CN106654526A - Lower-specific absorption rate circular polarization conformable antenna and manufacturing method - Google Patents
Lower-specific absorption rate circular polarization conformable antenna and manufacturing method Download PDFInfo
- Publication number
- CN106654526A CN106654526A CN201611055749.1A CN201611055749A CN106654526A CN 106654526 A CN106654526 A CN 106654526A CN 201611055749 A CN201611055749 A CN 201611055749A CN 106654526 A CN106654526 A CN 106654526A
- Authority
- CN
- China
- Prior art keywords
- antenna
- absorption rate
- specific absorption
- circularly polarized
- flexible material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010521 absorption reaction Methods 0.000 title claims abstract description 26
- 230000010287 polarization Effects 0.000 title claims abstract description 16
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 12
- 239000002131 composite material Substances 0.000 claims abstract description 23
- 239000000463 material Substances 0.000 claims description 37
- 239000002184 metal Substances 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 7
- 230000005855 radiation Effects 0.000 abstract description 23
- 230000003247 decreasing effect Effects 0.000 abstract 2
- 238000010586 diagram Methods 0.000 description 8
- 238000013461 design Methods 0.000 description 5
- 238000005452 bending Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
- H01Q1/241—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
- H01Q1/242—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
- H01Q1/245—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with means for shaping the antenna pattern, e.g. in order to protect user against rf exposure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
- H01Q1/38—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/50—Structural association of antennas with earthing switches, lead-in devices or lightning protectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/10—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
- H01Q19/108—Combination of a dipole with a plane reflecting surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/16—Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
- H01Q9/26—Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
- H01Q9/265—Open ring dipoles; Circular dipoles
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Aerials With Secondary Devices (AREA)
Abstract
Description
技术领域technical field
本发明涉及天线技术领域,更具体地,涉及一种低比吸收率的圆极化可共形天线即制作方法。The present invention relates to the technical field of antennas, in particular to a low specific absorption rate circularly polarized conformable antenna, ie a manufacturing method.
背景技术Background technique
天线是无线通信设备中发出和接收无线信号的重要器件。随着移动通信的飞速发展,以及可共形设备越来越多的应用在日常生活和军事中,对天线的设计要求也在不断提高。对于可共形设备中的天线,要求其具有较小的尺寸,与人体表面共形时保证一定的工作性能,并且尽量降低对人体的电磁辐射,减小天线的比吸收率。天线的极化一般包括线极化和圆极化,考虑到天线随人体在空间中位置变换不定,采用圆极化天线能够在一定程度上保持设备信号的稳定性。一般通过对馈电端口或是天线结构的设计来使得天线上的电流在正交方向上满足一定的相位关系,从而实现圆极化辐射。超表面或频率选择表面由于具有不同于一般媒质的特殊的电磁特性,常加入到天线的设计中,用以改善天线的某些工作特性。高阻抗表面是其中一种,通常由统一尺寸的单元表面结构组阵构成。通过调节单元结构的尺寸及单元间距可以控制正入射的电磁波的反射相位,从而与全向天线组合可以实现具有低剖面的定向天线。天线设计中加入有特殊电磁特性的复合材料,可以用于减小天线尺寸或增加工作带宽等。将具有较高的介电常数和大于1的磁导率的复合材料用作天线的基板时,根据慢波原理,可以减小天线的尺寸。本发明采用的复合材料在工作频带内相对介电常数为12,相对磁导率为2.7。由于材料具有一定损耗,故放置在天线和人体之间,虽然会降低天线的增益,但是可以在减小整个天线的尺寸的同时,吸收天线辐射向人体的电磁波。Antenna is an important device for sending and receiving wireless signals in wireless communication equipment. With the rapid development of mobile communications and the increasing application of conformable devices in daily life and military affairs, the requirements for antenna design are also increasing. For the antenna in the conformable device, it is required to have a small size, to ensure a certain working performance when it conforms to the surface of the human body, and to minimize the electromagnetic radiation to the human body and reduce the specific absorption rate of the antenna. The polarization of the antenna generally includes linear polarization and circular polarization. Considering that the position of the antenna varies with the human body in space, the use of a circularly polarized antenna can maintain the stability of the device signal to a certain extent. Generally, the current on the antenna satisfies a certain phase relationship in the orthogonal direction by designing the feed port or the antenna structure, so as to realize circularly polarized radiation. Because metasurfaces or frequency selective surfaces have special electromagnetic properties different from ordinary media, they are often added to the design of antennas to improve certain working characteristics of antennas. One such surface is a high-resistance surface, which usually consists of an array of uniformly sized unit surface structures. By adjusting the size of the unit structure and the unit spacing, the reflection phase of the normally incident electromagnetic wave can be controlled, so that a directional antenna with a low profile can be realized in combination with an omnidirectional antenna. Composite materials with special electromagnetic properties are added to the antenna design, which can be used to reduce the size of the antenna or increase the working bandwidth. When a composite material with a high dielectric constant and a magnetic permeability greater than 1 is used as the substrate of the antenna, the size of the antenna can be reduced according to the principle of slow waves. The composite material used in the invention has a relative permittivity of 12 and a relative magnetic permeability of 2.7 in the working frequency band. Since the material has a certain loss, placing it between the antenna and the human body will reduce the gain of the antenna, but it can absorb the electromagnetic waves radiated from the antenna to the human body while reducing the size of the entire antenna.
