CN106645079B - A kind of human body blood group discrimination method based on red blood cell optical tweezer Raman spectroscopy - Google Patents
A kind of human body blood group discrimination method based on red blood cell optical tweezer Raman spectroscopy Download PDFInfo
- Publication number
- CN106645079B CN106645079B CN201610867651.XA CN201610867651A CN106645079B CN 106645079 B CN106645079 B CN 106645079B CN 201610867651 A CN201610867651 A CN 201610867651A CN 106645079 B CN106645079 B CN 106645079B
- Authority
- CN
- China
- Prior art keywords
- blood
- red blood
- type
- types
- raman
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 210000004369 blood Anatomy 0.000 title claims abstract description 149
- 239000008280 blood Substances 0.000 title claims abstract description 149
- 210000003743 erythrocyte Anatomy 0.000 title claims abstract description 110
- 238000001069 Raman spectroscopy Methods 0.000 title claims abstract description 30
- 238000012576 optical tweezer Methods 0.000 title claims description 10
- 238000012850 discrimination method Methods 0.000 title 1
- 230000003595 spectral effect Effects 0.000 claims abstract description 31
- 238000001514 detection method Methods 0.000 claims abstract description 28
- 238000003745 diagnosis Methods 0.000 claims abstract description 27
- 238000000034 method Methods 0.000 claims abstract description 27
- 210000004027 cell Anatomy 0.000 claims abstract description 23
- 238000004458 analytical method Methods 0.000 claims abstract description 21
- 238000005516 engineering process Methods 0.000 claims abstract description 16
- 238000001489 optical tweezers Raman spectroscopy Methods 0.000 claims abstract description 15
- 238000000513 principal component analysis Methods 0.000 claims abstract description 7
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 4
- 238000001237 Raman spectrum Methods 0.000 claims description 33
- 238000012360 testing method Methods 0.000 claims description 23
- 230000008676 import Effects 0.000 claims description 11
- 239000006285 cell suspension Substances 0.000 claims description 6
- 239000002953 phosphate buffered saline Substances 0.000 claims description 6
- 238000001228 spectrum Methods 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 5
- 230000003287 optical effect Effects 0.000 claims description 5
- 239000012980 RPMI-1640 medium Substances 0.000 claims description 4
- 239000006143 cell culture medium Substances 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 4
- 230000010354 integration Effects 0.000 claims description 4
- 238000010606 normalization Methods 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 4
- 239000010453 quartz Substances 0.000 claims description 4
- 230000009467 reduction Effects 0.000 claims description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- 238000007619 statistical method Methods 0.000 claims description 3
- 239000000725 suspension Substances 0.000 claims description 3
- 238000010835 comparative analysis Methods 0.000 claims description 2
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 claims description 2
- 230000008569 process Effects 0.000 abstract description 3
- 238000005119 centrifugation Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 239000000427 antigen Substances 0.000 description 3
- 102000036639 antigens Human genes 0.000 description 3
- 108091007433 antigens Proteins 0.000 description 3
- 101000802660 Homo sapiens Histo-blood group ABO system transferase Proteins 0.000 description 2
- GCKMFJBGXUYNAG-HLXURNFRSA-N Methyltestosterone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@](C)(O)[C@@]1(C)CC2 GCKMFJBGXUYNAG-HLXURNFRSA-N 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000001066 destructive effect Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 229940085503 testred Drugs 0.000 description 2
- 230000005653 Brownian motion process Effects 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 101710098119 Chaperonin GroEL 2 Proteins 0.000 description 1
- 208000028698 Cognitive impairment Diseases 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 206010014522 Embolism venous Diseases 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 208000032382 Ischaemic stroke Diseases 0.000 description 1
- 208000012902 Nervous system disease Diseases 0.000 description 1
- 208000025966 Neurological disease Diseases 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- 208000005764 Peripheral Arterial Disease Diseases 0.000 description 1
- 208000030831 Peripheral arterial occlusive disease Diseases 0.000 description 1
- 238000012896 Statistical algorithm Methods 0.000 description 1
- 208000005718 Stomach Neoplasms Diseases 0.000 description 1
- 101000588258 Taenia solium Paramyosin Proteins 0.000 description 1
- 208000003441 Transfusion reaction Diseases 0.000 description 1
- 241000607626 Vibrio cholerae Species 0.000 description 1
- 230000004520 agglutination Effects 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 238000005537 brownian motion Methods 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 208000010877 cognitive disease Diseases 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000012774 diagnostic algorithm Methods 0.000 description 1
- 238000003748 differential diagnosis Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 206010017758 gastric cancer Diseases 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 102000056538 human ABO Human genes 0.000 description 1
- 238000001307 laser spectroscopy Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 201000004792 malaria Diseases 0.000 description 1
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 1
- 208000010125 myocardial infarction Diseases 0.000 description 1
- 201000002528 pancreatic cancer Diseases 0.000 description 1
- 208000008443 pancreatic carcinoma Diseases 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000009979 protective mechanism Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 201000011549 stomach cancer Diseases 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 208000004043 venous thromboembolism Diseases 0.000 description 1
- 229940118696 vibrio cholerae Drugs 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/65—Raman scattering
Landscapes
- Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
本发明涉及人体血型鉴别技术领域,具体涉及一种基于红细胞光镊拉曼光谱技术的人体血型鉴别方法,利用光镊拉曼光谱技术对单个活性红细胞进行拉曼光谱检测实现血型的快速准确鉴别。具体包括:利用光镊拉曼光谱技术实现在接近人体生理环境下对红活细胞进行实时拉曼光谱检测,获得不同血型红细胞的特征拉曼光谱信号;利用主成分分析以及线性判别分析的诊断算法,深度挖掘不同血型红细胞拉曼光谱特征指纹图谱信息,实现对不同血型的快速分辨。本发明优点包括:非标记地检测活细胞可最大限度维持红细胞的性质;检测过程快速;判别结果客观、可靠、准确。本发明可为临床人体血型快速鉴别提供一种新方法。
The invention relates to the technical field of human blood group identification, in particular to a human blood group identification method based on red blood cell optical tweezers Raman spectroscopy technology. Specifically, it includes: using optical tweezers Raman spectroscopy technology to realize real-time Raman spectroscopy detection of red living cells in a physiological environment close to the human body, and obtaining characteristic Raman spectral signals of red blood cells of different blood types; using principal component analysis and linear discriminant analysis The diagnosis algorithm , dig deep into the Raman spectral characteristic fingerprint information of red blood cells of different blood types, and realize the rapid discrimination of different blood types. The advantages of the invention include: non-labeled detection of living cells can maintain the properties of red blood cells to the greatest extent; the detection process is fast; and the discrimination results are objective, reliable and accurate. The invention can provide a new method for rapid identification of clinical human blood type.
Description
技术领域technical field
本发明涉及激光光谱技术的医学诊断应用与细胞生物学领域。更具体地说,本发明涉及使用光镊拉曼光谱技术对不同血型的单个活性红细胞进行拉曼光谱检测,能够实现快速准确的人体血型鉴别。The invention relates to the field of medical diagnosis application and cell biology of laser spectroscopy technology. More specifically, the present invention relates to the use of optical tweezers Raman spectroscopy technology to perform Raman spectroscopy detection on single active red blood cells of different blood types, which can realize rapid and accurate human blood type identification.
背景技术Background technique
人体血型主要包括A型、B型、AB型与O型四个大类,不同血型的血液中包含着不同的红细胞,这个差异主要表现为红细胞(RBC)外表面上存在着不同的抗原。例如A型血液中的RBC外表面只有抗原A;B型血液中的RBC外表面只有抗原B;而AB型血液中的RBC外表面同时存在抗原A与B。在临床实践中,人体血型鉴别是一个极其重要的检测项目。输血错误,即输入不相容的血液会导致严重的输血反应,危及生命。此外,最近的许多文献都报道了血型与传染性疾病(恶性疟疾、霍乱弧菌、大肠杆菌)、心血管疾病(静脉血栓栓塞、心肌梗塞、缺血性卒中、外周动脉病变)以及其他神经性疾病(帕金森、认知损害)有着潜在的关联。特别的是,一些流行病学研究表明人体血型竟然与某种癌症的发生风险也存在一定的联系。例如,A型血的人群患胃癌的风险较高;O型血的人群则具有对抗胰腺癌的某种保护机制。Human blood types mainly include four major categories: A, B, AB and O. Different blood types contain different red blood cells. This difference is mainly manifested in the presence of different antigens on the outer surface of red blood cells (RBCs). For example, the outer surface of RBC in type A blood has only antigen A; the outer surface of RBC in type B blood has only antigen B; and the outer surface of RBC in type AB blood has both antigens A and B on the outer surface. In clinical practice, human blood type identification is an extremely important test item. Transfusion errors, where incompatible blood is given, can lead to serious, life-threatening transfusion reactions. In addition, many recent literatures have reported the relationship between blood group and infectious diseases (malaria falciparum, Vibrio cholerae, E. coli), cardiovascular diseases (venous thromboembolism, myocardial infarction, ischemic stroke, peripheral arterial disease), and other neurological diseases. Diseases (Parkinsonian, cognitive impairment) are potentially linked. In particular, some epidemiological studies have shown that there is a certain link between human blood type and the risk of certain cancers. For example, people with blood type A have a higher risk of stomach cancer; people with blood type O have some kind of protective mechanism against pancreatic cancer.
目前临床的血型鉴定方法(玻片法、试管法、凝胶微柱法等)主要基于免疫学的原理,来确定红细胞的表面存在着何种抗原。这些方法存在一定的不足,例如:反应时间长、需要引入外源性的单克隆抗体物质,这可能会影响红细胞的原始性质;对于抗体效价低的检测样本时容易造成漏诊;依靠医师的经验主观地判断凝集反应的发生,容易造成漏诊与误诊。因此,发展一种基于RBC分析的非标记、简便、灵敏、准确、客观的ABO血型鉴别方法具有极其重要的临床价值。The current clinical blood group identification methods (glass slide method, test tube method, gel micro-column method, etc.) are mainly based on the principle of immunology to determine which antigens exist on the surface of red blood cells. These methods have certain shortcomings, such as: long reaction time and the need to introduce exogenous monoclonal antibody substances, which may affect the original properties of red blood cells; easy to miss diagnosis when testing samples with low antibody titers; relying on the experience of physicians Judging the occurrence of agglutination subjectively can easily lead to missed diagnosis and misdiagnosis. Therefore, the development of a non-labeled, simple, sensitive, accurate and objective method for ABO blood group identification based on RBC analysis has extremely important clinical value.
基于非弹性散射的拉曼光谱技术是一种极具潜力的无损、灵敏的光学检测方法,它能提供生化样本的分子指纹信息,已广泛应用于大分子、细胞、体液以及组织样本的生物医学检测。其中,拉曼光谱技术特别适合活细胞的检测研究,因为在拉曼的指纹光谱波段中几乎没有水的干扰信号,可实现液体环境中活细胞的监测。但是由于细胞在培养液中做类似布朗运动,常规拉曼技术无法实现在生理环境中对活细胞的长时间的动态监测,虽然通过化学与物理方法可将细胞固定于基板来解决布朗运动带来的检测困难,但是这样的处理方法会干扰细胞的正常生理性质,还会受到强烈的背景信号的干扰。Raman spectroscopy based on inelastic scattering is a potential non-destructive and sensitive optical detection method, which can provide molecular fingerprint information of biochemical samples, and has been widely used in biomedicine of macromolecules, cells, body fluids and tissue samples detection. Among them, Raman spectroscopy is particularly suitable for the detection and research of living cells, because there is almost no interference signal of water in the spectral band of the Raman fingerprint, which can realize the monitoring of living cells in a liquid environment. However, due to the similar Brownian motion of cells in the culture medium, conventional Raman technology cannot achieve long-term dynamic monitoring of living cells in a physiological environment. It is difficult to detect, but such a treatment method interferes with the normal physiological properties of cells and is also disturbed by strong background signals.
光镊拉曼光谱(LTRS)技术的出现极大地克服了常规拉曼光谱技术的缺陷,极大地拓展、促进了该技术在细胞检测中的应用。LTRS可同时实现单细胞捕获、操纵以及生化信息的获取,提供了一种非标记、快速、无损的活细胞检测方法。利用LTRS对红细胞进行检测分析进而进行血型鉴定的研究还未见报道。The emergence of optical tweezers Raman spectroscopy (LTRS) technology has greatly overcome the defects of conventional Raman spectroscopy technology, and greatly expanded and promoted the application of this technology in cell detection. LTRS can simultaneously achieve single-cell capture, manipulation, and acquisition of biochemical information, providing a label-free, rapid, and non-destructive method for detection of living cells. There is no report on the detection and analysis of red blood cells by LTRS for blood group identification.
发明内容SUMMARY OF THE INVENTION
本发明的目的是针对目前人体血型鉴别诊断中存在的问题:反应时间长、需要引入外源性的单克隆抗体物质、对于抗体效价低的检测样本检测准确率低、检测结果极大程度依赖于医师的主观判断,提出一种基于红细胞光镊拉曼光谱技术的人体血型鉴别方法。The purpose of the present invention is to solve the problems existing in the current human blood group differential diagnosis: long reaction time, need to introduce exogenous monoclonal antibody substances, low detection accuracy for detection samples with low antibody titers, and detection results are largely dependent on Based on the subjective judgment of doctors, a method of human blood group identification based on red blood cell optical tweezers Raman spectroscopy is proposed.
为了实现上述目的,本发明采用以下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:
一种基于红细胞光镊拉曼光谱检测的人体血型鉴别方法,其是利用光镊拉曼光谱技术对新鲜人体血液中分离出的单个活性红细胞在生理环境下进行拉曼光谱检测,获得不同血型(A型、B型、AB型、O型)的红细胞高质量的、特征性的拉曼光谱信号,并利用主成分分析(PCA)以及线性判别分析(LDA)对获得的拉曼光谱数据进行多元统计分析,根据不同血型的红细胞的特征光谱信息,实现对不同血型的非标记、快速、客观、准确的检测鉴别。A human blood type identification method based on red blood cell optical tweezers Raman spectroscopy detection, which is to use optical tweezers Raman spectroscopy technology to perform Raman spectroscopy detection on a single active red blood cell isolated from fresh human blood in a physiological environment to obtain different blood types ( High-quality and characteristic Raman spectral signals of red blood cells of type A, B, AB, O), and multivariate Raman spectral data obtained by principal component analysis (PCA) and linear discriminant analysis (LDA) Statistical analysis, based on the characteristic spectral information of red blood cells of different blood types, realizes non-labeled, rapid, objective and accurate detection and identification of different blood types.
本发明所述基于红细胞光镊拉曼光谱技术的人体血型鉴别方法,包括以下步骤:The method for identifying human blood type based on the red blood cell optical tweezers Raman spectroscopy technology of the present invention includes the following steps:
(1)红细胞样品的获取:采集不同血型人群的新鲜血液,所述血型包括A型、B型、AB型以及O型,将采集到的4种不同血型人群的新鲜血液分别与磷酸盐缓冲液混合、离心,并重复至少三次去除血液红细胞中的其它杂质,最后将纯净的活性红细胞与RPMI1640细胞培养液混合均匀,制成红细胞悬浮液并至于样品池中待测;(1) Acquisition of red blood cell samples: Collect fresh blood from people with different blood types, including A, B, AB and O, and mix the collected fresh blood from 4 different blood groups with phosphate buffered saline respectively. Mixing, centrifuging, and repeating at least three times to remove other impurities in blood red blood cells, and finally mixing pure active red blood cells with RPMI1640 cell culture medium to make red blood cell suspension and put it in the sample pool for testing;
(2)红细胞样品的拉曼光谱测试:利用激光光镊产生的光学势阱将样品池中的单个红细胞移至相对独立的区域,进行拉曼光谱检测,检测条件为:激光波长785nm,激光功率2-3mW,光谱积分时间40s,光谱测试范围420-1700cm-1;(2) Raman spectrum test of red blood cell samples: use the optical potential well generated by laser optical tweezers to move a single red blood cell in the sample cell to a relatively independent area for Raman spectrum detection. The detection conditions are: laser wavelength 785nm, laser power 2-3mW, spectral integration time 40s, spectral test range 420-1700cm-1;
(3)不同血型红细胞的平均光谱对比分析:将获得的原始红细胞光谱数据进行荧光背景扣除以及光谱面积归一化,并进行平均光谱对比分析,寻找不同血型红细胞拉曼光谱的特征性光谱差异;(3) Comparative analysis of the average spectrum of red blood cells of different blood types: The obtained raw red blood cell spectral data is subjected to fluorescence background subtraction and spectral area normalization, and the average spectral comparison analysis is performed to find the characteristic spectral differences of the Raman spectra of red blood cells of different blood types;
(4)不同血型红细胞的诊断识别模型:将预处理后的数据导入PCA分析算法进行降维处理,获得少量的主成分(PCs),但这些主成分仍携带着原始数据中绝大部分的诊断信息;利用T检验对获得的主成分进行分析,挑选出最具有诊断价值的三个PCs;最后将这三个PCs导入LDA对不同的血型数据进行线性判别分析,以后验概率建立6个判别诊断模型,计算每个判别诊断模型最终的判别准确率,实现血型的客观鉴别;(4) Diagnostic recognition model of red blood cells of different blood types: import the preprocessed data into the PCA analysis algorithm for dimensionality reduction processing, and obtain a small amount of principal components (PCs), but these principal components still carry most of the diagnosis in the original data. Use T test to analyze the obtained principal components, and select three PCs with the most diagnostic value; finally, import these three PCs into LDA to perform linear discriminant analysis on different blood type data, and establish 6 discriminant diagnoses with posterior probability Model, calculate the final discrimination accuracy rate of each discriminative diagnosis model, and realize the objective identification of blood type;
所述6个判别诊断模型分别是区分A型和B型血型的判别诊断模型;The 6 discriminative diagnosis models are respectively a discriminative diagnosis model for distinguishing blood type A and type B;
区分A型和AB型血型的判别诊断模型;A discriminative diagnostic model for distinguishing between A and AB blood types;
区分A型和O型血型的判别诊断模型;A discriminative diagnostic model for distinguishing between A and O blood types;
区分B型和AB型血型的判别诊断模型;A discriminative diagnostic model for distinguishing between B and AB blood types;
区分B型和O型血型的判别诊断模型;A discriminative diagnostic model for distinguishing between B and O blood types;
区分AB型和O型血型的判别诊断模型;A discriminative diagnostic model for distinguishing between AB and O blood types;
(5)待检测血型的鉴别:采集待检测者的新鲜血液,按照步骤(1)和(2)的方法获得待检测血液的拉曼光谱数据,将该拉曼光谱数据分别导入到6个判别诊断模型中的某一个判别诊断模型进行计算,得到对应的后验概率数值,即对6个判别诊断模型同时进行计算,得到归属于某同一个血型后验概率最大的3个判别诊断模型,这3个判别诊断模型判别出来的血型应是同一种血型,从而可以确定该待检测血液样品的血型。(5) Identification of the blood type to be tested: Collect fresh blood of the subject to be tested, obtain the Raman spectrum data of the blood to be tested according to the methods of steps (1) and (2), and import the Raman spectrum data into 6 discriminators respectively. One of the discriminative diagnostic models in the diagnostic model is calculated to obtain the corresponding posterior probability value, that is, the 6 discriminative diagnostic models are calculated at the same time, and the three discriminative diagnostic models with the largest posterior probability belonging to the same blood type are obtained. The blood types identified by the three discriminative diagnosis models should be the same blood type, so that the blood type of the blood sample to be detected can be determined.
进一步,所述步骤(1)的红细胞悬浮液装载于培养皿内,所述培养皿底部进行如下改装:将培养皿底部开一半径为1cm的小孔,用厚度为70-80 μm的高纯度石英片密封上述小孔,通过调节细胞的抓捕高度,可实现对不同悬浮高度的红细胞进行拉曼光谱测试,同时提高信噪比。Further, the red blood cell suspension of the step (1) is loaded into a petri dish, and the bottom of the petri dish is modified as follows: a small hole with a radius of 1 cm is opened at the bottom of the petri dish, and a high-purity 70-80 μm thick hole is opened at the bottom of the petri dish. The quartz plate seals the above-mentioned small holes, and by adjusting the capture height of the cells, Raman spectroscopy can be performed on red blood cells with different suspension heights, and the signal-to-noise ratio can be improved at the same time.
所述步骤(2),进行拉曼光谱检测时,调节物镜使红细胞悬浮于样品池底部20-25μm高度位置。In the step (2), when performing Raman spectroscopy detection, adjust the objective lens so that the red blood cells are suspended at a height of 20-25 μm at the bottom of the sample cell.
本发明利用100倍油镜作为物镜,将785nm激光汇聚于样品池内实现对单个红细胞的光镊“捕获”以及拉曼光谱测试,并且对获得的原始测量光谱进行荧光背景扣除处理,以获得单个红细胞的纯拉曼光谱信号;接着对单个红细胞的拉曼光谱进行面积归一化处理,减小由于激光功率涨落或仪器不稳定而带来的光谱差异,保证光谱对比分析以及多元统计分析的可靠性;对获得的不同血型红细胞的拉曼光谱进行平均光谱对比分析,寻找不同红细胞拉曼光谱的特征性差异,将红细胞拉曼数据导入PCA-LDA的多变量统计分析算法,建立判别诊断模型,实现客观、准确的人体血型鉴别。In the present invention, a 100 times oil lens is used as an objective lens, a 785nm laser is concentrated in a sample cell to realize optical tweezers "capture" and Raman spectrum testing of a single red blood cell, and the obtained original measurement spectrum is subjected to fluorescence background subtraction processing to obtain a single red blood cell. The pure Raman spectrum signal is obtained; then the area normalization of the Raman spectrum of a single red blood cell is performed to reduce the spectral difference caused by laser power fluctuation or instrument instability, and ensure the reliability of spectral comparison analysis and multivariate statistical analysis. The obtained Raman spectra of different blood types of red blood cells are compared and analyzed by the average spectrum to find the characteristic differences of the Raman spectra of different red blood cells. Realize objective and accurate human blood type identification.
本发明采用以上技术方案,利用光镊拉曼光谱技术实现对单个活性红细胞实时的捕获和快速拉曼光谱检测,在测量过程中可以维持红细胞的存活状态,并且检测环境又接近红细胞在体内循环时自然生理状态,极大限度地保持了红细胞的原始生化特性;由于拉曼光谱能提供红细胞的分子指纹信息,所以不同血型血液中的红细胞的拉曼光谱会出现差异;此外,多元统计诊断算法用来建立诊断模型对不同血型的红细胞光谱数据进行判别分析。本发明是一种非标记、快速、简便、准确而又客观的人体血型鉴别方法。The present invention adopts the above technical scheme, utilizes optical tweezers Raman spectroscopy technology to realize real-time capture and rapid Raman spectroscopy detection of single active red blood cells, can maintain the survival state of red blood cells during the measurement process, and the detection environment is close to the time when red blood cells circulate in the body The natural physiological state greatly maintains the original biochemical characteristics of red blood cells; since Raman spectroscopy can provide molecular fingerprint information of red blood cells, the Raman spectra of red blood cells in different blood groups will be different; in addition, the multivariate statistical diagnosis algorithm uses To establish a diagnostic model to discriminate and analyze the red blood cell spectral data of different blood types. The invention is a non-marking, rapid, simple, accurate and objective method for identifying human blood type.
本发明激光光镊红细胞拉曼光谱血型判别分析方法可以拓展应用于其它癌细胞与正常细胞的判别分析。The laser optical tweezers red blood cell Raman spectrum blood group discrimination analysis method of the present invention can be extended to be applied to the discrimination analysis of other cancer cells and normal cells.
附图说明Description of drawings
以下结合附图和具体实施方式对本发明进行详细说明:The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments:
图1A是A型和B型血液的红细胞平均拉曼光谱对比示意图;图1B是A型和B型血液红细胞的PCA-LDA判别模型散点图,其中利用0.484的后验概率作为诊断阈值,可获得83.9%鉴别准确率。Figure 1A is a schematic diagram of the comparison of the average Raman spectra of red blood cells of type A and type B blood; Figure 1B is a scatter plot of the PCA-LDA discriminant model of red blood cells of type A and type B blood, in which the posterior probability of 0.484 is used as the diagnostic threshold, which can be Obtained 83.9% identification accuracy.
图2A是A型和AB型血液的红细胞平均拉曼光谱对比示意图;图2B是A型和AB型血液红细胞的PCA-LDA判别模型散点图,其中利用0.5的后验概率作为诊断阈值,可获得100%鉴别准确率。Figure 2A is a schematic diagram of the comparison of the average Raman spectra of red blood cells of type A and type AB blood; Figure 2B is a scatter plot of the PCA-LDA discriminant model of red blood cells of type A and type AB blood, in which the posterior probability of 0.5 is used as the diagnostic threshold, which can be Obtain 100% identification accuracy.
图3A是A型和O型血液的红细胞平均拉曼光谱对比示意图;图3B是A型和O型血液红细胞的PCA-LDA判别模型散点图,其中利用0.395的后验概率作为诊断阈值,可获得89.9%鉴别准确率。Figure 3A is a schematic diagram of the comparison of the mean Raman spectra of red blood cells of type A and type O blood; Figure 3B is a scatter plot of the PCA-LDA discriminant model of red blood cells of type A and type O blood, in which the posterior probability of 0.395 is used as the diagnostic threshold, which can be Obtained 89.9% identification accuracy.
图4A是B型和AB型血液的红细胞平均拉曼光谱对比示意图;图4B是B型和AB型血液红细胞的PCA-LDA判别模型散点图,其中利用0.5的后验概率作为诊断阈值,可获得100%鉴别准确率。Figure 4A is a schematic diagram of the comparison of the average Raman spectra of red blood cells of type B and type AB blood; Figure 4B is a scatter plot of the PCA-LDA discriminant model of red blood cells of type B and type AB blood, in which the posterior probability of 0.5 is used as the diagnostic threshold, which can be Obtain 100% identification accuracy.
图5A是B型和O型血液的红细胞平均拉曼光谱对比示意图;图5B是B型和O型血液红细胞的PCA-LDA判别模型散点图,其中利用0.442的后验概率作为诊断阈值,可获得98.9%鉴别准确率。Figure 5A is a schematic diagram of the comparison of the mean Raman spectra of red blood cells of type B and type O blood; Figure 5B is a scatter plot of the PCA-LDA discriminant model of red blood cells of type B and type O blood, in which the posterior probability of 0.442 is used as the diagnostic threshold, which can be Obtained 98.9% identification accuracy.
图6A是AB型和O型血液的红细胞平均拉曼光谱对比示意图;图6B是AB型和O型血液红细胞的PCA-LDA判别模型散点图,其中利用0.061的后验概率作为诊断阈值,可获得100%鉴别准确率。Figure 6A is a schematic diagram of the comparison of the average Raman spectra of red blood cells of AB type and O type blood; Figure 6B is a PCA-LDA discriminant model scatter plot of AB type and O type blood red blood cells, in which the posterior probability of 0.061 is used as the diagnostic threshold, which can be Obtain 100% identification accuracy.
图7A是待测血型红细胞拉曼光谱;图7B是A型和B型血液红细胞的PCA-LDA判别诊断模型散点图,其中利用0.484的后验概率作为诊断阈值;图C是A型和O型血液红细胞的PCA-LDA判别诊断模型散点图,其中利用0.395的后验概率作为诊断阈值;图7D是A型和AB型血液红细胞的PCA-LDA判别模型散点图,其中利用0.5的后验概率作为诊断阈值。实心三角形代表待测血型红细胞并有箭头予以标注。Fig. 7A is the Raman spectrum of red blood cells of the blood type to be tested; Fig. 7B is a scatter plot of the PCA-LDA discriminant diagnosis model of red blood cells of type A and B blood, wherein the posterior probability of 0.484 is used as the diagnostic threshold; Fig. C is the type A and O The scatter plot of the PCA-LDA discriminant diagnostic model of red blood cells of type A, in which the posterior probability of 0.395 was used as the diagnostic threshold; Figure 7D is the scatter plot of the PCA-LDA discriminant model of red blood cells of type A and AB, in which the posterior probability of 0.5 was used. The test probability is used as the diagnostic threshold. Solid triangles represent red blood cells of the blood type to be tested and are marked with arrows.
具体实施方式Detailed ways
实施例1Example 1
本发明的具体技术细节按照对人体ABO血型鉴别的实施阐述如下:The specific technical details of the present invention are set forth as follows according to the implementation of human ABO blood group identification:
(1)制备红细胞待测样品:采集不同血型(A、B、AB、O)人群的新鲜血液各30例,实验样本的血型由临床血型检测确定。将获得的新鲜血液与PBS缓冲液混合、离心,离心转速设置为1000r/s,离心时间为3分钟,离心后去除上清液,再次加入PBS进行离心,重复三次该程序去除红细胞中的其他杂质。最后将纯净的活性红细胞与RPMI1640细胞培养液均匀混合,制成红细胞悬浮液至于样品池中待测。对装载红细胞的培养皿底部进行改装,具体是将培养皿底部开一半径为1cm的小孔,用厚度为为70-80 μm 的高纯度石英片密封上述小孔,将此石英片底部做为细胞拉曼光谱测试窗口。通过调节细胞的抓捕高度,可实现对不同悬浮高度的红细胞进行拉曼光谱测试,同时提高信噪比。(1) Preparation of red blood cell samples to be tested: 30 fresh blood samples were collected from people with different blood types (A, B, AB, O), and the blood types of the experimental samples were determined by clinical blood type testing. The obtained fresh blood was mixed with PBS buffer, centrifuged, the centrifugation speed was set to 1000r/s, the centrifugation time was 3 minutes, the supernatant was removed after centrifugation, PBS was added again for centrifugation, and the procedure was repeated three times to remove other impurities in the red blood cells. . Finally, the pure active red blood cells and the RPMI1640 cell culture medium are uniformly mixed to prepare a red blood cell suspension for testing in the sample pool. The bottom of the petri dish loaded with red blood cells was modified, specifically, a small hole with a radius of 1 cm was opened at the bottom of the petri dish, and the above-mentioned small hole was sealed with a high-purity quartz piece with a thickness of 70-80 μm, and the bottom of the quartz piece was used as the Cell Raman Spectroscopy Test Window. By adjusting the capture height of cells, Raman spectroscopy can be performed on red blood cells with different suspension heights, and the signal-to-noise ratio can be improved at the same time.
(2)利用光镊拉曼光谱技术测试红细胞拉曼光谱:利用高度汇聚的激光光镊产生的光学势阱将样品池中的单个红细胞移至相对独立的区域,并调整物镜将红细胞悬浮于样品池底部20-25μm高度位置,进行拉曼光谱检测,获得高质量的红细胞拉曼光谱。测试时,激光波长为785nm,激光功率为2到3mW,光谱积分时间为40s,光谱测试范围为420-1700cm-1。(2) Test red blood cell Raman spectroscopy using optical tweezers Raman spectroscopy: use the optical potential well generated by highly focused laser optical tweezers to move a single red blood cell in the sample cell to a relatively independent area, and adjust the objective lens to suspend the red blood cell in the sample Raman spectrum detection is performed at a height of 20-25 μm at the bottom of the pool to obtain high-quality red blood cell Raman spectrum. During the test, the laser wavelength was 785nm, the laser power was 2 to 3mW, the spectral integration time was 40s, and the spectral test range was 420-1700cm-1.
(3)对比不同血型红细胞平均拉曼光谱:不同血型红细胞的原始光谱信号将经过荧光背景扣除和面积归一化的预处理,最终得到的平均拉曼光谱如图1-6所示。该系统能获得高质量的红细胞拉曼光谱信号,其中包含许多尖锐、显著的拉曼峰,例如490、567、621、676、753、791、827、857、898、937、1003、1031、1082、1128、1173、1224、1308、1337、1397、1447、1547、1583、1606和 1620 cm−1。不同血型红细胞的拉曼谱峰强度也存在着差异,例如753、1003和1224 cm−1。此外,在1500-1700cm-1波段,不同红细胞也存在差异。(3) Compare the average Raman spectra of red blood cells of different blood types: The original spectral signals of red blood cells of different blood types will be preprocessed by fluorescence background subtraction and area normalization, and the final average Raman spectrum is shown in Figure 1-6. The system can obtain high-quality red blood cell Raman spectral signals, which contain many sharp and prominent Raman peaks, such as 490, 567, 621, 676, 753, 791, 827, 857, 898, 937, 1003, 1031, 1082 , 1128, 1173, 1224, 1308, 1337, 1397, 1447, 1547, 1583, 1606 and 1620 cm−1. There are also differences in the Raman peak intensities of red blood cells of different blood types, such as 753, 1003, and 1224 cm−1. In addition, in the 1500-1700cm -1 band, there are also differences between different red blood cells.
(4)基于多元统计算法PCA-LDA的血型鉴别分析:首先将预处理后的光谱数据导入SPSS软件进行PCA降维处理,将原有的635个光谱变量缩减为几十个PCs,再利用T检验对获得的PCs进行分析,选取p值小于0.05的PCs,即选取最具有诊断效能的PCs。(4) Blood group identification analysis based on multivariate statistical algorithm PCA-LDA: First, import the preprocessed spectral data into SPSS software for PCA dimensionality reduction processing, reduce the original 635 spectral variables to dozens of PCs, and then use T The test analyzes the obtained PCs, and selects the PCs whose p value is less than 0.05, that is, selects the PCs with the most diagnostic efficacy.
按照以上方案,PC2、PC3和PC5成为区分A型和B型血型的最具诊断效能的PCs;PC1、PC3和PC4成为区分A型和AB型血型的最具诊断效能的PCs;PC3、PC4和PC5成为区分A型和O型血型的最具诊断效能的PCs;PC1、PC3和PC4成为区分B型和AB型血型的最具诊断效能的PCs;PC2、PC4和PC5成为区分B型和O型血型的最具诊断效能的PCs;PC1、PC2和PC3成为区分AB型和O型血型的最具诊断效能的PCs。之后再将这些选取出的PCs分别进行LDA判别分析,以后验概率建立判别诊断模型,分别是区分A型和AB型血型的判别诊断模型;区分A型和O型血型的判别诊断模型;区分B型和AB型血型的判别诊断模型;区分B型和O型血型的判别诊断模型;区分AB型和O型血型的判别诊断模型。According to the above scheme, PC2, PC3 and PC5 become the most diagnostic PCs for distinguishing between A and B blood types; PC1, PC3 and PC4 become the most diagnostic PCs for distinguishing between A and AB blood types; PC3, PC4 and PC5 became the most diagnostic PCs for distinguishing between A and O blood types; PC1, PC3 and PC4 became the most diagnostic PCs for distinguishing B and AB blood types; PC2, PC4 and PC5 became the most diagnostic PCs for distinguishing B and O blood types The most diagnostic PCs for blood type; PC1, PC2 and PC3 became the most diagnostic PCs for distinguishing AB and O blood types. Afterwards, these selected PCs were subjected to LDA discriminant analysis respectively, and a discriminant diagnosis model was established with posterior probability, which were respectively a discriminative diagnosis model for distinguishing between A and AB blood types; a discriminative diagnosis model for distinguishing between A and O blood types; A discriminative diagnostic model for blood type and AB blood type; a discriminative diagnostic model for distinguishing between B and O blood types; a discriminative diagnostic model for distinguishing between AB and O blood types.
如图1-6所示,利用0.484的后验概率诊断值,对A型和B型的鉴别准确率可达83.9%;利用0.5的后验概率诊断值,对A型和AB型的鉴别准确率可达100%;利用0.395的后验概率诊断线,对A型和O型的鉴别准确率可达89.9%;利用0.5的后验概率诊断线,对B型和AB型的鉴别准确率可达100%;利用0.442的后验概率诊断线,对B型和O型的鉴别准确率可达98.9%;利用0.061的后验概率诊断线,对AB型和O型的鉴别准确率可达100%。As shown in Figure 1-6, using the posterior probability diagnostic value of 0.484, the accuracy rate of discriminating between type A and type B can reach 83.9%; using the posterior probability diagnostic value of 0.5, the identification of type A and type AB is accurate. The rate of diagnosis can reach 100%; using the posterior probability diagnostic line of 0.395, the identification accuracy rate of type A and type O can reach 89.9%; using the posterior probability diagnostic line of 0.5, the identification accuracy rate of type B and type AB can be Up to 100%; using the posterior probability diagnostic line of 0.442, the identification accuracy rate of B type and O type can reach 98.9%; using the posterior probability diagnostic line of 0.061, the identification accuracy rate of AB type and O type can reach 100% %.
(5)待检测血型的鉴别:采集待检测者的新鲜血液,按照步骤(1)和(2)的方法获得待检测血液的拉曼光谱数据,将该拉曼光谱数据分别导入到6个判别诊断模型中的某一个诊断模型进行计算,得到对应的后验概率数值,即对6个诊断模型同时进行计算,得到归属于某同一个血型后验概率最大的3个判别诊断模型,这3个诊断模型判别出来的血型应是同一种血型,从而可以确定该待检测血液样品的血型。(5) Identification of the blood type to be tested: Collect fresh blood of the subject to be tested, obtain the Raman spectrum data of the blood to be tested according to the methods of steps (1) and (2), and import the Raman spectrum data into 6 discriminators respectively. One of the diagnostic models in the diagnostic model is calculated to obtain the corresponding posterior probability value, that is, the six diagnostic models are calculated at the same time, and the three discriminative diagnostic models with the largest posterior probability belonging to the same blood type are obtained. The blood type determined by the diagnostic model should be the same blood type, so that the blood type of the blood sample to be tested can be determined.
实施例2Example 2
(1)制备某未知血型红细胞待测样品:采集某种未知血型人的新鲜血液1毫升,将获得的新鲜血液与PBS缓冲液混合、离心,离心转速设置为1000r/s,离心时间为3分钟,离心后去除上清液,再次加入PBS进行离心,重复三次该程序去除红细胞中的其它杂质。最后将纯净的活性红细胞与RPMI1640细胞培养液均匀混合,制成红细胞悬浮液于样品池中待测。(1) Prepare a sample of red blood cells of an unknown blood type to be tested: collect 1 ml of fresh blood from a person of an unknown blood type, mix the obtained fresh blood with PBS buffer, centrifuge, set the centrifugation speed to 1000r/s, and set the centrifugation time to 3 minutes , remove the supernatant after centrifugation, add PBS again for centrifugation, and repeat this procedure three times to remove other impurities in the red blood cells. Finally, the pure active red blood cells and the RPMI1640 cell culture medium were evenly mixed to prepare a red blood cell suspension for testing in the sample pool.
(2)利用光镊拉曼光谱技术测试红细胞拉曼光谱:利用高度汇聚的激光光镊产生的光学势阱将样品池中的单个红细胞移至相对独立的区域,并调整物镜将红细胞悬浮于样品池底部20-25μm高度位置,进行拉曼光谱检测,获得高质量的红细胞光镊拉曼光谱,如附图7(A)所示。测试时,激光波长为785nm,激光功率为2到3mW,光谱积分时间为40s,光谱测试范围为420-1700cm-1。(2) Test red blood cell Raman spectroscopy using optical tweezers Raman spectroscopy: use the optical potential well generated by highly focused laser optical tweezers to move a single red blood cell in the sample cell to a relatively independent area, and adjust the objective lens to suspend the red blood cell in the sample Raman spectrum detection was performed at a height of 20-25 μm at the bottom of the pool to obtain high-quality red blood cell optical tweezers Raman spectrum, as shown in Figure 7(A). During the test, the laser wavelength was 785 nm, the laser power was 2 to 3 mW, the spectral integration time was 40 s, and the spectral test range was 420-1700 cm -1 .
(3)将该条未知血型的红细胞光镊拉曼光谱数据进行主成分降维分析,并分别选取对六个诊断模型最有诊断价值的相应主成分分别导入对应的诊断模型同时进行判别分析,具体选择过程如下:选取PC2、PC3和PC5导入A型和B型判别诊断模型进行判别分析;选择PC1、PC3和PC4导入A型和AB型判别诊断模型进行判别计算;选取 PC3、PC4和PC5导入A型和O型诊断模型进行判别分析;选取PC1、PC3和PC4导入 B型和AB型判别诊断模型进行判别分析;选取PC2、PC4和PC5导入B型和O型判别诊断模型进行判别分析;选取PC1、PC2和PC3导入AB型和O型诊断模型进行判别分析。具体计算结果如下:1.在A型和B型判别诊断模型中计算出后验概率为0.88,判别为A型血;2. 在A型和O型判别诊断模型中后验概率为0.90,判别为A型血;3.在A型和AB型判别诊断模型中计算出后验概率为1.0,判别为A型血;该三种诊断诊断模型计算出来的后验概率散点图分布分别如图7(B、C、D)所示,其中实心三角形代表未知血型数据点,且由箭头予以标注。4.在 B型和O型判别诊断模型中后验概率为0.50;5.在B型和O型判别诊断模型中后验概率为0.49;6.在 AB型和O型判别诊断模型中后验概率为0.51;在后面三种判别诊断模型中,计算出来的后验概率都在0.5左右,无法进行血型准确判别,而在前三种诊断模型中,后验概率都远大于0.5,而且前三种模型都判别为A型血,因此根据该结果,我们就可以很客观的得出该未知血型为A型血。(3) Perform principal component dimensionality reduction analysis on the red blood cell optical tweezers Raman spectrum data of the unknown blood type, and select the corresponding principal components with the most diagnostic value for the six diagnostic models and import them into the corresponding diagnostic models and perform discriminant analysis. The specific selection process is as follows: select PC2, PC3 and PC5 to import type A and type B discriminant diagnostic models for discriminant analysis; select PC1, PC3 and PC4 to import type A and AB discriminant diagnostic models for discriminant calculation; select PC3, PC4 and PC5 to import A-type and O-type diagnostic models were selected for discriminant analysis; PC1, PC3 and PC4 were selected and imported into B-type and AB-type discriminant diagnostic models for discriminant analysis; PC2, PC4 and PC5 were selected and imported into B-type and O-type discriminant diagnostic models for discriminant analysis; PC1, PC2 and PC3 were imported into AB-type and O-type diagnostic models for discriminant analysis. The specific calculation results are as follows: 1. In the discriminative diagnosis model of type A and type B, the posterior probability is calculated to be 0.88, and it is discriminated as type A blood; 2. In the discriminative diagnosis model of type A and O, the posterior probability is 0.90, and Blood type A; 3. The posterior probability is calculated as 1.0 in the discriminant diagnosis model of type A and type AB, and it is discriminated as type A blood; the distribution of the posterior probability scatter plots calculated by the three types of diagnosis and diagnosis models are shown in Fig. 7 (B, C, D), where solid triangles represent unknown blood group data points and are marked by arrows. 4. The posterior probability is 0.50 in the B-type and O-type discriminant diagnostic models; 5. The posterior probability is 0.49 in the B-type and O-type discriminant-diagnostic models; 6. The posterior probability in the AB and O-type discriminative diagnostic models The probability is 0.51; in the latter three discriminant diagnosis models, the calculated posterior probabilities are all around 0.5, and it is impossible to accurately discriminate blood types. All models are identified as blood type A, so according to the results, we can objectively conclude that the unknown blood type is type A blood.
本发明利用光镊拉曼技术探测不同血型活性红细胞特有的生化信息,并引入多元诊断算法PCA-LDA深入挖掘光谱数据中潜在的诊断信息,建立高精度的判别模型,开发出一种非标记、快速、准确而又客观的血型鉴别新方法。The invention uses optical tweezers Raman technology to detect the unique biochemical information of active red blood cells of different blood types, and introduces the multi-diagnostic algorithm PCA-LDA to deeply mine the potential diagnostic information in the spectral data, establishes a high-precision discrimination model, and develops a non-labeled, A new method for rapid, accurate and objective blood type identification.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610867651.XA CN106645079B (en) | 2016-09-30 | 2016-09-30 | A kind of human body blood group discrimination method based on red blood cell optical tweezer Raman spectroscopy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610867651.XA CN106645079B (en) | 2016-09-30 | 2016-09-30 | A kind of human body blood group discrimination method based on red blood cell optical tweezer Raman spectroscopy |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106645079A CN106645079A (en) | 2017-05-10 |
CN106645079B true CN106645079B (en) | 2019-07-23 |
Family
ID=58853638
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610867651.XA Active CN106645079B (en) | 2016-09-30 | 2016-09-30 | A kind of human body blood group discrimination method based on red blood cell optical tweezer Raman spectroscopy |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106645079B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MY204234A (en) | 2018-08-27 | 2024-08-16 | Regeneron Pharma | Use of raman spectroscopy in downstream purification |
CN110736732A (en) * | 2019-12-09 | 2020-01-31 | 南阳理工学院 | Raman spectroscopy-based measurement method and detection device for drug concentration in body fluids |
CN112014378A (en) * | 2020-09-23 | 2020-12-01 | 浙江警察学院 | Portable blood mark recognition instrument and identification method thereof |
CN112525884B (en) * | 2020-11-26 | 2023-04-28 | 中国计量大学 | Ultra-micro Raman spectrum detection device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103512874A (en) * | 2013-09-22 | 2014-01-15 | 福建师范大学 | Ultrasonic perforation-laser tweezer cell surface enhanced Raman spectroscopy method |
CN105628680A (en) * | 2016-03-23 | 2016-06-01 | 中国科学院上海技术物理研究所 | Blood identification method based on infrared Raman super-continuum diffuse comprehensive spectrum |
-
2016
- 2016-09-30 CN CN201610867651.XA patent/CN106645079B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103512874A (en) * | 2013-09-22 | 2014-01-15 | 福建师范大学 | Ultrasonic perforation-laser tweezer cell surface enhanced Raman spectroscopy method |
CN105628680A (en) * | 2016-03-23 | 2016-06-01 | 中国科学院上海技术物理研究所 | Blood identification method based on infrared Raman super-continuum diffuse comprehensive spectrum |
Non-Patent Citations (5)
Title |
---|
ABO blood groups’antigen–antibody interactions studied using SERS spectroscopy:towards blood typing;Agnieszka Kamińska等;《Analytical Methods》;20160114;第1463-1472页 |
SERS spectroscopy and multivariate analysis of globulin in human blood;J Wang 等;《Laser Physics》;20140423;第24卷(第6期);第1-8页 |
单个红细胞的拉曼光谱研究;姚辉璐等;《济南大学学报(自然科学版)》;20051231;第19卷(第4期);第328-330页 |
基于拉曼光谱技术的血液成分检测研究;王琴 等;《光谱学与光谱分析》;20141031;第34卷(第10期);第343-344页 |
基于膜电泳技术的血清蛋白表面增强拉曼光谱研究;王静;《中国优秀硕士学位论文全文数据库 基础科学辑》;20150315(第3期);正文第13-28页 |
Also Published As
Publication number | Publication date |
---|---|
CN106645079A (en) | 2017-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106645079B (en) | A kind of human body blood group discrimination method based on red blood cell optical tweezer Raman spectroscopy | |
US20190187048A1 (en) | Spectroscopic systems and methods for the identification and quantification of pathogens | |
CN111812078A (en) | Artificial intelligence assisted early diagnosis method for prostate tumor based on surface enhanced Raman spectroscopy | |
Stables et al. | Feature driven classification of Raman spectra for real-time spectral brain tumour diagnosis using sound | |
JP6912477B2 (en) | How to determine the response of microorganisms to exposure to chemicals | |
Roman et al. | Raman spectral signatures of urinary extracellular vesicles from diabetic patients and hyperglycemic endothelial cells as potential biomarkers in diabetes | |
US10935495B2 (en) | Detection and analysis method for urine-modified nucleoside based on surface-enhanced resonance Raman spectroscopy | |
Kang et al. | H-CNN combined with tissue Raman spectroscopy for cervical cancer detection | |
CN109182444A (en) | A kind of method and apparatus of detection Pathogen category distribution and drug resistance | |
CN112964681A (en) | Device for monitoring living circulating tumor cells marked by 2-NBDG | |
CN112885473A (en) | Pan-disease risk prediction system combining high-dimensional immunity with big data and artificial intelligence | |
Ciobanu et al. | Potential of Raman spectroscopy for blood-based biopsy | |
Fang et al. | Rapid and label‐free identification of different cancer types based on surface‐enhanced Raman scattering profiles and multivariate statistical analysis | |
Liu et al. | Rapid discrimination of colon cancer cells with single base mutation in KRAS gene segment using laser tweezers Raman spectroscopy | |
Wang et al. | Autofluorescence spectroscopy of blood plasma with multivariate analysis methods for the diagnosis of pulmonary tuberculosis | |
US9316591B1 (en) | Biosensor for detection of subclinical ketosis | |
CN109243613A (en) | A kind of high renin hypertension model and its method for building up | |
CN113125733A (en) | 42 antibody kit for monitoring human immune state and application thereof | |
Khristoforova et al. | Combination of Raman spectroscopy and chemometrics: A review of recent studies published in the Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy Journal | |
JP2553606B2 (en) | Method for separating and using density-specific blood cells | |
CN106706597A (en) | Device and method for detecting platelet-derived growth factor based on raman spectrum | |
Hadjigeorgiou et al. | Multi-bacteria multi-antibiotic testing using surface enhanced Raman spectroscopy (SERS) for urinary tract infection (UTI) diagnosis | |
Olaetxea et al. | Determination of physiological lactate and pH by Raman spectroscopy | |
CN111175261A (en) | Method for detecting pulmonary tuberculosis disease based on human plasma autofluorescence spectrum | |
Habibalahi et al. | Multispectral autofluorescence for label free classification of immune cell type and activation/polarization status |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |