[go: up one dir, main page]

CN106661586A - 提高微生物脂类含量的方法及相应改良微生物 - Google Patents

提高微生物脂类含量的方法及相应改良微生物 Download PDF

Info

Publication number
CN106661586A
CN106661586A CN201580028042.9A CN201580028042A CN106661586A CN 106661586 A CN106661586 A CN 106661586A CN 201580028042 A CN201580028042 A CN 201580028042A CN 106661586 A CN106661586 A CN 106661586A
Authority
CN
China
Prior art keywords
microorganism
rejecting
lipid content
gene construct
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201580028042.9A
Other languages
English (en)
Inventor
高塔姆·达斯
桑塔奴·达斯古普塔
文卡塔斯·普拉萨德
维诺德库马尔·韦治阿古马
帕纳里·德瑞
甘纳达桑·卡利亚穆尔士
苏迦塔·库马里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Reliance Industries Ltd
Original Assignee
Reliance Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Reliance Industries Ltd filed Critical Reliance Industries Ltd
Publication of CN106661586A publication Critical patent/CN106661586A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/6445Glycerides
    • C12P7/6463Glycerides obtained from glyceride producing microorganisms, e.g. single cell oil
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/65Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression using markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1003Transferases (2.) transferring one-carbon groups (2.1)
    • C12N9/1007Methyltransferases (general) (2.1.1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y201/00Transferases transferring one-carbon groups (2.1)
    • C12Y201/01Methyltransferases (2.1.1)
    • C12Y201/01037DNA (cytosine-5-)-methyltransferase (2.1.1.37)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01031Homoserine O-acetyltransferase (2.3.1.31)
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Botany (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明涉及一种增加微生物脂类含量的方法。该方法涉及减少参与蛋白质合成的分子表达以减少蛋白质合成,从而增加微生物中的脂类合成。本发明还提供一种脂类含量增加的改良性微生物。

Description

提高微生物脂类含量的方法及相应改良微生物
本申请是2013年11月29日登记(后至2014年5月29日)的印度专利申请号3757/MUM/2013的专利分割申请,此处加入专利全部内容以供参考。
发明领域
本发明涉及一种提高微生物脂类含量的方法以及脂类含量增加的改良性微生物。
背景技术
用活体生物(如植物和藻类)生产的生物燃料是石油类燃料(如柴油和汽油)的替代燃料。藻类是生产生物燃料的首选,它们可以将阳光和二氧化碳高效转化为生物质并合成脂类,可以在恶劣环境条件下生长。许多藻类菌株产生甘油三酸酯,后者可转化为生物燃料。
增加微生物脂类含量的方法包括限制营养,调节酶活性,在产生应激的环境中培育微生物,以及基因工程技术。虽然这些方法可以增加脂类含量,但缺点在于生长速度和产生的细胞量整体减少。
众所周知,光合作用中的大量固定碳用于生产蛋白质。因此,蛋白质合成减少会导致脂类(用于从微生物尤其是藻类/蓝藻细菌生产生物燃料)制造过程中固定碳的利用。可以减少蛋白质合成,将碳通量用于生产脂类。
因此,本发明的发明人设计一种减少微生物蛋白质合成从而增加脂类含量的方法。
本发明还涉及脂类含量增加的改良性微生物菌株,如藻类和/或蓝藻细菌。
发明目的
本发明的部分目的(通过改进至少一种具体实施方式实现)如下所述:
本发明的一个目的是提供一种减少(下降调节)蛋白质合成中的tRNA分子表达以减少蛋白质合成,进而增加微生物脂类含量的方法。
本发明的另一个目的是提供一种减少(下降调节)微生物蛋白质合成中的起始过程速率以减少蛋白质合成,进而增加微生物脂类含量的方法。
本发明的另一个目的是提供一种减少微生物中蛋白质合成以增加脂类含量,进而提高生物燃料整体产量的方法。
本发明的另一个目的是提供脂类含量增加的微生物改良菌株。
配合附图阅读以下说明,本发明的其他目的和优势将得以进一步明确,但这些描述并不意图限制本发明的范围。
发明内容
本发明一方面提供一种增加微生物脂类含量的方法。方法包括以下步骤:获得用于剔除起始子tRNA基因的剔除基因构筑体;在载体中克隆剔除基因构筑体;将含有剔除基因构筑体的载体引入微生物;在含有选择剂的介质中和诱导条件下培育微生物,获得脂类含量提高的微生物。
在本发明的另一个方面中,提供一种脂类含量提高的细长聚球藻PCC 7942改良菌株,CCAP加入编号1479/17。
附图简要说明
下面将借助附图说明本发明的方法,其中:
图1说明一种通过减少(下降调节)微生物中的蛋白质合成,增加微生物脂类含量的示意过程。
图2说明通过删除起始子tRNA met2制备的含有剔除基因构筑体的tRNA-Met2_deletion载体。
图3说明按照本发明制备的转录菌株的PCR确认。
图4A是利用尼罗红测定(Nile Red Assay)方法,在带和不带放线菌酮的磷酸三甲酯介质中培养莱茵衣藻(Chlamydomonas reinhardtii)CW-15细胞(第4天)观察到的荧光图形表示。
图4B是在没有放线菌酮条件下培养的尼罗红染色莱茵衣藻(Chlamydomonasreinhardtii)CW-15细胞。
图4C是在有放线菌酮条件下培养的尼罗红染色莱茵衣藻(Chlamydomonasreinhardtii)CW-15细胞。
图5说明细长聚球藻PCC 7942(剔除tRNA Met2基因)在含有选择剂的介质上的点配置。
图6是细长聚球藻PCC 7942相比野生菌株的脂类含量增加示意图。
详细说明
光合作用中的大量固定碳用于生产蛋白质。因此,蛋白质合成减少会导致脂类(用于从微生物尤其是藻类/蓝藻细菌生产生物燃料)制造过程中固定碳的利用。可以减少蛋白质合成,将碳通量用于生产脂类。
据观察,微生物中的起始子tRNA分子或起始因子蛋白质/核糖体RNA负责蛋白质合成的起始。可以通过基因改良微生物以减少细胞起始子tRNA分子数量,从而减少蛋白质合成。
因此,减少微生物中蛋白质合成起始速率以减少蛋白质数量,可以增加微生物中的脂类含量,从而增加这些微生物的生物燃料产量。
因此按照本发明,设计一种减少(下降调节)微生物(具体为藻类和/或蓝藻细菌)蛋白质合成的方法(如图1所示)。转录菌株蛋白质合成减少导致固定碳用于脂类合成。
在本发明的一个方面中,提供一种减少(下降调节)蛋白质合成从而增加微生物脂类含量的方法。
利用放线菌酮执行蛋白质合成的化学抑制。在各种放线菌酮含量(50μM到500μM)条件下培养莱茵衣藻(Chlamydomonas reinhardtii)CW-15(Chlamydomonas ResourceCenter,USA),找出蛋白质合成对脂类含量的抑制作用。结果发现,蛋白质合成的化学抑制导致脂类含量增加(图4A)。在存在50μM放线菌酮的条件下培养莱茵衣藻(Chlamydomonasreinhardtii)CW-15细胞时,观察到最高脂类含量。使用更多放线菌酮(超过200μM)时,观察到脂类含量减少,如图4A所示。图4B和4C分别介绍无蛋白质抑制剂和存在蛋白质抑制剂条件下尼罗红染色的莱茵衣藻(Chlamydomonas reinhardtii)CW-15细胞。如图4C所示,相比没有蛋白质抑制剂条件下培养的莱茵衣藻(Chlamydomonas reinhardtii)CW-15细胞,在存在蛋白质抑制剂(放线菌酮)的条件下培养细胞时观察到荧光增加,这说明莱茵衣藻(Chlamydomonas reinhardtii)CW-15细胞脂类含量增加。
转移RNA Met1和tRNA Met2是蓝藻细胞中的两种起始子tRNA基因,两者都参与蛋白质合成调节。按照本发明,tRNA Met2基因被剔除。按照本发明,取出起始子tRNA基因的1kb侧翼序列并在含有选择标记的载体中克隆,制备剔除基因构筑体。在本发明的一个具体实施方式中,选择标记是从下面的组中选择的一种抗生素,该组包括但不局限于卡那霉素、氨苄青霉素和氯霉素。
按照本发明的另一个方面,提供微生物改良菌株,尤其是脂类含量增加的藻类和/或蓝藻细菌改良菌株,具体来说,按照本发明的改良菌株可以是Culture Collection ofAlgae and Protozoa(CCAP),SAMS Limited,Scottish Marine Institute,Dunbeg,Oban,Argyll,PA37 1QA,UK的细长聚球藻PCC 7942,CCAP加入编号1479/17。
下面将通过以下实验室实验进一步说明本发明,这些实验仅用于说明,不解释为以任何方式限制本发明范围。
实验1细长聚球藻PCC 7942的转录
取出起始子tRNA(tRNA Met2)的1千碱性侧翼序列,然后在含有抗生素(氯霉素)选择标记的载体中克隆。本发明使用的载体为tRNA-Met2_deletion。然后使用该载体从细长聚球藻PCC 7942中剔除蛋氨酸tRNA(tRNA Met2)。
将细长聚球藻PCC 7942(Institut Pasteur,France)培植在50ml BG-11碱性溶液(HiMedia)中,30℃条件下培养一夜,获得OD730为1(约108cells/ml)。在4000rpm条件下离心培养菌,将收集获得的小球进行进一步实验。
用10ml pH值7.5的零度1mM 4-(2-羟乙基)-1-哌嗪乙磺酸(HEPES)缓冲液冲洗小球三次。每次冲洗时将小球浸泡在HEPES缓冲液中5分钟。
去掉上清液,小球悬浮在500μl含有6%二甲基亚砜(DMSO)和10%甘油的HEPES缓冲液中,通过涡流正确混合以获得细胞混合物。
将数百微升上述细胞混合物转移到预先冷却的电穿孔试管中。将5微克线状DNA(溶解在水中)加入电穿孔试管中。将一个没有DNA的试管作为对照。试管万册完全干燥,然后放入Gene Pulser中进行电穿孔。下面介绍本发明使用的电穿孔参数:
i)场强1800V/cm
ii)电容25μF
iii)电阻200Ω
iv)指数衰减波脉冲
完成电穿孔后,立刻将试管放入冰块中5分钟。细胞悬浮在1ml BG-11碱性溶液中,然后在含有20ml BG-11碱性溶液的锥形烧瓶中培养。在30℃和白光条件下培养细胞5天。
5天后,通过离心收集细胞。获得的小球悬浮在200μl BG-11碱性溶液中。在含有1%琼胶和氯霉素的BG-11碱性溶液中培养培养菌。20天后观察培养皿上的菌落(图-5A)。在含有氯霉素的液体和固体BG-11介质中进一步繁殖单个菌落8代以获得同质异源性。
使用氯霉素乙酰转移酶(CAT)基因基底,通过PCR确认转录,如图3所示。使用西格玛工厂DNA提取工具隔离DNA,将染色体组DNA用作模板。
从左到右:第1道表示野生菌株,第6道表示含有pMet2KO质粒DNA的阳性对照组,第7道表示无任何DNA的阴性对照组,第8道表示1kb plus梯度标记(Thermo Scientific)。第2、第3、第4和第5道是不同转录:克隆1、克隆3、克隆4和克隆19分别按照本发明制备。载体tRNA-Met2_deletion的大小为4775bp。指向第6道色带(阳性对照组)的箭头对应CAT基因660bp。野生菌株染色体组DNA没有CAT基因,因此PCR后未观察到任何PCR产物,没有对应野生菌株(第1道)的色带,如图-3所示。在转录菌株中,tRNA Met2基因被剔除,替换为CAT基因(660bp)。指向第5道(克隆19)、第4道(克隆4)和第3道(克隆3)色带的箭头对应CAT基因,确认转录结果。第2道的第二色带是PCR条件决定的非特异成型带。
实验2比较野生菌株和转录菌株产生的脂类
使用10微克干燥野生菌株和转录菌株执行十八酸的GC分析,产生甲酯(C18:0)。图-6和表-1显示野生菌株和转录菌株(克隆3和克隆19)产生的C18:0量(%)。
图-6显示野生菌株和两个转录菌株(克隆3和克隆19)产生的十八酸甲酯(C18:0)。观察发现,克隆19产生的脂类(C18:0)量相比野生菌株增加31%。
表-1
10mg干燥物 %C18:0
WT 11.83
克隆-3 14.47
克隆-19 15.54
从图-6和表-1很容易看出,转录菌株(克隆3和克隆19)的脂类含量相比野生菌株增加,这表明下降调节蛋白质合成可导致转录菌株脂类含量整体增加。
技术优势
本发明提供的技术优势如下:
本发明提供一种减少(下降调节)蛋白质合成中的不同分子以减少蛋白质合成,进而增加微生物脂类含量的方法。
本发明提供一种增加微生物脂类含量以提高生物燃料产量的方法。
本发明提供相比野生菌株脂类含量增加的改良性微生物。
通过参照描述中的非限定性具体实施方式,对上述具体实施方式及其各种特征和有利细节进行了解释。其中省去了对已知方面、部件及分子生物技术的描述,以避免不必要的模糊实施例。
上述具体实施方式的描述将充分披露本发明中具体实施方式的一般性,在没有脱离一般概念的前提下,其他人可以很容易地运用现有知识修改和/或调整此类具体实施方式的各种应用。因此,这些调整和修改应被确定为包含在与所披露的具体实施方式相当的含义和范围内。应当理解为,本文采用的措辞和术语是为了描述而非限制的目的。因此,虽然文中的具体实施方式描述的是首选具体实施方式,熟知本领域的技术人员认识到在所描述的具体实施方式的精神与范围内,可以对文中的具体实施方式进行修改。此外,应清楚理解为,上述描述主题仅解释为对发明的介绍,而非限制。
在参考所述具体实施方式介绍并说明本发明原理后,应认识到,可以在不背离此类原理的范围内改动所述具体实施方式的布置和细节。
虽然本发明的特点已重点强调,仍应理解为,在不背离本发明原理的条件下,可以对首选具体实施方式进行各种修改。本发明本质或首选具体实施方式的这些和其他修改对本发明领域熟练的技术人员是显而易见的,应清楚理解为,上述描述事项只是本发明说明的解释而不作为一种限制。

Claims (9)

1.一种增加微生物脂类含量的方法,所述方法包含以下步骤:
a.获得剔除起始子tRNA Met2基因的剔除基因构筑体;
b.在载体中克隆所述剔除基因构筑体;
c.将含有剔除基因构筑体的所述载体引入微生物;
d.在诱导条件下,含有选择剂的介质上培养所述微生物,获得脂类含量增加的微生物。
2.如权利要求1所述的方法,其中所述微生物为光合作用微生物。
3.如权利要求1所述的方法,其中所述微生物是从以下组中选择的一种藻类,该组包括聚球藻和衣藻。
4.如权利要求1所述的方法,其中通过剔除起始子tRNA基因的1kb侧翼序列,制备所述剔除基因构筑体。
5.如权利要求1所述的方法,其中所述载体为tRNA-Met2_deletion。
6.如权利要求1所述的方法,其中所述选择剂是从以下组中选择的至少一种抗生素,该组包括卡那霉素、氨苄青霉素和氯霉素。
7.一种提高生物质合成能力的改良微生物的制造方法;所述方法包括以下步骤:
a.获得剔除起始子tRNA基因的剔除基因构筑体;
b.在载体中克隆所述剔除基因构筑体;
c.将含有剔除基因构筑体的所述载体引入微生物;
d.在诱导条件下,含有选择剂的介质上培养所述微生物,获得脂类含量增加的微生物;
其中,改良微生物合成/产生的脂类含量相比未改良微生物增加。
8.一种按照权利要求7所述方法制造的改良微生物。
9.一种脂类含量增加的细长聚球藻PCC 7942改良菌株,CCAP加入编号1479/17。
CN201580028042.9A 2014-05-29 2015-05-28 提高微生物脂类含量的方法及相应改良微生物 Pending CN106661586A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IN3757/MUM/2013 2014-04-27
IN3757MU2013 2014-05-29
PCT/IB2015/054011 WO2015181765A1 (en) 2014-05-29 2015-05-28 Method for increasing lipid content in microorganisms and modified microorganisms therefrom

Publications (1)

Publication Number Publication Date
CN106661586A true CN106661586A (zh) 2017-05-10

Family

ID=54358235

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201580021742.5A Pending CN106414743A (zh) 2014-04-27 2015-04-24 提高微生物生物质合成能力的方法及其改良微生物
CN201580028042.9A Pending CN106661586A (zh) 2014-05-29 2015-05-28 提高微生物脂类含量的方法及相应改良微生物

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201580021742.5A Pending CN106414743A (zh) 2014-04-27 2015-04-24 提高微生物生物质合成能力的方法及其改良微生物

Country Status (6)

Country Link
US (2) US10457964B2 (zh)
CN (2) CN106414743A (zh)
AU (2) AU2015254957A1 (zh)
BR (1) BR112016025099A2 (zh)
MX (1) MX2016013363A (zh)
WO (2) WO2015166387A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10457964B2 (en) 2014-04-27 2019-10-29 Reliance Industries Limited Method for increasing the biomass synthesis capacity of a photosynthetic microorganism
CN106978432B (zh) * 2017-03-09 2019-11-15 中国科学院水生生物研究所 敲除衣藻内源基因和表达外源基因的载体构建方法及应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101600796A (zh) * 2006-12-29 2009-12-09 Cj第一制糖株式会社 具有增强的l-赖氨酸产率的棒状杆菌属微生物以及使用所述微生物生产l-赖氨酸的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0963439B1 (en) * 1997-02-19 2007-04-11 Enol Energy Inc. Genetically modified cyanobacteria for the production of ethanol
EP2706111A1 (en) 2008-03-03 2014-03-12 Joule Unlimited Technologies, Inc. Engineered CO2 fixing microorganisms producing carbon-based products of interest
WO2012087963A1 (en) * 2010-12-20 2012-06-28 Targeted Growth, Inc. Modified photosynthetic microorganisms for producing lipids
US10457964B2 (en) 2014-04-27 2019-10-29 Reliance Industries Limited Method for increasing the biomass synthesis capacity of a photosynthetic microorganism

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101600796A (zh) * 2006-12-29 2009-12-09 Cj第一制糖株式会社 具有增强的l-赖氨酸产率的棒状杆菌属微生物以及使用所述微生物生产l-赖氨酸的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ANAHITA DASTUR等: ""Analysis of the initiator tRNA genes from a slow- and a fast-growing mycobacterium"", 《ARCH MICROBIOL》 *
DANIEL J. COUGHLIN等: ""Prediction and verification of mouse tRNA gene families"", 《RNA BIOL》 *
MARCK C等: ""tRNomics: analysis of tRNA genes from 50 genomes of Eukarya, Archaea, and Bacteria reveals anticodon-sparing strategies and domain-specific features"", 《RNA》 *
SAMHITA L等: ""How many initiator tRNA genes does Escherichia coli need?"", 《J BACTERIOL》 *

Also Published As

Publication number Publication date
AU2015254957A1 (en) 2016-11-10
BR112016025099A2 (pt) 2017-08-15
US10059968B2 (en) 2018-08-28
AU2015265496A1 (en) 2016-12-01
MX2016013363A (es) 2017-04-27
US20170342448A1 (en) 2017-11-30
WO2015181765A1 (en) 2015-12-03
CN106414743A (zh) 2017-02-15
US20170051293A1 (en) 2017-02-23
WO2015166387A1 (en) 2015-11-05
US10457964B2 (en) 2019-10-29

Similar Documents

Publication Publication Date Title
Bahman et al. Effect of light intensity and wavelength on nitrogen and phosphate removal from municipal wastewater by microalgae under semi-batch cultivation
CN103992959B (zh) 长链二元酸生产菌株及其制备方法和应用
Ozturk et al. Molecular and morphological characterization of several cyanobacteria and Chlorophyta species isolated from lakes in Turkey
WO2014083534A1 (en) Mixotrophic cultivation of microalgae for the production of biofuel
Sahay et al. Microalgae based biodiesel production–current and future scenario
Irawan et al. Studies on bioflocculant exopolysaccharides (EPS) produced by Anabaena sp. and its application as bioflocculant for low cost harvesting of Chlorella sp.
Liu et al. Screening of antibiotics to obtain axenic cell cultures of a marine microalga Chrysotila roscoffensis
CN106661586A (zh) 提高微生物脂类含量的方法及相应改良微生物
Mahmoud et al. Closed photobioreactor for microalgae biomass production under indoor growth conditions
KR101504159B1 (ko) 미세조류의 성장을 촉진하는 엑소피아라 올리고스퍼마 및 이의 용도
Viswanath et al. The microalgae–A future source of biodiesel
Prasad et al. An optimized method and a dominant selectable marker for genetic engineering of an industrially promising microalga—Pavlova lutheri
Chaudhary et al. Growth and lipid production by Desmodesmus subspicatus and potential of lipids for biodiesel production
Etesami et al. Caspian Sea's Navicula salinicola Hustedt 1939 and effect of the prolonged culture on its fatty acid profile
CN110564621B (zh) 具有高脂质生产能力的链带藻属物种t9分离株及其用途
US20140038273A1 (en) Nano Biofuel Production Processes: Using Nantechnology to Enhance Produciton fo Biofuels
EP2441828B1 (en) Algal bio-flocculation by inactivation of photoreceptors
Jung et al. Cellular growth and fatty acid content of Arctic chlamydomonadalean
US10106861B2 (en) Microalgae with improved phototaxis and photosynthetic efficiency
CN108676811A (zh) 一种基因无痕编辑载体及其在生物体基因编辑中的应用
Flores-Tinoco et al. Control of biological contamination in microalgae cultures
CN104263661B (zh) 一种无抗生素标记的裂殖壶菌及其遗传转化方法
Moll et al. Biodiesel (microalgae)
VAN THANG DUONG et al. Microalgae isolation and selection for prospective biodiesel production
CN105647956A (zh) 一种对生产二十二碳六烯酸隐甲藻进行基因转化的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned

Effective date of abandoning: 20210129

AD01 Patent right deemed abandoned