发明内容Contents of the invention
本发明提供一种克服上述问题或者至少部分地解决上述问题的低比吸收率的圆极化可共形天线及制作方法,通过双正交偶极子实现圆极化,同时加入复合材料和高阻抗表面对天线的辐射特性进行控制,利用复合材料较高的电磁参数来减小天线整体的尺寸,并配合高阻抗表面降低天线的背向辐射,降低比吸收率,同时增加天线的定向辐射。The present invention provides a circularly polarized conformable antenna with low specific absorption rate and a manufacturing method that overcomes the above-mentioned problems or at least partially solves the above-mentioned problems. The circular polarization is realized by dual orthogonal dipoles, and composite materials and high The impedance surface controls the radiation characteristics of the antenna, using the high electromagnetic parameters of the composite material to reduce the overall size of the antenna, and cooperates with the high impedance surface to reduce the back radiation of the antenna, reduce the specific absorption rate, and increase the directional radiation of the antenna.
根据本发明的一个方面,提供一种低比吸收率的圆极化可共形天线,包括用于激励电磁波的天线振子以及与天线振子相贴合的用于反射电磁波的阻抗结构。According to one aspect of the present invention, a circularly polarized conformable antenna with low specific absorption rate is provided, including an antenna element for exciting electromagnetic waves and an impedance structure attached to the antenna element for reflecting electromagnetic waves.
作为优选的,所述天线振子为圆极化天线振子,包括两个正交连接的偶极子。Preferably, the antenna dipole is a circularly polarized antenna dipole comprising two orthogonally connected dipoles.
作为优选的,所述每个偶极子包括两个谐振臂,所述谐振臂一侧设有终端加载部,所述每个谐振臂都为弯折结构,所述终端加载部为弧形结构。Preferably, each dipole includes two resonant arms, one side of the resonant arm is provided with a terminal loading part, each of the resonant arms is a bent structure, and the terminal loading part is an arc structure .
作为优选的,所述两个偶极子的连接点处设有馈电点,所述每个偶极子的两个谐振臂连接所述馈电点且在馈电点处呈中心对称。Preferably, a feed point is provided at the connection point of the two dipoles, and the two resonant arms of each dipole are connected to the feed point and are centrally symmetrical at the feed point.
作为优选的,还包括第一柔性材料层,所述天线振子设于第一柔性材料层一侧表面,所述第一柔性材料层的另一侧接触高阻抗表面的金属单元结构。Preferably, it further includes a first flexible material layer, the antenna vibrator is provided on one side of the first flexible material layer, and the other side of the first flexible material layer is in contact with the metal unit structure on the high-impedance surface.
作为优选的,所述阻抗结构包括依次层叠的金属单元层、第二柔性材料层、柔性复合材料层和金属底板层,所述金属单元层另一侧层叠第一柔性材料层。Preferably, the impedance structure includes a metal unit layer, a second flexible material layer, a flexible composite material layer and a metal base layer stacked in sequence, and the first flexible material layer is stacked on the other side of the metal unit layer.
作为优选的,所述第一柔性材料层和第二柔性材料层为柔性PE材料;所述第一柔性材料层、第二柔性材料层和柔性复合材料层厚度均为2mm。Preferably, the first flexible material layer and the second flexible material layer are made of flexible PE material; the thickness of the first flexible material layer, the second flexible material layer and the flexible composite material layer are all 2mm.
一种低比吸收率的圆极化可共形天线制作方法,包括以下步骤:A method for manufacturing a circularly polarized conformable antenna with a low specific absorption rate, comprising the following steps:
S1、制作正交的双偶极子天线;S1, making orthogonal double dipole antennas;
S2、制作阻抗结构;S2, making an impedance structure;
S3、将双偶极子天线和阻抗结构贴合。S3. Attaching the double dipole antenna to the impedance structure.
作为优选的,其特征在于,所述步骤S1具体包括:将两个偶极子正交摆放,调整尺寸参数和工作频段,使两个偶极子上的电流分布相差90°相位,将四个谐振臂连接起来,并在连接点进行馈电。Preferably, it is characterized in that the step S1 specifically includes: placing the two dipoles orthogonally, adjusting the size parameters and the working frequency band, so that the current distribution on the two dipoles has a phase difference of 90°, and placing the four dipoles The two resonant arms are connected and fed at the connection point.
作为优选的,其特征在于,所述步骤S3还包括:对天线进行调试,微调偶极子谐振臂的长度和终端加载部的宽度,对天线回波损耗和极化特性进行调整。Preferably, the step S3 further includes: debugging the antenna, fine-tuning the length of the dipole resonant arm and the width of the terminal loading part, and adjusting the return loss and polarization characteristics of the antenna.
与现有技术相比,本发明的有益效果在于:本发明通过双正交偶极子实现圆极化,同时加入复合材料和高阻抗表面对天线的辐射特性进行控制。偶极子易于设计和制作加工,并可以通过对偶极子谐振臂的合理弯折来减小天线尺寸。利用结合复合材料较高的电磁参数来减小天线整体的尺寸,并配合高阻抗表面降低天线的背向辐射,降低比吸收率,同时增加天线的定向辐射。Compared with the prior art, the invention has the beneficial effect that: the invention realizes circular polarization through double orthogonal dipoles, and simultaneously adds composite material and high-impedance surface to control the radiation characteristics of the antenna. The dipole is easy to design, manufacture and process, and the size of the antenna can be reduced by reasonably bending the resonant arm of the dipole. The overall size of the antenna is reduced by combining the high electromagnetic parameters of the composite material, and the high-impedance surface reduces the back radiation of the antenna, reduces the specific absorption rate, and increases the directional radiation of the antenna.
附图说明Description of drawings
图1为本发明实施例中圆极化天线结构框图;Fig. 1 is a structural block diagram of a circularly polarized antenna in an embodiment of the present invention;
图2为本发明实施例中正交双偶极子天线振子结构框图;Fig. 2 is a structural block diagram of an orthogonal double dipole antenna dipole in an embodiment of the present invention;
图3位本发明实施例中制作方法流程图;Fig. 3 is a flow chart of the manufacturing method in the embodiment of the present invention;
图4为本发明实施例中阻抗结构的金属单元对正入射波的反射相位和工作频率变化示意图;4 is a schematic diagram of the reflection phase and operating frequency changes of the metal unit of the impedance structure to the normal incident wave in the embodiment of the present invention;
图5位本发明实施例中回波损耗和工作频率变化示意图;Fig. 5 is a schematic diagram of change of return loss and operating frequency in an embodiment of the present invention;
图6为本发明实施例中轴比和工作频率变化示意图;Fig. 6 is a schematic diagram of changes in axial ratio and operating frequency in an embodiment of the present invention;
图7为本发明实施例中天线在三个相互正交的坐标平面上的辐射方向示意图;7 is a schematic diagram of radiation directions of antennas on three mutually orthogonal coordinate planes in an embodiment of the present invention;
图8位本发明实施例中天线贴附在半径为40mm的圆柱面上的天线的回波损耗图。Fig. 8 is a return loss diagram of an antenna attached to a cylindrical surface with a radius of 40 mm in an embodiment of the present invention.
具体实施方式detailed description
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。The specific implementation manners of the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. The following examples are used to illustrate the present invention, but are not intended to limit the scope of the present invention.
图1示出了一种低比吸收率的圆极化可共形天线,包括用于激励电磁波的天线振子1以及与天线振子连接用于反射电磁波的阻抗结构,所述阻抗结构厚度小,可作为表面结构贴合在天线振子上,通过高阻抗的表面结构,降低天线的背向辐射,降低比吸收率,同时增加天线的定向辐射。Figure 1 shows a circularly polarized conformable antenna with low specific absorption rate, including an antenna element 1 for exciting electromagnetic waves and an impedance structure connected to the antenna element for reflecting electromagnetic waves. The impedance structure has a small thickness and can As a surface structure, it is attached to the antenna vibrator. Through the high-impedance surface structure, the back radiation of the antenna is reduced, the specific absorption rate is reduced, and the directional radiation of the antenna is increased at the same time.
如图2所示,所述天线振子为圆极化天线振子,包括两个正交连接的偶极子(图中的11、12),在本实施例中,该天线的工作频率为2.45GHz,3dB圆极化带宽为100MHz。As shown in Figure 2, the antenna vibrator is a circularly polarized antenna vibrator, including two orthogonally connected dipoles (11, 12 in the figure), in this embodiment, the operating frequency of the antenna is 2.45GHz , 3dB circular polarization bandwidth is 100MHz.
在本实施例中,所述每个偶极子包括两个谐振臂和连接谐振臂一侧的终端加载部,通过终端加载部使两个偶极子上的电流分布相差90°相位,形成圆极化辐射特性,所述每个谐振臂都为弯折结构,所述终端加载部为弧形结构,谐振臂和终端加载部都设计为弯折结构,减小了天线的整体尺寸,同时,可通过调整谐振臂的长度和终端加载部的宽度,进而进行天线回波损耗,极化特性的调整。In this embodiment, each dipole includes two resonant arms and a terminal loading part connected to one side of the resonant arms, and the current distribution on the two dipoles is 90° out of phase through the terminal loading part to form a circular Polarized radiation characteristics, each of the resonant arms is a bent structure, the terminal loading part is an arc structure, and the resonant arm and the terminal loading part are both designed as a bent structure, which reduces the overall size of the antenna. At the same time, The antenna return loss and polarization characteristics can be adjusted by adjusting the length of the resonant arm and the width of the terminal loading part.
作为优选的,所述两个偶极子的连接点处设有馈电点13,所述每个偶极子的两个谐振臂连接所述馈电点13且在馈电点13处呈中心对称。As preferably, the connection point of the two dipoles is provided with a feed point 13, and the two resonant arms of each dipole are connected to the feed point 13 and are centered at the feed point 13. symmetry.
在本实施例中,还包括第一柔性材料层2,所述天线振子1刻蚀于第一柔性材料层2一侧表面,天线振子1和下方的第一柔性材料层2共同组成激励电磁波的部分,所述第一柔性材料层2的另一侧接触高阻抗表面的金属单元结构。In this embodiment, a first flexible material layer 2 is also included, the antenna vibrator 1 is etched on one side surface of the first flexible material layer 2, and the antenna vibrator 1 and the lower first flexible material layer 2 together form a circuit for exciting electromagnetic waves. part, the other side of the first flexible material layer 2 is in contact with the metal unit structure of the high resistance surface.
在本实施例中,所述阻抗结构包括依次层叠的金属单元层3、第二柔性材料层4、柔性复合材料层5和金属底板层6,所述金属单元层3另一侧层叠第一柔性材料层2。第一层是周期排布的平面金属单元层3结构,第二层是作为缓冲的第二柔性材料层4,避免周期性金属单元层3直接与有一定损耗的复合材料5接触,导致反射电磁波的强度的降低,第三层即为复合材料层5,通过其具有的较高电磁参数来提高天线周围的等效电磁参数,从而可以在一定程度上减小天线的尺寸,而且还可以利用复合材料自身的损耗来吸收天线的后向辐射,第四层为金属底板层6。这四层组合在一起构成阻抗结构,用以产生特定的电磁波反射相位,降低天线的后向辐射。所述第一柔性材料层2和第二柔性材料层4为柔性PE材料;所述第一柔性材料层2、第二柔性材料层4和柔性复合材料5层厚度均为2mm。In this embodiment, the impedance structure includes a metal unit layer 3, a second flexible material layer 4, a flexible composite material layer 5, and a metal base layer 6 stacked in sequence, and the other side of the metal unit layer 3 is stacked with a first flexible material layer 2. The first layer is a planar metal unit layer 3 structure arranged periodically, and the second layer is a second flexible material layer 4 as a buffer to prevent the periodic metal unit layer 3 from directly contacting the composite material 5 with a certain loss, resulting in reflected electromagnetic waves The reduction of the strength of the antenna, the third layer is the composite material layer 5, which can improve the equivalent electromagnetic parameters around the antenna through its higher electromagnetic parameters, so that the size of the antenna can be reduced to a certain extent, and the composite material layer can also be used The loss of the material itself is used to absorb the backward radiation of the antenna, and the fourth layer is the metal bottom layer 6 . These four layers are combined to form an impedance structure, which is used to generate a specific electromagnetic wave reflection phase and reduce the backward radiation of the antenna. The first flexible material layer 2 and the second flexible material layer 4 are made of flexible PE material; the thickness of the first flexible material layer 2 , the second flexible material layer 4 and the flexible composite material 5 are all 2mm.
将双偶极子所在PE层置于阻抗结构的周期金属单元层3之上,由于反射吸收部分的加入,原来设计好的圆极化天线工作频率肯定会有偏移。在考虑两部分结合的情况下,通过对天线尺寸的微调来让天线整体工作在要求频段内,并满足一定的辐射性能。通过考虑与人体共形的情况来验证天线具有低比吸收率,并且在弯曲的情况下依然能够满足一定的性能要求。Place the PE layer where the double dipole is located on the periodic metal unit layer 3 of the impedance structure. Due to the addition of the reflection and absorption part, the operating frequency of the originally designed circularly polarized antenna will definitely shift. Considering the combination of the two parts, fine-tuning the size of the antenna allows the antenna to work in the required frequency band as a whole and meet a certain radiation performance. By considering the conformal situation with the human body, it is verified that the antenna has a low specific absorption rate and can still meet certain performance requirements in the case of bending.
在本实施例中,采用的第一柔性材料层2、第二柔性材料层4和复合材料的厚度均为2mm。In this embodiment, the thicknesses of the first flexible material layer 2 , the second flexible material layer 4 and the composite material are all 2 mm.
图3示出了一种低比吸收率的圆极化可共形天线制作方法,包括以下步骤:Figure 3 shows a method for manufacturing a circularly polarized conformable antenna with low specific absorption rate, including the following steps:
S1、制作正交的双偶极子天线;S1, making orthogonal double dipole antennas;
S2、制作阻抗结构;S2, making an impedance structure;
S3、将双偶极子天线和阻抗结构贴合。S3. Attaching the double dipole antenna to the impedance structure.
作为优选的,所述步骤S1具体包括:将两个偶极子正交摆放,调整尺寸参数和工作频段,通过终端加载部使两个偶极子上的电流分布相差90°相位,形成圆极化辐射特性,将四个谐振臂连接起来,并在连接点进行馈电。Preferably, the step S1 specifically includes: placing the two dipoles orthogonally, adjusting the size parameters and the working frequency band, and using the terminal loading part to make the current distribution on the two dipoles differ in phase by 90° to form a circle Polarized radiation characteristics, the four resonant arms are connected and fed at the connection point.
阻抗结构依次包括表面的金属单元层、第二柔性材料层、复合材料层和底面的金属底板层,对高阻抗表面结合复合材料的单元进行仿真,通过调整天线的尺寸和间隔得到在工作频率2.45GHz附近,反射相位在135°到45°连续变化如图4所示。The impedance structure includes the metal unit layer on the surface, the second flexible material layer, the composite material layer and the metal base layer on the bottom surface in turn. The high impedance surface combined with the composite material unit is simulated, and the working frequency 2.45 is obtained by adjusting the size and spacing of the antenna. Near GHz, the reflection phase changes continuously from 135° to 45°, as shown in Figure 4.
作为优选的,所述步骤S3还包括:对天线进行调试,微调偶极子谐振臂的长度和终端加载部的宽度,对天线回波损耗和极化特性进行调整。通过微调谐振臂的长度,和终端处加载部的宽度,可以得到天线回波损耗,极化特性均满足工作要求的天线。并且具有一定的增益特性。天线的回波损耗和轴比分别如图5和图6,可以看出回波损耗小于-10dB,带宽(2300MHz~2800MHz)大于300MHz,轴比小于3dB,带宽(2350MHz~2620MHz)大于100MHz。图7为天线在xoz、yoz和xoy平面方向图(天线与xoy平面平行),从辐射方向图中可以看出天线辐射的能量主要集中在图中所示的正z方向,即背向人体的方向。天线具有较低的后瓣,从而辐射向人体的电磁波较少。在正z方向天线的增益为0.6dBi。图8所示为天线贴附在半径为40mm的圆柱面上的天线的回波损耗图。可以看到在工作频带内依然能够满足小于-10dB的带宽要求。Preferably, the step S3 further includes: debugging the antenna, fine-tuning the length of the dipole resonant arm and the width of the terminal loading part, and adjusting the return loss and polarization characteristics of the antenna. By fine-tuning the length of the resonant arm and the width of the loading part at the terminal, an antenna whose return loss and polarization characteristics meet the working requirements can be obtained. And has certain gain characteristics. The return loss and axial ratio of the antenna are shown in Figure 5 and Figure 6 respectively. It can be seen that the return loss is less than -10dB, the bandwidth (2300MHz-2800MHz) is greater than 300MHz, the axial ratio is less than 3dB, and the bandwidth (2350MHz-2620MHz) is greater than 100MHz. Figure 7 is the radiation pattern of the antenna on the xoz, yoz and xoy planes (the antenna is parallel to the xoy plane). It can be seen from the radiation pattern that the energy radiated by the antenna is mainly concentrated in the positive z direction shown in the figure, that is, the direction away from the human body direction. The antenna has a lower back lobe so that less electromagnetic waves are radiated to the body. The gain of the antenna in the positive z direction is 0.6dBi. Figure 8 shows the return loss diagram of the antenna attached to a cylindrical surface with a radius of 40 mm. It can be seen that the bandwidth requirement of less than -10dB can still be met within the working frequency band.
与现有技术相比,本发明的有益效果在于:本发明通过双正交偶极子实现圆极化,同时加入复合材料和高阻抗表面对天线的辐射特性进行控制。偶极子易于设计和制作加工,并可以通过对偶极子谐振臂的合理弯折来减小天线尺寸。利用结合复合材料较高的电磁参数来减小天线整体的尺寸,并配合高阻抗表面降低天线的背向辐射,降低比吸收率,同时增加天线的定向辐射。Compared with the prior art, the invention has the beneficial effect that: the invention realizes circular polarization through double orthogonal dipoles, and simultaneously adds composite material and high-impedance surface to control the radiation characteristics of the antenna. The dipole is easy to design, manufacture and process, and the size of the antenna can be reduced by reasonably bending the resonant arm of the dipole. The overall size of the antenna is reduced by combining the high electromagnetic parameters of the composite material, and the high-impedance surface reduces the back radiation of the antenna, reduces the specific absorption rate, and increases the directional radiation of the antenna.
最后,本申请的方法仅为较佳的实施方案,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。Finally, the method of the present application is only a preferred embodiment, and is not intended to limit the protection scope of the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611055749.1A CN106654526A (en) | 2016-11-25 | 2016-11-25 | Lower-specific absorption rate circular polarization conformable antenna and manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611055749.1A CN106654526A (en) | 2016-11-25 | 2016-11-25 | Lower-specific absorption rate circular polarization conformable antenna and manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106654526A true CN106654526A (en) | 2017-05-10 |
Family
ID=58812129
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611055749.1A Pending CN106654526A (en) | 2016-11-25 | 2016-11-25 | Lower-specific absorption rate circular polarization conformable antenna and manufacturing method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106654526A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107317118A (en) * | 2017-05-22 | 2017-11-03 | 浙江大学 | A kind of novel tunable high-gain aerial reflecting plate |
CN107799892A (en) * | 2017-09-29 | 2018-03-13 | 深圳大学 | Super-surface magnetoelectric dipole antenna with stacked dielectric plates |
CN107819203A (en) * | 2017-09-29 | 2018-03-20 | 深圳大学 | A kind of magnetoelectricity dipole antenna of super surface dielectric plate |
CN108649339A (en) * | 2018-05-10 | 2018-10-12 | 佛山市顺德区中山大学研究院 | One kind is from phase shift dual-band dual-circular polarization cross dipole antenna |
CN108960393A (en) * | 2018-07-06 | 2018-12-07 | 华大半导体有限公司 | A kind of flat circle polarized electron label |
CN109102056A (en) * | 2018-07-06 | 2018-12-28 | 华大半导体有限公司 | A kind of circular polarisation electronic tag |
CN110931948A (en) * | 2018-09-20 | 2020-03-27 | 中车株洲电力机车研究所有限公司 | Train conformal multifunctional antenna design method |
CN112736406A (en) * | 2020-12-31 | 2021-04-30 | 天津大学 | Magnetic drive antenna based on folding magnetic film |
CN112928488A (en) * | 2021-01-25 | 2021-06-08 | 西安电子科技大学 | Low-profile circularly polarized navigation antenna based on sector-shaped periodic high-impedance surface |
CN114389023A (en) * | 2021-12-29 | 2022-04-22 | 浙江清华柔性电子技术研究院 | Antenna structure, electronic device, and preparation method of antenna structure |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002280829A (en) * | 2001-03-21 | 2002-09-27 | Ee C Ii Tec Kk | Antenna system |
JP2003249820A (en) * | 2002-02-22 | 2003-09-05 | Sharp Corp | Wireless communication device |
US20060250317A1 (en) * | 2005-05-03 | 2006-11-09 | Regala Florenio P | Conformal driveshaft cover SATCOM antenna |
US20110241972A1 (en) * | 2010-03-30 | 2011-10-06 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Leaky-wave antenna |
CN203039097U (en) * | 2012-11-27 | 2013-07-03 | 中兴通讯股份有限公司 | Circularly polarized leaky-wave antenna |
CN105206931A (en) * | 2015-08-19 | 2015-12-30 | 南京理工大学 | Efficient microstrip antenna based on non-periodic artificial magnetic conductor structure |
CN105742808A (en) * | 2016-05-06 | 2016-07-06 | 上海航天测控通信研究所 | Circularly-polarized microstrip antenna |
CN106025560A (en) * | 2016-07-08 | 2016-10-12 | 西安电子科技大学 | EBG structure based low profile ultra-wideband circularly polarized antenna |
-
2016
- 2016-11-25 CN CN201611055749.1A patent/CN106654526A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002280829A (en) * | 2001-03-21 | 2002-09-27 | Ee C Ii Tec Kk | Antenna system |
JP2003249820A (en) * | 2002-02-22 | 2003-09-05 | Sharp Corp | Wireless communication device |
US20060250317A1 (en) * | 2005-05-03 | 2006-11-09 | Regala Florenio P | Conformal driveshaft cover SATCOM antenna |
US20110241972A1 (en) * | 2010-03-30 | 2011-10-06 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Leaky-wave antenna |
CN203039097U (en) * | 2012-11-27 | 2013-07-03 | 中兴通讯股份有限公司 | Circularly polarized leaky-wave antenna |
CN105206931A (en) * | 2015-08-19 | 2015-12-30 | 南京理工大学 | Efficient microstrip antenna based on non-periodic artificial magnetic conductor structure |
CN105742808A (en) * | 2016-05-06 | 2016-07-06 | 上海航天测控通信研究所 | Circularly-polarized microstrip antenna |
CN106025560A (en) * | 2016-07-08 | 2016-10-12 | 西安电子科技大学 | EBG structure based low profile ultra-wideband circularly polarized antenna |
Non-Patent Citations (4)
Title |
---|
BEHROUZ BABAKHANI ETC.: ""Wideband Circularly Polarized Fan-Shaped Antenna On a HIS Structure"", 《2016 IEEE INERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION(APSURSI)》 * |
IKMO PARK ETC.: ""Applications of Circularly Polarized Crossed Dipole Antennas"", 《2014 INTERNATIONAL WORKSHOP ON ANTENNA TECHNOOLOGY》 * |
SON XUAT TA ETC.: ""Circularly Polarized Crossed Dipole on an HIS for 2.4/5.2/5.8-GHz WLAN Applications"", 《IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS》 * |
SON XUAT TA ETC.: ""Circularly Polarized Dual-band Crossed Dipole Antenna on an Artificial Magnetic Conductor Reflector"", 《7TH INTERNATIONAL CONGRESS ON ADVANCED ELECTROMAGNETIC MATERALS IN MICROWAVES AND OPTICS-METAMATERALS 2013》 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107317118A (en) * | 2017-05-22 | 2017-11-03 | 浙江大学 | A kind of novel tunable high-gain aerial reflecting plate |
CN107317118B (en) * | 2017-05-22 | 2020-07-10 | 浙江大学 | A Novel Tunable High Gain Antenna Reflector |
CN107799892B (en) * | 2017-09-29 | 2019-12-27 | 深圳大学 | Super-surface magnetoelectric dipole antenna with stacked dielectric plates |
CN107799892A (en) * | 2017-09-29 | 2018-03-13 | 深圳大学 | Super-surface magnetoelectric dipole antenna with stacked dielectric plates |
CN107819203A (en) * | 2017-09-29 | 2018-03-20 | 深圳大学 | A kind of magnetoelectricity dipole antenna of super surface dielectric plate |
CN108649339A (en) * | 2018-05-10 | 2018-10-12 | 佛山市顺德区中山大学研究院 | One kind is from phase shift dual-band dual-circular polarization cross dipole antenna |
CN108649339B (en) * | 2018-05-10 | 2021-04-06 | 佛山市顺德区中山大学研究院 | Self-phase-shift dual-frequency dual-circular polarization crossed dipole antenna |
CN109102056A (en) * | 2018-07-06 | 2018-12-28 | 华大半导体有限公司 | A kind of circular polarisation electronic tag |
CN108960393A (en) * | 2018-07-06 | 2018-12-07 | 华大半导体有限公司 | A kind of flat circle polarized electron label |
CN110931948A (en) * | 2018-09-20 | 2020-03-27 | 中车株洲电力机车研究所有限公司 | Train conformal multifunctional antenna design method |
CN110931948B (en) * | 2018-09-20 | 2021-12-24 | 中车株洲电力机车研究所有限公司 | Train conformal multifunctional antenna design method |
CN112736406A (en) * | 2020-12-31 | 2021-04-30 | 天津大学 | Magnetic drive antenna based on folding magnetic film |
CN112736406B (en) * | 2020-12-31 | 2021-11-12 | 天津大学 | Magnetically driven antenna based on folded magnetic film |
CN112928488A (en) * | 2021-01-25 | 2021-06-08 | 西安电子科技大学 | Low-profile circularly polarized navigation antenna based on sector-shaped periodic high-impedance surface |
CN114389023A (en) * | 2021-12-29 | 2022-04-22 | 浙江清华柔性电子技术研究院 | Antenna structure, electronic device, and preparation method of antenna structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106654526A (en) | Lower-specific absorption rate circular polarization conformable antenna and manufacturing method | |
CN102130376B (en) | A Three-band Dielectric Resonant Antenna Feed by Microstrip Slot Coupling | |
JP6172553B2 (en) | Multiple antenna system and mobile terminal | |
CN103346392B (en) | Mobile phone antenna with reconfigurable directional diagram | |
US20180269577A1 (en) | Multiband antenna and wireless communication device | |
TW200919826A (en) | Antenna structure and antenna radome thereof | |
JPWO2016121375A1 (en) | Frequency selection surface, radio communication device and radar device | |
JP6583901B2 (en) | Monopole antenna | |
KR101728470B1 (en) | Dual band circularly polarized antenna using artificial magnetic conductor | |
CN103199336B (en) | Double-frame and notched four-bridge bridging microstrip antenna applied to compass system | |
CN107275765A (en) | It is a kind of from the broadband circle polarized cross dipole antenna of phase shift | |
CN105071052B (en) | A kind of planar complementary oscillator circular polarized antenna | |
CN114336024B (en) | Broadband circularly polarized planar antenna array applied to millimeter wave communication system | |
CN114243266A (en) | Antenna and communication apparatus | |
CN102769183B (en) | Quadruple spiral distribution loading oscillator microstrip antenna applied to Beidou system | |
CN105048079A (en) | Omnidirectional circular polarization plane antenna | |
CN111244626B (en) | GNSS full-band satellite positioning terminal antenna | |
CN105161829A (en) | Air circular circularly-polarized antenna | |
TWI245454B (en) | Low sidelobes dual band and broadband flat endfire antenna | |
CN106159435B (en) | An ultra-wideband fractal antenna | |
CN115775971A (en) | Dual-frequency broadband high-gain printed omnidirectional antenna based on multimode resonance | |
CN109149087B (en) | A low-profile high-gain ultra-wideband antenna | |
US9774090B2 (en) | Ultra-wide band antenna | |
CN112382850B (en) | Miniaturized yagi antenna suitable for 5G communication and manufacturing method thereof | |
CN111446543B (en) | An extremely small frequency ratio single-fed dual circularly polarized directional antenna and antenna system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170510 |
|
RJ01 | Rejection of invention patent application after publication |