[go: up one dir, main page]

CN106646409A - SAR echo signal simulation method based on quasi-double-station model - Google Patents

SAR echo signal simulation method based on quasi-double-station model Download PDF

Info

Publication number
CN106646409A
CN106646409A CN201611239159.4A CN201611239159A CN106646409A CN 106646409 A CN106646409 A CN 106646409A CN 201611239159 A CN201611239159 A CN 201611239159A CN 106646409 A CN106646409 A CN 106646409A
Authority
CN
China
Prior art keywords
pulse
phase center
antenna phase
calculate
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611239159.4A
Other languages
Chinese (zh)
Other versions
CN106646409B (en
Inventor
孙兵
许海伦
左志雄
姜予名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201611239159.4A priority Critical patent/CN106646409B/en
Publication of CN106646409A publication Critical patent/CN106646409A/en
Application granted granted Critical
Publication of CN106646409B publication Critical patent/CN106646409B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4052Means for monitoring or calibrating by simulation of echoes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开了一种基于准双站模型的SAR回波信号仿真方法,首先,输入仿真参数及参数初始化;仿真参数包括地固坐标系下天线相位中心三轴坐标轨迹[X(ti),Y(ti),Z(ti)],地面目标坐标[xk,yk,zk],斜视角下视角φ(ti),仿真开始时刻tM;然后,根据仿真开始时刻,计算出各脉冲发射时刻和脉冲接收时刻及各脉冲收发时刻天线相位中心与各地面目标之间的距离矢量;最后,结合SAR回波信号的数学模型,得到相应的回波数据。本发明基于准双站模型,立足于雷达连续运动模型,能够实现高精度的SAR回波仿真;避免了复杂的迭代计算,在保证计算精度的前提下具有很高的计算效率;适用于机载以及星载SAR回波信号仿真,能够完成在各种条件下的SAR回波信号的回波仿真。

The invention discloses a SAR echo signal simulation method based on a quasi-bistatic model. First, input simulation parameters and parameter initialization; the simulation parameters include the three-axis coordinate trajectory of the antenna phase center in the ground-fixed coordinate system [X(t i ), Y(t i ),Z(t i )], ground target coordinates [x k ,y k ,z k ], oblique angle of view The lower angle of view φ(t i ), the simulation start time t M ; then, according to the simulation start time, calculate the distance vector between each pulse transmission time and pulse reception time and the distance vector between the antenna phase center and each ground target at each pulse transmission and reception time; finally , combined with the mathematical model of the SAR echo signal, to obtain the corresponding echo data. The present invention is based on the quasi-bistatic model, based on the radar continuous motion model, can realize high-precision SAR echo simulation; avoids complex iterative calculations, and has high calculation efficiency under the premise of ensuring calculation accuracy; suitable for airborne And spaceborne SAR echo signal simulation, which can complete the echo simulation of SAR echo signals under various conditions.

Description

一种基于准双站模型的SAR回波信号仿真方法A Simulation Method of SAR Echo Signal Based on Quasi-bistatic Model

技术领域technical field

本发明属于信号处理领域,涉及一种仿真参数计算方法,特别涉及一种基于准双站模型的SAR回波接收时刻计算方法,实现准双站模型下SAR回波信号仿真。The invention belongs to the field of signal processing, and relates to a method for calculating simulation parameters, in particular to a method for calculating the receiving time of SAR echoes based on a quasi-bistatic model, which realizes the simulation of SAR echo signals under the quasi-bistatic model.

背景技术Background technique

合成孔径雷达(Synthetic Aperture Radar,SAR)由于其不受天气、气候的影响,能全天时、全天候、高分辨率、大区域对地观测,因此成为空间信息遥感技术飞速发展时代的主旋律之一。由于SAR比较复杂,算法验证,性能测试和系统调试等具有很大的难度和复杂度,并且需要符合特定条件下的SAR原始回波数据,这些数据通过雷达载体飞行获得往往不太实际,并且又是已有的SAR卫星获取的真实数据所无法替代的,因此SAR回波信号仿真在雷达研制过程中发挥着重要作用。Synthetic Aperture Radar (SAR) has become one of the main themes in the era of rapid development of space information remote sensing technology because it is not affected by weather and climate, and can observe the earth in all-weather, all-weather, high-resolution, and large areas. . Due to the complexity of SAR, algorithm verification, performance testing and system debugging are very difficult and complex, and the original echo data of SAR under specific conditions are required. These data are often not practical to obtain through radar carrier flight, and It cannot be replaced by the real data acquired by existing SAR satellites, so the SAR echo signal simulation plays an important role in the radar development process.

SAR回波仿真模型分为基于停走模型和非停走模型两种模型。在SAR回波仿真中,利用不转动地心坐标系、转动地心坐标系、卫星轨道平面坐标系、卫星平台坐标系、卫星星体坐标系和天线坐标系等六大坐标系来描述卫星雷达与地面目标的关系,由此可以计算方位向时刻雷达天线相位中心与地面目标之间的相互位置关系,从而计算出雷达天线相位中心与地面目标之间的斜距,带入到SAR回波模型中,最终完成SAR回波仿真。The SAR echo simulation model is divided into two types based on the stop-and-go model and the non-stop-and-go model. In the SAR echo simulation, six coordinate systems are used to describe the satellite radar and The relationship between the ground target, so that the mutual positional relationship between the radar antenna phase center and the ground target can be calculated at azimuth time, so as to calculate the slant distance between the radar antenna phase center and the ground target, and bring it into the SAR echo model , and finally complete the SAR echo simulation.

在停走模型下,回波仿真过程中认为雷达发射信号时刻与回波信号接收时刻为同一时刻,这种模型大大简化了SAR回波信号仿真的复杂度,但却忽略了信号发射时刻和接收时刻之间雷达位置的变化,特别是高轨、高速的雷达平台,其位置变化较为明显,不可避免地带来一定的误差,影响SAR回波后续处理的质量;在非停走模型下,考虑到信号发射时刻和接收时刻雷达位置的变化,为了精确计算回波信号接收时刻,需要迭代求解,导致算法十分复杂。Under the stop-and-go model, the radar transmit signal time and the echo signal receive time are considered to be the same time during the echo simulation process. This model greatly simplifies the complexity of the SAR echo signal simulation, but ignores the signal transmit time and receive time. The change of radar position between moments, especially for high-orbit and high-speed radar platforms, the position change is more obvious, which inevitably brings certain errors and affects the quality of subsequent processing of SAR echoes; under the non-stop-and-go model, considering The change of the radar position at the time of signal transmission and reception, in order to accurately calculate the time of echo signal reception, iterative solution is required, which makes the algorithm very complicated.

发明内容Contents of the invention

本发明的目的是针对SAR回波仿真停走模型所带来的误差以及非停走模型下参数计算算法复杂的问题,提出了一种基于准双站模型的SAR回波信号接收时刻快速计算方法,在误差允许范围内基于准双站模型实现快速仿真,弥补了停走模型和非停走模型的不足。The purpose of the present invention is to solve the error caused by the SAR echo simulation stop-and-go model and the problem of complex parameter calculation algorithms under the non-stop-and-go model, and proposes a method for quickly calculating the receiving time of SAR echo signals based on the quasi-bistatic model , within the allowable range of error, based on the quasi-bistatic model, the fast simulation is realized, which makes up for the deficiency of the stop-and-go model and the non-stop-and-go model.

为实现上述目的,本发明提供一种基于准双站模型的SAR回波信号仿真方法,包括:In order to achieve the above object, the present invention provides a SAR echo signal simulation method based on a quasi-bistatic model, comprising:

步骤1、输入仿真参数及仿真参数初始化;Step 1. Input simulation parameters and initialization of simulation parameters;

所述仿真参数包括:地固坐标系下天线相位中心三轴坐标轨迹[X(ti),Y(ti),Z(ti)],i=1,2…N为各个天线相位中心,N为天线相位中心总个数,ti为天线相位中心坐标对应的时刻;地面目标坐标[xk,yk,zk],k=1,2…n为各个地面目标,n为地面目标总个数,各地面目标后向散射系数σk,方位向天线波束宽度βa,距离向天线波束宽度βb,斜视角下视角φ(ti),仿真开始时刻tM,脉冲重复频率fprf,发射信号的脉冲宽度Tprt,仿真的脉冲数目Np;发射信号的调频fr,发射信号的波长λ;The simulation parameters include: three-axis coordinate trajectory [X(t i ), Y(t i ), Z(t i )] of the antenna phase center in the ground-fixed coordinate system, where i=1, 2...N is the phase center of each antenna , N is the total number of antenna phase centers, t i is the moment corresponding to the antenna phase center coordinates; ground target coordinates [x k , y k , z k ], k=1, 2...n is each ground target, n is the ground The total number of targets, the backscatter coefficient σ k of each ground target, the antenna beam width β a in azimuth direction, the antenna beam width β b in range direction, and the oblique angle Downward viewing angle φ(t i ), simulation start time t M , pulse repetition frequency f prf , pulse width T prt of transmitted signal, number of simulated pulses N p ; frequency modulation f r of transmitted signal, wavelength λ of transmitted signal;

所述仿真参数初始化为利用曲线拟合的方法得到天线相位中心坐标、斜视角和下视角曲线;The simulation parameters are initialized to obtain antenna phase center coordinates, oblique viewing angles and downward viewing angle curves by means of curve fitting;

步骤2、根据仿真开始时刻,计算出各脉冲发射时刻和脉冲接收时刻;在计算脉冲收发时刻的同时,计算各脉冲收发时刻天线相位中心与各地面目标之间的距离矢量、天线相位中心与地面目标之间的视线夹角和视线入射角;Step 2. Calculate each pulse transmission time and pulse reception time according to the start time of the simulation; while calculating the pulse transmission and reception time, calculate the distance vector between the antenna phase center and each ground target at each pulse transmission and reception time, and the distance vector between the antenna phase center and the ground Line-of-sight angle and line-of-sight incidence angle between targets;

步骤3、结合SAR回波信号的数学模型,得到相应的回波数据。Step 3, combining the mathematical model of the SAR echo signal to obtain corresponding echo data.

作为本发明的进一步改进,在步骤1中,所述仿真参数初始化的实现方法为:As a further improvement of the present invention, in step 1, the implementation method of the simulation parameter initialization is:

设天线相位中心坐标、斜视角和下视角曲线三阶表达式分别为:Let the third-order expressions of antenna phase center coordinates, oblique viewing angle and downward viewing angle curves be:

φ(t)=e3t3+e2t2+e1t+e0 (3)φ(t)=e 3 t 3 +e 2 t 2 +e 1 t+e 0 (3)

其中ai,bi,ci,di,ei i=0,1,2,3为待拟合的各项系数,针对三阶多项式,利用MATLAB多项式拟合函数命令polyfit进行拟合;Among them, a i , b i , c i , d i , e i i=0,1,2,3 are the coefficients to be fitted, and for the third-order polynomial, use the MATLAB polynomial fitting function command polyfit to perform the fitting;

a、利用[X(ti),Y(ti),Z(ti)]和ti,通过式(4)计算ai,bi,ci i=0,1,2,3:a. Using [X(t i ), Y(t i ), Z(t i )] and t i , calculate a i , b i , c i i=0, 1, 2, 3 through formula (4):

b、利用和ti,通过式(5)计算di i=0,1,2,3:b. Use and t i , calculate d i i=0,1,2,3 through formula (5):

c、利用φ(ti)和ti,通过式(6)计算ei i=0,1,2,3:c. Using φ(t i ) and t i , calculate e i i = 0, 1, 2, 3 through formula (6):

[e3 e2 e1 e0]=polyfit(φ(ti),ti,3) (6)。[e 3 e 2 e 1 e 0 ]=polyfit(φ(t i ),t i ,3) (6).

作为本发明的进一步改进,所述步骤2包括:As a further improvement of the present invention, said step 2 includes:

步骤21、计算出各脉冲发射时刻;Step 21, calculate each pulse emission time;

将仿真开始时刻tM、发射脉冲序列的序号ie=1,2…Np,代入式(7),计算出各脉冲发射时刻tieSubstituting the simulation start time t M and the sequence number ie=1,2...N p of the transmitted pulse sequence into formula (7), the time t ie of each pulse transmission is calculated:

步骤22、根据各脉冲发射时刻计算对应的天线相位中心位置坐标,斜视角和下视角;Step 22. Calculate the corresponding antenna phase center position coordinates, oblique angle of view and downward angle of view according to each pulse transmission time;

将计算出的各项系数ai,bi,ci,di,ei i=0,1,2,3和各脉冲发射时刻tie分别带入式(1)、(2)、(3)得到各脉冲发射时刻的对应的天线相位中心位置坐标X(tie),Y(tie),Z(tie),斜视角和下视角φ(tie):Put the calculated coefficients a i , b i , c i , d i , e i i = 0, 1, 2, 3 and each pulse transmission time t ie into formulas (1), (2), ( 3) Obtain the corresponding antenna phase center position coordinates X(t ie ), Y(t ie ), Z(t ie ) at each pulse transmission time, oblique angle and the lower viewing angle φ(t ie ):

φ(tie)=e3tie 3+e2tie 2+e1tie+e0 φ(t ie )=e 3 t ie 3 +e 2 t ie 2 +e 1 t ie +e 0

步骤23、根据各脉冲发射时刻得到天线相位中心与各地面目标之间的距离矢量;Step 23, obtain the distance vector between the antenna phase center and each ground target according to each pulse transmission time;

将计算出来的脉冲发射天线相位中心位置坐标X(tie),Y(tie),Z(tie)和地面场景目标的位置坐标[xk,yk,zk]代入式(9),得到天线相位中心与地面目标之间的距离矢量 Substitute the calculated pulse transmitting antenna phase center position coordinates X(t ie ), Y(t ie ), Z(t ie ) and the position coordinates [x k , y k , z k ] of the ground scene target into formula (9) , to get the distance vector between the antenna phase center and the ground target

步骤24、根据几何模型计算各脉冲发射时刻对应的天线相位中心与地面目标的视线夹角;Step 24, calculate the line-of-sight angle between the antenna phase center corresponding to each pulse transmission time and the ground target according to the geometric model;

将计算出来的脉冲发射天线相位中心位置坐标X(tie),Y(tie),Z(tie)和地面场景目标的位置坐标[xk,yk,zk]代入式(10),得到各脉冲发射时刻对应的天线相位中心与地面目标的视线夹角θieSubstitute the calculated pulse transmitting antenna phase center position coordinates X(t ie ), Y(t ie ), Z(t ie ) and the position coordinates [x k , y k , z k ] of the ground scene target into formula (10) , to get the line-of-sight angle θ ie between the antenna phase center corresponding to each pulse transmission time and the ground target:

步骤25、根据几何模型计算各脉冲发射时刻对应的视线入射角;Step 25, calculate the line-of-sight incident angle corresponding to each pulse emission time according to the geometric model;

将计算出来的脉冲发射天线相位中心位置坐标X(tie),Y(tie),Z(tie)和地面场景目标的位置坐标[xk,yk,zk]代入式(11),得到各脉冲发射时刻对应的视线入射角γieSubstitute the calculated pulse transmitting antenna phase center position coordinates X(t ie ), Y(t ie ), Z(t ie ) and the position coordinates [x k , y k , z k ] of the ground scene target into formula (11) , to obtain the line-of-sight incident angle γ ie corresponding to each pulse emission moment:

步骤26、利用准双站模型计算信号延迟时间,计算各脉冲接收时刻;Step 26, using the quasi-bistation model to calculate the signal delay time, and calculate the receiving time of each pulse;

将脉冲发射时刻天线相位中心与地面目标之间的距离矢量代入式(12)计算回波延时时间τdelayThe distance vector between the antenna phase center and the ground target at the moment of pulse transmission Substituting into formula (12) to calculate the echo delay time τ delay :

其中,| |为取模运算,c是光速;Wherein, | | is a modulo operation, and c is the speed of light;

将脉冲发射时刻tie和回波延时时间τdelay代入式(13)计算脉冲接收时刻trSubstitute the pulse emission time t ie and the echo delay time τ delay into formula (13) to calculate the pulse reception time t r :

tr=tiedelay (13)t r =t iedelay (13)

步骤27、根据各脉冲接收时刻计算对应的天线相位中心位置坐标,斜视角和下视角;Step 27. Calculate the corresponding antenna phase center position coordinates, oblique angle of view and downward angle of view according to each pulse receiving moment;

将计算出的各项系数ai,bi,ci,di,ei i=0,1,2,3和各脉冲接收时刻tir分别带入式(1)、(2)、(3)得到各脉冲接收时刻的对应的天线相位中心位置坐标X(tir),Y(tir),Z(tir),斜视角和下视角φ(tir):Put the calculated coefficients a i , b i , c i , d i , e i i=0, 1, 2, 3 and each pulse receiving time t ir into formulas (1), (2), ( 3) Obtain the corresponding antenna phase center position coordinates X(t ir ), Y(t ir ), Z(t ir ) at each pulse receiving moment, oblique angle and down angle φ(t ir ):

φ(tir)=e3tir 3+e2tir 2+e1tir+e0 φ(t ir )=e 3 t ir 3 +e 2 t ir 2 +e 1 t ir +e 0

步骤28、根据各脉冲接收时刻得到天线相位中心与各地面目标之间的距离矢量;Step 28, obtain the distance vector between the antenna phase center and each ground target according to each pulse receiving moment;

将计算出来的各脉冲接收时刻天线相位中心位置坐标X(tir),Y(tir),Z(tir)和地面场景目标的位置坐标[xk,yk,zk]代入式(15),得到天线相位中心与各地面目标之间的距离矢量 Substitute the calculated antenna phase center position coordinates X(t ir ), Y(t ir ), Z(t ir ) and the position coordinates [x k , y k , z k ] of the ground scene target into the formula ( 15), get the distance vector between the antenna phase center and each ground target

步骤29、根据几何模型计算各脉冲接收时刻对应的天线相位中心与地面目标的视线夹角;Step 29, calculate the line-of-sight angle between the antenna phase center corresponding to each pulse receiving moment and the ground target according to the geometric model;

将计算出来的各脉冲接收时刻天线相位中心位置坐标X(tir),Y(tir),Z(tir)和地面场景目标的位置坐标[xk,yk,zk]代入式(16),得到脉冲接收时刻对应的天线相位中心与地面目标的视线夹角θirSubstitute the calculated antenna phase center position coordinates X(t ir ), Y(t ir ), Z(t ir ) and the position coordinates [x k , y k , z k ] of the ground scene target into the formula ( 16), get the line-of-sight angle θ ir between the antenna phase center corresponding to the pulse receiving moment and the ground target:

步骤210、根据几何模型计算各脉冲接收时刻对应的视线入射角;Step 210, calculating the line-of-sight incident angle corresponding to each pulse receiving moment according to the geometric model;

将计算出来的脉冲发射天线相位中心位置坐标X(tie),Y(tie),Z(tie)和地面场景目标的位置坐标[xk,yk,zk]代入式(17),得到各脉冲发射时刻对应的视线入射角γirSubstitute the calculated pulse transmitting antenna phase center position coordinates X(t ie ), Y(t ie ), Z(t ie ) and the position coordinates [x k , y k , z k ] of the ground scene target into formula (17) , to obtain the line-of-sight incident angle γ ir corresponding to each pulse emission moment:

作为本发明的进一步改进,所述步骤3包括:As a further improvement of the present invention, said step 3 includes:

步骤31、利用脉冲发射时刻对应的天线相位中心与地面目标的相对位置矢量和脉冲接收时刻对应的天线相位中心与地面目标的相对位置矢量来计算SAR回波仿真中的双程距离;Step 31, using the relative position vector of the antenna phase center corresponding to the pulse transmission time and the ground target and the relative position vector of the antenna phase center and the ground target corresponding to the pulse receiving time to calculate the two-way distance in the SAR echo simulation;

将计算得到的各脉冲发射时刻天线相位中心与各地面目标之间的距离矢量和各脉冲接收时刻天线相位中心与各地面目标之间的距离矢量代入式(18)得到双程距离R(t):The calculated distance vector between the antenna phase center and each ground target at each pulse transmission time and the distance vector between the antenna phase center and each ground target at each pulse receiving moment Substitute into formula (18) to get the two-way distance R(t):

步骤32、计算方位向天线方向图;Step 32, calculating the azimuth antenna pattern;

将各脉冲发射时刻对应的天线相位中心与地面目标的视线夹角θie、斜视角各脉冲接收时刻对应的天线相位中心与地面目标的视线夹角θir、斜视角方位向天线波束宽度βa,代入式(19),计算方位向天线方向性函数WaThe line-of-sight angle θ ie between the antenna phase center corresponding to each pulse transmission moment and the ground target, and the oblique angle The line-of-sight angle θ ir between the antenna phase center corresponding to each pulse receiving moment and the ground target, and the oblique angle The azimuth antenna beam width β a is substituted into equation (19) to calculate the azimuth antenna directivity function W a :

步骤33、计算距离向天线方向图;Step 33, calculating the range antenna pattern;

将各脉冲发射时刻对应的视线入射角γie、斜视角φ(tie),各脉冲接收时刻对应的视线入射角γir、下视角φ(tir),距离向天线波束宽度βb代入式(20),计算距离向天线方向性函数WrSubstitute the line-of-sight incident angle γ ie , oblique angle of view φ(t ie ) corresponding to each pulse transmission time, the line-of-sight incident angle γ ir , downward viewing angle φ(t ir ) corresponding to each pulse receiving time, and the distance-to-antenna beamwidth β b into the formula (20), calculate the range antenna directivity function W r :

步骤34、利用的双程距离和天线方向图计算SAR回波;Step 34, using the two-way distance and the antenna pattern to calculate the SAR echo;

将方位向天线方向性函数Wa,距离向天线方向性函数Wr,目标后向散射系数σk,发射信号的脉冲宽度Tprt,发射信号的调频fr,发射信号的波长λ和双程距离R(t)代入式(21),逐点计算回波:The azimuth antenna directivity function W a , the range antenna directivity function W r , the target backscatter coefficient σ k , the pulse width T prt of the transmitted signal, the frequency modulation f r of the transmitted signal, the wavelength λ of the transmitted signal and the two-way The distance R(t) is substituted into formula (21), and the echo is calculated point by point:

其中τ表示回波数据的距离向时刻,n为目标总个数。Among them, τ represents the range time of the echo data, and n is the total number of targets.

与现有技术相比,本发明的有益效果为:Compared with prior art, the beneficial effect of the present invention is:

1、本发明基于准双站模型,立足于雷达连续运动模型,能够实现高精度的SAR回波仿真;1. The present invention is based on the quasi-bistatic model, based on the radar continuous motion model, and can realize high-precision SAR echo simulation;

2、本发明基于准双站模型,提出了一种各脉冲接收时刻的快速计算方法,避免了复杂的迭代计算,在保证计算精度的前提下具有很高的计算效率;2. Based on the quasi-bistation model, the present invention proposes a fast calculation method for each pulse receiving time, which avoids complicated iterative calculations and has high calculation efficiency under the premise of ensuring calculation accuracy;

3、本发明基于准双站模型,适用于机载以及星载SAR回波信号仿真,能够完成在各种条件下的SAR回波信号的回波仿真。3. The present invention is based on a quasi-bistatic model, is suitable for airborne and spaceborne SAR echo signal simulation, and can complete the echo simulation of SAR echo signals under various conditions.

附图说明Description of drawings

图1为本发明一种实施例公开的基于准双站模型的SAR回波信号仿真方法的流程图;Fig. 1 is the flow chart of the SAR echo signal simulation method based on the quasi-bistatic model disclosed by an embodiment of the present invention;

图2是本发明中SAR准双站模型图;Fig. 2 is a SAR quasi-bi-station model figure among the present invention;

图3是本发明中斜距与连续模型斜距对比图;Fig. 3 is a contrasting figure of slant distance and continuous model slant distance in the present invention;

图4为停走模型的斜距误差图;Fig. 4 is the slant distance error diagram of the stop-and-go model;

图5是本发明方法的斜距误差图;Fig. 5 is the slant distance error figure of the inventive method;

图6是本发明中回波信号实部图。Fig. 6 is a diagram of the real part of the echo signal in the present invention.

具体实施方式detailed description

为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments It is a part of embodiments of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.

下面结合附图对本发明做进一步的详细描述:Below in conjunction with accompanying drawing, the present invention is described in further detail:

本发明提出了一种基于准双站模型的SAR回波信号接收时刻计算方法,实现连续模型SAR回波信号仿真,适用于机载以及星载SAR回波信号仿真,总流程如图1所示。在SAR回波仿真中,一般的停走模型是假设雷达在发射脉冲的同时接受反射回来的脉冲,但是这种假设忽略了在脉冲传输过程中雷达平台的运动,会带来一定的误差;而在非停走模型中,为了计算各脉冲接收时刻,又需要大量的迭代计算,给工程应用带来了不便。本发明基于准双站模型,利用脉冲发射时刻雷达天线相位中心与地面之间的距离计算脉冲传播延迟时间,在误差允许范围内实现快速近似计算双程斜距。本发明的基于准双站模型的SAR回波仿真方法,包括以下几个步骤:The present invention proposes a method for calculating the receiving time of SAR echo signals based on a quasi-bistatic model, and realizes the simulation of continuous model SAR echo signals, which is suitable for airborne and spaceborne SAR echo signal simulations. The overall process is shown in Figure 1 . In the SAR echo simulation, the general stop-and-go model assumes that the radar receives the reflected pulse while transmitting the pulse, but this assumption ignores the movement of the radar platform during the pulse transmission process, which will bring certain errors; and In the non-stop-and-go model, in order to calculate the receiving time of each pulse, a large number of iterative calculations are required, which brings inconvenience to engineering applications. The invention is based on the quasi-bistatic model, uses the distance between the phase center of the radar antenna and the ground at the time of pulse transmission to calculate the pulse propagation delay time, and realizes fast approximate calculation of the two-way slant distance within the error allowable range. The SAR echo simulation method based on the quasi-bistatic model of the present invention comprises the following steps:

步骤1、输入仿真参数及仿真参数初始化;Step 1. Input simulation parameters and initialization of simulation parameters;

(1)、仿真参数具体包括:地固坐标系下天线相位中心三轴坐标轨迹[X(ti),Y(ti),Z(ti)],i=1,2…N为各个天线相位中心,N为天线相位中心总个数,ti为天线相位中心坐标对应的时刻;地面目标坐标[xk,yk,zk],k=1,2…n为各个地面目标,n为地面目标总个数,各地面目标后向散射系数σk,方位向天线波束宽度βa,距离向天线波束宽度βb,斜视角下视角φ(ti),仿真开始时刻tM,脉冲重复频率fprf,发射信号的脉冲宽度Tprt,仿真的脉冲数目Np;发射信号的调频fr,发射信号的波长λ。(1) The simulation parameters specifically include: the three-axis coordinate trajectory of the antenna phase center in the ground-fixed coordinate system [X(t i ), Y(t i ), Z(t i )], where i=1, 2...N is each Antenna phase center, N is the total number of antenna phase centers, t i is the moment corresponding to the antenna phase center coordinates; ground target coordinates [x k , y k , z k ], k=1, 2...n is each ground target, n is the total number of ground targets, the backscatter coefficient σ k of each ground target, the antenna beam width β a in azimuth direction, the antenna beam width β b in range direction, and the oblique angle Downward viewing angle φ(t i ), simulation start time t M , pulse repetition frequency f prf , pulse width T prt of transmitted signal, number of simulated pulses N p ; frequency modulation f r of transmitted signal, wavelength λ of transmitted signal.

(2)、仿真参数初始化;(2), simulation parameter initialization;

设天线相位中心坐标、斜视角和下视角曲线三阶表达式分别为:Let the third-order expressions of antenna phase center coordinates, oblique viewing angle and downward viewing angle curves be:

φ(t)=e3t3+e2t2+e1t+e0 (3)φ(t)=e 3 t 3 +e 2 t 2 +e 1 t+e 0 (3)

其中ai,bi,ci,di,ei i=0,1,2,3为待拟合的各项系数,针对三阶多项式,利用MATLAB多项式拟合函数命令polyfit进行拟合;Among them, a i , b i , c i , d i , e i i=0,1,2,3 are the coefficients to be fitted, and for the third-order polynomial, use the MATLAB polynomial fitting function command polyfit to perform the fitting;

a、利用[X(ti),Y(ti),Z(ti)]和ti,通过式(4)计算ai,bi,ci i=0,1,2,3:a. Using [X(t i ), Y(t i ), Z(t i )] and t i , calculate a i , b i , c i i=0, 1, 2, 3 through formula (4):

b、利用和ti,通过式(5)计算di i=0,1,2,3:b. Use and t i , calculate d i i=0,1,2,3 through formula (5):

c、利用φ(ti)和ti,通过式(6)计算ei i=0,1,2,3:c. Using φ(t i ) and t i , calculate e i i = 0, 1, 2, 3 through formula (6):

[e3 e2 e1 e0]=polyfit(φ(ti),ti,3) (6)[e 3 e 2 e 1 e 0 ]=polyfit(φ(t i ),t i ,3) (6)

步骤2、根据仿真开始时刻,计算出各脉冲发射时刻和脉冲接收时刻;在计算脉冲收发时刻的同时,计算各脉冲收发时刻天线相位中心与各地面目标之间的距离矢量、天线相位中心与地面目标之间的视线夹角和视线入射角;本发明计算脉冲发射时刻天线相位中心与地面目标的斜距计算脉冲传播的单程时延,并利用单程时延的2倍近似脉冲传播的双程延时,从而计算脉冲接收时刻,这种近似避免了非停走模型的复杂的迭代求解,通过后续的仿真分析可知,这种近似带来的误差能够满足实际工程应用。Step 2. Calculate each pulse transmission time and pulse reception time according to the start time of the simulation; while calculating the pulse transmission and reception time, calculate the distance vector between the antenna phase center and each ground target at each pulse transmission and reception time, and the distance vector between the antenna phase center and the ground Line-of-sight angle and line-of-sight incident angle between targets; the present invention calculates the slant distance between the antenna phase center and the ground target at the moment of pulse transmission, calculates the one-way time delay of pulse propagation, and uses twice the one-way time delay to approximate the two-way time delay of pulse propagation, In order to calculate the pulse receiving time, this approximation avoids the complex iterative solution of the non-stop-and-go model. Through subsequent simulation analysis, it can be seen that the error caused by this approximation can meet the actual engineering application.

(1)、计算出各脉冲发射时刻;(1), calculate each pulse emission time;

将仿真开始时刻tM、发射脉冲序列的序号ie=1,2…Np,Np为仿真的脉冲数目,代入式(7),计算出各脉冲发射时刻tieSubstituting the simulation start time t M , the sequence number of the transmitted pulse sequence ie=1,2...N p , N p is the number of simulated pulses, into formula (7), and calculates the time t ie of each pulse transmission:

(2)、根据各脉冲发射时刻计算对应的天线相位中心位置坐标,斜视角和下视角;(2) Calculate the corresponding antenna phase center position coordinates, oblique angle of view and downward angle of view according to each pulse transmission time;

将计算出来的ai,bi,ci,di,ei i=0,1,2,3等拟合的各项系数和各脉冲发射时刻tie分别带入式(1)、(2)、(3)得到各脉冲发射时刻的对应的天线相位中心位置坐标X(tie),Y(tie),Z(tie),斜视角和下视角φ(tie):Put the calculated a i , b i , c i , d i , e i i = 0, 1, 2, 3 and other fitting coefficients and each pulse emission time t ie into formula (1), ( 2), (3) Obtain the corresponding antenna phase center position coordinates X(t ie ), Y(t ie ), Z(t ie ) at each pulse transmission time, and the oblique angle and the lower viewing angle φ(t ie ):

φ(tie)=e3tie 3+e2tie 2+e1tie+e0 φ(t ie )=e 3 t ie 3 +e 2 t ie 2 +e 1 t ie +e 0

(3)、根据各脉冲发射时刻得到天线相位中心与各地面目标之间的距离矢量;(3), obtain the distance vector between the antenna phase center and each ground target according to each pulse transmission moment;

将计算出来的脉冲发射天线相位中心位置坐标X(tie),Y(tie),Z(tie)和地面场景目标的位置坐标[xk,yk,zk]代入式(9),得到天线相位中心与地面目标之间的距离矢量 Substitute the calculated pulse transmitting antenna phase center position coordinates X(t ie ), Y(t ie ), Z(t ie ) and the position coordinates [x k , y k , z k ] of the ground scene target into formula (9) , to get the distance vector between the antenna phase center and the ground target

(4)、根据几何模型计算各脉冲发射时刻对应的天线相位中心与地面目标的视线夹角;(4), calculate the line-of-sight angle between the antenna phase center corresponding to each pulse transmission moment and the ground target according to the geometric model;

将计算出来的脉冲发射天线相位中心位置坐标X(tie),Y(tie),Z(tie)和地面场景目标的位置坐标[xk,yk,zk]代入式(10),得到各脉冲发射时刻对应的天线相位中心与地面目标的视线夹角θieSubstitute the calculated pulse transmitting antenna phase center position coordinates X(t ie ), Y(t ie ), Z(t ie ) and the position coordinates [x k , y k , z k ] of the ground scene target into formula (10) , to get the line-of-sight angle θ ie between the antenna phase center corresponding to each pulse transmission time and the ground target:

(5)、根据几何模型计算各脉冲发射时刻对应的视线入射角;(5) According to the geometric model, the line-of-sight incident angle corresponding to each pulse emission moment is calculated;

将计算出来的脉冲发射天线相位中心位置坐标X(tie),Y(tie),Z(tie)和地面场景目标的位置坐标[xk,yk,zk]代入式(11),得到各脉冲发射时刻对应的视线入射角γieSubstitute the calculated pulse transmitting antenna phase center position coordinates X(t ie ), Y(t ie ), Z(t ie ) and the position coordinates [x k , y k , z k ] of the ground scene target into formula (11) , to obtain the line-of-sight incident angle γ ie corresponding to each pulse emission moment:

(6)、利用准双站模型计算信号延迟时间,计算各脉冲接收时刻;(6) Use the quasi-bistation model to calculate the signal delay time and calculate the receiving time of each pulse;

准双站模型示意如图2所示,将脉冲发射时刻天线相位中心与地面目标之间的距离矢量代入式(12)计算回波延时时间τdelayThe schematic diagram of the quasi-bistatic model is shown in Figure 2. The distance vector between the antenna phase center and the ground target at the moment of pulse transmission is Substituting into formula (12) to calculate the echo delay time τ delay :

其中,||为取模运算,c是光速;Among them, || is a modulo operation, and c is the speed of light;

将脉冲发射时刻tie和回波延时时间τdelay代入式(13)计算脉冲接收时刻trSubstitute the pulse emission time t ie and the echo delay time τ delay into formula (13) to calculate the pulse reception time t r :

tr=tiedelay (13)t r =t iedelay (13)

(7)、根据各脉冲接收时刻计算对应的天线相位中心位置坐标,斜视角和下视角;(7) Calculate the corresponding antenna phase center position coordinates, oblique angle of view and downward angle of view according to each pulse receiving moment;

将计算出来的ai,bi,ci,di,ei i=0,1,2,3等拟合的各项系数和各脉冲接收时刻tir分别带入式(1)、(2)、(3)得到各脉冲接收时刻的对应的天线相位中心位置坐标X(tir),Y(tir),Z(tir),斜视角和下视角φ(tir):Put the calculated a i , b i , c i , d i , e i i = 0, 1, 2, 3 and other fitting coefficients and each pulse receiving time t ir into formula (1), ( 2), (3) Obtain the corresponding antenna phase center position coordinates X(t ir ), Y(t ir ), Z(t ir ) at each pulse receiving moment, oblique angle and down angle φ(t ir ):

φ(tir)=e3tir 3+e2tir 2+e1tir+e0 φ(t ir )=e 3 t ir 3 +e 2 t ir 2 +e 1 t ir +e 0

(8)、根据各脉冲接收时刻得到天线相位中心与各地面目标之间的距离矢量;(8), obtain the distance vector between the antenna phase center and each ground target according to each pulse receiving moment;

将计算出来的各脉冲接收时刻天线相位中心位置坐标X(tir),Y(tir),Z(tir)和地面场景目标的位置坐标[xk,yk,zk]代入式(15),得到天线相位中心与各地面目标之间的距离矢量 Substitute the calculated antenna phase center position coordinates X(t ir ), Y(t ir ), Z(t ir ) and the position coordinates [x k , y k , z k ] of the ground scene target into the formula ( 15), get the distance vector between the antenna phase center and each ground target

(9)、根据几何模型计算各脉冲接收时刻对应的天线相位中心与地面目标的视线夹角;(9), according to the geometric model, calculate the line-of-sight angle between the antenna phase center corresponding to each pulse receiving moment and the ground target;

将计算出来的各脉冲接收时刻天线相位中心位置坐标X(tir),Y(tir),Z(tir)和地面场景目标的位置坐标[xk,yk,zk]代入式(16),得到脉冲接收时刻对应的天线相位中心与地面目标的视线夹角θirSubstitute the calculated antenna phase center position coordinates X(t ir ), Y(t ir ), Z(t ir ) and the position coordinates [x k , y k , z k ] of the ground scene target into the formula ( 16), get the line-of-sight angle θ ir between the antenna phase center corresponding to the pulse receiving moment and the ground target:

(10)、根据几何模型计算各脉冲接收时刻对应的视线入射角;(10), calculate the line-of-sight incident angle corresponding to each pulse receiving moment according to the geometric model;

将计算出来的脉冲发射天线相位中心位置坐标X(tie),Y(tie),Z(tie)和地面场景目标的位置坐标[xk,yk,zk]代入式(17),得到各脉冲发射时刻对应的视线入射角γirSubstitute the calculated pulse transmitting antenna phase center position coordinates X(t ie ), Y(t ie ), Z(t ie ) and the position coordinates [x k , y k , z k ] of the ground scene target into formula (17) , to obtain the line-of-sight incident angle γ ir corresponding to each pulse emission moment:

步骤3、结合SAR回波信号的数学模型,将前两步骤计算的相关数据代入回波模型中,得到相应的回波数据;Step 3, combining the mathematical model of the SAR echo signal, substituting the relevant data calculated in the first two steps into the echo model to obtain the corresponding echo data;

(1)、利用脉冲发射时刻对应的天线相位中心与地面目标的相对位置矢量和脉冲接收时刻对应的天线相位中心与地面目标的相对位置矢量来计算SAR回波仿真中的双程距离;(1), using the relative position vector of the antenna phase center corresponding to the pulse transmission time and the ground target and the relative position vector of the antenna phase center and the ground target corresponding to the pulse receiving time to calculate the two-way distance in the SAR echo simulation;

将计算得到的各脉冲发射时刻天线相位中心与各地面目标之间的距离矢量和各脉冲接收时刻天线相位中心与各地面目标之间的距离矢量代入式(18)得到双程距离R(t):The calculated distance vector between the antenna phase center and each ground target at each pulse transmission time and the distance vector between the antenna phase center and each ground target at each pulse receiving moment Substitute into formula (18) to get the two-way distance R(t):

(2)、计算方位向天线方向图;(2) Calculate the azimuth antenna pattern;

将各脉冲发射时刻对应的天线相位中心与地面目标的视线夹角θie、斜视角各脉冲接收时刻对应的天线相位中心与地面目标的视线夹角θir、斜视角方位向天线波束宽度βa,代入式(19),计算方位向天线方向性函数WaThe line-of-sight angle θ ie between the antenna phase center corresponding to each pulse transmission moment and the ground target, and the oblique angle The line-of-sight angle θ ir between the antenna phase center corresponding to each pulse receiving moment and the ground target, and the oblique angle The azimuth antenna beam width β a is substituted into equation (19) to calculate the azimuth antenna directivity function W a :

(3)、计算距离向天线方向图;(3), calculate the distance to the antenna pattern;

将各脉冲发射时刻对应的视线入射角γie、斜视角φ(tie),各脉冲接收时刻对应的视线入射角γir、下视角φ(tir),距离向天线波束宽度βb代入式(20),计算距离向天线方向性函数WrSubstitute the line-of-sight incident angle γ ie , oblique angle of view φ(t ie ) corresponding to each pulse transmission time, the line-of-sight incident angle γ ir , downward viewing angle φ(t ir ) corresponding to each pulse receiving time, and the distance-to-antenna beamwidth β b into the formula (20), calculate the range antenna directivity function W r :

(4)、利用的双程距离和天线方向图计算SAR回波;(4), using the two-way distance and the antenna pattern to calculate the SAR echo;

将方位向天线方向性函数Wa,距离向天线方向性函数Wr,目标后向散射系数σk,发射信号的脉冲宽度Tprt,发射信号的调频fr,发射信号的波长λ和双程距离R(t)代入式(21),逐点计算回波:The azimuth antenna directivity function W a , the range antenna directivity function W r , the target backscatter coefficient σ k , the pulse width T prt of the transmitted signal, the frequency modulation f r of the transmitted signal, the wavelength λ of the transmitted signal and the two-way The distance R(t) is substituted into formula (21), and the echo is calculated point by point:

其中τ表示回波数据的距离向时刻,n为目标总个数。Among them, τ represents the range time of the echo data, and n is the total number of targets.

实施例1:Example 1:

本发明提供一种基于准双站模型的SAR回波信号仿真方法,包括:The present invention provides a kind of SAR echo signal simulation method based on quasi-bistatic model, comprising:

步骤1、输入仿真参数及仿真参数初始化;Step 1. Input simulation parameters and initialization of simulation parameters;

(1)仿真参数具体包括地固坐标系下天线相位中心三轴坐标轨迹[X(ti),Y(ti),Z(ti)],i=1,2…N为天线相位中心坐标对应的时刻,N为天线相位中心坐标总个数、地面目标坐标[xk,yk,zk],k=1,2…n为各个地面目标,各目标后向散射系数σk k=1,2…n,n为目标总个数,方位向天线波束宽度βa,距离向天线波束宽度βb,斜视角i=1,2…N下视角φ(ti),i=1,2…N,仿真开始时刻tM,脉冲重复频率fprf,发射信号的脉冲宽度Tprt,仿真的脉冲数目Np,fr发射信号的调频,λ发射信号的波长。本实施例具体参数为:X(tie)=[0,0,…,0]m,Y(tie)=[0,7000,14000,…,700000]m,Z(tie)=[1.1*106,1.1*106,…,1.1*106]m,目标坐标为[x1,y1,z1]=[1.1*106 5.584*103 0],σ1=1,目标个数为1,βa=2°,βb=2°,φie=[45,45,…,45]°,tM=0s,fprf=600Hz,Tprt=2*10-6s,仿真的脉冲数目Np=1000,fr=2.5*1013Hz,λ=0.02cm;(1) The simulation parameters specifically include the three-axis coordinate trajectory of the antenna phase center in the ground-fixed coordinate system [X(t i ), Y(t i ), Z(t i )], where i=1, 2...N is the antenna phase center The moment corresponding to the coordinates, N is the total number of antenna phase center coordinates, ground target coordinates [x k , y k , z k ], k=1, 2...n is each ground target, and the backscatter coefficient σ k k of each target =1,2...n, n is the total number of targets, antenna beam width β a in azimuth direction, antenna beam width β b in range direction, oblique angle of view Angle of view φ(t i ) at i=1,2...N, i=1,2...N, simulation start time t M , pulse repetition frequency f prf , pulse width T prt of transmitted signal, number of simulated pulses N p , f r is the frequency modulation of the transmitted signal, and λ is the wavelength of the transmitted signal. The specific parameters of this embodiment are: X(t ie )=[0,0,…,0]m, Y(t ie )=[0,7000,14000,…,700000]m, Z(t ie )=[ 1.1*10 6 ,1.1*10 6 ,…,1.1*10 6 ]m, the target coordinates are [x 1 ,y 1 ,z 1 ]=[1.1*10 6 5.584*10 3 0], σ 1 =1, The number of targets is 1, β a =2°, β b =2°, φ ie =[45,45,…,45]°, t M =0s, f prf =600Hz, T prt =2*10 -6 s, simulated pulse number N p =1000, f r =2.5*10 13 Hz, λ=0.02cm;

(2)仿真参数初始化;(2) Simulation parameter initialization;

a)利用[X(ti),Y(ti),Z(ti)]和ti,通过式(4)计算ai,bi,ci i=0,1,2,3:a) Using [X(t i ), Y(t i ), Z(t i )] and t i , calculate a i , bi , c i i =0, 1, 2, 3 through formula (4):

[a3 a2 a1 a0]=[0 0 0 0][a 3 a 2 a 1 a 0 ]=[0 0 0 0]

[b3 b2 b1 b0]=[0 0 7000 0][b 3 b 2 b 1 b 0 ]=[0 0 7000 0]

[c3 c2 c1 c0]=[0 0 0 1.1*106][c 3 c 2 c 1 c 0 ]=[0 0 0 1.1*10 6 ]

b)利用和ti,通过式(5)计算di i=0,1,2,3:b) use and t i , calculate d i i=0,1,2,3 through formula (5):

[d3 d2 d1 d0]=[0 0 0 90][d 3 d 2 d 1 d 0 ]=[0 0 0 90]

c)利用φ(ti)和ti,通过式(6)计算ei i=0,1,2,3:c) Using φ(t i ) and t i , calculate e i i = 0, 1, 2, 3 through formula (6):

[e3 e2 e1 e0]=[0 0 0 45][e 3 e 2 e 1 e 0 ]=[0 0 0 45]

步骤2、根据仿真开始时刻,计算出各脉冲发射时刻和脉冲接收时刻;Step 2. Calculate each pulse transmission time and pulse reception time according to the start time of the simulation;

(1)将式tM=0、fprf=600和Np=1000带入(7),计算可得tie=[0.00170.0033,…,1.6667]s,tie即为脉冲发射时刻;(1) Put the formula t M =0, f prf =600 and N p =1000 into (7), and the calculation can be t ie =[0.00170.0033,...,1.6667]s, t ie is the pulse emission time;

(2)将计算出来的ai,bi,ci,di,ei i=0,1,2,3等拟合的各项系数和各脉冲发射时刻tie分别带入式(1)、(2)、(3)得到脉冲发射时刻的对应的天线相位中心位置坐标X(tie),Y(tie),Z(tie),斜视角和下视角φ(tie):(2) Put the calculated a i , b i , c i , d i , e i i = 0, 1, 2, 3 and other fitting coefficients and each pulse emission time t ie into the formula (1 ), (2), (3) to obtain the corresponding antenna phase center position coordinates X(t ie ), Y(t ie ), Z(t ie ) at the moment of pulse transmission, and the oblique angle and the lower viewing angle φ(t ie ):

φ(tie)=[45,45,…,45]φ(t ie )=[45,45,…,45]

(3)将计算出来的脉冲发射天线相位中心位置坐标X(tie),Y(tie),Z(tie)和地面场景目标的位置坐标[xk,yk,zk]代入式(9),得到天线相位中心与各地面目标之间的距离矢量 (3) Substitute the calculated pulse transmitting antenna phase center position coordinates X(t ie ), Y(t ie ), Z(t ie ) and the position coordinates [x k ,y k ,z k ] of the ground scene target into the formula (9), get the distance vector between the antenna phase center and each ground target

(4)将计算出来的脉冲发射天线相位中心位置坐标X(tie),Y(tie),Z(tie)和地面场景目标的位置坐标[xk,yk,zk]代入式(10),得到脉冲发射时刻对应的天线相位中心与地面目标的视线夹角θie(4) Substitute the calculated position coordinates X(t ie ), Y(t ie ), Z(t ie ) of the phase center of the pulse transmitting antenna and the position coordinates [x k ,y k ,z k ] of the ground scene target into the formula (10), the line-of-sight angle θ ie between the antenna phase center corresponding to the pulse transmission moment and the ground target is obtained;

(5)将计算出来的脉冲发射天线相位中心位置坐标X(tie),Y(tie),Z(tie)和地面场景目标的位置坐标[xk,yk,zk]代入式(11),得到脉冲发射时刻对应的视线入射角γie(5) Substitute the calculated position coordinates X(t ie ), Y(t ie ), Z(t ie ) of the phase center of the pulse transmitting antenna and the position coordinates [x k , y k , z k ] of the ground scene target into the formula (11), obtain the line-of-sight incident angle γ ie corresponding to the moment of pulse emission;

(6)准双站模型示意如图2所示,将脉冲发射时刻雷达与地面目标距离矢量代入式(12)计算回波延时时间;(6) The schematic diagram of the quasi-bistatic model is shown in Figure 2. The distance vector between the radar and the ground target at the time of pulse transmission is Substituting formula (12) to calculate the echo delay time;

将脉冲发射时刻tie和回波延时时间τdelay代入式(13)计算脉冲接收时刻tirSubstitute the pulse emission time t ie and the echo delay time τ delay into formula (13) to calculate the pulse reception time t ir ;

(7)将计算出来的ai,bi,ci,di,ei i=0,1,2,3等拟合的各项系数和脉冲接收时刻tir分别带入式(1)、(2)、(3)得到各脉冲接收时刻的对应的天线相位中心位置坐标X(tir),Y(tir),Z(tir),斜视角和下视角φ(tir);(7) Put the calculated a i , b i , c i , d i , e i i = 0, 1, 2, 3 and other fitting coefficients and pulse receiving time t ir into formula (1) , (2), (3) Obtain the corresponding antenna phase center position coordinates X(t ir ), Y(t ir ), Z(t ir ) at each pulse receiving moment, oblique angle and down angle φ(t ir );

