CN106647791B - Three-dimensional attitude measurement and control device, mechanical equipment and three-dimensional attitude measurement and control method - Google Patents
Three-dimensional attitude measurement and control device, mechanical equipment and three-dimensional attitude measurement and control method Download PDFInfo
- Publication number
- CN106647791B CN106647791B CN201611227121.5A CN201611227121A CN106647791B CN 106647791 B CN106647791 B CN 106647791B CN 201611227121 A CN201611227121 A CN 201611227121A CN 106647791 B CN106647791 B CN 106647791B
- Authority
- CN
- China
- Prior art keywords
- axis
- magnetic field
- output
- angle
- magnetometer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/08—Control of attitude, i.e. control of roll, pitch, or yaw
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/005—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 with correlation of navigation data from several sources, e.g. map or contour matching
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Aviation & Aerospace Engineering (AREA)
- Gyroscopes (AREA)
- Navigation (AREA)
Abstract
Description
技术领域technical field
本发明涉及工程机械的三维姿态测量领域,特别是涉及一种三维姿态测控装置、机械设备及三维姿态的测试方法。The invention relates to the field of three-dimensional attitude measurement of construction machinery, in particular to a three-dimensional attitude measurement and control device, mechanical equipment and a three-dimensional attitude testing method.
背景技术Background technique
智能控制系统是工程机械(如工业机器人、压路机、播种机等)生产发展的新潮流,是以信息技术为支撑,根据载体的时空信息,定时、定量地实施一整套现代化操作与管理的控制系统,要求以最经济的投入取得最佳的生产和环境效益。Intelligent control system is a new trend in the production and development of construction machinery (such as industrial robots, road rollers, seeders, etc.). It is supported by information technology and implements a complete set of modern operation and management control systems regularly and quantitatively according to the time and space information of the carrier. , requires the best production and environmental benefits with the most economical input.
高精度的载体三维姿态的控制通常是工程机械智能控制系统中最重要的一环,其需要对载体的三维姿态进行准确的测量。The control of the high-precision three-dimensional attitude of the carrier is usually the most important part of the intelligent control system of construction machinery, which requires accurate measurement of the three-dimensional attitude of the carrier.
目前工程机械的三维姿态测量主要有两种应用场景:一种是姿态异常监测,比如海上浮标的倾斜监测和渣土车的翻车监测;另一种是姿态跟踪控制,比如工业级机器人机械臂的控制和农机的农具控制。目前三维姿态测量的方法主要电子罗盘法,电子罗盘一般包含两个水平方向的加速度计和一个三轴磁力计,通过两个水平加速度计测量载体倾斜角度,包括载体的俯仰角和横滚角,再通过俯仰角和横滚角对三轴磁力计的测量值进行调平,通过三轴磁力计计算出载体的航向角。At present, there are two main application scenarios for 3D attitude measurement of construction machinery: one is attitude abnormality monitoring, such as tilt monitoring of offshore buoys and rollover monitoring of muck trucks; the other is attitude tracking control, such as industrial-grade robotic arms. Control and implement control of farm machinery. The current three-dimensional attitude measurement method is mainly the electronic compass method. The electronic compass generally includes two horizontal accelerometers and a three-axis magnetometer. The two horizontal accelerometers measure the tilt angle of the carrier, including the pitch angle and roll angle of the carrier. Then, the measured value of the three-axis magnetometer is leveled by the pitch angle and roll angle, and the heading angle of the carrier is calculated by the three-axis magnetometer.
由于电子罗盘单纯依靠加速度计的测量值计算俯仰角和横滚角,因此,加速度计的系统误差和量测噪声会直接影响俯仰角和横滚角的计算精度。俯仰角和横滚角的计算是以重力矢量作为参考,而加速度计并不能区分重力矢量的分量和载体的线加速度信息,因此,当载体存在线加速度时,通过加速度计测量的俯仰角和横滚角会存在较大的误差。三轴磁力计对电磁环境敏感,当三轴磁力计周围的电磁环境发生变化时,会导致三轴磁力计的测量值具有较大的误差,导致航向角计算错误。Since the electronic compass simply relies on the measurement value of the accelerometer to calculate the pitch angle and roll angle, the system error and measurement noise of the accelerometer will directly affect the calculation accuracy of the pitch angle and roll angle. The calculation of the pitch angle and roll angle is based on the gravity vector, and the accelerometer cannot distinguish the component of the gravity vector and the linear acceleration information of the carrier. Therefore, when the carrier has linear acceleration, the pitch angle and lateral acceleration measured by the accelerometer There will be a large error in the roll angle. The three-axis magnetometer is sensitive to the electromagnetic environment. When the electromagnetic environment around the three-axis magnetometer changes, the measured value of the three-axis magnetometer will have a large error, resulting in an error in the calculation of the heading angle.
发明内容SUMMARY OF THE INVENTION
基于此,有必要提供一种三维姿态测控装置、机械设备及三维姿态测控方法,提高对载体三维姿态的测控精度。Based on this, it is necessary to provide a three-dimensional attitude measurement and control device, mechanical equipment and a three-dimensional attitude measurement and control method, so as to improve the measurement and control accuracy of the three-dimensional attitude of the carrier.
一种三维姿态测控装置,包括:A three-dimensional attitude measurement and control device, comprising:
电路板;circuit board;
安装于所述电路板一侧的三轴加速度计、三轴磁力计和三个互相垂直的单轴陀螺仪;a three-axis accelerometer, a three-axis magnetometer and three mutually perpendicular single-axis gyroscopes mounted on one side of the circuit board;
安装于所述电路板另一侧的处理控制模块;a processing control module installed on the other side of the circuit board;
所述处理控制模块对所述三轴加速度计输出的线加速度及所述三轴磁力计输出的磁场强度进行预置偏差补偿,并以所述三轴加速度计所处位置的重力矢量和所述三轴磁力计所处位置的地球磁场矢量为参考,根据所述三个单轴陀螺仪输出的旋转角速度分别计算出载体的俯仰角、横滚角、航向角,所述处理控制模块根据载体的俯仰角、横滚角和航向角对所述三轴加速度计输出的线加速度和所述三轴磁力计输出的磁场强度进行坐标转换,并在分别获取转换后的线加速度和磁场强度与对应重力矢量和地球磁场强度的差值后,通过数据融合算法对所述载体的俯仰角、横滚角和航向角进行修正并对所述三轴陀螺仪输出的旋转角速度进行误差补偿。The processing control module performs preset deviation compensation on the linear acceleration output by the three-axis accelerometer and the magnetic field strength output by the three-axis magnetometer, and uses the gravity vector at the location of the three-axis accelerometer and the The earth's magnetic field vector at the location of the three-axis magnetometer is used as a reference, and the pitch angle, roll angle, and heading angle of the carrier are calculated according to the rotational angular velocities output by the three single-axis gyroscopes. The pitch angle, roll angle and heading angle perform coordinate transformation on the linear acceleration output by the three-axis accelerometer and the magnetic field strength output by the three-axis magnetometer, and obtain the converted linear acceleration and magnetic field strength and the corresponding gravity respectively. After the difference between the vector and the strength of the earth's magnetic field, the pitch angle, roll angle and heading angle of the carrier are corrected through a data fusion algorithm, and the error compensation is performed on the rotational angular velocity output by the three-axis gyroscope.
在其中一个实施例中,所述处理控制模块为CPU。In one of the embodiments, the processing control module is a CPU.
在其中一个实施例中,所述处理控制模块通过椭球校正算法对所述三轴加速度计输出的线加速度及所述三轴磁力计输出的磁场强度进行预置偏差补偿。In one embodiment, the processing control module performs preset deviation compensation on the linear acceleration output by the three-axis accelerometer and the magnetic field strength output by the three-axis magnetometer through an ellipsoid correction algorithm.
在其中一个实施例中,所述转换后的线加速度与对应重力矢量的差值为:加速度计输出的线加速度投影到重力矢量所在三维坐标系的加速度值与所述重力矢量的差值;所述转换后的磁场强度与对应地球磁场强度的差值为:磁力计输出的磁场强度投影到地球磁场所在的三维坐标系的磁场强度值与所述地球磁场强度的差值。In one embodiment, the difference between the converted linear acceleration and the corresponding gravity vector is: the difference between the acceleration value of the linear acceleration output by the accelerometer projected to the three-dimensional coordinate system where the gravity vector is located and the gravity vector; The difference between the converted magnetic field intensity and the corresponding earth magnetic field intensity is: the difference between the magnetic field intensity value of the magnetic field intensity output by the magnetometer projected to the three-dimensional coordinate system where the earth magnetic field is located and the earth magnetic field intensity.
在其中一个实施例中,所述处理控制模块通过数据融合算法对所述载体的俯仰角、横滚角和航向角进行修正并对陀螺仪输出的旋转角速度进行误差补偿具体为:In one embodiment, the processing and control module corrects the pitch angle, roll angle and heading angle of the carrier and performs error compensation on the rotational angular velocity output by the gyroscope through a data fusion algorithm. Specifically:
所述处理控制模块通过数据融合算法融合三个单轴陀螺仪、三轴磁力计和三轴加速度计的量测值,通过三轴加速计和三轴磁力计的量测值对三个单轴陀螺仪计算的俯仰角、横滚角、航向角进行修正并对所述三个单轴陀螺仪输出的旋转角度的误差进行补偿。The processing control module fuses the measured values of the three single-axis gyroscopes, the three-axis magnetometer and the three-axis accelerometer through the data fusion algorithm, and the three single-axis The pitch angle, roll angle, and heading angle calculated by the gyroscope are corrected and the errors of the rotation angles output by the three single-axis gyroscopes are compensated.
在其中一个实施例中,所述数据融合算法为Kalman滤波数据融合算法。In one embodiment, the data fusion algorithm is a Kalman filter data fusion algorithm.
以上所述三维姿态测控装置中,电路板的一侧集成有三轴加速度计、三轴磁力计和三个互相垂直的单轴陀螺仪,另一侧集成有处理控制模块,与将三轴加速度计、三轴磁力计、三个互相垂直的单轴陀螺仪及处理控制模块集成在电路板的同一侧相比,减小了电路板的面积,进而缩小了整个三维姿态测控装置的体积;对三轴加速度计输出的线加速度及三轴磁力计输出的磁场强度进行预置偏差补偿,可使三轴加速度计和三轴磁力计输出的值更加精准;根据三轴加速度计输出的线加速度与重力矢量存在的差值和三轴磁力计输出的磁场强度与地球磁场存在的差值,分别计算出俯仰角、横滚角、航向角及三个单轴陀螺仪输出的旋转角度的误差值,可以提升测量的俯仰角、横滚角、航向角和旋转角度的准确性,依次对载体的三维姿态进行控制,可有效提升对载体三维姿态的稳定性。In the above-mentioned three-dimensional attitude measurement and control device, one side of the circuit board integrates a three-axis accelerometer, a three-axis magnetometer and three mutually perpendicular single-axis gyroscopes, and the other side integrates a processing control module, which is connected to the three-axis accelerometer. Compared with the integration of the three-axis magnetometer, three mutually perpendicular single-axis gyroscopes and processing control modules on the same side of the circuit board, the area of the circuit board is reduced, thereby reducing the volume of the entire three-dimensional attitude measurement and control device; The linear acceleration output by the axis accelerometer and the magnetic field strength output by the three-axis magnetometer are preset deviation compensation, which can make the output value of the three-axis accelerometer and the three-axis magnetometer more accurate; according to the linear acceleration and gravity output by the three-axis accelerometer The difference between the vector and the difference between the magnetic field strength output by the three-axis magnetometer and the earth's magnetic field, the error values of the pitch angle, roll angle, heading angle and the rotation angle output by the three single-axis gyroscopes can be calculated respectively. Improve the accuracy of the measured pitch angle, roll angle, heading angle and rotation angle, and control the three-dimensional attitude of the carrier in turn, which can effectively improve the stability of the three-dimensional attitude of the carrier.
一种机械设备,所述机械设备安装有如以上所述的三维姿态测控装置。A mechanical device is provided with the above-mentioned three-dimensional attitude measurement and control device.
所述机械设备安装有以上所述三维姿态测控装置,可有效提升测量和调控载体三维姿态的精确性。The mechanical equipment is equipped with the above-mentioned three-dimensional attitude measurement and control device, which can effectively improve the accuracy of measuring and regulating the three-dimensional attitude of the carrier.
一种三维姿态的测控方法,基于以上所述的三维姿态测控装置,所述方法包括:A three-dimensional attitude measurement and control method, based on the three-dimensional attitude measurement and control device described above, the method includes:
获取所述三轴加速度计静态输出的俯仰角、横滚角及所述三轴磁力计静态输出的航向角;Obtain the pitch angle and roll angle of the static output of the three-axis accelerometer and the heading angle of the static output of the three-axis magnetometer;
对所述三轴加速度计输出的线加速度和三轴磁力计输出的磁场强度进行预置偏差补偿;Perform preset deviation compensation on the linear acceleration output by the three-axis accelerometer and the magnetic field strength output by the three-axis magnetometer;
分别获取三轴加速度计输出的线加速度与对应重力矢量的差值和三轴磁力计输出的磁场强度与对应地球磁场强度的差值;Obtain the difference between the linear acceleration output by the three-axis accelerometer and the corresponding gravity vector, and the difference between the magnetic field strength output by the three-axis magnetometer and the corresponding Earth's magnetic field strength;
根据所述差值分别计算所述俯仰角、横滚角、航向角及所述三个单轴陀螺仪输出的旋转角度的误差值;Calculate the error values of the pitch angle, roll angle, heading angle and the rotation angles output by the three single-axis gyroscopes according to the difference values;
根据所述俯仰角、横滚角、航向角及所述三个单轴陀螺仪输出的旋转角度的误差值调整载体的三维姿态。The three-dimensional attitude of the carrier is adjusted according to the error values of the pitch angle, roll angle, heading angle and the rotation angle output by the three single-axis gyroscopes.
在其中一个实施例中,通过椭球校正算法对所述三轴加速度计输出的线加速度和三轴磁力计输出的磁场强度预置偏差补偿。In one embodiment, the linear acceleration output by the three-axis accelerometer and the magnetic field strength output by the three-axis magnetometer are pre-set offset compensation through an ellipsoid correction algorithm.
在其中一个实施例中,所述三轴加速度计输出的线加速度与对应重力矢量存在的差值为:三轴加速度计输出的线加速度投影到重力矢量所在三维坐标系的加速度值与所述重力矢量的差值;所述三轴磁力计输出的磁场强度与对应地球磁场存在的差值为:三轴磁力计输出的磁场强度投影到地球磁场所在的三维坐标系的磁场强度值与所述地球磁场强度的差值。In one embodiment, the difference between the linear acceleration output by the three-axis accelerometer and the corresponding gravity vector is: the acceleration value of the linear acceleration output by the three-axis accelerometer projected to the three-dimensional coordinate system where the gravity vector is located and the gravity The difference value of the vector; the difference between the magnetic field intensity output by the three-axis magnetometer and the corresponding earth's magnetic field is: the magnetic field intensity value of the magnetic field intensity output by the three-axis magnetometer projected to the three-dimensional coordinate system where the earth's magnetic field is located and the magnetic field intensity value of the earth's magnetic field The difference in magnetic field strength.
以上所述三维姿态的测控方法中,对三轴加速度计输出的线加速度及三轴磁力计输出的磁场强度进行预置偏差补偿,可使三轴加速度计和三轴磁力计输出的值更加精准;根据三轴加速度计输出的线加速度与重力矢量存在的差值和三轴磁力计输出的磁场强度与地球磁场存在的差值,分别计算出俯仰角、横滚角、航向角及三个单轴陀螺仪输出的旋转角度的误差值,可以提升测量的俯仰角、横滚角、航向角和旋转角度的准确性,依次对载体的三维姿态进行控制,可有效提升对载体三维姿态的稳定性。In the above-mentioned three-dimensional attitude measurement and control method, the preset deviation compensation is performed on the linear acceleration output by the three-axis accelerometer and the magnetic field strength output by the three-axis magnetometer, so that the values output by the three-axis accelerometer and the three-axis magnetometer can be more accurate. ;According to the difference between the linear acceleration output by the three-axis accelerometer and the gravity vector and the difference between the magnetic field strength output by the three-axis magnetometer and the earth's magnetic field, the pitch angle, roll angle, heading angle and three single The error value of the rotation angle output by the axis gyroscope can improve the accuracy of the measured pitch angle, roll angle, heading angle and rotation angle, and control the three-dimensional attitude of the carrier in turn, which can effectively improve the stability of the three-dimensional attitude of the carrier. .
附图说明Description of drawings
图1为一实施例的三维姿态测控装置的结构示意图;1 is a schematic structural diagram of a three-dimensional attitude measurement and control device according to an embodiment;
图2为一实施例的三维姿态的测控方法的流程示意图。FIG. 2 is a schematic flowchart of a three-dimensional attitude measurement and control method according to an embodiment.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
如图1所示,一实施例的三维姿态测控装置包括:As shown in FIG. 1 , a three-dimensional attitude measurement and control device according to an embodiment includes:
电路板150;
安装于电路板150一侧的三轴加速度计120、三轴磁力计130和三个互相垂直的单轴陀螺仪110;The three-
安装于电路板150另一侧的处理控制模块140;the
处理控制模块140对三轴加速度计120输出的线加速度及三轴磁力计130输出的磁场强度进行预置偏差补偿,并以三轴加速度120计所处位置的重力矢量和所述三轴磁力计130所处位置的地球磁场矢量为参考,根据三个单轴陀螺仪110输出的旋转角速度分别计算出载体的俯仰角、横滚角、航向角,处理控制模块140根据载体的俯仰角、横滚角和航向角对三轴加速度计120输出的线加速度和三轴磁力计130输出的磁场强度进行坐标转换,并在分别获取转换后的线加速度和磁场强度与对应重力矢量和地球磁场强度的差值后,通过数据融合算法对所述载体的俯仰角、横滚角和航向角进行修正并对三轴陀螺仪110输出的旋转角速度进行误差补偿。The
以上所述三维姿态测控装置中,电路板的一侧集成有三轴加速度计、三轴磁力计和三个互相垂直的单轴陀螺仪,另一侧集成有处理控制模块,与将三轴加速度计、三轴磁力计、三个互相垂直的单轴陀螺仪及处理控制模块集成在电路板的同一侧相比,减小了电路板的面积,进而缩小了整个三维姿态测控装置的体积;对三轴加速度计输出的线加速度和三轴磁力计输出的磁场强度进行预置偏差补偿,可使三轴加速度计和三轴磁力计输出的值更加精准;根据三轴加速度计输出的线加速度与重力矢量存在的差值和三轴磁力计输出的磁场强度与地球磁场存在的差值,分别计算出俯仰角、横滚角、航向角及三个单轴陀螺仪输出的旋转角度的误差值,可以提升测量的俯仰角、横滚角、航向角和旋转角度的准确性,依次对载体的三维姿态进行控制,可有效提升对载体三维姿态的稳定性。In the above-mentioned three-dimensional attitude measurement and control device, one side of the circuit board integrates a three-axis accelerometer, a three-axis magnetometer and three mutually perpendicular single-axis gyroscopes, and the other side integrates a processing control module, which is connected to the three-axis accelerometer. Compared with the integration of the three-axis magnetometer, three mutually perpendicular single-axis gyroscopes and processing control modules on the same side of the circuit board, the area of the circuit board is reduced, thereby reducing the volume of the entire three-dimensional attitude measurement and control device; The linear acceleration output by the axis accelerometer and the magnetic field strength output by the three-axis magnetometer are preset deviation compensation, which can make the output value of the three-axis accelerometer and the three-axis magnetometer more accurate; according to the linear acceleration and gravity output by the three-axis accelerometer The difference between the vector and the difference between the magnetic field strength output by the three-axis magnetometer and the earth's magnetic field, the error values of the pitch angle, roll angle, heading angle and the rotation angle output by the three single-axis gyroscopes can be calculated respectively. Improve the accuracy of the measured pitch angle, roll angle, heading angle and rotation angle, and control the three-dimensional attitude of the carrier in turn, which can effectively improve the stability of the three-dimensional attitude of the carrier.
如图1所示,图1中所显示的排列方式只是实现本实施例的最优选择,其中,三个互相垂直的单轴陀螺仪110的其中一个设置为垂直于电路板150,另外两个与电路板150平行设置,平行设置的两个单轴陀螺仪110的垂直夹角处安装三轴加速度计120和三轴磁力计130。这样结构设计可最大程度地减小电路板150的面积,缩小整个三维姿态测控装置的体积。As shown in FIG. 1 , the arrangement shown in FIG. 1 is only an optimal choice for implementing this embodiment, wherein one of the three mutually perpendicular single-
本实施例中,处理控制模块140为CPU处理器,其安装于电路板150的另一侧,与将三轴加速度计、三轴磁力计、三个互相垂直的单轴陀螺仪及处理控制模块集成在电路板的同一侧相比,减小了电路板的面积,进而缩小了整个三维姿态测控装置的体积。In this embodiment, the
可以知道的是,三个单轴陀螺仪110测量的是载体绕三个正交轴(三个单轴陀螺仪的三个相互正交轴)正方向上的旋转角速度,通过角度积分运算可以确定载体绕三个正交轴转过的角度,进而测量角度的变化量。但测试时需要载体的初始姿态,且由于陀螺仪的测量值中含有零偏、交叉耦合和随机噪声等误差,其角度积分运算的误差会随时间累积,所以需要对角度积分运算计算的角度进行校正,并对陀螺仪的测量误差进行补偿。因此,通常陀螺仪测量姿态具有短期精度高、动态性好、误差长期漂移的特点。It can be known that the three single-
可以知道的是,静态情况下,三轴加速度计120可以测量重力的反作用力在载体三个正交坐标轴上的分量,从而确定载体的倾斜情况,包括载体的俯仰角(pitch)和横滚角(roll)。三轴加速度计120是直接通过离散的量测值计算角度,不需要经过积分运算,因此,三轴加速度计120计算角度的误差不会随时间累积。静态情况下,三轴加速度计120计算角度的精度可以达到0.1°以上。但在动态情况下,由于三轴加速度计120只能测量载体的比力,即除重力以外的力的合力,而不能从其测量值中辨识载体的运动加速度,载体的运动加速度越大,计算角度的误差也越大,且三轴加速度计的零偏,交叉耦合和随机噪声等误差也会影响其计算角度的精度。因此,通常三轴加速度计具有静态精度高、动态精度低、系统偏差、误差不随时间累积的特点。It can be known that, under static conditions, the three-
可以知道的是,三轴磁力计130可以测量地球磁场在载体三个正交坐标轴系上的分量,水平放置磁力计时可以通过三轴磁力计130的水平轴测得的地球磁场分量计算出航向角,因此,使用三轴磁力计130测量航向角首先需要利用载体的俯仰角和横滚角对三轴磁力计130的量测值进行调平,理想情况下三轴磁力计计算的航向角的精度可以达到1°以上,但磁力计的零偏,交叉耦合和随机噪声等误差会影响航向角的计算精度,尤其当磁力计周围的电磁环境发生变化时,磁力计的测量值会受到明显的干扰从而导致航向角计算错误。因此,磁力计测量航向角存在易受电磁环境干扰的特点。It can be known that the three-
单轴陀螺仪、三轴加速度计和三轴磁力计各自能够完成载体三维姿态测量的部分工作,有各自明显的优点。其中,单轴陀螺仪短期精度高、动态性好;三轴加速度计误差不积累、静态精度高;三轴磁力计能指北、误差不累积。同时,单轴陀螺仪、三轴加速度计和三轴磁力计也有各自明显的缺点,其中,单轴陀螺仪误差会积累且需要初始姿态;三轴加速度计会受载体加速度和系统误差的影;三轴磁力计会受电磁干扰和系统误差的影响。The single-axis gyroscope, the three-axis accelerometer and the three-axis magnetometer can each complete part of the work of the three-dimensional attitude measurement of the carrier, and have their own obvious advantages. Among them, the single-axis gyroscope has high short-term accuracy and good dynamic performance; the three-axis accelerometer does not accumulate errors and has high static accuracy; the three-axis magnetometer can point north and the error does not accumulate. At the same time, the single-axis gyroscope, the three-axis accelerometer and the three-axis magnetometer also have their own obvious shortcomings. Among them, the single-axis gyroscope error will accumulate and require an initial attitude; the three-axis accelerometer will be affected by the carrier acceleration and system errors; Triaxial magnetometers are subject to electromagnetic interference and systematic errors.
本实施例中,综合设置有单轴陀螺仪、三轴加速度计和三轴磁力,通过三者的互补性,通过椭球校正算法补偿三轴加速度计和三轴磁力计的系统误差,主要是零偏和交叉耦合误差,再通过数据融合算法将单轴陀螺仪、三轴加速度计和三轴磁力计的量测数据进行融合从而实现单轴陀螺仪、三轴加速度计和三轴磁力计的优势互补。In this embodiment, a single-axis gyroscope, a three-axis accelerometer, and a three-axis magnetic force are comprehensively provided. Through the complementarity of the three, the system errors of the three-axis accelerometer and the three-axis magnetometer are compensated by the ellipsoid correction algorithm. Zero bias and cross-coupling error, and then fuse the measurement data of single-axis gyroscope, three-axis accelerometer and three-axis magnetometer through data fusion algorithm to realize the integration of single-axis gyroscope, three-axis accelerometer and three-axis magnetometer. Complementary advantages.
具体的,本实施例中,处理控制模块140通过椭球校正算法对三轴加速度计输出的线加速度及三轴磁力计输出的磁场强度进行预置偏差补偿。椭球校正算法可以对三轴加速度计和三轴磁力计的零偏、交叉耦合等系统偏差进行补偿,从而极大提高三轴加速度计和三轴磁力计的原始观测值的精度。进一步通过三轴加速度计和三轴磁力计的静态输出的载体的俯仰角、横滚角和航向角即可作为三个单轴陀螺仪姿态更新的初始值。Specifically, in this embodiment, the
通常三维姿态的解算存在误差,因此,将线加速度和磁场强度投影到导航系后其值与重力矢量和地球磁场不符,本实施例利用它们的差值通过Kalman滤波数据融合算法估计出三维姿态和陀螺仪仪器参数的误差并对三维姿态和陀螺仪参数进行校正。因为单轴陀螺仪积分解算的短期精度高,可以利用差值判别三轴加速度计和三轴磁力计是否受到干扰,从而提高整个三维姿态测控装置的鲁棒性。Usually, there is an error in the calculation of the three-dimensional attitude. Therefore, after projecting the linear acceleration and the magnetic field strength to the navigation system, their values are inconsistent with the gravity vector and the earth's magnetic field. In this embodiment, the difference is used to estimate the three-dimensional attitude through the Kalman filtering data fusion algorithm. And the error of the gyroscope instrument parameters and the three-dimensional attitude and gyroscope parameters are corrected. Because of the high short-term accuracy of the single-axis gyroscope integral solution, the difference value can be used to determine whether the three-axis accelerometer and the three-axis magnetometer are disturbed, thereby improving the robustness of the entire three-dimensional attitude measurement and control device.
其中,将线加速度和磁场矢量投影到导航系后其值与重力矢量和地球磁场的值不符,即三轴加速度计120输出与重力矢量存在的误差和三轴磁力计输出与地球磁场存在的误差。三轴加速度计存在的重力误差为三轴加速度计输出的线加速度投影到重力矢量所在三维坐标系的加速度值与所述重力矢量的差值,三维坐标系有三个极轴,三轴加速度计输出的线加速度投影到每一个极轴的值与重力矢量在对应极轴分量的差值即为重力误差值,误差值具有3个,分别为在三个极轴上的重力误差。三轴磁力计存在的磁力误差为三轴磁力计输出的磁场强度投影到地球磁场所在的三维坐标系的磁场强度值与所述地球磁场强度的差值,同理,三维坐标系有三个极轴,磁力计输出的磁场强度投影到每一个极轴的值与地球磁场在对应极轴上的分量的差值即为磁力误差值,误差值为3个,分别为在三个极轴上的磁力误差。Among them, after the linear acceleration and magnetic field vector are projected to the navigation system, their values do not match the values of the gravity vector and the earth's magnetic field, that is, the error between the output of the three-
本实施例中,处理控制模块通过Kalman滤波数据融合算法分别计算出俯仰角、横滚角、航向角及三个单轴陀螺仪输出的旋转角度的误差值,并根据误差值调整载体的三维姿态。由此,本实施例可有效提高载体三维姿态的测量和调控精度。In this embodiment, the processing control module calculates the error values of the pitch angle, roll angle, heading angle and the rotation angle output by the three single-axis gyroscopes through the Kalman filtering data fusion algorithm, and adjusts the three-dimensional attitude of the carrier according to the error values. . Therefore, this embodiment can effectively improve the measurement and control accuracy of the three-dimensional attitude of the carrier.
本实施例还提供了一种机械设备,机械设备安装有如以上所述的三维姿态测控装置。This embodiment also provides a mechanical device, and the mechanical device is installed with the three-dimensional attitude measurement and control device as described above.
根据以上可知,机械设备安装有以上所述三维姿态测控装置,,可有效提升测量和调控载体三维姿态的精确性。As can be seen from the above, the mechanical equipment is installed with the above-mentioned three-dimensional attitude measurement and control device, which can effectively improve the accuracy of measuring and regulating the three-dimensional attitude of the carrier.
如图2所示,为一实施例的三维姿态的测控方法的流程示意图,所述测控方法基于以上所述的三维姿态测控装置。具体的,所述方法包括步骤S110至步骤S150。As shown in FIG. 2 , it is a schematic flowchart of a three-dimensional attitude measurement and control method according to an embodiment, and the measurement and control method is based on the above-mentioned three-dimensional attitude measurement and control device. Specifically, the method includes steps S110 to S150.
步骤S110,获取三轴加速度计输出的俯仰角、横滚角及三轴磁力计静态输出的航向角;Step S110, acquiring the pitch angle and roll angle output by the three-axis accelerometer and the heading angle statically output by the three-axis magnetometer;
步骤S120,对三轴加速度计输出的线加速度和三轴磁力计输出的磁场强度进行预置偏差补偿;Step S120, performing preset deviation compensation on the linear acceleration output by the three-axis accelerometer and the magnetic field intensity output by the three-axis magnetometer;
步骤S130,分别获取三轴加速度计输出的线加速度与对应重力矢量的差值和三轴磁力计输出的磁场强度与对应地球磁场强度的差值;Step S130, respectively obtaining the difference between the linear acceleration output by the triaxial accelerometer and the corresponding gravity vector and the difference between the magnetic field intensity output by the triaxial magnetometer and the corresponding earth magnetic field intensity;
步骤S140,根据差值分别计算俯仰角、横滚角、航向角及三个单轴陀螺仪输出的旋转角度的误差值;Step S140, calculate the error values of the pitch angle, the roll angle, the heading angle and the rotation angles output by the three single-axis gyroscopes respectively according to the difference values;
步骤S150,根据俯仰角、横滚角、航向角及三个单轴陀螺仪输出的旋转角度的误差值调整载体的三维姿态。Step S150: Adjust the three-dimensional attitude of the carrier according to the error values of the pitch angle, roll angle, heading angle and the rotation angle output by the three single-axis gyroscopes.
以上所述三维姿态的测控方法中,对三轴加速度计输出的线加速度及三轴磁力计输出的磁场强度进行预置偏差补偿,可使三轴加速度计和三轴磁力计输出的值更加精准;根据三轴加速度计输出的线加速度与与重力矢量存在的差值和三轴磁力计输出的磁场强度与地球磁场存在的差值,分别计算出俯仰角、横滚角、航向角及三个单轴陀螺仪输出的旋转角度的误差值,可以提升测量的俯仰角、横滚角、航向角和旋转角度的准确性,依次对载体的三维姿态进行控制,可有效提升对载体三维姿态的稳定性。In the above-mentioned three-dimensional attitude measurement and control method, the preset deviation compensation is performed on the linear acceleration output by the three-axis accelerometer and the magnetic field strength output by the three-axis magnetometer, so that the values output by the three-axis accelerometer and the three-axis magnetometer can be more accurate. ;According to the difference between the linear acceleration output by the three-axis accelerometer and the gravity vector and the difference between the magnetic field strength output by the three-axis magnetometer and the earth's magnetic field, the pitch angle, roll angle, heading angle and three The error value of the rotation angle output by the single-axis gyroscope can improve the accuracy of the measured pitch angle, roll angle, heading angle and rotation angle, and control the three-dimensional attitude of the carrier in turn, which can effectively improve the stability of the three-dimensional attitude of the carrier. sex.
本实施例中,综合设置有单轴陀螺仪、三轴加速度计和三轴磁力,通过三者的互补性,通过椭球校正算法补偿三轴加速度计和三轴磁力计的系统误差,主要是零偏和交叉耦合误差,再通过数据融合算法将单轴陀螺仪、三轴加速度计和三轴磁力计的量测数据进行融合从而实现单轴陀螺仪、三轴加速度计和三轴磁力计的优势互补。In this embodiment, a single-axis gyroscope, a three-axis accelerometer, and a three-axis magnetic force are comprehensively provided. Through the complementarity of the three, the system errors of the three-axis accelerometer and the three-axis magnetometer are compensated by the ellipsoid correction algorithm. Zero bias and cross-coupling error, and then fuse the measurement data of single-axis gyroscope, three-axis accelerometer and three-axis magnetometer through data fusion algorithm to realize the integration of single-axis gyroscope, three-axis accelerometer and three-axis magnetometer. Complementary advantages.
本实施例中,处理控制模块140通过椭球校正算法对三轴加速度计输出的线加速度及三轴磁力计输出的磁场强度进行预置偏差补偿。即步骤S120通过椭球校正算法对三轴加速度计和三轴磁力计进行预置偏差补偿。椭球校正算法可以对三轴加速度计和三轴磁力计的零偏、交叉耦合等系统偏差进行补偿,从而极大提高三轴加速度计和三轴磁力计的原始观测值的精度。进一步通过三轴加速度计和三轴磁力计的静态输出的载体的俯仰角、横滚角和航向角即可作为三个单轴陀螺仪姿态更新的初始值。In this embodiment, the
通常三维姿态的解算存在误差,因此,将线加速度和和磁场强度投影到导航系后其值与重力矢量和地球磁场的分量不符,本实施例利用它们的差值通过Kalman滤波数据融合算法估计出三维姿态和陀螺仪仪器参数的误差并对三维姿态和陀螺仪参数进行校正。因为单轴陀螺仪积分解算的短期精度高,可以利用差值判别三轴加速度计和三轴磁力计是否受到干扰,从而提高整个三维姿态测控装置的鲁棒性。Usually, there is an error in the calculation of the three-dimensional attitude. Therefore, after projecting the linear acceleration and the magnetic field strength to the navigation system, the values are inconsistent with the gravity vector and the components of the earth's magnetic field. This embodiment uses their difference to estimate by the Kalman filtering data fusion algorithm. The error of 3D attitude and gyroscope instrument parameters is obtained and the 3D attitude and gyroscope parameters are corrected. Because of the high short-term accuracy of the single-axis gyroscope integral solution, the difference value can be used to determine whether the three-axis accelerometer and the three-axis magnetometer are disturbed, thereby improving the robustness of the entire three-dimensional attitude measurement and control device.
其中,将线加速度和和磁场强度投影到导航系后其值与重力矢量和地球磁场的分量不符,即三轴加速度计120输出与重力矢量存在的误差和三轴磁力计输出与地球磁场存在的误差。三轴加速度计存在的重力误差为加速度计输出的线加速度投影到重力矢量所在三维坐标系的加速度值与所述重力矢量的差值,三维坐标系有三个极轴,加速度计输出的线加速度投影到每一个极轴的值与重力矢量在对应极轴分量的差值即为重力误差值,误差值具有3个,分别为在三个极轴上的重力误差。三轴磁力计存在的磁力误差为磁力计输出的磁场强度投影到地球磁场所在的三维坐标系的磁场强度值与所述地球磁场强度的差值,同理,三维坐标系有三个极轴,磁力计输出的磁场强度投影到每一个极轴的值与地球磁场在对应极轴上的分量的差值即为磁力误差值,误差值为3个,分别为在三个极轴上的磁力误差。本实施例中,处理控制模块通过Kalman滤波数据融合算法分别计算出俯仰角、横滚角、航向角及三个单轴陀螺仪输出的旋转角度的误差值,并根据误差值调整载体的三维姿态。由此,本实施例可有效提高载体三维姿态的测量和调控精度。Among them, after the linear acceleration and magnetic field strength are projected to the navigation system, their values do not match the gravity vector and the components of the earth's magnetic field, that is, the error between the output of the three-
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above-described embodiments can be combined arbitrarily. For the sake of brevity, all possible combinations of the technical features in the above-described embodiments are not described. However, as long as there is no contradiction between the combinations of these technical features, All should be regarded as the scope described in this specification.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only represent several embodiments of the present invention, and the descriptions thereof are specific and detailed, but should not be construed as a limitation on the scope of the invention patent. It should be pointed out that for those of ordinary skill in the art, without departing from the concept of the present invention, several modifications and improvements can also be made, which all belong to the protection scope of the present invention. Therefore, the protection scope of the patent of the present invention should be subject to the appended claims.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611227121.5A CN106647791B (en) | 2016-12-27 | 2016-12-27 | Three-dimensional attitude measurement and control device, mechanical equipment and three-dimensional attitude measurement and control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611227121.5A CN106647791B (en) | 2016-12-27 | 2016-12-27 | Three-dimensional attitude measurement and control device, mechanical equipment and three-dimensional attitude measurement and control method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106647791A CN106647791A (en) | 2017-05-10 |
CN106647791B true CN106647791B (en) | 2020-08-14 |
Family
ID=58832679
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611227121.5A Expired - Fee Related CN106647791B (en) | 2016-12-27 | 2016-12-27 | Three-dimensional attitude measurement and control device, mechanical equipment and three-dimensional attitude measurement and control method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106647791B (en) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107449424A (en) * | 2017-06-29 | 2017-12-08 | 江西科技师范大学 | The computational methods and system of a kind of three-dimension altitude angle |
CN107328407A (en) * | 2017-07-11 | 2017-11-07 | 中国地质大学(武汉) | A kind of strapdown rigid body 3 d pose monitors display system and method in real time |
CN107783150A (en) * | 2017-09-13 | 2018-03-09 | 成都路行通信息技术有限公司 | A kind of determination methods and device of vehicle-mounted GPS equipment Installation posture |
CN108020224A (en) * | 2017-12-18 | 2018-05-11 | 武汉静磁栅机电制造有限公司 | A kind of autonomous type opening self-detective instrument and its measuring method |
CN108279618A (en) * | 2018-03-28 | 2018-07-13 | 北京钢铁侠科技有限公司 | It is a kind of for the controller of robot, control method and robot |
CN110417489B (en) * | 2018-04-26 | 2021-09-17 | 杭州海康机器人技术有限公司 | Calibration method and device for directional antenna of unmanned aerial vehicle |
CN108801260B (en) * | 2018-05-07 | 2022-01-28 | 约肯机器人(上海)有限公司 | Data processing method and device based on underwater robot |
CN108836351B (en) * | 2018-06-24 | 2021-10-08 | 北京旷景科技有限公司 | Wearable trunk posture monitoring system |
CN108836350B (en) * | 2018-06-24 | 2021-10-08 | 北京旷景科技有限公司 | Wearable trunk posture monitoring system and manufacturing method |
CN108946443A (en) * | 2018-07-13 | 2018-12-07 | 上海拓璞数控科技股份有限公司 | Hanging apparatus and hanging method |
CN110823181A (en) * | 2018-07-23 | 2020-02-21 | 郑州宇通重工有限公司 | Sanitation vehicle, vehicle body posture detection method thereof, vehicle body stabilization method and corresponding system |
CN109512435B (en) * | 2018-10-29 | 2021-07-13 | 上海电机学院 | A walking posture corrector that can be detected in real time |
CN109827468B (en) * | 2018-12-18 | 2021-04-20 | 中国船舶重工集团公司第七一0研究所 | Safety relief method for carrier-borne electromagnetic emission deep bomb |
CN109901581A (en) * | 2019-03-15 | 2019-06-18 | 智久(厦门)机器人科技有限公司上海分公司 | A kind of scaling method and spin motion control method of AGV vehicle spin angle |
CN110296683B (en) * | 2019-06-03 | 2023-08-22 | 新纳传感系统有限公司 | Dynamic inclinometer with centrifugal acceleration compensation |
CN110618379A (en) * | 2019-08-07 | 2019-12-27 | 常州爱特科技股份有限公司 | Disconnecting switch on-off state monitoring system and working method |
CN111426318B (en) * | 2020-04-22 | 2024-01-26 | 中北大学 | Low-cost AHRS course angle compensation method based on quaternion-extended Kalman filtering |
CN112013876A (en) * | 2020-08-28 | 2020-12-01 | 上海爱观视觉科技有限公司 | IMU data calibration method, terminal device and computer readable storage medium |
CN112987944B (en) * | 2021-03-12 | 2024-07-02 | 东莞市攀星智能运动科技有限公司 | Music playing control method based on foot gesture interaction |
CN117260724B (en) * | 2023-10-09 | 2024-06-07 | 南京迈思物联网科技有限公司 | Attitude control method for deep well exploratory robot |
CN118362123B (en) * | 2024-06-18 | 2024-08-30 | 北京白水科技有限公司 | Method, device and equipment for resisting magnetic interference based on navigation attitude reference system |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070088496A1 (en) * | 2005-07-20 | 2007-04-19 | Atair Aerospace, Inc. | Automatic heading and reference system |
EP2520903B1 (en) * | 2011-02-28 | 2014-06-18 | BlackBerry Limited | Portable electronic device adapted to compensate for gyroscope bias |
CN103776448B (en) * | 2014-02-17 | 2016-08-31 | 武汉元生创新科技有限公司 | A kind of attitude heading reference system |
CN104197987A (en) * | 2014-09-01 | 2014-12-10 | 北京诺亦腾科技有限公司 | Combined-type motion capturing system |
CN104567931B (en) * | 2015-01-14 | 2017-04-05 | 华侨大学 | A kind of heading effect error cancelling method of indoor inertial navigation positioning |
CN104897153A (en) * | 2015-06-23 | 2015-09-09 | 苏州市英富美欣科技有限公司 | Carrier attitude measuring system based on MEMS (micro-electromechanical systems) and MR (magnetic-resistance) sensors |
CN105509740A (en) * | 2015-12-31 | 2016-04-20 | 广州中海达卫星导航技术股份有限公司 | Measuring method and module for attitude of agriculture machinery vehicle |
-
2016
- 2016-12-27 CN CN201611227121.5A patent/CN106647791B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN106647791A (en) | 2017-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106647791B (en) | Three-dimensional attitude measurement and control device, mechanical equipment and three-dimensional attitude measurement and control method | |
EP2973127B1 (en) | Heading confidence interval estimation | |
CN105588567B (en) | A kind of attitude heading reference system and method for autoelectrinic compass calibration assist type | |
CN107270893B (en) | Lever arm and time asynchronous error estimation and compensation method for real estate measurement | |
CN104736963B (en) | mapping system and method | |
CN110887481B (en) | Carrier dynamic attitude estimation method based on MEMS inertial sensor | |
CN105509740A (en) | Measuring method and module for attitude of agriculture machinery vehicle | |
CN110160497B (en) | Iron tower inclination measuring method and device, computer equipment and storage medium | |
KR20170104621A (en) | How to update the pre-posture angle of an agricultural machine based on a 9-axis MEMS sensor | |
CN104880189B (en) | A kind of antenna for satellite communication in motion low cost tracking anti-interference method | |
US11293778B1 (en) | Attitude sensor system with automatic accelerometer bias correction | |
KR101211703B1 (en) | Calibration method of the magnetometer error using a line of sight vector and the integrated navigation system using the same | |
CN110621961B (en) | Low Cost Inertial Navigation System | |
JP6983565B2 (en) | Methods and systems for compensating for soft iron magnetic disturbances in vehicle heading reference systems | |
CN106403952A (en) | Method for measuring combined attitudes of Satcom on the move with low cost | |
JP2012173190A (en) | Positioning system and positioning method | |
CN109612460B (en) | A Method of Measuring Vertical Line Deviation Based on Static Correction | |
CN108731676A (en) | A kind of posture fusion enhancing measurement method and system based on inertial navigation technology | |
CN117268372B (en) | INS/GNSS integrated navigation method and system integrating magnetic navigation information | |
Sokolović et al. | INS/GPS navigation system based on MEMS technologies | |
CN116147624B (en) | Ship motion attitude calculation method based on low-cost MEMS navigation attitude reference system | |
CN108507572A (en) | A kind of attitude orientation error correcting method based on MEMS Inertial Measurement Units | |
Allotta et al. | Underwater Vehicles attitude estimation in presence of magnetic disturbances | |
CN111141285B (en) | Aviation gravity measuring device | |
Hemanth et al. | Calibration of 3-axis magnetometers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200814 |