CN106580245A - 一种车载安全测试眼动仪 - Google Patents
一种车载安全测试眼动仪 Download PDFInfo
- Publication number
- CN106580245A CN106580245A CN201611188824.1A CN201611188824A CN106580245A CN 106580245 A CN106580245 A CN 106580245A CN 201611188824 A CN201611188824 A CN 201611188824A CN 106580245 A CN106580245 A CN 106580245A
- Authority
- CN
- China
- Prior art keywords
- data
- eye tracker
- vehicle
- driver
- eye
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000011076 safety test Methods 0.000 title claims description 5
- 230000004424 eye movement Effects 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 7
- 238000004458 analytical method Methods 0.000 claims description 5
- 239000011159 matrix material Substances 0.000 claims description 5
- 238000012360 testing method Methods 0.000 claims description 5
- 230000001149 cognitive effect Effects 0.000 claims 1
- 230000003340 mental effect Effects 0.000 claims 1
- 230000000007 visual effect Effects 0.000 description 11
- 210000004556 brain Anatomy 0.000 description 4
- 241000222065 Lycoperdon Species 0.000 description 1
- 241000768494 Polymorphum Species 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000000873 fovea centralis Anatomy 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 210000001525 retina Anatomy 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/113—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining or recording eye movement
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
- A61B5/1126—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb using a particular sensing technique
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/18—Eye characteristics, e.g. of the iris
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- Surgery (AREA)
- Dentistry (AREA)
- Physiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Pathology (AREA)
- Ophthalmology & Optometry (AREA)
- Human Computer Interaction (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Traffic Control Systems (AREA)
Abstract
本发明涉及一种车载安全测试眼动仪,主要用于驾驶过程中测试驾驶员的精神状态以保证行驶安全。本发明以认知心理学的理论为基础,通过眼动仪测试驾驶员的凝视模式,以对比算法完善数据库,在车载平台即时对比分析眼动数据与车载更新数据的视觉热点分布图,同时将服务器的分析结果及时反馈给驾驶员。本设备性价比高、使用简单方便,不需要用户进行专业培训。
Description
技术领域
本发明涉及一种车载安全测试眼动仪,主要用于驾驶过程中测试驾驶员的精神状态以保证行驶安全。
背景技术
人眼的视野大概在200°,绝大多数光感细胞位于视网膜上的中央凹(fovea),它们是视觉的关键因素,也是大脑接受视觉信息的关键。当眼睛处于休息状态时,我们可以转移注意力但眼睛不移动。对中心凹视野监测通常是有效的判断注意力变化的手段,因为大脑通常无法处理中心凹以外的复杂刺激信息。实验证明,大脑在处理中心凹视觉信息时比外围视觉信息更有效率。因为大脑需要花更多的努力来理解模糊的视觉信息。所以可以通过跟踪眼部运动来解释人们的行为。
目前已经有一些应用于驾驶过程中的视觉信息搜索的眼动仪器,然而这些仪器都无法完成即时分析,而且仪器成本昂贵,需要专业人员进行繁琐的数据分析,使用条件苛刻、精确性差。
发明内容
本发明涉及一种车载安全测试眼动仪,主要用于驾驶过程中测试驾驶员的精神状态以保证行驶安全。
本发明首先以对比算法完善数据库,数据库来自于虚拟驾驶环境的数据采集。通过虚拟采集的方法,直接比较新老驾驶员的区别,完善老驾驶员的驾驶期间的眼动数据,并通过服务器上传到车载系统中,车载安全系统会定期更新以增加数据的精确性。而在车载平台,行驶安全性的判断主要取决于眼动数据与车载更新数据的视觉热点分布图的即时对比分析结果。
对比算法即为互信息的算法,步骤为一系列的内设方程如下:
g(x)=(bоBocoB)(x)
对比算法的具体步骤为:
1.列举矩阵中的全部组合;
2.找出B组合中的最大值;
3.算出自然数的可能值;
4.重新分配组合的顺序
眼动仪采集的数据用矩阵的形式记录在服务器上。上述算式可以用于选择矩阵中最重要的行列。第一行方程定义了行U和行V之间的相同信息;第二行方程B定义了一套矩阵中的最大值,第三行是歌德数列,投影一个自然数,以联系最有可能的数据组合;最后一行为总方程,它给出了互信息的总和。
本设备可完成数据的即时分析和反馈,性价比高、使用简单方便,不需要用户进行专业培训。
附图说明
图1为本发明实施步骤图。
其中,灰色部分为新生数据收集。新的驾驶员的眼动数据被眼动仪采集,自动识别驾驶环境(天气,路况等),然后新采集的眼动数据的热点分布图被系统收纳,并同之前存储好的数据对比。
黄色部分为对比结果显示:如果系统已知的安全数据和新数据不存在统计有效差别,那么结果将被纳入安全系数中(白色部分);如果不安全,那么将被提示,并且重新进入灰色循环部分。
图2为新驾驶员与老驾驶员的视觉模式图。
具体实施方式
为了更好的理解本发明,下面结合具体实例对本发明进行进一步的描述。
如图2,在收集外界视觉信息的时候,面对熟悉路况和陌生路况时视觉模式是也完全不一样的。在一条专门的测试道上让驾驶员开6圈,上图通过视觉焦点时间显示,在陌生的路况中(第1和2圈,左图),凝视点较为集中,时间较长,而且视觉停留在相对比较近的地方;当路况相对熟悉之后(3-6圈,右图),视觉的停留时间比较短,而且朝更远的地方分布。
以对比算法完善数据库,数据库来自于虚拟驾驶环境的数据采集。通过虚拟采集的方法,直接比较新老驾驶员的区别,完善老驾驶员的驾驶期间的眼动数据,并通过服务器上传到车载系统中,车载安全系统会定期更新以增加数据的精确性。而在车载平台,行驶安全性的判断则根据眼动数据与车载更新数据的视觉热点分布图的即时对比分析结果。
Claims (3)
1.本发明涉及一种车载安全测试眼动仪,主要用于驾驶过程中测试驾驶员的精神状态以保证行驶安全,其特征在于:以认知心理学的理论为基础,通过眼动仪测试驾驶员的凝视模式,并以对比算法完善数据库,同时在车载平台即时对比分析眼动数据与车载更新数据的视觉热点分布图。
2.权利要求1所述的数据库,其特征在于:来自于虚拟驾驶环境的数据采集。
3.权利要求1所述对比算法,其特征在于:包括列举矩阵中的全部组合;找出B组合中的最大值;算出自然数的可能值;重新分配组合的顺序4个步骤。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611188824.1A CN106580245A (zh) | 2016-12-21 | 2016-12-21 | 一种车载安全测试眼动仪 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611188824.1A CN106580245A (zh) | 2016-12-21 | 2016-12-21 | 一种车载安全测试眼动仪 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106580245A true CN106580245A (zh) | 2017-04-26 |
Family
ID=58600585
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611188824.1A Pending CN106580245A (zh) | 2016-12-21 | 2016-12-21 | 一种车载安全测试眼动仪 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106580245A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106960613A (zh) * | 2017-05-26 | 2017-07-18 | 交通运输部公路科学研究所 | 非侵入式驾驶人潜在危险辨识能力评估与训练系统及方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070286457A1 (en) * | 2006-06-13 | 2007-12-13 | Hammoud Riad I | Dynamic eye tracking system |
CN103680246A (zh) * | 2013-12-17 | 2014-03-26 | 西南交通大学 | 基于视觉注意分配的驾驶安全性考核测评系统 |
CN103770733A (zh) * | 2014-01-15 | 2014-05-07 | 中国人民解放军国防科学技术大学 | 一种驾驶员安全驾驶状态检测方法及装置 |
CN104484549A (zh) * | 2014-11-06 | 2015-04-01 | 山东交通学院 | 一种基于驾驶员视觉注意机制的多任务驾驶安全状态辨识方法 |
-
2016
- 2016-12-21 CN CN201611188824.1A patent/CN106580245A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070286457A1 (en) * | 2006-06-13 | 2007-12-13 | Hammoud Riad I | Dynamic eye tracking system |
CN103680246A (zh) * | 2013-12-17 | 2014-03-26 | 西南交通大学 | 基于视觉注意分配的驾驶安全性考核测评系统 |
CN103770733A (zh) * | 2014-01-15 | 2014-05-07 | 中国人民解放军国防科学技术大学 | 一种驾驶员安全驾驶状态检测方法及装置 |
CN104484549A (zh) * | 2014-11-06 | 2015-04-01 | 山东交通学院 | 一种基于驾驶员视觉注意机制的多任务驾驶安全状态辨识方法 |
Non-Patent Citations (1)
Title |
---|
樊玮 等: "基于眼动仪的飞行员疲劳判定相关属性研究", 《计算机技术与发展》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106960613A (zh) * | 2017-05-26 | 2017-07-18 | 交通运输部公路科学研究所 | 非侵入式驾驶人潜在危险辨识能力评估与训练系统及方法 |
CN106960613B (zh) * | 2017-05-26 | 2019-07-02 | 交通运输部公路科学研究所 | 非侵入式驾驶人潜在危险辨识能力评估与训练系统及方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | The sensitivity of different methodologies for characterizing drivers’ gaze concentration under increased cognitive demand | |
Charman | Vision and driving‐a literature review and commentary | |
Walsh et al. | Learning from experience: event-related potential correlates of reward processing, neural adaptation, and behavioral choice | |
Kim et al. | Driver workload characteristics analysis using EEG data from an urban road | |
Lleras et al. | A target contrast signal theory of parallel processing in goal-directed search | |
BR0315384A (pt) | Método e disposição para interpretar a atividade da cabeça e ocular de indivìduos | |
KR20190128292A (ko) | 녹내장 조기진단과 의심영역 표시 방법 및 이를 위한 시스템 | |
Silveira et al. | Importance of subject‐dependent classification and imbalanced distributions in driver sleepiness detection in realistic conditions | |
Chu et al. | Optimized electroencephalogram and functional near-infrared spectroscopy-based mental workload detection method for practical applications | |
Beggiato et al. | KomfoPilot—comfortable automated driving | |
Guidetti et al. | Saccades and driving | |
Luque et al. | Goal‐directed EEG activity evoked by discriminative stimuli in reinforcement learning | |
Adhikari et al. | Video‐based eye tracking for neuropsychiatric assessment | |
Jansen et al. | Does agreement mean accuracy? Evaluating glance annotation in naturalistic driving data | |
WO2016123689A1 (en) | Diagnostic method and apparatus for brain injury based on emg frequency power spectra analysis | |
He et al. | Boosting transfer learning improves performance of driving drowsiness classification using EEG | |
CN106580245A (zh) | 一种车载安全测试眼动仪 | |
WO2022071851A1 (en) | Method and system for driving skill feedback | |
Bowers et al. | Evaluation of a paradigm to investigate detection of road hazards when using a bioptic telescope | |
Huang et al. | Discriminability of single-trial EEG during decision-making of cooperation or aggression: a study based on machine learning | |
Haupt et al. | Steering wheel motion analysis for detection of the driver’s drowsiness | |
EP3425637B1 (de) | Elektronisches system und verfahren zur klassifikation eines physiologischen zustandes | |
Zhu et al. | Recognition of pilot mental workload in the simulation operation of carrier-based aircraft using the portable EEG | |
US11966511B2 (en) | Method, system and computer program product for mapping a visual field | |
Gu et al. | Cortical theta–gamma coupling tracks the mental workload as an indicator of mental schema development during simulated quadrotor UAV operation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170426 |
|
RJ01 | Rejection of invention patent application after publication |