(8)将计算出来的脉冲接收时刻天线相位中心位置坐标X(tir),Y(tir),Z(tir)和地面场景目标的位置坐标[xk,yk,zk]代入式(15),得到天线相位中心与各地面目标之间的距离矢量 (8) Substitute the calculated antenna phase center position coordinates X(t ir ), Y(t ir ), Z(t ir ) and the position coordinates [x k , y k , z k ] of the ground scene target at the moment of pulse reception into Equation (15), the distance vector between the antenna phase center and each ground target is obtained

(9)将计算出来的脉冲接收时刻天线相位中心位置坐标X(tir),Y(tir),Z(tir)和地面场景目标的位置坐标[xk,yk,zk]代入式(16),得到脉冲接收时刻对应的天线相位中心与地面目标的视线夹角θir(9) Substitute the calculated antenna phase center position coordinates X(t ir ), Y(t ir ), Z(t ir ) and the position coordinates [x k ,y k ,z k ] of the ground scene target at the moment of pulse reception into Equation (16), the angle θ ir between the antenna phase center corresponding to the pulse receiving moment and the line of sight of the ground target is obtained;

(10)将计算出来的脉冲发射天线相位中心位置坐标X(tie),Y(tie),Z(tie)和地面场景目标的位置坐标[xk,yk,zk]代入式(17),得到脉冲发射时刻对应的视线入射角γir(10) Substitute the calculated position coordinates X(t ie ), Y(t ie ), Z(t ie ) of the phase center of the pulse transmitting antenna and the position coordinates [x k ,y k ,z k ] of the ground scene target into the formula (17), obtain the line-of-sight incident angle γ ir corresponding to the pulse emission moment;

步骤3、结合SAR回波信号的数学模型,得到时刻的回波数据;Step 3, combining the mathematical model of the SAR echo signal to obtain the echo data at any time;

(1)将计算得到的脉冲发射时刻天线相位中心与各地面目标之间的距离矢量和脉冲接收时刻天线相位中心与各地面目标之间的距离矢量代入式(18)得到双程距离R(t);(1) Calculate the distance vector between the antenna phase center and each ground target at the moment of pulse transmission and the distance vector between the antenna phase center and each ground target at the moment of pulse reception Substitute into formula (18) to get the two-way distance R(t);

(2)将脉冲发射时刻对应的天线相位中心与地面目标的视线夹角θie、斜视角脉冲接收时刻对应的天线相位中心与地面目标的视线夹角θir、斜视角方位向天线波束宽度βa代入式(19),计算方位向天线方向图Wa(2) The line-of-sight angle θ ie between the antenna phase center corresponding to the pulse transmission moment and the ground target, and the oblique angle The line-of-sight angle θ ir between the antenna phase center corresponding to the pulse receiving moment and the ground target, and the oblique angle The azimuth antenna beam width β a is substituted into formula (19) to calculate the azimuth antenna pattern W a ;

(3)将脉冲发射时刻对应的视线入射角γie、斜视角φ(tie),脉冲接收时刻对应的视线入射角γir、下视角φ(tir),距离向天线波束宽度βb代入式(20),计算距离向天线方向图Wr(3) Substitute the line-of-sight incident angle γ ie , oblique angle φ(t ie ) corresponding to the moment of pulse transmission, the line-of-sight incident angle γ ir , downward angle of view φ(t ir ) corresponding to the pulse reception time, and the distance into the antenna beam width β b Equation (20), calculate the range antenna pattern W r ;

(4)将方位向天线方向性函数Wa,距离向天线方向性函数Wr,目标后向散射系数σk,发射信号的脉冲宽度Tprt,发射信号的调频fr,发射信号的波长λ和双程距离R(t)代入式(21),逐点计算回波。(4) The azimuth antenna directivity function W a , the range antenna directivity function W r , the target backscattering coefficient σ k , the pulse width T prt of the transmitted signal, the frequency modulation f r of the transmitted signal, and the wavelength λ of the transmitted signal and the two-way distance R(t) are substituted into formula (21), and the echo is calculated point by point.

本发明基于准双站模型,利用工程近似,提出了回波信号接收时刻的快速计算方法,克服了基于非停走模型的回波仿真计算复杂的问题,图3对比了连续模型和本发明中计算方法得到的双程斜距,图4为停走模型的斜距误差,图5是本发明方法的斜距误差,通过误差分析可知近误差可以满足实际工程需要。图6是本发明中回波信号结果图,通过实例分析,进一步详述了本发明方法的完整实施过程,验证了本发明方法的合理性与正确性。The present invention is based on the quasi-two-station model, and utilizes engineering approximation to propose a fast calculation method for the echo signal receiving time, which overcomes the complex problem of echo simulation calculation based on the non-stop model. Figure 3 compares the continuous model with that of the present invention. Figure 4 shows the slant distance error of the stop-and-go model for the two-way slant distance obtained by the calculation method, and Fig. 5 shows the slant distance error of the method of the present invention. Through error analysis, it can be known that the near error can meet the actual engineering needs. Fig. 6 is a result diagram of the echo signal in the present invention. Through the analysis of examples, the complete implementation process of the method of the present invention is further described in detail, and the rationality and correctness of the method of the present invention are verified.

本发明的优点为:The advantages of the present invention are:

1、本发明基于准双站模型,立足于雷达连续运动模型,能够实现高精度的SAR回波仿真;1. The present invention is based on the quasi-bistatic model, based on the radar continuous motion model, and can realize high-precision SAR echo simulation;

2、本发明基于准双站模型,提出了一种各脉冲接收时刻的快速计算方法,避免了复杂的迭代计算,在保证计算精度的前提下具有很高的计算效率;2. Based on the quasi-bistation model, the present invention proposes a fast calculation method for each pulse receiving time, which avoids complicated iterative calculations and has high calculation efficiency under the premise of ensuring calculation accuracy;

3、本发明基于准双站模型,适用于机载以及星载SAR回波信号仿真,能够完成在各种条件下的SAR回波信号的回波仿真。3. The present invention is based on a quasi-bistatic model, is suitable for airborne and spaceborne SAR echo signal simulation, and can complete the echo simulation of SAR echo signals under various conditions.

以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.

Claims (4)

1.一种基于准双站模型的SAR回波信号仿真方法,其特征在于,包括:1. a kind of SAR echo signal simulation method based on quasi-bistatic model, it is characterized in that, comprising: 步骤1、输入仿真参数及仿真参数初始化;Step 1. Input simulation parameters and initialization of simulation parameters; 所述仿真参数包括:地固坐标系下天线相位中心三轴坐标轨迹[X(ti),Y(ti),Z(ti)],i=1,2…N为各个天线相位中心,N为天线相位中心总个数,ti为天线相位中心坐标对应的时刻;地面目标坐标[xk,yk,zk],k=1,2…n为各个地面目标,n为地面目标总个数,各地面目标后向散射系数σk,方位向天线波束宽度βa,距离向天线波束宽度βb,斜视角下视角φ(ti),仿真开始时刻tM,脉冲重复频率fprf,发射信号的脉冲宽度Tprt,仿真的脉冲数目Np;发射信号的调频fr,发射信号的波长λ;The simulation parameters include: three-axis coordinate trajectory [X(t i ), Y(t i ), Z(t i )] of the antenna phase center in the ground-fixed coordinate system, where i=1, 2...N is the phase center of each antenna , N is the total number of antenna phase centers, t i is the moment corresponding to the antenna phase center coordinates; ground target coordinates [x k , y k , z k ], k=1, 2...n is each ground target, n is the ground The total number of targets, the backscatter coefficient σ k of each ground target, the antenna beam width β a in azimuth direction, the antenna beam width β b in range direction, and the oblique angle Downward viewing angle φ(t i ), simulation start time t M , pulse repetition frequency f prf , pulse width T prt of transmitted signal, number of simulated pulses N p ; frequency modulation f r of transmitted signal, wavelength λ of transmitted signal; 所述仿真参数初始化为利用曲线拟合的方法得到天线相位中心坐标、斜视角和下视角曲线;The simulation parameters are initialized to obtain antenna phase center coordinates, oblique viewing angles and downward viewing angle curves by means of curve fitting; 步骤2、根据仿真开始时刻,计算出各脉冲发射时刻和脉冲接收时刻;在计算脉冲收发时刻的同时,计算各脉冲收发时刻天线相位中心与各地面目标之间的距离矢量、天线相位中心与地面目标之间的视线夹角和视线入射角;Step 2. Calculate each pulse transmission time and pulse reception time according to the start time of the simulation; while calculating the pulse transmission and reception time, calculate the distance vector between the antenna phase center and each ground target at each pulse transmission and reception time, and the distance vector between the antenna phase center and the ground Line-of-sight angle and line-of-sight incidence angle between targets; 步骤3、结合SAR回波信号的数学模型,得到相应的回波数据。Step 3, combining the mathematical model of the SAR echo signal to obtain corresponding echo data. 2.如权利要求1所述的基于准双站模型的SAR回波信号仿真方法,其特征在于,在步骤1中,所述仿真参数初始化的实现方法为:2. the SAR echo signal simulation method based on quasi-bistatic model as claimed in claim 1, is characterized in that, in step 1, the realization method of described simulation parameter initialization is: 设天线相位中心坐标、斜视角和下视角曲线三阶表达式分别为:Let the third-order expressions of antenna phase center coordinates, oblique viewing angle and downward viewing angle curves be: Xx (( tt )) YY (( tt )) ZZ (( tt )) == aa 33 tt 33 ++ aa 22 tt 22 ++ aa 11 tt ++ aa 00 bb 33 tt 33 ++ bb 22 tt 22 ++ bb 11 tt ++ bb 00 cc 33 tt 33 ++ cc 22 tt 22 ++ cc 11 tt ++ cc 00 -- -- -- (( 11 )) φ(t)=e3t3+e2t2+e1t+e0 (3)φ(t)=e 3 t 3 +e 2 t 2 +e 1 t+e 0 (3) 其中ai,bi,ci,di,ei i=0,1,2,3为待拟合的各项系数,针对三阶多项式,利用MATLAB多项式拟合函数命令polyfit进行拟合;Among them, a i , b i , c i , d i , e i i=0,1,2,3 are the coefficients to be fitted, and for the third-order polynomial, use the MATLAB polynomial fitting function command polyfit to perform the fitting; a、利用[X(ti),Y(ti),Z(ti)]和ti,通过式(4)计算ai,bi,ci i=0,1,2,3:a. Using [X(t i ), Y(t i ), Z(t i )] and t i , calculate a i , b i , c i i=0, 1, 2, 3 through formula (4): [[ aa 33 aa 22 aa 11 aa 00 ]] == pp oo ll ythe y ff ii tt (( Xx (( tt ii )) ,, tt ii ,, 33 )) [[ bb 33 bb 22 bb 11 bb 00 ]] == pp oo ll ythe y ff ii tt (( YY (( tt ii )) ,, tt ii ,, 33 )) [[ cc 33 cc 22 cc 11 cc 00 ]] == pp oo ll ythe y ff ii tt (( ZZ (( tt ii )) ,, tt ii ,, 33 )) -- -- -- (( 44 )) b、利用和ti,通过式(5)计算di i=0,1,2,3:b. Use and t i , calculate d i i=0,1,2,3 through formula (5): c、利用φ(ti)和ti,通过式(6)计算ei i=0,1,2,3:c. Using φ(t i ) and t i , calculate e i i = 0, 1, 2, 3 through formula (6): [e3 e2 e1 e0]=polyfit(φ(ti),ti,3) (6)。[e 3 e 2 e 1 e 0 ]=polyfit(φ(t i ),t i ,3) (6). 3.如权利要求2所述的基于准双站模型的SAR回波信号仿真方法,其特征在于,所述步骤2包括:3. the SAR echo signal simulation method based on quasi-bistatic model as claimed in claim 2, is characterized in that, described step 2 comprises: 步骤21、计算出各脉冲发射时刻;Step 21, calculate each pulse emission time; 将仿真开始时刻tM、发射脉冲序列的序号ie=1,2…Np,代入式(7),计算出各脉冲发射时刻tieSubstituting the simulation start time t M and the sequence number ie=1,2...N p of the transmitted pulse sequence into formula (7), the time t ie of each pulse transmission is calculated: tt ii ee == tt Mm ++ ii ee ff pp rr ff -- -- -- (( 77 )) 步骤22、根据各脉冲发射时刻计算对应的天线相位中心位置坐标,斜视角和下视角;Step 22. Calculate the corresponding antenna phase center position coordinates, oblique angle of view and downward angle of view according to each pulse transmission time; 将计算出的各项系数ai,bi,ci,di,ei i=0,1,2,3和各脉冲发射时刻tie分别带入式(1)、(2)、(3)得到各脉冲发射时刻的对应的天线相位中心位置坐标X(tie),Y(tie),Z(tie),斜视角和下视角φ(tie):Put the calculated coefficients a i , b i , c i , d i , e i i = 0, 1, 2, 3 and each pulse transmission time t ie into formulas (1), (2), ( 3) Obtain the corresponding antenna phase center position coordinates X(t ie ), Y(t ie ), Z(t ie ) at each pulse transmission time, oblique angle and the lower viewing angle φ(t ie ): 步骤23、根据各脉冲发射时刻得到天线相位中心与各地面目标之间的距离矢量;Step 23, obtain the distance vector between the antenna phase center and each ground target according to each pulse transmission time; 将计算出来的脉冲发射天线相位中心位置坐标X(tie),Y(tie),Z(tie)和地面场景目标的位置坐标[xk,yk,zk]代入式(9),得到天线相位中心与地面目标之间的距离矢量 Substitute the calculated pulse transmitting antenna phase center position coordinates X(t ie ), Y(t ie ), Z(t ie ) and the position coordinates [x k , y k , z k ] of the ground scene target into formula (9) , to get the distance vector between the antenna phase center and the ground target 步骤24、根据几何模型计算各脉冲发射时刻对应的天线相位中心与地面目标的视线夹角;Step 24, calculate the line-of-sight angle between the antenna phase center corresponding to each pulse transmission time and the ground target according to the geometric model; 将计算出来的脉冲发射天线相位中心位置坐标X(tie),Y(tie),Z(tie)和地面场景目标的位置坐标[xk,yk,zk]代入式(10),得到各脉冲发射时刻对应的天线相位中心与地面目标的视线夹角θieSubstitute the calculated pulse transmitting antenna phase center position coordinates X(t ie ), Y(t ie ), Z(t ie ) and the position coordinates [x k , y k , z k ] of the ground scene target into formula (10) , to get the line-of-sight angle θ ie between the antenna phase center corresponding to each pulse transmission time and the ground target: θθ ii ee == arctanarctan (( YY (( tt ii ee )) -- ythe y kk (( Xx (( tt ii ee )) 22 ++ ZZ (( tt ii ee )) 22 )) )) -- -- -- (( 1010 )) 步骤25、根据几何模型计算各脉冲发射时刻对应的视线入射角;Step 25, calculate the line-of-sight incident angle corresponding to each pulse emission time according to the geometric model; 将计算出来的脉冲发射天线相位中心位置坐标X(tie),Y(tie),Z(tie)和地面场景目标的位置坐标[xk,yk,zk]代入式(11),得到各脉冲发射时刻对应的视线入射角γieSubstitute the calculated pulse transmitting antenna phase center position coordinates X(t ie ), Y(t ie ), Z(t ie ) and the position coordinates [x k , y k , z k ] of the ground scene target into formula (11) , to obtain the line-of-sight incident angle γ ie corresponding to each pulse emission moment: γγ ii ee == arccosarccos (( ZZ (( tt ii ee )) (( YY (( tt ii ee )) -- ythe y kk )) 22 ++ Xx (( tt ii ee )) 22 ++ ZZ (( tt ii ee )) 22 )) -- -- -- (( 1111 )) 步骤26、利用准双站模型计算信号延迟时间,计算各脉冲接收时刻;Step 26, using the quasi-bistation model to calculate the signal delay time, and calculate the receiving time of each pulse; 将脉冲发射时刻天线相位中心与地面目标之间的距离矢量代入式(12)计算回波延时时间τdelayThe distance vector between the antenna phase center and the ground target at the moment of pulse transmission Substituting into formula (12) to calculate the echo delay time τ delay : 其中,||为取模运算,c是光速;Among them, || is a modulo operation, and c is the speed of light; 将脉冲发射时刻tie和回波延时时间τdelay代入式(13)计算脉冲接收时刻trSubstitute the pulse emission time t ie and the echo delay time τ delay into formula (13) to calculate the pulse reception time t r : tr=tiedelay (13)t r =t iedelay (13) 步骤27、根据各脉冲接收时刻计算对应的天线相位中心位置坐标,斜视角和下视角;Step 27. Calculate the corresponding antenna phase center position coordinates, oblique angle of view and downward angle of view according to each pulse receiving moment; 将计算出的各项系数ai,bi,ci,di,ei i=0,1,2,3和各脉冲接收时刻tir分别带入式(1)、(2)、(3)得到各脉冲接收时刻的对应的天线相位中心位置坐标X(tir),Y(tir),Z(tir,)斜视角和下视角φ(tir):Put the calculated coefficients a i , b i , c i , d i , e i i=0, 1, 2, 3 and each pulse receiving time t ir into formulas (1), (2), ( 3) Obtain the corresponding antenna phase center position coordinates X(t ir ), Y(t ir ), Z(t ir ,) oblique angle of view at each pulse receiving moment and down angle φ(t ir ): 步骤28、根据各脉冲接收时刻得到天线相位中心与各地面目标之间的距离矢量;Step 28, obtain the distance vector between the antenna phase center and each ground target according to each pulse receiving moment; 将计算出来的各脉冲接收时刻天线相位中心位置坐标X(tir),Y(tir),Z(tir)和地面场景目标的位置坐标[xk,yk,zk]代入式(15),得到天线相位中心与各地面目标之间的距离矢量 Substitute the calculated antenna phase center position coordinates X(t ir ), Y(t ir ), Z(t ir ) and the position coordinates [x k , y k , z k ] of the ground scene target into the formula ( 15), get the distance vector between the antenna phase center and each ground target 步骤29、根据几何模型计算各脉冲接收时刻对应的天线相位中心与地面目标的视线夹角;Step 29, calculate the line-of-sight angle between the antenna phase center corresponding to each pulse receiving moment and the ground target according to the geometric model; 将计算出来的各脉冲接收时刻天线相位中心位置坐标X(tir),Y(tir),Z(tir)和地面场景目标的位置坐标[xk,yk,zk]代入式(16),得到脉冲接收时刻对应的天线相位中心与地面目标的视线夹角θirSubstitute the calculated antenna phase center position coordinates X(t ir ), Y(t ir ), Z(t ir ) and the position coordinates [x k , y k , z k ] of the ground scene target into the formula ( 16), get the line-of-sight angle θ ir between the antenna phase center corresponding to the pulse receiving moment and the ground target: θθ ii rr == arctanarctan (( YY (( tt ii rr )) -- ythe y ii (( Xx (( tt ii rr )) 22 ++ ZZ (( tt ii rr )) 22 )) )) -- -- -- (( 1616 )) 步骤210、根据几何模型计算各脉冲接收时刻对应的视线入射角;Step 210, calculating the line-of-sight incident angle corresponding to each pulse receiving moment according to the geometric model; 将计算出来的脉冲发射天线相位中心位置坐标X(tie),Y(tie),Z(tie)和地面场景目标的位置坐标[xk,yk,zk]代入式(17),得到各脉冲发射时刻对应的视线入射角γirSubstitute the calculated pulse transmitting antenna phase center position coordinates X(t ie ), Y(t ie ), Z(t ie ) and the position coordinates [x k , y k , z k ] of the ground scene target into formula (17) , to obtain the line-of-sight incident angle γ ir corresponding to each pulse emission moment: γγ ii rr == arccosarccos (( ZZ (( tt ii rr )) (( YY (( tt ii rr )) -- ythe y kk )) 22 ++ Xx (( tt ii rr )) 22 ++ ZZ (( tt ii rr )) 22 )) -- -- -- (( 1717 )) .. 4.如权利要求3所述的基于准双站模型的SAR回波信号仿真方法,其特征在于,所述步骤3包括:4. the SAR echo signal simulation method based on quasi-bistatic model as claimed in claim 3, is characterized in that, described step 3 comprises: 步骤31、利用脉冲发射时刻对应的天线相位中心与地面目标的相对位置矢量和脉冲接收时刻对应的天线相位中心与地面目标的相对位置矢量来计算SAR回波仿真中的双程距离;Step 31, using the relative position vector of the antenna phase center corresponding to the pulse transmission time and the ground target and the relative position vector of the antenna phase center and the ground target corresponding to the pulse receiving time to calculate the two-way distance in the SAR echo simulation; 将计算得到的各脉冲发射时刻天线相位中心与各地面目标之间的距离矢量和各脉冲接收时刻天线相位中心与各地面目标之间的距离矢量代入式(18)得到双程距离R(t):The calculated distance vector between the antenna phase center and each ground target at each pulse transmission time and the distance vector between the antenna phase center and each ground target at each pulse receiving moment Substitute into formula (18) to get the two-way distance R(t): 步骤32、计算方位向天线方向图;Step 32, calculating the azimuth antenna pattern; 将各脉冲发射时刻对应的天线相位中心与地面目标的视线夹角θie、斜视角各脉冲接收时刻对应的天线相位中心与地面目标的视线夹角θir、斜视角方位向天线波束宽度βa,代入式(19),计算方位向天线方向性函数WaThe line-of-sight angle θ ie between the antenna phase center corresponding to each pulse transmission moment and the ground target, and the oblique angle The line-of-sight angle θ ir between the antenna phase center corresponding to each pulse receiving moment and the ground target, and the oblique angle The azimuth antenna beam width β a is substituted into equation (19) to calculate the azimuth antenna directivity function W a : 步骤33、计算距离向天线方向图;Step 33, calculating the range antenna pattern; 将各脉冲发射时刻对应的视线入射角γie、斜视角φ(tie),各脉冲接收时刻对应的视线入射角γir、下视角φ(tir),距离向天线波束宽度βb代入式(20),计算距离向天线方向性函数WrSubstitute the line-of-sight incident angle γ ie , oblique angle of view φ(t ie ) corresponding to each pulse transmission time, the line-of-sight incident angle γ ir , downward viewing angle φ(t ir ) corresponding to each pulse receiving time, and the distance-to-antenna beamwidth β b into the formula (20), calculate the range antenna directivity function W r : WW rr == sinsin cc (( 0.8860.886 (( γγ ii ee -- φφ ii ee )) ββ bb )) ** sinsin cc (( 0.8860.886 (( γγ ii rr -- φφ ii rr )) ββ bb )) -- -- -- (( 2020 )) 步骤34、利用的双程距离和天线方向图计算SAR回波;Step 34, using the two-way distance and the antenna pattern to calculate the SAR echo; 将方位向天线方向性函数Wa,距离向天线方向性函数Wr,目标后向散射系数σk,发射信号的脉冲宽度Tprt,发射信号的调频fr,发射信号的波长λ和双程距离R(t)代入式(21),逐点计算回波:The azimuth antenna directivity function W a , the range antenna directivity function W r , the target backscatter coefficient σ k , the pulse width T prt of the transmitted signal, the frequency modulation f r of the transmitted signal, the wavelength λ of the transmitted signal and the two-way The distance R(t) is substituted into formula (21), and the echo is calculated point by point: sthe s ee cc hh oo (( tt )) == ΣΣ kk == 11 nno σσ kk WW aa WW rr expexp {{ -- jj 44 ππ λλ RR (( tt )) }} expexp {{ -- jπfjπf rr (( ττ -- 22 RR (( tt )) cc )) 22 }} -- -- -- (( 21twenty one )) 其中τ表示回波数据的距离向时刻,n为目标总个数。Among them, τ represents the range time of the echo data, and n is the total number of targets.
CN201611239159.4A 2016-12-28 2016-12-28 A kind of SAR echo signal emulation mode based on quasi- dual station model Active CN106646409B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611239159.4A CN106646409B (en) 2016-12-28 2016-12-28 A kind of SAR echo signal emulation mode based on quasi- dual station model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611239159.4A CN106646409B (en) 2016-12-28 2016-12-28 A kind of SAR echo signal emulation mode based on quasi- dual station model

Publications (2)

Publication Number Publication Date
CN106646409A true CN106646409A (en) 2017-05-10
CN106646409B CN106646409B (en) 2018-12-25

Family

ID=58835803

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611239159.4A Active CN106646409B (en) 2016-12-28 2016-12-28 A kind of SAR echo signal emulation mode based on quasi- dual station model

Country Status (1)

Country Link
CN (1) CN106646409B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111856458A (en) * 2020-06-17 2020-10-30 西安电子科技大学 Calculation method of echo delay of spaceborne bistatic SAR based on non-go-stop mode
CN114814748A (en) * 2022-03-22 2022-07-29 中国电子科技集团公司第五十四研究所 A method for generating high-precision satellite target radar echo signals based on STK
CN114895267A (en) * 2022-04-08 2022-08-12 西安电子科技大学 Spaceborne multi-mode SAR echo rapid generation method based on slant range compensation
CN116482631A (en) * 2023-06-26 2023-07-25 四川天中星航空科技有限公司 Target simulation method based on radar echo signals

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101587500A (en) * 2008-05-23 2009-11-25 中国科学院电子学研究所 Computer emulation method for sea-surface imaging of bistatic synthetic aperture radar
CN102565799A (en) * 2012-01-31 2012-07-11 北京航空航天大学 Unified simulation realization method of multiple-platform multiple-mode SAR (Specific Absorption Rate) echo
CN102890270A (en) * 2012-09-19 2013-01-23 电子科技大学 Echo simulation method of bi-static synthetic aperture radar of fixed station
CN102901965A (en) * 2012-09-26 2013-01-30 同济大学 Radar imaging method of electrically large size target in ocean clutter environment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101587500A (en) * 2008-05-23 2009-11-25 中国科学院电子学研究所 Computer emulation method for sea-surface imaging of bistatic synthetic aperture radar
CN102565799A (en) * 2012-01-31 2012-07-11 北京航空航天大学 Unified simulation realization method of multiple-platform multiple-mode SAR (Specific Absorption Rate) echo
CN102890270A (en) * 2012-09-19 2013-01-23 电子科技大学 Echo simulation method of bi-static synthetic aperture radar of fixed station
CN102901965A (en) * 2012-09-26 2013-01-30 同济大学 Radar imaging method of electrically large size target in ocean clutter environment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111856458A (en) * 2020-06-17 2020-10-30 西安电子科技大学 Calculation method of echo delay of spaceborne bistatic SAR based on non-go-stop mode
CN114814748A (en) * 2022-03-22 2022-07-29 中国电子科技集团公司第五十四研究所 A method for generating high-precision satellite target radar echo signals based on STK
CN114814748B (en) * 2022-03-22 2024-11-19 中国电子科技集团公司第五十四研究所 A high-precision satellite target radar echo signal generation method based on STK
CN114895267A (en) * 2022-04-08 2022-08-12 西安电子科技大学 Spaceborne multi-mode SAR echo rapid generation method based on slant range compensation
CN116482631A (en) * 2023-06-26 2023-07-25 四川天中星航空科技有限公司 Target simulation method based on radar echo signals

Also Published As

Publication number Publication date
CN106646409B (en) 2018-12-25

Similar Documents

Publication Publication Date Title
CN104614713B (en) A kind of ship that is suitable for carries the radar echo signal simulator of radar system
CN107765226B (en) A SAR satellite radar echo simulation method, system and medium
CN107238824B (en) Geometric fine-tuning method for spaceborne SAR images based on prior DEM data
CN103439693B (en) A kind of linear array SAR sparse reconstructs picture and phase error correction approach
CN102645651B (en) SAR (synthetic aperture radar) tomography super-resolution imaging method
CN104076338B (en) Airborne radar clutter simulation method based on digital elevation and digital ground coverage
CN107064880A (en) Distributed many base radar transmit-receive beam Synchronizations and the accuracy method of wave beam control
CN102313887B (en) Spaceborne-airborne bistatic synthetic aperture radar (SA-BiSAR) imaging method
CN103487802A (en) Scanning radar angle super-resolution imaging method
CN108562882B (en) Geometric cross calibration method and system for satellite-borne SAR (synthetic aperture radar) image
CN102221697A (en) Airborne multi-antenna SAR chromatography three dimensional imaging system and imaging method thereof
CN103197291B (en) Satellite-borne synthetic aperture radar (SAR) echo signal simulation method based on non-stop walking model
CN104698453B (en) Passive radar signal locating method based on synthetic-aperture antenna array
CN102540180A (en) Space-based phased-array radar space multi-target orbit determination method
CN106646409A (en) SAR echo signal simulation method based on quasi-double-station model
CN103487803A (en) Airborne scanning radar imaging method in iteration compression mode
CN103235309B (en) Near space low-speed platform SAR (Synthetic Aperture Radar) imaging method
CN110109103A (en) A 3D Sparse Imaging Technology for Star-machine Bibase Front-Looking-Looking Array SAR
CN101839976A (en) Radar system error estimating method by utilizing beidou I terminal
CN108107432A (en) Height rail Bistatic SAR based on time domain disturbance protects phase imaging method
CN112505694B (en) Space target imaging method of on-orbit SAR satellite
CN104820221B (en) The target 3-D positioning method of many base synthetic aperture radar
CN106353756A (en) Descending track spotlight SAR (synthetic aperture radar) positioning method based on image matching
CN103760562A (en) Method for obtaining onboard circular synthetic aperture radar air line
Li et al. Linear-array-MIMO SAR tomography: An autofocus approach for time-variant and 3-D space-variant motion errors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant