CN106649996B - Consider the multi-axis milling tool axis modeling method of cutter bounce - Google Patents
Consider the multi-axis milling tool axis modeling method of cutter bounce Download PDFInfo
- Publication number
- CN106649996B CN106649996B CN201611018614.8A CN201611018614A CN106649996B CN 106649996 B CN106649996 B CN 106649996B CN 201611018614 A CN201611018614 A CN 201611018614A CN 106649996 B CN106649996 B CN 106649996B
- Authority
- CN
- China
- Prior art keywords
- axis
- coordinate system
- tool
- spindle
- center
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003801 milling Methods 0.000 title claims abstract description 52
- 238000000034 method Methods 0.000 title claims abstract description 16
- 238000005259 measurement Methods 0.000 claims abstract description 38
- 238000009434 installation Methods 0.000 claims abstract description 31
- 230000009466 transformation Effects 0.000 claims description 16
- 239000011159 matrix material Substances 0.000 claims description 15
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 238000013461 design Methods 0.000 claims description 3
- 239000002245 particle Substances 0.000 abstract description 15
- 238000003754 machining Methods 0.000 abstract description 7
- 230000008569 process Effects 0.000 abstract description 3
- 238000012545 processing Methods 0.000 abstract description 3
- 238000011426 transformation method Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 13
- 238000011160 research Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000005457 optimization Methods 0.000 description 5
- 230000001808 coupling effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/17—Mechanical parametric or variational design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Geometry (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Computer Hardware Design (AREA)
- General Engineering & Computer Science (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- Computational Mathematics (AREA)
- Numerical Control (AREA)
Abstract
本发明提出一种考虑刀具跳动的多轴铣削刀具轴线建模方法,给出考虑轴承内圈径向误差主轴运动模型和刀具安装误差模型,并通过建立局部坐标系表示出主轴系统各部件及其误差,然后采用坐标变换方法得出主轴运动误差、刀柄与弹簧夹头安装误差的刀具轴线运动模型。本发明在考虑主轴运动误差与刀具安装误差对铣削刀具轴线运动影响的情况下,解决了刀具轴线运动模型的数学建模问题,使用粒子群算法对模型中的未知参数进行标定。本发明建立的模型能够清晰描述主轴运动,提出的参数标定方法具有测量过程简便,数据处理快速特点,并且为抑制刀具跳动和提高加工精度提供理论基础,从而在机械加工过程中可以根据该模型对各个零部件所引入的误差进行分析。
The invention proposes a multi-axis milling tool axis modeling method considering tool runout, provides a spindle motion model and a tool installation error model considering the radial error of the bearing inner ring, and establishes a local coordinate system to represent the components of the spindle system and their Then, the coordinate transformation method is used to obtain the tool axis motion model of the spindle motion error and the installation error of the tool holder and the collet. The invention solves the mathematical modeling problem of the tool axis motion model under the consideration of the influence of the spindle motion error and the tool installation error on the axis motion of the milling tool, and uses the particle swarm algorithm to calibrate the unknown parameters in the model. The model established by the invention can clearly describe the motion of the main shaft, and the proposed parameter calibration method has the characteristics of simple measurement process and fast data processing, and provides a theoretical basis for suppressing tool runout and improving machining accuracy, so that the model can be used in the machining process. Errors introduced by each component are analyzed.
Description
技术领域technical field
本发明属于多轴数控加工的技术领域,涉及到考虑机床主轴运动误差与刀具安装误差的铣削刀具轴线运动建模问题的研究,具体为一种考虑刀具跳动的多轴铣削刀具轴线建模方法。The invention belongs to the technical field of multi-axis numerical control machining, and relates to the research on the problem of modeling the axis motion of a milling tool considering the movement error of the machine tool spindle and the installation error of the tool, in particular to a multi-axis milling tool axis modeling method considering the tool runout.
背景技术Background technique
在数控加工中,刀具跳动会导致刀具轴线的瞬时位姿偏离理想状态,改变刀具与工件之间的相对位置关系,引起每齿切厚不均匀,容易产生过切、欠切等现象。刀具跳动无法彻底避免,严重地制约了加工精度的进一步提高。在有刀具跳动的情况下,建立刀具轴线运动模型成为了当前研究的热点问题之一。由于机床主轴、刀柄以及刀具存在制造与安装的误差,所以在铣削过程中不可避免地存在刀具回转轴线与刀具轴线不重合的现象,通常使用若干个位置参数来定义刀具轴线与刀具回转轴线的相对位置,并描述刀具轴线的运动。In CNC machining, tool runout will cause the instantaneous pose of the tool axis to deviate from the ideal state, change the relative positional relationship between the tool and the workpiece, and cause uneven cutting thickness of each tooth, which is prone to over-cut, under-cut and other phenomena. Tool runout cannot be completely avoided, which seriously restricts the further improvement of machining accuracy. In the case of tool runout, establishing a tool axis motion model has become one of the hotspots in current research. Due to the manufacturing and installation errors of the machine tool spindle, tool holder and tool, it is inevitable that the tool axis of rotation does not coincide with the tool axis during the milling process. Usually, several position parameters are used to define the relationship between the tool axis and the tool axis of rotation. relative position and describe the motion of the tool axis.
在现有的研究中,并没有将机床主轴运动误差与刀具安装误差作为研究对象有效地集成。上海交通大学的研究将刀具跳动简化为包括偏心距ρ、偏心角λ、倾斜角τ和扭转角φ等参数的模型,并通过实验数据进行标定。这种方式虽然便于理解和描述刀具跳动现象,但不利于进一步阐明刀具装夹系统制造、安装误差对刀具跳动的耦合作用及物理意义,也不利于建立各误差因素与刀具跳动的定量、精确关系。In the existing research, the machine tool spindle motion error and tool installation error are not effectively integrated as research objects. The research of Shanghai Jiaotong University simplified the tool runout into a model including parameters such as eccentric distance ρ, eccentric angle λ, inclination angle τ and torsion angle φ, and calibrated with experimental data. Although this method is easy to understand and describe the phenomenon of tool runout, it is not conducive to further clarifying the coupling effect and physical significance of tool clamping system manufacturing and installation errors on tool runout, and is not conducive to establishing a quantitative and accurate relationship between various error factors and tool runout .
为了解决因机床主轴运动误差与刀具安装误差的铣削刀具轴线运动建模的难题,本发明将主轴动态误差分析仪金属标准球的运动轨迹作为铣削刀具轴线运动轨迹,建立了主轴运动误差与刀具安装误差模型,分析了铣削刀具轴线运动的影响,从而得出了刀具轴线运动模型,并使用优化算法标定了模型中未知参数。通过实验验证可以看到本文所建立的模型能够清晰地描述主轴的运动,所提出的参数标定方法具有测量过程简便,数据处理快速的特点。In order to solve the problem of modeling the axis motion of the milling tool due to the motion error of the machine tool spindle and the tool installation error, the present invention uses the motion trajectory of the metal standard ball of the spindle dynamic error analyzer as the axis motion trajectory of the milling tool, and establishes the spindle motion error and the tool installation. The error model was used to analyze the influence of the axis movement of the milling tool, and the tool axis movement model was obtained, and the unknown parameters in the model were calibrated using the optimization algorithm. Through the experimental verification, it can be seen that the model established in this paper can clearly describe the motion of the main shaft. The proposed parameter calibration method has the characteristics of simple measurement process and fast data processing.
发明内容SUMMARY OF THE INVENTION
本发明给出一种主轴运动误差建模与刀具安装误差建模的研究方法。在考虑主轴运动误差与刀具安装误差对铣削刀具轴线运动影响的情况下,解决了刀具轴线运动模型的数学建模问题,并使用粒子群算法对模型中的未知参数进行了标定。本发明所建立的模型能够清晰地描述主轴的运动,提出的参数标定方法具有测量过程简便,数据处理快速的特点,并且为抑制刀具跳动和提高加工精度提供了理论基础,从而在机械加工过程中可以根据该模型对各个零部件所引入的误差进行分析。The invention provides a research method of the spindle motion error modeling and the tool installation error modeling. Considering the influence of the spindle motion error and tool installation error on the axis motion of the milling tool, the mathematical modeling problem of the tool axis motion model is solved, and the unknown parameters in the model are calibrated using the particle swarm algorithm. The model established by the invention can clearly describe the movement of the main shaft, and the proposed parameter calibration method has the characteristics of simple measurement process and fast data processing, and provides a theoretical basis for suppressing tool runout and improving machining accuracy, so that in the machining process The error introduced by each component can be analyzed according to the model.
本发明的技术方案为:The technical scheme of the present invention is:
本发明首先给出考虑轴承内圈径向误差主轴运动模型和刀具安装误差模型,并通过建立局部坐标系表示出主轴系统各部件及其误差,然后采用坐标变换得方法得出主轴运动误差、刀柄与弹簧夹头安装误差的刀具轴线运动模型。The present invention firstly provides a spindle motion model and a tool installation error model considering the radial error of the bearing inner ring, establishes a local coordinate system to represent the components of the spindle system and their errors, and then uses a coordinate transformation method to obtain the spindle motion error, tool The tool axis kinematic model for the installation error between the shank and the collet.
所述一种考虑刀具跳动的多轴铣削刀具轴线建模方法,其特征在于:包括以下步骤:The method for modeling the axis of a multi-axis milling tool considering tool runout is characterized by comprising the following steps:
步骤1:在多轴立式铣削加工中心前端轴承安装位置建立坐标系CS1,其中前端轴承孔处圆心为CS1的坐标原点O1,CS1的X1、Y1、Z1轴分别与机床坐标系CS0的X0、Y0、Z0轴平行;Step 1: Establish a coordinate system CS1 at the installation position of the front end bearing of the multi-axis vertical milling machining center, where the center of the front end bearing hole is the coordinate origin O 1 of CS1, and the X 1 , Y 1 , and Z 1 axes of CS1 are respectively related to the machine tool coordinate system The X 0 , Y 0 , Z 0 axes of CS0 are parallel;
在坐标系CS1中,建立后端轴承位置处主轴轴心A1运动轨迹的参数方程为In the coordinate system CS1, the parameter equation for establishing the motion trajectory of the spindle axis A1 at the rear bearing position is as follows:
建立前端轴承位置处主轴轴心A2运动轨迹的参数方程为 The parametric equation for establishing the motion trajectory of the spindle axis A2 at the position of the front end bearing is as follows
其中,h为前端轴承与后端轴承安装位置间距,ω为主轴转速;a1、a2、b1与b2为描述主轴运动的径向参数,θ1、θ2为描述主轴运动的角度参数;Among them, h is the distance between the installation position of the front end bearing and the rear end bearing, ω is the spindle speed; a 1 , a 2 , b 1 and b 2 are the radial parameters describing the motion of the spindle, and θ 1 and θ 2 are the angles describing the motion of the spindle parameter;
建立坐标系CS2,取机床主轴底端中心为CS2的坐标原点O2,主轴轴线方向为CS2的Z2轴方向,主轴底端平面P2为CS2的X2Y2平面,O1A2与A1A2两直线所在平面P1与平面P2的交线为CS2的X2轴,得到坐标系CS2到坐标系CS1的变换矩阵M21为Establish a coordinate system CS2, take the center of the bottom end of the machine tool spindle as the coordinate origin O 2 of CS2, the axis direction of the spindle is the Z 2 axis direction of CS2, the plane P 2 of the bottom end of the spindle is the X 2 Y 2 plane of CS2, O 1 A 2 and the A 1 A 2 The intersection of the plane P 1 and the plane P 2 where the two straight lines are located is the X 2 axis of CS2, and the transformation matrix M 21 from the coordinate system CS2 to the coordinate system CS1 is obtained as
其中a2,x,b2,x,c2,x是CS2坐标系的X2轴在坐标系CS1中的方向余弦,a2,y,b2,y,c2,y是CS2坐标系的Y2轴在坐标系CS1中的方向余弦,a2,z,b2,z,c2,z是CS2坐标系的Z2轴在坐标系CS1中的方向余弦,与为原点O2在坐标系CS1中坐标:where a 2,x , b 2,x , c 2,x are the cosine of the direction of the X 2 axis of the CS2 coordinate system in the coordinate system CS1, a 2,y , b 2,y , c 2,y are the CS2 coordinate system The direction cosine of the Y 2 axis in the coordinate system CS1, a 2,z , b 2,z , c 2,z is the direction cosine of the Z 2 axis of the CS2 coordinate system in the coordinate system CS1, and Coordinates for the origin O 2 in the coordinate system CS1:
l1为A1与A2的间距,l2为A2与O2的间距;l 1 is the distance between A 1 and A 2 , and l 2 is the distance between A 2 and O 2 ;
步骤2:在多轴立式铣削加工中心刀柄下端面处建立坐标系CS3,取刀柄下端面中心为CS3的坐标原点O3,刀柄轴线作为CS3的Z3轴,CS3的X3轴、Y3轴分别平行于CS2轴的X2轴、Y2轴,刀柄下端面中心与主轴下端面中心的距离为l3+Δ3,其中刀柄下端面中心与主轴下端面中心的设计距离为l3,Δ3为刀柄的制造误差;得到CS3与CS2的变换矩阵M32为:Step 2: Establish a coordinate system CS3 at the lower end face of the tool holder of the multi-axis vertical milling machining center, take the center of the lower end face of the tool holder as the coordinate origin O 3 of CS3, the tool holder axis as the Z 3 axis of CS3, and the X 3 axis of CS3 , Y 3 axes are respectively parallel to X 2 axis and Y 2 axis of CS2 axis, the distance between the center of the lower end surface of the tool holder and the center of the lower end surface of the spindle is l 3 +Δ 3 , among which the design of the center of the lower end surface of the tool holder and the center of the lower end surface of the spindle The distance is l 3 , and Δ 3 is the manufacturing error of the tool holder; the transformation matrix M 32 of CS3 and CS2 is obtained as:
步骤3:建立坐标系CS4,取多轴立式铣削加工中心弹簧夹头下端面中心为CS4的原点O4,弹簧夹头的下端面为CS4的X4Y4平面Π1,过点O4且与坐标系CS3的X3Z3平面平行的平面为Π2,Π1与Π2的交线为CS4的X4轴,弹簧夹头轴线为CS4的Z4轴;得到坐标系CS4到坐标系CS3的变换矩阵为:Step 3: Establish coordinate system CS4, take the center of the lower end face of the collet of the multi-axis vertical milling machining center as the origin O 4 of CS4, and the lower end face of the collet as the X 4 Y 4 plane Π 1 of CS4, passing through the point O 4 And the plane parallel to the X 3 Z 3 plane of the coordinate system CS3 is Π 2 , the intersection of Π 1 and Π 2 is the X 4 axis of CS4, and the collet axis is the Z 4 axis of CS4; obtain the coordinate system CS4 to coordinate The transformation matrix of CS3 is:
其中a4,x,b4,x,c4,x分别是CS4坐标系的X4轴在坐标系CS3中的方向余弦,a4,y,b4,y,c4,y分别是CS4坐标系的Y4轴在坐标系CS3中的方向余弦,a4,z,b4,z,c4,z分别是CS4坐标系的Z4轴在坐标系CS3中的方向余弦;与为原点O4在坐标系CS3中坐标;考虑弹簧夹头的安装误差,采用参数ρ1、φ1、ρ2、φ2,为参数描述原点O4在CS3下的坐标:Where a 4,x , b 4,x , c 4,x are the direction cosine of the X 4 axis of the CS4 coordinate system in the coordinate system CS3, respectively, a 4,y , b 4,y , c 4,y are CS4 The direction cosine of the Y 4 axis of the coordinate system in the coordinate system CS3, a 4,z , b 4,z , c 4,z are the direction cosine of the Z 4 axis of the CS4 coordinate system in the coordinate system CS3; and is the coordinate of the origin O 4 in the coordinate system CS3; considering the installation error of the collet chuck, the parameters ρ 1 , φ 1 , ρ 2 , φ 2 are used, Describe the coordinates of the origin O 4 under CS3 for the parameters:
点表示弹簧夹头上端面中心,lchuck为弹簧夹头的长度;point Indicates the center of the upper end face of the spring chuck, l chuck is the length of the spring chuck;
步骤4:沿着弹簧夹头下端面轴线安装铣刀,铣刀轴线位于CS4的Z4轴上,铣刀底部中心距离CS4原点O4的距离为lc;建立刀具坐标系CS5,取铣刀底部中心为CS5原点O5,且CS5的X5轴、Y5轴与Z5轴分别平行与CS4的X4轴、Y4轴与Z4轴;得到CS5到CS4的变换矩阵为:Step 4: Install the milling cutter along the axis of the lower end face of the collet, the milling cutter axis is located on the Z4 axis of CS4, and the distance between the bottom center of the milling cutter and the CS4 origin O4 is l c ; establish the tool coordinate system CS5, take the milling cutter The bottom center is the CS5 origin O 5 , and the X 5 axis, Y 5 axis and Z 5 axis of CS5 are respectively parallel to the X 4 axis, Y 4 axis and Z 4 axis of CS4; the transformation matrix obtained from CS5 to CS4 is:
得到在坐标系CS1下,铣刀底部中心处O5的运动轨迹为:The motion trajectory of O 5 at the center of the bottom of the milling cutter under the coordinate system CS1 is obtained as:
与为铣刀底部中心O5在坐标系CS1中坐标; and It is the coordinate of the bottom center O 5 of the milling cutter in the coordinate system CS1;
步骤5:在多轴立式铣削加工中心上安装主轴动态误差分析仪;建立测量坐标系CSM,取测量坐标系CSM的原点为主轴动态误差分析仪的测量零点,测量坐标系CSM的XM轴、YM轴与ZM轴分别平行与CS1的X1轴、Y1轴与Z1轴;得到坐标系CS1与坐标系CSM的变换矩阵为:Step 5: Install the spindle dynamic error analyzer on the multi-axis vertical milling machining center; establish the measurement coordinate system CSM, take the origin of the measurement coordinate system CSM as the measurement zero point of the spindle dynamic error analyzer, and measure the X and M axes of the coordinate system CSM , Y M axis and Z M axis are respectively parallel to the X 1 axis, Y 1 axis and Z 1 axis of CS1; the transformation matrix of the coordinate system CS1 and the coordinate system CSM is obtained as:
则主轴动态误差分析仪测得的第i个测量点mi在测量坐标系下的坐标表示为Then the coordinates of the i-th measurement point m i measured by the spindle dynamic error analyzer in the measurement coordinate system Expressed as
而为CS1的原点在测量坐标系CSM中的坐标,用主轴动态误差分析仪的测量结果表示为:and is the coordinate of the origin of CS1 in the measurement coordinate system CSM, and the measurement result of the spindle dynamic error analyzer is expressed as:
其中Nm为主轴动态误差分析仪的测量点个数,zs,1为主轴动态误差分析仪在Z1轴的安装位置;Among them, N m is the number of measurement points of the spindle dynamic error analyzer, and z s,1 is the installation position of the spindle dynamic error analyzer on the Z 1 axis;
步骤7:等间距选取用参数表示的刀具轴线运动模型所生成的轨迹上的若干点p1、p2、…、pn;然后计算第i个测量点mi与p1、p2、…、pn的距离,将距离最小值的点选为测量点mi在轨迹上对应点;取目标函数为Step 7 : Select several points p 1 , p 2 , . , p n , the point with the minimum distance is selected as the corresponding point on the trajectory of the measurement point m i ; the objective function is taken as
其中mi(x,y,z)为第i个测量点在坐标系CSM下的坐标,pk(x,y,z)为测量点mi在轨迹上对应点坐标系CSM下的坐标;where m i (x, y, z) is the coordinate of the i-th measurement point under the coordinate system CSM, and p k (x, y, z) is the coordinate of the measurement point m i under the coordinate system CSM of the corresponding point on the trajectory;
对目标函数进行优化求解得到刀具轴线运动模型的参数值,进而根据确定的刀具轴线运动模型得到铣刀底部中心O5和弹簧夹头下端面中心O4的运动轨迹,根据O5和O4的运动轨迹确定刀具轴线的方向向量。The objective function is optimized and solved to obtain the parameter values of the tool axis motion model, and then the motion trajectories of the bottom center O5 of the milling cutter and the center O4 of the lower end face of the collet chuck are obtained according to the determined tool axis motion model . The motion path determines the direction vector of the tool axis.
有益效果beneficial effect
本发明在考虑主轴运动误差与刀具安装误差对铣削刀具轴线运动的影响的情况下,解决了刀具轴线运动模型的数学建模问题。所建立的主轴误差模型揭示了刀具装夹系统制造、安装误差对刀具跳动的耦合作用规律,建立了各误差元素与刀具跳动的定量、精确关系,克服了用四个参数描述刀具跳动的缺点。最后,本发明在综合地考虑这些零部件制造标准之后,使用坐标变换的方法有效的解决了不同零部件安装误差模型的难题,清楚的描述了刀具跳动的原因与主轴的运动,为抑制刀具跳动提供了理论基础和模型。The present invention solves the problem of mathematical modeling of the tool axis motion model under the consideration of the influence of the spindle motion error and the tool installation error on the axis motion of the milling tool. The established spindle error model reveals the coupling effect of the tool clamping system manufacturing and installation errors on the tool runout, establishes the quantitative and accurate relationship between each error element and the tool runout, and overcomes the disadvantage of using four parameters to describe the tool runout. Finally, after comprehensively considering the manufacturing standards of these parts, the present invention uses the method of coordinate transformation to effectively solve the problem of different parts installation error models, and clearly describes the cause of the tool runout and the movement of the spindle, in order to suppress the tool runout The theoretical basis and models are provided.
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。Additional aspects and advantages of the present invention will be set forth, in part, from the following description, and in part will be apparent from the following description, or may be learned by practice of the invention.
附图说明Description of drawings
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:The above and/or additional aspects and advantages of the present invention will become apparent and readily understood from the following description of embodiments taken in conjunction with the accompanying drawings, wherein:
图1:坐标系CS1与CS2定义示意图;其中:1.前端轴承2.轴套3.旋转主轴4.拉钉5.后端轴承;Figure 1: Schematic diagram of the definition of coordinate systems CS1 and CS2; among them: 1. Front end bearing 2. Bushing 3. Rotating spindle 4. Pull stud 5. Back end bearing;
图2:三轴立式铣削加工中心以及坐标系CS1与CS2示意图;Figure 2: Schematic diagram of three-axis vertical milling machining center and coordinate systems CS1 and CS2;
图3:坐标系CS2定义示意图;Figure 3: Schematic diagram of the definition of coordinate system CS2;
图4:主轴、刀柄、弹簧夹头、刀具示意图;Figure 4: Schematic diagram of spindle, tool holder, collet chuck and tool;
图5:弹簧夹头位置以及CS4定义示意图:(a)弹簧夹头示意图(b)CS4定义示意图;Figure 5: The position of the collet and the schematic diagram of the definition of CS4: (a) the schematic diagram of the collet (b) the schematic diagram of the definition of CS4;
图6:参数ρ1,φ1,ρ2,φ2定义示意图;Figure 6: Schematic diagram of the definition of parameters ρ 1 , φ 1 , ρ 2 , φ 2 ;
图7:目标函数示意图;Figure 7: Schematic diagram of the objective function;
图8:基于粒子群算法的目标函数收敛示意图;Figure 8: Schematic diagram of objective function convergence based on particle swarm optimization;
图9:刀具主轴轴线运动示意图;Figure 9: Schematic diagram of tool spindle axis movement;
图10:刀具底端中心运动仿真与实验结果示意图(Test No.1、Test No.2、TestNo.3、Test No.4);Figure 10: Schematic diagram of tool bottom center motion simulation and experimental results (Test No.1, Test No.2, TestNo.3, Test No.4);
图11:刀具轴线运动仿真结果示意图。Figure 11: Schematic diagram of the tool axis motion simulation results.
具体实施方式Detailed ways
下面详细描述本发明的实施例,所述实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。The embodiments of the present invention are described in detail below, and the embodiments are exemplary and intended to explain the present invention, but should not be construed as a limitation of the present invention.
本实施例采用的机床为山东永华YHVT850Z,该机床使用主轴为台湾罗羿1453448000型主轴,该主轴使用的是P4精度的角接触轴承。根据标准GB/T 307.2-2005中角接触轴承的径向跳动精度,可以确定参数约束条件0≤a1≤4,0≤b1≤4,0≤a2≤4,0≤b2≤4,(单位:微米)。根据GB/T 25378-2010中弹簧夹头的制造公差,可以确定参数约束条件0≤ρ1≤20,0≤ρ2≤20(单位:微米)。根据GB 10944.1-2006/ISO 7388-1:1983,可以确定-300≤Δ3≤0(单位:微米)。除了以上约束之外,其他角度位置约束均为[0,2π]。The machine tool used in this embodiment is Shandong Yonghua YHVT850Z, the spindle used in this machine tool is Taiwan Luoyi 1453448000 spindle, and the spindle uses a P4 precision angular contact bearing. According to the radial runout accuracy of angular contact bearings in the standard GB/T 307.2-2005, the parameter constraints 0≤a 1 ≤4, 0≤b 1 ≤4, 0≤a 2 ≤4, 0≤b 2 ≤4 can be determined , (unit: micrometer). According to the manufacturing tolerance of the spring collet in GB/T 25378-2010, the parameter constraint conditions 0≤ρ 1 ≤20, 0≤ρ 2 ≤20 (unit: micron) can be determined. According to GB 10944.1-2006/ISO 7388-1:1983, it can be determined that -300≤Δ3≤0 (unit: micron). Except for the above constraints, all other angular position constraints are [0, 2π].
具体的方法步骤如下:The specific method steps are as follows:
步骤1:如图1和图2所示,在三轴立式铣削加工中心前端轴承安装位置建立坐标系CS1,其中前端轴承孔处(图1中B处)圆心为CS1的坐标原点O1,CS1的X1、Y1、Z1轴分别与机床坐标系CS0的X0、Y0、Z0轴平行;Step 1: As shown in Figure 1 and Figure 2, establish a coordinate system CS1 at the installation position of the front end bearing of the three-axis vertical milling machining center, where the center of the front end bearing hole (B in Figure 1) is the coordinate origin O 1 of CS1, The X 1 , Y 1 , Z 1 axes of CS1 are respectively parallel to the X 0 , Y 0 , Z 0 axes of the machine tool coordinate system CS0;
如图3所示,后端轴承位置处的主轴轴心为A1,前端轴承位置处的主轴轴心为A2,由于轴承内圈存在径向偏心误差,所以A1与A2会偏离理想位置。在坐标系CS1中,建立后端轴承位置处主轴轴心A1运动轨迹的参数方程为As shown in Figure 3, the spindle axis at the rear bearing position is A 1 , and the spindle axis at the front bearing position is A 2 . Due to the radial eccentricity error of the inner ring of the bearing, A 1 and A 2 will deviate from the ideal. Location. In the coordinate system CS1, the parameter equation for establishing the motion trajectory of the spindle axis A1 at the rear bearing position is as follows:
建立前端轴承位置处主轴轴心A2运动轨迹的参数方程为 The parametric equation for establishing the motion trajectory of the spindle axis A2 at the position of the front end bearing is as follows
其中,h为前端轴承与后端轴承安装位置间距,ω为主轴转速;a1、a2、b1与b2为描述主轴运动的径向参数,θ1、θ2为描述主轴运动的角度参数;Among them, h is the distance between the installation position of the front end bearing and the rear end bearing, ω is the spindle speed; a 1 , a 2 , b 1 and b 2 are the radial parameters describing the motion of the spindle, and θ 1 and θ 2 are the angles describing the motion of the spindle parameter;
在机床主轴底端(图1中C处)建立坐标系CS2,取机床主轴底端中心为CS2的坐标原点O2,主轴轴线方向为CS2的Z2轴方向,主轴底端平面P2为CS2的X2Y2平面,O1A2与A1A2两直线所在平面P1与平面P2的交线为CS2的X2轴,显然通过计算CS2的Z2轴与X2轴的外积可以得到CS2的Y2轴的方向向量;得到坐标系CS2到坐标系CS1的变换矩阵M21为The coordinate system CS2 is established at the bottom end of the machine tool spindle (C in Figure 1), the center of the bottom end of the machine tool spindle is taken as the coordinate origin O 2 of CS2, the axis direction of the spindle is the Z 2 axis direction of CS2, and the plane P 2 of the bottom end of the spindle is CS2 The X 2 Y 2 plane, the intersection of the plane P 1 and the plane P 2 where the two straight lines O 1 A 2 and A 1 A 2 are located is the X 2 axis of CS2. Obviously, by calculating the outside of the Z 2 axis of CS2 and the X 2 axis The product can get the direction vector of the Y 2 axis of CS2; the transformation matrix M 21 from the coordinate system CS2 to the coordinate system CS1 is obtained as
其中a2,x,b2,x,c2,x是CS2坐标系的X2轴在坐标系CS1中的方向余弦,a2,y,b2,y,c2,y是CS2坐标系的Y2轴在坐标系CS1中的方向余弦,a2,z,b2,z,c2,z是CS2坐标系的Z2轴在坐标系CS1中的方向余弦,与为原点O2在坐标系CS1中坐标:where a 2,x , b 2,x , c 2,x are the cosine of the direction of the X 2 axis of the CS2 coordinate system in the coordinate system CS1, a 2,y , b 2,y , c 2,y are the CS2 coordinate system The direction cosine of the Y 2 axis in the coordinate system CS1, a 2,z , b 2,z , c 2,z is the direction cosine of the Z 2 axis of the CS2 coordinate system in the coordinate system CS1, and Coordinates for the origin O 2 in the coordinate system CS1:
l1为为图3中A1与A2的间距,l2为为图3中A2与O2的间距;相关数据可以由机床手册中查阅得到。l 1 is the distance between A 1 and A 2 in Figure 3, and l 2 is the distance between A 2 and O 2 in Figure 3; the relevant data can be obtained from the machine tool manual.
步骤2:在三轴立式铣削加工中心刀柄下端面处(图4D处)建立坐标系CS3,取刀柄下端面中心为CS3的坐标原点O3,刀柄轴线作为CS3的Z3轴,CS3的X3轴、Y3轴分别平行于CS2轴的X2轴、Y2轴,刀柄下端面中心与主轴下端面中心的距离为l3+Δ3,其中刀柄下端面中心与主轴下端面中心的设计距离为l3,Δ3为刀柄的制造误差;得到CS3与CS2的变换矩阵M32为:Step 2: Establish a coordinate system CS3 at the lower end face of the tool holder of the three-axis vertical milling machining center (at Figure 4D), take the center of the lower end face of the tool holder as the coordinate origin O 3 of CS3, and the axis of the tool holder as the Z 3 axis of CS3, The X 3 axis and Y 3 axis of CS3 are parallel to the X 2 axis and Y 2 axis of the CS2 axis respectively. The distance between the center of the lower end surface of the tool holder and the center of the lower end surface of the spindle is l 3 +Δ 3 , where the center of the lower end surface of the tool holder and the spindle The design distance of the center of the lower end face is l 3 , and Δ 3 is the manufacturing error of the tool holder; the transformation matrix M 32 of CS3 and CS2 is obtained as:
步骤3:建立坐标系CS4,取三轴立式铣削加工中心弹簧夹头下端面中心为CS4的原点O4,弹簧夹头的下端面为CS4的X4Y4平面Π1(图4中的E处),过点O4且与坐标系CS3的X3Z3平面平行的平面为Π2,Π1与Π2的交线为CS4的X4轴,弹簧夹头轴线为CS4的Z4轴;得到坐标系CS4到坐标系CS3的变换矩阵为:Step 3: Establish the coordinate system CS4, take the center of the lower end face of the three-axis vertical milling machining center collet as the origin O 4 of CS4, and the lower end face of the spring collet as the X 4 Y 4 plane Π 1 of CS4 (Fig. 4). E), the plane passing through point O 4 and parallel to the X 3 Z 3 plane of the coordinate system CS3 is Π 2 , the intersection of Π 1 and Π 2 is the X 4 axis of CS4, and the collet chuck axis is the Z 4 of CS4 axis; the transformation matrix from coordinate system CS4 to coordinate system CS3 is obtained as:
其中a4,x,b4,x,c4,x分别是CS4坐标系的X4轴在坐标系CS3中的方向余弦,a4,y,b4,y,c4,y分别是CS4坐标系的Y4轴在坐标系CS3中的方向余弦,a4,z,b4,z,c4,z分别是CS4坐标系的Z4轴在坐标系CS3中的方向余弦;与为原点O4在坐标系CS3中坐标;考虑弹簧夹头的安装误差,采用参数ρ1、φ1、ρ2、φ2,为参数描述原点O4在CS3下的坐标:Where a 4,x , b 4,x , c 4,x are the direction cosine of the X 4 axis of the CS4 coordinate system in the coordinate system CS3, respectively, a 4,y , b 4,y , c 4,y are CS4 The direction cosine of the Y 4 axis of the coordinate system in the coordinate system CS3, a 4,z , b 4,z , c 4,z are the direction cosine of the Z 4 axis of the CS4 coordinate system in the coordinate system CS3; and is the coordinate of the origin O 4 in the coordinate system CS3; considering the installation error of the collet chuck, the parameters ρ 1 , φ 1 , ρ 2 , φ 2 are used, Describe the coordinates of the origin O 4 under CS3 for the parameters:
点表示弹簧夹头上端面中心,lchuck为弹簧夹头的长度。point Indicates the center of the upper end face of the collet, and l chuck is the length of the collet.
步骤4:沿着弹簧夹头下端面轴线安装铣刀,铣刀轴线位于CS4的Z4轴上,铣刀底部中心距离CS4原点O4的距离为lc;建立刀具坐标系CS5,取铣刀底部中心为CS5原点O5,且CS5的X5轴、Y5轴与Z5轴分别平行与CS4的X4轴、Y4轴与Z4轴;得到CS5到CS4的变换矩阵为:Step 4: Install the milling cutter along the axis of the lower end face of the collet, the milling cutter axis is located on the Z4 axis of CS4, and the distance between the bottom center of the milling cutter and the CS4 origin O4 is l c ; establish the tool coordinate system CS5, take the milling cutter The bottom center is the CS5 origin O 5 , and the X 5 axis, Y 5 axis and Z 5 axis of CS5 are respectively parallel to the X 4 axis, Y 4 axis and Z 4 axis of CS4; the transformation matrix obtained from CS5 to CS4 is:
得到在坐标系CS1下,铣刀底部中心处O5的运动轨迹为:The motion trajectory of O 5 at the center of the bottom of the milling cutter under the coordinate system CS1 is obtained as:
与为铣刀底部中心O5在坐标系CS1中坐标。 and It is the coordinate of the bottom center O 5 of the milling cutter in the coordinate system CS1.
步骤5:在三轴立式铣削加工中心上安装主轴动态误差分析仪;建立测量坐标系CSM,取测量坐标系CSM的原点为主轴动态误差分析仪的测量零点,测量坐标系CSM的XM轴、YM轴与ZM轴分别平行与CS1的X1轴、Y1轴与Z1轴;得到坐标系CS1与坐标系CSM的变换矩阵为:Step 5: Install the spindle dynamic error analyzer on the three-axis vertical milling machining center; establish the measurement coordinate system CSM, take the origin of the measurement coordinate system CSM as the measurement zero point of the spindle dynamic error analyzer, and measure the X and M axes of the coordinate system CSM , Y M axis and Z M axis are respectively parallel to the X 1 axis, Y 1 axis and Z 1 axis of CS1; the transformation matrix of the coordinate system CS1 and the coordinate system CSM is obtained as:
则主轴动态误差分析仪测得的第i个测量点mi在测量坐标系下的坐标表示为Then the coordinates of the i-th measurement point m i measured by the spindle dynamic error analyzer in the measurement coordinate system Expressed as
而为CS1的原点在测量坐标系CSM中的坐标,考虑到主轴始终在围绕CS1的Z1轴旋转,最终刀具轴线运动模型所生成的轨迹也应该围绕CS1的Z1轴,所以用主轴动态误差分析仪的测量结果表示为:and It is the coordinate of the origin of CS1 in the measurement coordinate system CSM. Considering that the spindle always rotates around the Z 1 axis of CS1, the trajectory generated by the final tool axis motion model should also revolve around the Z 1 axis of CS1, so use the spindle dynamic error analysis The measurement results of the instrument are expressed as:
其中Nm为主轴动态误差分析仪的测量点个数,zs,1为主轴动态误差分析仪在Z1轴的安装位置。Among them, N m is the number of measurement points of the spindle dynamic error analyzer, and z s,1 is the installation position of the spindle dynamic error analyzer on the Z 1 axis.
步骤7:等间距选取用参数表示的刀具轴线运动模型所生成的轨迹上的若干点p1、p2、…、pn;然后计算第i个测量点mi与p1、p2、…、pn的距离,将距离最小值的点选为测量点mi在轨迹上对应点;取目标函数为Step 7 : Select several points p 1 , p 2 , . , p n , the point with the minimum distance is selected as the corresponding point on the trajectory of the measurement point m i ; the objective function is taken as
其中mi(x,y,z)为第i个测量点在坐标系CSM下的坐标,pk(x,y,z)为测量点mi在轨迹上对应点坐标系CSM下的坐标;where m i (x, y, z) is the coordinate of the i-th measurement point under the coordinate system CSM, and p k (x, y, z) is the coordinate of the measurement point m i under the coordinate system CSM of the corresponding point on the trajectory;
对目标函数进行优化求解得到刀具轴线运动模型的参数值,进而根据确定的刀具轴线运动模型得到铣刀底部中心O5和弹簧夹头下端面中心O4的运动轨迹,根据O5和O4的运动轨迹确定刀具轴线的方向向量。The objective function is optimized and solved to obtain the parameter values of the tool axis motion model, and then the motion trajectories of the bottom center O5 of the milling cutter and the center O4 of the lower end face of the collet chuck are obtained according to the determined tool axis motion model . The motion path determines the direction vector of the tool axis.
本发明认为铣削刀具轴线的运动误差主要来源于主轴轴承、刀柄以及弹簧夹头的制造误差,所以可以根据不同零部件的标准给出待标定参数的约束条件。铣削刀具轴线运动建模在本质上是需要对影响其运动的主轴运动参数、刀柄安装误差参数、弹簧夹头安装误差参数进行组合优化,最终寻求一组最优的参数,使得铣刀刀具轴线运动轨迹尽可能地逼近测量数据。这里将粒子群算法(PSO)引入到铣削刀具轴线运动模型的参数求解问题中。The present invention considers that the motion error of the milling tool axis mainly comes from the manufacturing error of the spindle bearing, the tool holder and the spring chuck, so the constraint conditions of the parameters to be calibrated can be given according to the standards of different parts. In essence, the modeling of the axis motion of the milling tool requires the combined optimization of the spindle motion parameters, the tool holder installation error parameters, and the spring chuck installation error parameters that affect its movement, and finally seeks a set of optimal parameters to make the milling tool axis The motion trajectory is as close as possible to the measurement data. Here, the particle swarm optimization (PSO) is introduced into the parameter solving problem of the axis motion model of the milling tool.
本实施例粒子群算法成功地在可行域中寻找到了目标函数最小的参数,从而使得拟合结果逼近测量数据。在本实施例中初始粒子的数目为500,粒子的维数为12。任意粒子xi所具有的运动速度为每个粒子根据公式The particle swarm algorithm in this embodiment successfully finds the parameter with the smallest objective function in the feasible region, so that the fitting result approximates the measurement data. In this embodiment, the number of initial particles is 500, and the dimension of the particles is 12. The velocity of any particle x i is Each particle according to the formula
来更新自己的速度和在空间的位置;其中tstep为当前进化的迭代数;r1与r2为均匀分布在[0,1]之间的随机数;c1与c2为加速常数,通常设置为2;w为惯性权重,vi,d为第i个粒子速度向量中的第d个分量,Pbest,d为第i个粒子的最有位置向量中第d个分量,Gbest,d为群体最优位置向量中的第d个分量,xi,d为第i个粒子位置向量的第d个分量。在本文中,当连续两次迭代中对应的目标函数最优值小于10-15时,算法终止。综上所述,本发明应用粒子群优化算法后得到的目标函数收敛结果如图8所示,其中粒子群算法中取初始粒子数为500,最大迭代次数为1000,最大速度为0.4,惯性权重为0.4。to update its speed and position in space; where t step is the number of iterations of the current evolution; r 1 and r 2 are random numbers uniformly distributed between [0, 1]; c 1 and c 2 are acceleration constants, Usually set to 2; w is the inertia weight, vi ,d is the d-th component in the velocity vector of the ith particle, P best,d is the d-th component in the most position vector of the ith particle, G best ,d is the d-th component in the optimal position vector of the group, and x i,d is the d-th component of the i-th particle position vector. In this paper, the algorithm terminates when the corresponding optimal value of the objective function in two consecutive iterations is less than 10-15 . To sum up, the convergence result of the objective function obtained after applying the particle swarm optimization algorithm in the present invention is shown in Fig. 8, wherein the particle swarm algorithm takes the initial number of particles as 500, the maximum number of iterations as 1000, the maximum speed as 0.4, and the inertia weight as is 0.4.
刀具轴线运动模型:刀具轴线的运动实际上能够形成直纹面,如图9所示。该直纹面的准线就是O5与O4的运动轨迹,母线为直线O4O5,令则刀具轴线运动轨迹上任意一点的位置矢量m(s,t)可以表达为下式所示:Tool axis motion model: The motion of the tool axis can actually form a ruled surface, as shown in Figure 9. The directrix of the ruled surface is the motion trajectory of O 5 and O 4 , the generatrix is the straight line O 4 O 5 , let Then the position vector m(s,t) of any point on the tool axis motion trajectory can be expressed as the following formula:
m(s,t)=a(t)+sb(t)m(s,t)=a(t)+sb(t)
其中0≤t≤2π,0≤s≤1。Where 0≤t≤2π, 0≤s≤1.
根据弹簧夹头装夹刀具的误差不同,本实施例进行了四组主轴动态误差实验,将SPN 300型主轴动态误差分析仪金属探测球的运动轨迹作为铣削刀具轴线运动轨迹。TestNo.1、Test No.2、Test No.3与Test No.4,发明所进行的四个实验所涉及的机床主轴结构参数、弹簧夹头制造误差参数以及刀柄制造误差参数如表1所示,本文中涉及参数单位的均为微米(um)。According to the different errors of the spring chuck clamping tool, four sets of spindle dynamic error experiments are carried out in this embodiment, and the motion trajectory of the metal detection ball of the SPN 300 spindle dynamic error analyzer is used as the axis motion trajectory of the milling tool. TestNo.1, Test No.2, Test No.3 and Test No.4, the machine tool spindle structural parameters, spring chuck manufacturing error parameters and tool holder manufacturing error parameters involved in the four experiments carried out by the invention are shown in Table 1 As shown, the parameter units involved in this article are all micrometers (um).
表1机床主轴、弹簧夹头以及刀柄结构参数表Table 1 Structure parameters of machine tool spindle, collet chuck and tool holder
表2主轴运动误差与弹簧夹头的安装误差参数的标定结果Table 2 The calibration results of the spindle motion error and the installation error parameters of the collet chuck
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。Although the embodiments of the present invention have been shown and described above, it should be understood that the above embodiments are exemplary and should not be construed as limiting the present invention, and those of ordinary skill in the art will not depart from the principles and spirit of the present invention Variations, modifications, substitutions, and alterations to the above-described embodiments are possible within the scope of the present invention without departing from the scope of the present invention.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611018614.8A CN106649996B (en) | 2016-11-15 | 2016-11-15 | Consider the multi-axis milling tool axis modeling method of cutter bounce |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611018614.8A CN106649996B (en) | 2016-11-15 | 2016-11-15 | Consider the multi-axis milling tool axis modeling method of cutter bounce |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106649996A CN106649996A (en) | 2017-05-10 |
CN106649996B true CN106649996B (en) | 2019-07-05 |
Family
ID=58809117
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611018614.8A Active CN106649996B (en) | 2016-11-15 | 2016-11-15 | Consider the multi-axis milling tool axis modeling method of cutter bounce |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106649996B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110253341B (en) * | 2019-06-27 | 2020-05-05 | 中国科学院合肥物质科学研究院 | Method for rapidly identifying jumping parameters of micro-milling cutter |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102873384A (en) * | 2012-09-26 | 2013-01-16 | 西北工业大学 | Precise milling processing method with variable inter-row allowance for thin walled blade of difficult-to-process material |
CN103258095A (en) * | 2013-05-14 | 2013-08-21 | 西北工业大学 | Universal milling force modeling method for flat-bottom end mill |
US8700369B2 (en) * | 2010-03-02 | 2014-04-15 | Kyungpook National University Industry-Academic Cooperation Foundation | Method and apparatus for estimating error in multi-axis controlled machine |
CN104050316A (en) * | 2014-03-25 | 2014-09-17 | 北京工业大学 | Analysis method on basis of distribution characteristics of space machining error of numerical control machine tool |
CN104182631A (en) * | 2014-08-21 | 2014-12-03 | 华中科技大学 | Tool deflection modeling method for multi-axis machining system |
-
2016
- 2016-11-15 CN CN201611018614.8A patent/CN106649996B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8700369B2 (en) * | 2010-03-02 | 2014-04-15 | Kyungpook National University Industry-Academic Cooperation Foundation | Method and apparatus for estimating error in multi-axis controlled machine |
CN102873384A (en) * | 2012-09-26 | 2013-01-16 | 西北工业大学 | Precise milling processing method with variable inter-row allowance for thin walled blade of difficult-to-process material |
CN103258095A (en) * | 2013-05-14 | 2013-08-21 | 西北工业大学 | Universal milling force modeling method for flat-bottom end mill |
CN104050316A (en) * | 2014-03-25 | 2014-09-17 | 北京工业大学 | Analysis method on basis of distribution characteristics of space machining error of numerical control machine tool |
CN104182631A (en) * | 2014-08-21 | 2014-12-03 | 华中科技大学 | Tool deflection modeling method for multi-axis machining system |
Non-Patent Citations (2)
Title |
---|
基于流形学习与隐马尔可夫模型的刀具磨损状况识别;张栋梁等;《西北工业大学学报》;20150815;第33卷(第4期);第651-657页 |
基于混沌时序分析方法与支持向量机的刀具磨损状态识别;张栋梁等;《计算机集成制造系统》;20150313;第21卷(第8期);第2138-2146页 |
Also Published As
Publication number | Publication date |
---|---|
CN106649996A (en) | 2017-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109032069B (en) | A method for calculating spherical center coordinates of non-contact R-test measuring instrument using eddy current displacement sensor | |
CN104816307B (en) | The four-point method of the accurate drilling of industrial robot is to leveling method | |
CN106052556B (en) | A kind of three coordinate measuring machine spatial domain coordinates compensation method | |
CN104990487B (en) | A kind of nonopiate gyroaxis axle center bias measurement method based on linkage error analysis | |
CN106529045A (en) | Spinor-based multi-axis milling tool axis modeling method | |
CN107253102A (en) | A kind of precision grinding machining method of special-shaped thin wall labyrinth workpiece | |
CN102001021A (en) | Method for measuring geometric error parameter value of rotary oscillation axis of five-axis linkage numerical control machine tool | |
CN107065765A (en) | Depth of cut computational methods based on tool axis motion model | |
CN103921170B (en) | The rotary table center positioning method of spindle swing Five-axis NC Machining Center | |
CN113917888B (en) | Machining precision improving method based on fixed angular calibration and compensation | |
CN106406237B (en) | A kind of processing method with free form surface metal parts | |
CN104290002A (en) | Method for machining cylindrical mirror | |
CN103197601B (en) | Cutter shaft swings five-coordinate numerally controlled machine tool pendulum length assay method | |
CN105108215A (en) | Method for predicting and compensating cutter back-off error in free-form surface micro milling | |
WO2021128614A1 (en) | Method for measuring and evaluating error of feature line-based arc cam profile | |
CN114012585B (en) | Polishing point position calibration method for double-pendulum-shaft type five-axis magnetorheological machine tool | |
CN102944163A (en) | Device and method for measuring profile tolerance of annular dovetail groove of any axial section | |
CN105397549A (en) | Zero searching method of machine tool machined hole surface workpiece | |
CN110076680A (en) | A kind of proximal ends distal shaft end uniform thickness off-axis aspheric surface processing method | |
CN105371793A (en) | One-time clamping measurement method for geometric error of rotating shaft of five-axis machine tool | |
CN111069642B (en) | Machining technology of inclined hole in three-dimensional space | |
CN108972154A (en) | A kind of machine tool rotary axis geometric error discrimination method based on ball bar measurement | |
CN103801987A (en) | Method for improving precision of numerically-controlled machine tool main shaft rotating thermal error measuring data | |
CN112197725B (en) | Accurate positioning method for large composite material part machining tool | |
CN106649996B (en) | Consider the multi-axis milling tool axis modeling method of cutter bounce |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |