) | 2016-11-16 |
KR102374678B1 (ko) | 2022-03-14 |
JP7289808B2 (ja) | 2023-06-12 |
JP7506209B2 (ja) | 2024-06-25 |
US20150294747A1 (en) | 2015-10-15 |
JP2023065566A (ja) | 2023-05-12 |
GB2538687A (en) | 2016-11-23 |
GB202015050D0 (en) | 2020-11-04 |
GB202015054D0 (en) | 2020-11-04 |
KR20160145658A (ko) | 2016-12-20 |
GB2586102A (en) | 2021-02-03 |
WO2015160571A1 (en) | 2015-10-22 |
JP7238179B2 (ja) | 2023-03-13 |
RU2016143823A3 (zh) | 2018-09-28 |
GB2586103A (en) | 2021-02-03 |
US10424415B2 (en) | 2019-09-24 |
CA3194114A1 (en) | 2015-10-22 |
GB2586102B (en) | 2021-05-05 |
JP2021063814A (ja) | 2021-04-22 |
JP2024120916A (ja) | 2024-09-05 |
JP6850128B2 (ja) | 2021-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7579127B2 (ja) | 合金のマトリックス中に分散したセラミック核燃料 | |
CN104145309B (zh) | 核反应堆及相关方法和装置 | |
US8571167B2 (en) | Particulate metal fuels used in power generation, recycling systems, and small modular reactors | |
KR100963472B1 (ko) | 금속 핵연료 입자가 봉입된 금속 시스를 포함하는금속핵연료봉 및 이의 제조방법 | |
Savchenko et al. | Fuel of novel generation for PWR and as alternative to MOX fuel | |
Savchenko et al. | Peculiarities of fuel cycle with advanced composite fuel for thermal reactors | |
Kim et al. | Fuel cycle analysis of once-through nuclear systems. | |
Haas et al. | Properties of cermet fuels for minor actinides transmutation in ADS | |
Kamath | Recycle fuel fabrication for closed fuel cycle in India | |
Osaka et al. | A novel concept for americium-containing target for use in fast reactors | |
Loewen et al. | PRISM reference fuel design | |
Hayes et al. | Development of metallic fuels for actinide transmutation | |
Sun et al. | Development Background and Research Progress of UN-U3Si2 Composite Fuel | |
WO2025006190A1 (en) | Nuclear reactor fuel and associated systems and methods | |
Savchenko et al. | Fuel cycles with advanced dispersion fuel elements of high uranium density | |
Gutierrez et al. | Preliminary fabrication studies of alternative LMFBR carbide fuels | |
Khustochkin | Theory of a film-type stream-forming device.[Granulation procedure] | |
Burke | Planetary ball milling as a method of comminuting presintered thoria--urania granules (LWBR Development Program) | |
Price et al. | Prospects of the high-temperature reactor | |
Lynch | Ceramic Research in the Nuclear Energy Program | |
Yang et al. | Performance comparison of liquid metal and gas cooled ATW system point designs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20170510 |
|
WD01 | Invention patent application deemed withdrawn after publication |