[go: up one dir, main page]

CN106571244A - Two-dimensional transition group metal carbon (nitrogen) compound and two-dimensional transition group metal sulfide nano composite powder, preparation and application - Google Patents

Two-dimensional transition group metal carbon (nitrogen) compound and two-dimensional transition group metal sulfide nano composite powder, preparation and application Download PDF

Info

Publication number
CN106571244A
CN106571244A CN201610944472.1A CN201610944472A CN106571244A CN 106571244 A CN106571244 A CN 106571244A CN 201610944472 A CN201610944472 A CN 201610944472A CN 106571244 A CN106571244 A CN 106571244A
Authority
CN
China
Prior art keywords
dimensional transition
transition metal
dimensional
nitride
metal sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610944472.1A
Other languages
Chinese (zh)
Inventor
潘丽梅
杜飞
张天
杨建�
冯永宝
丘泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN201610944472.1A priority Critical patent/CN106571244A/en
Publication of CN106571244A publication Critical patent/CN106571244A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Composite Materials (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明涉及一种二维过渡族金属碳(氮)化物与二维过渡族金属硫化物纳米复合粉体及制备和应用。该纳米复合粉体由二维过渡族金属碳(氮)化物纳米片与二维过渡族金属硫化物纳米片均匀分散复合而成,其中二维过渡族金属硫化物的质量占复合粉体总质量的百分含量为10~99%。将二维过渡族金属碳(氮)化物纳米片的稳定悬浮液与二维过渡族金属硫化物纳米片悬浮液按比例混合,超声混合均匀后,经冷冻干燥得到纳米复合粉体。本发明制备简单、安全高效、成本低廉,显著改善了二维过渡族金属硫化物导电性的不足,并可通过改变比例调控导电性。所述纳米复合粉体作为锂离子电池负极、超级电容器电极材料等在能量存储器件领域具有良好的应用前景,具有比二维过渡族金属硫化物更优的电化学性能。

The invention relates to a nanocomposite powder of a two-dimensional transition group metal carbon (nitride) compound and a two-dimensional transition group metal sulfide, as well as its preparation and application. The nanocomposite powder is uniformly dispersed and compounded by two-dimensional transition metal carbon (nitride) nanosheets and two-dimensional transition metal sulfide nanosheets, wherein the mass of the two-dimensional transition metal sulfide accounts for the total mass of the composite powder The percentage content is 10~99%. The stable suspension liquid of the two-dimensional transition group metal carbon (nitride) nanosheet is mixed with the suspension liquid of the two-dimensional transition group metal sulfide nanosheet in proportion, and after ultrasonic mixing, the nanocomposite powder is obtained by freeze-drying. The invention has the advantages of simple preparation, safety, high efficiency and low cost, significantly improves the deficiency of the conductivity of the two-dimensional transition group metal sulfides, and can regulate the conductivity by changing the ratio. The nanocomposite powder has good application prospects in the field of energy storage devices as negative electrodes of lithium ion batteries and supercapacitor electrode materials, and has better electrochemical performance than two-dimensional transition metal sulfides.

Description

二维过渡族金属碳(氮)化合物与二维过渡族金属硫化物纳米 复合粉体及制备和应用Two-dimensional transition metal carbon (nitrogen) compounds and two-dimensional transition metal sulfide nanoparticles Composite powder and its preparation and application

技术领域technical field

本发明属于纳米复合材料技术领域,具体涉及一种二维过渡族金属碳(氮)化物与二维过渡族金属硫化物纳米复合粉体及其制备和应用。The invention belongs to the technical field of nanocomposite materials, and in particular relates to a two-dimensional transition metal carbon (nitride) compound and two-dimensional transition metal sulfide nanocomposite powder and its preparation and application.

背景技术Background technique

锂离子电池具有能量密度高和循环寿命长等优点,作为便携式电子设备的电源得到了广泛的应用。目前的商业锂离子电池主要采用石墨作为负极,但石墨的理论容量较低(372mAh/g),这使得锂离子电池难以满足在一些高能量密度、高功率密度等领域尤其是新能源电动汽车的应用要求。电极材料是影响锂离子电池性能的一个重要因素。二维碳材料石墨烯发现以来,其极高的电导率和核电迁移率、大的表面积、良好的柔韧性吸引了研究人员对其在锂离子电池中的应用进行了广泛研究。石墨烯及其复合材料作为锂离子电池负极显示了显著增强的电化学储锂循环稳定性和改善的倍率充放电特性[RinaldoRaccichini,Alberto Varzi,Stefano Passerini,Bruno Scrosati,The role ofgraphene for electrochemical energy storage.Nature Materials,2015,14:271-279]。Lithium-ion batteries have been widely used as power sources for portable electronic devices due to their high energy density and long cycle life. The current commercial lithium-ion batteries mainly use graphite as the negative electrode, but the theoretical capacity of graphite is low (372mAh/g), which makes it difficult for lithium-ion batteries to meet the requirements of some high energy density, high power density and other fields, especially new energy electric vehicles. application requirements. Electrode material is an important factor affecting the performance of lithium-ion batteries. Since the discovery of the two-dimensional carbon material graphene, its extremely high electrical conductivity and nuclear electric mobility, large surface area, and good flexibility have attracted researchers to conduct extensive research on its application in lithium-ion batteries. Graphene and its composite materials have shown significantly enhanced electrochemical lithium storage cycle stability and improved rate charge-discharge characteristics as anodes for lithium-ion batteries [Rinaldo Raccichini, Alberto Varzi, Stefano Passerini, Bruno Scrosati, The role of graphene for electrochemical energy storage. Nature Materials, 2015, 14:271-279].

过渡族金属二硫化物(transition metal dichalcogenides,简称TMDs)具有与石墨类似的层状结构,可使Li离子嵌入脱出分子层间隙,是一类新型的锂离子电池负极材料,剥离之后的过渡族金属硫化物是具有类石墨烯结构的二维晶体,较TMDs体材料更适合于作为锂离子电池的负极[Huang X,Zeng Z-Y,Zhang H.Metal dichalcogenide nanosheets:preparation,properties and applications.Chem Soc Rev,2013,42:1934-1946]。二硫化钼MoS2是过渡族金属硫化物的典型代表,研究表明,二维MoS2纳米片作为锂离子电池负极材料显示了较高的电化学储锂容量(850~1000mAh/g)和改善的循环性能。但由于充放电过程中发生纳米片的堆积以及Li离子反复脱嵌引起的结构的不稳定,单一MoS2负极的循环性能较差[Xiao J,Choi D W,Cosimbescu L,etal.Exfoliated MoS2nano compsite as ananode material for lithium ion batteries.Chem Mater,2010,22(16):4522-4524.]此外,二维过渡族金属硫化物的导电性普遍较差,这也是制约其电化学性能和应用的一个重要因素。由于二维MoS2纳米片与石墨烯纳米片具有类似的微观结构和形貌,两者复合具有良好的相容性,最近,研究人员将剥离的MoS2与石墨烯制备复合材料用于锂离子电池负极。结果表明,石墨烯的复合显著增强了复合电极材料的导电性能和电化学贮锂过程中电子传递能力。复合电极材料表现出优异的电化学储锂容量(1022mAh/g)、更好的循环稳定性能和显著增强的充放电倍率性能[马琳,常焜,陈卫祥.轻度剥离二硫化钼/石墨烯复合材料的制备及其电化学储锂性能.中国科技论文,2013,8(12):1247-1251]。Transition metal dichalcogenides (TMDs) have a layered structure similar to graphite, which can allow Li ions to intercalate and detach from the gap between molecular layers. They are a new type of negative electrode material for lithium-ion batteries. Sulfide is a two-dimensional crystal with a graphene-like structure, which is more suitable as a negative electrode for lithium-ion batteries than TMDs bulk materials [Huang X, Zeng ZY, Zhang H. Metal dichalcogenide nanosheets: preparation, properties and applications. Chem Soc Rev, 2013, 42:1934-1946]. Molybdenum disulfide MoS 2 is a typical representative of transition metal sulfides. Studies have shown that two-dimensional MoS 2 nanosheets as anode materials for lithium-ion batteries show high electrochemical lithium storage capacity (850-1000mAh/g) and improved cycle performance. However, the cycle performance of a single MoS 2 anode is poor due to the accumulation of nanosheets during charge and discharge and the structural instability caused by repeated Li ion deintercalation [Xiao J, Choi DW, Cosimbescu L, et al. Exfoliated MoS 2 nano composite as ananode material for lithium ion batteries.Chem Mater,2010,22(16):4522-4524.] In addition, the electrical conductivity of two-dimensional transition metal sulfides is generally poor, which is also a limitation of its electrochemical performance and application Key factor. Due to the similar microstructure and morphology of two -dimensional MoS2 nanosheets and graphene nanosheets, the combination of the two has good compatibility. Recently, researchers prepared composite materials from exfoliated MoS2 and graphene for lithium - ion battery negative. The results show that the composite of graphene significantly enhances the electrical conductivity of the composite electrode material and the electron transfer ability in the process of electrochemical lithium storage. Composite electrode materials exhibit excellent electrochemical lithium storage capacity (1022mAh/g), better cycle stability and significantly enhanced charge-discharge rate performance [Ma Lin, Chang Kun, Chen Weixiang. Slightly exfoliated molybdenum disulfide/graphene composite Preparation of materials and their electrochemical lithium storage performance. Chinese Science and Technology Papers, 2013, 8(12): 1247-1251].

最近二维材料又增添了一个新家族:二维过渡族金属碳(氮)化物,简称MXene,其化学通式为Mn+1XnTx(M是早期过渡族金属元素,X是碳或/和氮元素,n=1、2或3,T代表-F、-O及-OH等表面官能团,单层Mn+1Xn纳米片由n层X原子和n+1层M原子交替堆垛而成,M原子层位于最外层)。它是从三元层状化合物MAX相(化学式为Mn+1AXn,其中M、X、n的含义与Mn+1XnTx中的一样,A为Ⅲ、Ⅳ主族元素)中选择性腐蚀出A层原子所得的一类新型类石墨烯二维晶体。目前已制备出来的MXene有Ti3C2Tx、Ti2CTx、(Ti0.5,Nb0.5)2CTx、(V0.5,Cr0.5)3C2Tx、Ti3CNTx、Ta4C3Tx、V2CTx、Nb2CTx、Nb4C3Tx、(Nb0.8,Ti0.2)4C3Tx、(Nb0.8,Zr0.2)4C3Tx、Mo2TiC2Tx、Mo2Ti2C3Tx、Mo2CTx、Cr2TiC2Tx、Zr3C2Tx、Ti4N3Tx[Anasori B,Xie Y,Beidaghi M,et al.Two-Dimensional,Ordered,Double Transition Metals Carbides(MXenes),ACS Nano,2015,9(10):9507-9516.Zhou J,Zha X-H,Chen F-Y,et al.A Two-Dimensional ZirconiumCarbide by Selective Etching of Al3C3from Nanolami-nated Zr3Al3C5,Angew ChemInt Edit,2016,55(16):5008-5013.]。Ti3C2Tx是目前研究最多的MXene。MXene具有独特的二维片层结构以及良好的导电及机械性能,因此在能量储存、催化、复合材料、环境治理等领域具有广阔的应用前景[Naguib M,Mochalin V N,Barsoum M W,et al.25thAnniversary Article:MXenes:A New Family of Two-Dimensional Materials,AdvancedMaterials,2014,26(7):992–1005.],尤其是作为电化学能量储存器件如超级电容器及锂离子电池的电极材料已表现出出色的性能[Naguib M,Halim J,Lu J,et al.New Two-Dimensional Niobium and Vanadium Carbides as Promising Materials for Li-IonBatteries,Journal of the Ameri-can Chemical Society,2013,135(43):15966–15969.Lukatskaya M R,Mashtalir O,Ren C E,et al.Cation Intercalation and HighVolumetric Capacitance of Two-dimensional Titanium Carbide,Science,2013,341(6153):1502-1505.]。Recently, a new family of two-dimensional materials has been added: two-dimensional transition metal carbide (nitride) compounds, referred to as MXene, whose chemical formula is M n+1 X n T x (M is an early transition metal element, X is carbon Or/and nitrogen element, n=1, 2 or 3, T represents surface functional groups such as -F, -O and -OH, single-layer M n+1 X n nanosheets are composed of n-layer X atoms and n+1-layer M atoms Alternately stacked, the M atomic layer is located in the outermost layer). It is derived from the MAX phase of the ternary layered compound (the chemical formula is M n+1 AX n , where the meanings of M, X, and n are the same as those in M n+1 X n T x , and A is the main group elements of III and IV) A new class of graphene-like two-dimensional crystals obtained by selective etching of layer A atoms. Currently prepared MXenes include Ti 3 C 2 T x , Ti 2 CT x , (Ti 0.5 , Nb 0.5 ) 2 CT x , (V 0.5 , Cr 0.5 ) 3 C 2 T x , Ti 3 CNT x , Ta 4 C 3 T x , V 2 CT x , Nb 2 CT x , Nb 4 C 3 T x , (Nb 0.8 ,Ti 0.2 ) 4 C 3 T x , (Nb 0.8 ,Zr 0.2 ) 4 C 3 T x , Mo 2 TiC 2 T x , Mo 2 Ti 2 C 3 T x , Mo 2 CT x , Cr 2 TiC 2 T x , Zr 3 C 2 T x , Ti 4 N 3 T x [Anasori B, Xie Y, Beidaghi M, et al al.Two-Dimensional,Ordered,Double Transition Metals Carbides(MXenes),ACS Nano,2015,9(10):9507-9516.Zhou J,Zha XH,Chen FY,et al.A Two-Dimensional Zirconium Carbide by Selective Etching of Al 3 C 3 from Nanolami-nated Zr 3 Al 3 C 5 , Angew ChemInt Edit, 2016, 55(16):5008-5013.]. Ti 3 C 2 T x is currently the most studied MXene. MXene has a unique two-dimensional sheet structure and good electrical and mechanical properties, so it has broad application prospects in energy storage, catalysis, composite materials, environmental governance and other fields [Naguib M, Mochalin VN, Barsoum MW, et al.25thAnniversary Article: MXenes: A New Family of Two-Dimensional Materials, Advanced Materials, 2014,26(7):992–1005.], especially as an electrode material for electrochemical energy storage devices such as supercapacitors and lithium-ion batteries. [Naguib M, Halim J, Lu J, et al. New Two-Dimensional Niobium and Vanadium Carbides as Promising Materials for Li-Ion Batteries, Journal of the Ameri-can Chemical Society, 2013, 135(43): 15966–15969 . Lukatskaya MR, Mashtalir O, Ren CE, et al. Cation Intercalation and High Volumetric Capacitance of Two-dimensional Titanium Carbide, Science, 2013, 341(6153): 1502-1505.].

基于二维过渡族金属碳(氮)化物MXene和二维过渡族金属硫化物在晶体结构和微观形貌上的匹配性和电学性能上的互补性,将两者复合可实现两者性能的优势互补和协同效应,在电化学能量存储领域具有良好的应用前景。Based on the matching of two-dimensional transition metal carbide (nitride) MXene and two-dimensional transition metal sulfide in terms of crystal structure and microscopic morphology and complementarity in electrical properties, the combination of the two can realize the advantages of both properties Complementary and synergistic effects have good application prospects in the field of electrochemical energy storage.

发明内容Contents of the invention

本发明的目的在于提供一种二维过渡族金属碳(氮)化物与二维过渡族金属硫化物纳米复合粉体,本发明的另一目的是提供上述纳米复合粉体的制备方法,本发明还有个目的是提供上述纳米复合粉体的应用。The object of the present invention is to provide a kind of two-dimensional transition group metal carbide (nitride) compound and two-dimensional transition group metal sulfide nanocomposite powder, another object of the present invention is to provide the preparation method of above-mentioned nanocomposite powder, the present invention Another object is to provide the application of the above-mentioned nanocomposite powder.

本发明的技术方案为:二维过渡族金属碳(氮)化物与二维过渡族金属硫化物纳米复合粉体,其特征在于:该纳米复合粉体由二维过渡族金属碳(氮)化物纳米片与二维过渡族金属硫化物纳米片均匀分散复合而成,其中二维过渡族金属硫化物的质量占复合粉体总质量的百分含量为10~99%。The technical scheme of the present invention is: two-dimensional transition group metal carbon (nitride) compound and two-dimensional transition group metal sulfide nanocomposite powder, characterized in that: the nanocomposite powder is composed of two-dimensional transition group metal carbon (nitride) compound The nano sheet and the two-dimensional transition group metal sulfide nano sheet are uniformly dispersed and compounded, wherein the mass of the two-dimensional transition group metal sulfide accounts for 10-99% of the total mass of the composite powder.

优选上述的二维过渡族金属(氮)化物为Ti3C2Tx、Ti3CNTx、Ti2CTx、(Ti0.5,Nb0.5)2CTx、(V0.5,Cr0.5)3C2Tx、Ta4C3Tx、V2CTx、Nb2CTx、Nb4C3Tx、(Nb0.8,Ti0.2)4C3Tx、(Nb0.8,Zr0.2)4C3Tx、Mo2TiC2Tx、Mo2Ti2C3Tx、Mo2CTx、Cr2TiC2Tx、Zr3C2Tx或Ti4N3Tx等;所述的二维过渡族金属硫化物为MoS2、WS2或CoS2等。Preferably, the aforementioned two-dimensional transition metal (nitride) compounds are Ti 3 C 2 T x , Ti 3 CNT x , Ti 2 CT x , (Ti 0.5 , Nb 0.5 ) 2 CT x , (V 0.5 , Cr 0.5 ) 3 C 2 T x , Ta 4 C 3 T x , V 2 CT x , Nb 2 CT x , Nb 4 C 3 T x , (Nb 0.8 ,Ti 0.2 ) 4 C 3 T x , (Nb 0.8 ,Zr 0.2 ) 4 C 3 T x , Mo 2 TiC 2 T x , Mo 2 Ti 2 C 3 T x , Mo 2 CT x , Cr 2 TiC 2 T x , Zr 3 C 2 T x or Ti 4 N 3 T x , etc.; The two-dimensional transition group metal sulfides are MoS 2 , WS 2 or CoS 2 and the like.

本发明还提供了上述的二维过渡族金属碳(氮)化物与二维过渡族金属硫化物纳米复合粉体的方法,其特征在于具体步骤如下:The present invention also provides the method for the above-mentioned two-dimensional transition metal carbide (nitride) compound and two-dimensional transition metal sulfide nanocomposite powder, which is characterized in that the specific steps are as follows:

将二维过渡族金属硫化物纳米片悬浮液加入到二维过渡族金属碳(氮)化物MXene纳米片悬浮液中,超声使两种悬浮液混合均匀,然后经冷冻干燥得到二维过渡族金属碳(氮)化物纳米片与二维过渡族金属硫化物纳米复合粉体。Add the suspension of two-dimensional transition metal sulfide nanosheets to the suspension of two-dimensional transition metal carbon (nitride) MXene nanosheets, ultrasonically mix the two suspensions, and then freeze-dry to obtain a two-dimensional transition metal Carbon (nitride) nanosheet and two-dimensional transition metal sulfide nanocomposite powder.

优选上述的二维过渡族金属碳(氮)化物MXene纳米片悬浮液由以下方法制备得到,具体步骤为:将LiF溶解在盐酸中,然后将三元层状化合物MAX粉浸缓慢加入上述溶液中,在30~40℃下磁力搅拌反应,反应产物采用乙醇洗涤离心至上层清夜pH值为6.2~6.5,将干燥后的固体样品加入去离子水中,在流动氩气保护下超声剥离,然后离心得到少层或单层过渡族金属碳(氮)化物MXene纳米片的稳定悬浮液。Preferably, the above-mentioned two-dimensional transition metal carbon (nitride) compound MXene nanosheet suspension is prepared by the following method, the specific steps are: dissolving LiF in hydrochloric acid, and then slowly adding the ternary layered compound MAX powder into the above solution , reacted with magnetic stirring at 30-40°C, the reaction product was washed with ethanol and centrifuged until the pH of the upper layer was 6.2-6.5, the dried solid sample was added to deionized water, ultrasonically stripped under the protection of flowing argon, and then centrifuged to obtain Stable suspensions of few- or monolayer transition metal carbide(nitride) MXene nanosheets.

优选制备二维过渡族金属碳(氮)化物MXene纳米片悬浮液过程中磁力搅拌的转速为250-550rpm,磁力搅拌的时间为6~24h;所述的超声剥离时的超声频率为40-100kHz,超声剥离的时间为0.5~2h;超声剥离后离心转速为3000-4000rpm,离心时间为0.5~1.5h。Preferably, the rotational speed of magnetic stirring during the preparation of two-dimensional transition metal carbide (nitride) compound MXene nanosheet suspension is 250-550rpm, and the time of magnetic stirring is 6-24h; the ultrasonic frequency during the described ultrasonic stripping is 40-100kHz , the ultrasonic peeling time is 0.5-2h; after the ultrasonic peeling, the centrifugal speed is 3000-4000rpm, and the centrifugal time is 0.5-1.5h.

优选上述的二维过渡族金属碳(氮)化物悬浮液浓度为0.2-1.5mg/ml;所述的二维过渡族金属硫化物纳米片悬浮液浓度为0.5-2mg/ml。Preferably, the concentration of the above-mentioned two-dimensional transition metal carbide (nitride) suspension is 0.2-1.5 mg/ml; the concentration of the two-dimensional transition metal sulfide nanosheet suspension is 0.5-2 mg/ml.

所述的二维过渡族金属硫化物纳米片采用锂插层法制备,不限于采用锂插层法制备。The two-dimensional transition metal sulfide nanosheets are prepared by lithium intercalation method, but not limited to lithium intercalation method.

优选上述的超声混合是指在超声功率为30-150W的功率下超声0.2-1h进行混合。Preferably, the above-mentioned ultrasonic mixing refers to ultrasonic mixing for 0.2-1 h at an ultrasonic power of 30-150 W.

优选上述的冷冻干燥是指经温度为-30℃~-75℃下预冷冻3-12h后,然后在温度为-55℃~-75℃真空下干燥8-24h。Preferably, the above-mentioned freeze-drying refers to pre-freezing at a temperature of -30°C to -75°C for 3-12 hours, and then drying at a temperature of -55°C to -75°C for 8-24 hours under vacuum.

本发明还提供了上述的二维过渡族金属碳(氮)化物与二维过渡族金属硫化物纳米复合粉体作为锂离子电池负极、超级电容器电极材料在能量存储器件中的应用。The present invention also provides the application of the above-mentioned two-dimensional transition metal carbon (nitride) compound and two-dimensional transition metal sulfide nanocomposite powder as negative electrode of lithium ion battery and electrode material of supercapacitor in energy storage devices.

有益效果:Beneficial effect:

(1)本发明将二维过渡族金属碳(氮)化物与二维过渡族金属硫化物复合,利用二维过渡族金属碳(氮)化物优异的导电性可以改善二维过渡族金属硫化物导电性的不足,实现导电性的调控。(1) The present invention combines the two-dimensional transition metal carbon (nitride) compound with the two-dimensional transition metal sulfide, and can improve the two-dimensional transition metal sulfide by utilizing the excellent conductivity of the two-dimensional transition metal carbon (nitride) Insufficient conductivity, realize the regulation of conductivity.

(2)本发明二维过渡族金属碳(氮)化物纳米片以及二维过渡族金属碳(氮)化物与二维过渡族金属硫化物纳米复合粉体的制备工艺简单、安全高效、成本低廉,二维过渡族金属碳(氮)化物纳米片与二维过渡族金属硫化物纳米片分散复合均匀。(2) The preparation process of the two-dimensional transition metal carbon (nitride) compound nanosheet and the two-dimensional transition metal carbon (nitride) compound and the two-dimensional transition metal sulfide nanocomposite powder of the present invention is simple, safe, efficient, and low in cost , two-dimensional transition group metal carbide (nitride) nanosheets and two-dimensional transition group metal sulfide nanosheets are uniformly dispersed and composited.

(3)本发明二维过渡族金属碳(氮)化物与二维过渡族金属硫化物纳米复合粉体可作为锂离子电池负极、超级电容器电极材料等应用于能量存储器件领域,表现出优异的电化学性能。相对于二维过渡族金属硫化物,其导电性大大改善,可促进电化学储锂过程中电子的传输,有效提高锂离子电池的循环比容量,而且柔性较好的二维过渡族金属碳(氮)化物纳米片包裹二维过渡族金属硫化物纳米片,可减少锂离子反复脱嵌引起的二维过渡族金属硫化物纳米片的体积变化,显著提高循环稳定性。(3) The two-dimensional transition metal carbon (nitride) compound and the two-dimensional transition metal sulfide nanocomposite powder of the present invention can be used in the field of energy storage devices as negative electrodes of lithium ion batteries, electrode materials of super capacitors, etc., showing excellent electrochemical performance. Compared with two-dimensional transition metal sulfides, its conductivity is greatly improved, which can promote the electron transmission in the electrochemical lithium storage process, effectively improve the cycle specific capacity of lithium-ion batteries, and the flexible two-dimensional transition metal carbon ( Nitride nanosheets wrap two-dimensional transition metal sulfide nanosheets, which can reduce the volume change of two-dimensional transition metal sulfide nanosheets caused by repeated deintercalation of lithium ions, and significantly improve cycle stability.

附图说明Description of drawings

图1为本发明实施例1制备的二维过渡族金属碳化物Ti3C2MXene纳米片的AFM图像;Fig. 1 is the AFM image of the two-dimensional transition metal carbide Ti 3 C 2 MXene nanosheet prepared in Example 1 of the present invention;

图2为本发明实施例1、2、3制备的Ti3C2含量为20%、50%、90%的二维Ti3C2与二维MoS2纳米复合粉体的XRD图;Fig. 2 is the XRD pattern of two -dimensional Ti3C2 and two -dimensional MoS2 nanocomposite powders with Ti3C2 contents of 20%, 50%, and 90% prepared in Examples 1, 2 , and 3 of the present invention;

图3为实施例1、4所制备的纳米复合粉体的SEM图;其中a为实施例1制备的纳米复合粉体的SEM图;b为实施例4制备的纳米复合粉体的SEM图。3 is the SEM image of the nanocomposite powder prepared in Examples 1 and 4; wherein a is the SEM image of the nanocomposite powder prepared in Example 1; b is the SEM image of the nanocomposite powder prepared in Example 4.

具体实施方式detailed description

以下通过具体实施例进一步描述本发明,需要说明的是,以下所述仅为本发明的优选实例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进润饰等,均应包含在本发明的保护范围之内。The present invention is further described below through specific embodiments. It should be noted that the following descriptions are only preferred examples of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention can have various modifications and change. Any modifications, equivalent replacements, improvements and modifications made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.

实施例1Example 1

(1)二维过渡族金属碳化物Ti3C2纳米片悬浮液的制备:将10mL浓度为6M的稀HCl和0.662g的LiF加入到塑料瓶中,在磁力搅拌下缓慢加入1g过400目筛的三元层状碳化物Ti3AlC2粉,并于35℃下250r.p.m转速下磁力搅拌22h,反应结束后将产物用酒精洗涤离心至上层清夜pH值为6.2,将沉淀室温下干燥后取0.1g加入到50mL去离子水中,在流动氩气保护下,40kHz的超声频率下超声剥离1h,随后在3500r.p.m的转速下离心1h得到少层或单层二维过渡族金属碳化物Ti3C2纳米片的稳定悬浮液,悬浮液浓度为0.6mg/ml。图1显示的是二维过渡族金属碳化物Ti3C2纳米片的AFM图像,从中可以看出,其片层厚度为1nm左右,是典型的二维纳米材料。(1) Preparation of two-dimensional transition metal carbide Ti 3 C 2 nanosheet suspension: Add 10mL of dilute HCl with a concentration of 6M and 0.662g of LiF into a plastic bottle, and slowly add 1g to pass through 400 mesh under magnetic stirring Sieve the ternary layered carbide Ti 3 AlC 2 powder, and magnetically stir at 250rpm at 35°C for 22h. After the reaction, the product is washed with alcohol and centrifuged until the pH of the upper layer is 6.2, and the precipitate is dried at room temperature. Finally, take 0.1g and add it to 50mL deionized water, under the protection of flowing argon, ultrasonic peeling at an ultrasonic frequency of 40kHz for 1h, and then centrifuge at a speed of 3500r.pm for 1h to obtain a few-layer or single-layer two-dimensional transition metal carbide A stable suspension of Ti 3 C 2 nanosheets with a suspension concentration of 0.6 mg/ml. Figure 1 shows the AFM image of two-dimensional transition metal carbide Ti 3 C 2 nanosheets, from which it can be seen that the sheet thickness is about 1nm, which is a typical two-dimensional nanomaterial.

(2)二维Ti3C2与二维MoS2纳米复合粉体的制备:将二维Ti3C2纳米片悬浮液以20%的质量百分比加入到二维MoS2纳米片悬浮液(0.5mg/ml,20-500nm)中,置于超声振荡器(超声功率100W)中超声30min。将混合均匀的悬浮液置于-50℃环境下预冷冻10h,后转移到冷冻干燥机中,在温度-55℃、真空下干燥15h制得复合均匀的Ti3C2含量为20%的二维Ti3C2与二维MoS2纳米复合粉体。从图2XRD图谱中看出二维Ti3C2与二维MoS2纳米复合粉体中包含MoS2和Ti3C2两相。从图3(a)SEM图像中可以看出,复合粉体中二维MoS2纳米片和弯曲的二维Ti3C2纳米片分布均匀,其中多数二维MoS2纳米片被弯曲的二维Ti3C2纳米片所包裹。(2) Preparation of two-dimensional Ti 3 C 2 and two-dimensional MoS 2 nanocomposite powder: the two-dimensional Ti 3 C 2 nanosheet suspension was added to the two-dimensional MoS 2 nanosheet suspension (0.5 mg/ml, 20-500nm), placed in an ultrasonic oscillator (ultrasonic power 100W) for 30min. The uniformly mixed suspension was pre-frozen at -50°C for 10 hours, then transferred to a freeze dryer, and dried at -55°C under vacuum for 15 hours to obtain a composite and uniform Ti 3 C 2 content of 20%. Dimensional Ti 3 C 2 and two-dimensional MoS 2 nanocomposite powder. It can be seen from the XRD pattern in Figure 2 that the two-dimensional Ti 3 C 2 and two-dimensional MoS 2 nanocomposite powder contains two phases of MoS 2 and Ti 3 C 2 . It can be seen from the SEM image in Fig. 3(a) that the two-dimensional MoS 2 nanosheets and curved two-dimensional Ti 3 C 2 nanosheets in the composite powder are evenly distributed, and most of the two-dimensional MoS 2 nanosheets are covered by the curved two-dimensional Ti 3 C 2 nanosheets. Dimensional Ti 3 C 2 nanosheets wrapped.

(3)电化学性能测试:以NMP(N-甲基吡咯烷酮)为分散剂,将二维Ti3C2与二维MoS2纳米复合粉体、乙炔黑和PVDF(聚偏氟乙烯)按质量比为8:1:1的比例搅拌混合均匀制成浆料,用涂膜机均匀涂覆在Cu箔上,在55℃真空干燥12h后裁片制得13mm电极片。以0.5mm的金属锂片为对电极,Celgard3501聚丙烯多孔膜为隔膜,1mol/L的LiPF6溶液(其中溶剂为碳酸乙烯酯(EC)与碳酸二乙酯(DEC)按体积比1:1组成)为电解液,组装成纽扣电池,静置10h后进行电化学测试。在100mA/g的电流密度下首次放电比容量为1337mAh/g,在第二次循环后放电比容量为936mAh/g。(3) Electrochemical performance test: using NMP (N-methylpyrrolidone) as a dispersant, two-dimensional Ti 3 C 2 and two-dimensional MoS 2 nanocomposite powder, acetylene black and PVDF (polyvinylidene fluoride) were mixed by mass The ratio was 8:1:1 and the slurry was evenly mixed to make a slurry, which was uniformly coated on Cu foil with a film coating machine, dried in vacuum at 55°C for 12 hours, and then cut into pieces to obtain 13mm electrode sheets. With a 0.5mm metal lithium sheet as the counter electrode, Celgard3501 polypropylene porous membrane as the diaphragm, 1mol/L LiPF 6 solution (wherein the solvent is ethylene carbonate (EC) and diethyl carbonate (DEC) in a volume ratio of 1:1 Composition) is the electrolyte, assembled into a button battery, and electrochemically tested after standing for 10 hours. Under the current density of 100mA/g, the first discharge specific capacity is 1337mAh/g, and the discharge specific capacity after the second cycle is 936mAh/g.

实施例2:Example 2:

(1)二维过渡族金属碳化物Ti3C2纳米片悬浮液的制备:将10mL浓度为6M的稀HCl和0.662g的LiF加入到塑料瓶中,在磁力搅拌下缓慢加入1g过400目筛的三元层状碳化物Ti3AlC2粉,并于33℃下300r.p.m转速下磁力搅拌12h,反应结束后将产物用酒精洗涤离心至上层清夜pH值为6.3,将沉淀室温下干燥后取0.1g加入到50mL去离子水中,在流动氩气保护下,50kHz的超声频率下超声剥离1.5h,随后在3800r.p.m的转速下离心1.2h得到少层或单层二维过渡族金属碳化物Ti3C2纳米片的稳定悬浮液,悬浮液浓度为0.3mg/ml。(1) Preparation of two-dimensional transition metal carbide Ti 3 C 2 nanosheet suspension: Add 10mL of dilute HCl with a concentration of 6M and 0.662g of LiF into a plastic bottle, and slowly add 1g to pass through 400 mesh under magnetic stirring Sieve the ternary layered carbide Ti 3 AlC 2 powder, and magnetically stir at 33°C and 300rpm for 12h. After the reaction, the product is washed with alcohol and centrifuged until the pH of the upper layer is 6.3, and the precipitate is dried at room temperature. Finally, 0.1 g was added to 50 mL of deionized water, under the protection of flowing argon, ultrasonic stripping was performed at an ultrasonic frequency of 50 kHz for 1.5 h, and then centrifuged at a speed of 3800 rpm for 1.2 h to obtain a few-layer or single-layer two-dimensional transition group metal A stable suspension of carbide Ti 3 C 2 nanosheets, the concentration of the suspension is 0.3 mg/ml.

(2)二维Ti3C2与二维MoS2纳米复合粉体的制备:将二维Ti3C2纳米片悬浮液以50%的质量百分比加入到二维MoS2纳米片悬浮液(0.8mg/ml、20-500nm)中,置于超声振荡器(超声功率90W)中超声45min。将混合均匀的悬浮液置于-45℃环境下预冷冻12h,后转移到冷冻干燥机中,在温度-50℃、真空下干燥22h制得混合均匀的Ti3C2含量为50%的二维Ti3C2与二维MoS2纳米复合粉体。(2) Preparation of two-dimensional Ti 3 C 2 and two-dimensional MoS 2 nanocomposite powder: the two-dimensional Ti 3 C 2 nanosheet suspension was added to the two-dimensional MoS 2 nanosheet suspension (0.8 mg/ml, 20-500nm), placed in an ultrasonic oscillator (ultrasonic power 90W) for 45min. The uniformly mixed suspension was pre - frozen at -45°C for 12h, then transferred to a freeze dryer, and dried at -50°C under vacuum for 22h to obtain a uniformly mixed Ti3C2 content of 50%. Dimensional Ti 3 C 2 and two-dimensional MoS 2 nanocomposite powder.

(3)电化学性能测试:按实施例1中的方法组装成半电池进行电化学性能测试。在100mA/g的电流密度下首次放电比容量为1175mAh/g,在第二次循环后放电比容量为810mAh/g。(3) Electrochemical performance test: Assemble a half cell according to the method in Example 1 for electrochemical performance test. Under the current density of 100mA/g, the first discharge specific capacity is 1175mAh/g, and the discharge specific capacity after the second cycle is 810mAh/g.

实施例3:Example 3:

(1)二维过渡族金属碳化物Ti3C2纳米片悬浮液的制备:将10mL浓度为6M的稀HCl和0.662g的LiF加入到塑料瓶中,在磁力搅拌下缓慢加入1g过400目筛的三元层状碳化物Ti3AlC2粉,并于36℃下500r.p.m转速下磁力搅拌23h,反应结束后将产物用酒精洗涤离心至上层清夜pH值为6.5,将沉淀室温下干燥后取0.1g加入到50mL去离子水中,在流动氩气保护下,80kHz的超声频率下超声剥离0.8h,随后在3200r.p.m的转速下离心0.8h得到少层或单层二维过渡族金属碳化物Ti3C2纳米片的稳定悬浮液,悬浮液浓度为0.9mg/ml。(1) Preparation of two-dimensional transition metal carbide Ti 3 C 2 nanosheet suspension: Add 10mL of dilute HCl with a concentration of 6M and 0.662g of LiF into a plastic bottle, and slowly add 1g to pass through 400 mesh under magnetic stirring Sieve ternary layered carbide Ti 3 AlC 2 powder, and magnetically stir at 500r.pm at 36°C for 23h. After the reaction, the product is washed with alcohol and centrifuged until the pH of the upper layer is 6.5, and the precipitate is dried at room temperature. Finally, take 0.1g and add it to 50mL deionized water, under the protection of flowing argon, ultrasonic stripping at an ultrasonic frequency of 80kHz for 0.8h, and then centrifuge at a speed of 3200r.pm for 0.8h to obtain a few-layer or single-layer two-dimensional transition group metal A stable suspension of carbide Ti 3 C 2 nanosheets, the concentration of the suspension is 0.9 mg/ml.

(2)二维Ti3C2与二维MoS2纳米复合粉体的制备:将二维Ti3C2纳米片悬浮液以90%的质量百分比加入到二维MoS2纳米片悬浮液(1mg/ml、20-500nm)中,置于超声振荡器(超声功率70W)中超声50min。将混合均匀的悬浮液置于-55℃环境下预冷冻8h,后转移到冷冻干燥机中,在温度-60℃、真空下干燥10h制得混合均匀的Ti3C2含量为90%的二维Ti3C2与二维MoS2纳米复合粉体。(2) Preparation of two-dimensional Ti 3 C 2 and two-dimensional MoS 2 nanocomposite powders: the two-dimensional Ti 3 C 2 nanosheet suspension was added to the two-dimensional MoS 2 nanosheet suspension (1mg /ml, 20-500nm), placed in an ultrasonic oscillator (ultrasonic power 70W) for 50min. The uniformly mixed suspension was pre-frozen at -55°C for 8 hours, then transferred to a freeze dryer, and dried at -60°C under vacuum for 10 hours to obtain a uniformly mixed Ti 3 C 2 content of 90%. Dimensional Ti 3 C 2 and two-dimensional MoS 2 nanocomposite powder.

(3)电化学性能测试:按实施例1中的方法组装成半电池进行电化学性能测试。在100mA/g的电流密度下首次放电比容量为601mAh/g,在第二次循环后放电比容量为305mAh/g。(3) Electrochemical performance test: Assemble a half cell according to the method in Example 1 for electrochemical performance test. Under the current density of 100mA/g, the first discharge specific capacity is 601mAh/g, and the discharge specific capacity after the second cycle is 305mAh/g.

实施例4:Example 4:

(1)二维过渡族金属碳化物Ti3CN纳米片悬浮液的制备:将10mL浓度为6M的稀HCl和0.66g的LiF加入到塑料瓶中,在磁力搅拌下缓慢加入1g过400目筛的三元层状碳化物Ti3AlCN粉,并于30℃下400r.p.m转速下磁力搅拌6h,反应结束后将产物用酒精洗涤离心至上层清夜pH值为6.5,将沉淀室温下干燥后取0.1g加入到50mL去离子水中,在流动氩气保护下,60kHz的超声频率下超声剥离1.3h,随后在3000r.p.m的转速下离心0.5h得到少层或单层二维过渡族金属碳化物Ti3CN纳米片的稳定悬浮液,悬浮液浓度为1.2mg/ml。(1) Preparation of two-dimensional transition metal carbide Ti 3 CN nanosheet suspension: Add 10mL of dilute HCl with a concentration of 6M and 0.66g of LiF into a plastic bottle, slowly add 1g to pass through a 400-mesh sieve under magnetic stirring ternary layered carbide Ti 3 AlCN powder, and magnetically stirred at 400r.pm at 30°C for 6h. After the reaction, the product was washed with alcohol and centrifuged until the pH of the upper layer was 6.5. The precipitate was dried at room temperature and taken Add 0.1g into 50mL deionized water, under the protection of flowing argon, ultrasonically peel at an ultrasonic frequency of 60kHz for 1.3h, and then centrifuge at a speed of 3000r.pm for 0.5h to obtain a few-layer or single-layer two-dimensional transition metal carbide A stable suspension of Ti 3 CN nanosheets, the concentration of the suspension is 1.2 mg/ml.

(2)二维Ti3CN与二维WS2纳米复合粉体的制备:将二维Ti3CN纳米片悬浮液以20%的质量百分比加入到二维WS2纳米片悬浮液(1.5mg/ml、20-500nm)中,置于超声振荡器(超声功率50W)中超声60min。将混合均匀的悬浮液置于-65℃环境下预冷冻3h,后转移到冷冻干燥机中,在温度-60℃、真空下干燥11h制得混合均匀的Ti3CN含量为20%的二维Ti3CN与二维WS2纳米复合粉体。从图3(b)SEM图像中可以看出,复合粉体中二维WS2纳米片和弯曲的二维Ti3CN纳米片分布均匀,其中多数二维WS2纳米片被弯曲的二维Ti3CN纳米片所包裹。(2) Preparation of two-dimensional Ti 3 CN and two-dimensional WS 2 nanocomposite powder: the two-dimensional Ti 3 CN nanosheet suspension was added to the two-dimensional WS 2 nanosheet suspension (1.5 mg/ ml, 20-500nm), placed in an ultrasonic oscillator (ultrasonic power 50W) for 60min. The uniformly mixed suspension was pre-frozen at -65°C for 3 hours, then transferred to a freeze dryer, and dried at -60°C under vacuum for 11 hours to obtain a uniformly mixed two-dimensional Ti 3 CN content of 20%. Ti 3 CN and two-dimensional WS 2 nanocomposite powder. From the SEM image in Figure 3(b), it can be seen that the distribution of 2D WS 2 nanosheets and curved 2D Ti 3 CN nanosheets in the composite powder is uniform, and most of the 2D WS 2 nanosheets are curved 2D TiCN nanosheets. wrapped by Ti 3 CN nanosheets.

(3)电化学性能测试:(3)电化学性能测试:按实施例1中的方法组装成半电池进行电化学性能测试。在100mA/g的电流密度下首次放电比容量为690mAh/g,在第二次循环后放电比容量为316mAh/g。(3) Electrochemical performance test: (3) Electrochemical performance test: according to the method in Example 1, a half-cell was assembled for electrochemical performance test. Under the current density of 100mA/g, the discharge specific capacity was 690mAh/g for the first time, and the discharge specific capacity was 316mAh/g after the second cycle.

Claims (9)

1.二维过渡族金属碳(氮)化物与二维过渡族金属硫化物纳米复合粉体,其特征在于:该纳米复合粉体由二维过渡族金属碳(氮)化物纳米片与二维过渡族金属硫化物纳米片均匀分散复合而成,其中二维过渡族金属硫化物的质量占复合粉体总质量的百分含量为10~99%。1. Two-dimensional transition metal carbon (nitride) compound and two-dimensional transition metal sulfide nanocomposite powder, characterized in that: the nanocomposite powder is composed of two-dimensional transition metal carbon (nitride) compound nanosheet and two-dimensional The transition group metal sulfide nano sheets are uniformly dispersed and compounded, wherein the mass of the two-dimensional transition group metal sulfide accounts for 10-99% of the total mass of the composite powder. 2.根据权利要求1所述的二维过渡族金属碳(氮)化物与二维过渡族金属硫化物纳米复合粉体,其特征在于:所述的二维过渡族金属(氮)化物为Ti3C2Tx、Ti3CNTx、Ti2CTx、(Ti0.5,Nb0.5)2CTx、(V0.5,Cr0.5)3C2Tx、Ta4C3Tx、V2CTx、Nb2CTx、Nb4C3Tx、(Nb0.8,Ti0.2)4C3Tx、(Nb0.8,Zr0.2)4C3Tx、Mo2TiC2Tx、Mo2Ti2C3Tx、Mo2CTx、Cr2TiC2Tx、Zr3C2Tx或Ti4N3Tx;所述的二维过渡族金属硫化物为MoS2、WS2或CoS22. The two-dimensional transition metal carbide (nitride) compound and two-dimensional transition metal sulfide nanocomposite powder according to claim 1, characterized in that: the two-dimensional transition metal (nitride) compound is Ti 3 C 2 T x , Ti 3 CNT x , Ti 2 CT x , (Ti 0.5 , Nb 0.5 ) 2 CT x , (V 0.5 , Cr 0.5 ) 3 C 2 T x , Ta 4 C 3 T x , V 2 CT x , Nb 2 CT x , Nb 4 C 3 T x , (Nb 0.8 ,Ti 0.2 ) 4 C 3 T x , (Nb 0.8 ,Zr 0.2 ) 4 C 3 T x , Mo 2 TiC 2 T x , Mo 2 Ti 2 C 3 T x , Mo 2 CT x , Cr 2 TiC 2 T x , Zr 3 C 2 T x or Ti 4 N 3 T x ; the two-dimensional transition metal sulfide is MoS 2 , WS 2 or CoS 2 . 3.一种制备如权利要求1所述的二维过渡族金属碳(氮)化物与二维过渡族金属硫化物纳米复合粉体的方法,其特征在于具体步骤如下:3. A method for preparing two-dimensional transition metal carbide (nitride) compound and two-dimensional transition metal sulfide nanocomposite powder as claimed in claim 1, characterized in that the specific steps are as follows: 将二维过渡族金属硫化物纳米片悬浮液加入到二维过渡族金属碳(氮)化物MXene纳米片悬浮液中,超声使两种悬浮液混合均匀,然后经冷冻干燥得到二维过渡族金属碳(氮)化物纳米片与二维过渡族金属硫化物纳米复合粉体。Add the suspension of two-dimensional transition metal sulfide nanosheets to the suspension of two-dimensional transition metal carbon (nitride) MXene nanosheets, ultrasonically mix the two suspensions, and then freeze-dry to obtain a two-dimensional transition metal Carbon (nitride) nanosheet and two-dimensional transition metal sulfide nanocomposite powder. 4.如权利要求3所述的方法,其特征在于所述的二维过渡族金属碳(氮)化物MXene纳米片悬浮液由以下方法制备得到,具体步骤为:将LiF溶解在盐酸中,然后将三元层状化合物MAX粉浸缓慢加入上述溶液中,在30~40℃下磁力搅拌反应,反应产物采用乙醇洗涤离心至上层清夜pH值为6.2~6.5,将干燥后的固体样品加入去离子水中,在流动氩气保护下超声剥离,然后离心得到少层或单层过渡族金属碳(氮)化物MXene纳米片的稳定悬浮液。4. The method according to claim 3, characterized in that the two-dimensional transition group metal carbide (nitride) compound MXene nanosheet suspension is prepared by the following method, the specific steps are: LiF is dissolved in hydrochloric acid, and then Slowly add the ternary layered compound MAX powder into the above solution, and stir the reaction under magnetic force at 30-40°C. The reaction product is washed and centrifuged with ethanol until the pH value of the upper layer is 6.2-6.5, and the dried solid sample is added to the deionized In water, under the protection of flowing argon, it was ultrasonically stripped, and then centrifuged to obtain a stable suspension of few-layer or single-layer transition metal carbide (nitride) oxide MXene nanosheets. 5.如权利要求4所述的方法,其特征在于磁力搅拌的转速为250-550rpm,磁力搅拌的时间为6~24h;所述的超声剥离时的超声频率为40-100kHz,超声剥离的时间为0.5~2h;超声剥离后离心转速为3000-4000rpm,离心时间为0.5~1.5h。5. method as claimed in claim 4, it is characterized in that the rotating speed of magnetic stirring is 250-550rpm, and the time of magnetic stirring is 6~24h; The ultrasonic frequency when described ultrasonic stripping is 40-100kHz, the time of ultrasonic stripping 0.5-2h; after ultrasonic peeling, the centrifugal speed is 3000-4000rpm, and the centrifugation time is 0.5-1.5h. 6.如权利要求3所述的方法,其特征在于:所述的二维过渡族金属碳(氮)化物悬浮液浓度为0.2-1.5mg/ml;所述的二维过渡族金属硫化物纳米片悬浮液浓度为0.5-2mg/ml。6. The method according to claim 3, characterized in that: the concentration of the two-dimensional transition metal carbide (nitride) suspension is 0.2-1.5 mg/ml; the two-dimensional transition metal sulfide nano The concentration of tablet suspension is 0.5-2mg/ml. 7.如权利要求3所述的方法,其特征在于:所述的超声混合是指在超声功率为30-150W的功率下超声0.2-1h进行混合。7. The method according to claim 3, characterized in that: said ultrasonic mixing refers to ultrasonic mixing at a power of 30-150W for 0.2-1h. 8.如权利要求3所述的方法,其特征在于:所述的冷冻干燥是指经温度为-30℃~-75℃下预冷冻3-12h后,然后在温度为-55℃~-75℃真空下干燥8-24h。8. The method according to claim 3, characterized in that: said freeze-drying refers to pre-freezing at a temperature of -30°C to -75°C for 3-12 hours, and then drying at a temperature of -55°C to -75°C. ℃ dry under vacuum for 8-24h. 9.一种如权利要求1所述的二维过渡族金属碳(氮)化物与二维过渡族金属硫化物纳米复合粉体作为锂离子电池负极材料在能量存储器件中的应用。9. A two-dimensional transition metal carbide (nitride) compound and two-dimensional transition metal sulfide nanocomposite powder as claimed in claim 1 is used as an anode material of a lithium ion battery in an energy storage device.
CN201610944472.1A 2016-11-02 2016-11-02 Two-dimensional transition group metal carbon (nitrogen) compound and two-dimensional transition group metal sulfide nano composite powder, preparation and application Pending CN106571244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610944472.1A CN106571244A (en) 2016-11-02 2016-11-02 Two-dimensional transition group metal carbon (nitrogen) compound and two-dimensional transition group metal sulfide nano composite powder, preparation and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610944472.1A CN106571244A (en) 2016-11-02 2016-11-02 Two-dimensional transition group metal carbon (nitrogen) compound and two-dimensional transition group metal sulfide nano composite powder, preparation and application

Publications (1)

Publication Number Publication Date
CN106571244A true CN106571244A (en) 2017-04-19

Family

ID=58536517

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610944472.1A Pending CN106571244A (en) 2016-11-02 2016-11-02 Two-dimensional transition group metal carbon (nitrogen) compound and two-dimensional transition group metal sulfide nano composite powder, preparation and application

Country Status (1)

Country Link
CN (1) CN106571244A (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107394180A (en) * 2017-08-04 2017-11-24 南京工业大学 Two-dimensional transition group metal carbide (nitride) -nano silicon particle composite material, preparation and application
CN107565105A (en) * 2017-07-25 2018-01-09 北京理工大学 A kind of long life thermal battery composite positive pole and preparation method thereof
CN107706372A (en) * 2017-09-12 2018-02-16 山东大学 A kind of combination electrode material of Mxene claddings and preparation method thereof
CN108183212A (en) * 2017-12-27 2018-06-19 山东大学 A kind of combination electrode material of the coated porous silicon of Mxene and preparation method thereof
CN108258222A (en) * 2018-01-17 2018-07-06 山东大学 A kind of MXene/ lithium sulfides/carbon composite anode material and preparation method thereof
CN108328616A (en) * 2018-04-20 2018-07-27 昆明理工大学 A kind of preparation method of three-dimensional MXene
CN108735984A (en) * 2018-04-11 2018-11-02 燕山大学 A kind of preparation method of molybdenum disulfide/carbonization titanium composite material
CN109096754A (en) * 2018-07-12 2018-12-28 大连理工大学 A kind of MXene- poly-dopamine composite material and preparation method
CN109273281A (en) * 2018-08-27 2019-01-25 重庆大学 Method for preparing NiSe2/Ti3C2Tx high performance supercapacitor nano composite material
CN109374711A (en) * 2018-11-19 2019-02-22 浙江大学 An all-solid-state ion-selective electrode based on MXene nanosheets and its preparation method
CN109437202A (en) * 2018-12-26 2019-03-08 南京工业大学 Two-dimensional transition metal carbon (nitride) aerogel and preparation method and application thereof
CN109449002A (en) * 2018-11-28 2019-03-08 北京大学 A kind of modified Ti3C2TxMaterial and its preparation and application
CN109830381A (en) * 2019-04-04 2019-05-31 兰州理工大学 MXene/MoS for electrode of super capacitor2Composite material and preparation method thereof
CN109850899A (en) * 2019-01-22 2019-06-07 河海大学 A kind of two dimensional crystal Nb2CTxThe preparation method of nano material
CN110010862A (en) * 2019-03-15 2019-07-12 辽宁科技大学 A kind of magnesium secondary battery cathode material MXene-Ti3C2/TiS2 and preparation method thereof
CN110416507A (en) * 2019-07-12 2019-11-05 广东工业大学 A kind of in-situ self-assembled three-dimensional flower-like cobalt disulfide/MXene composite material and its preparation method and application
CN110550660A (en) * 2019-09-04 2019-12-10 江苏理工学院 preparation method of tungsten disulfide/MXene composite material
CN110615440A (en) * 2019-09-24 2019-12-27 黑龙江科技大学 MXene nanosheet with large size and rich oxygen functional group and preparation method and application thereof
CN110648864A (en) * 2019-09-30 2020-01-03 常州大学 Manufacturing method of flexible low-temperature-resistant water system supercapacitor
CN110931731A (en) * 2019-11-08 2020-03-27 上海应用技术大学 Two-dimensional carbide crystal-based antimony sulfide negative electrode material and preparation method and application thereof
CN111082047A (en) * 2019-12-26 2020-04-28 上海应用技术大学 Preparation method and application of two-dimensional carbide crystal-based Zif-67-derived cobalt oxide materials
CN111162257A (en) * 2019-12-31 2020-05-15 广东工业大学 High-performance battery negative electrode material and preparation method and application thereof
CN111229272A (en) * 2020-01-19 2020-06-05 华东师范大学 Ternary layered carbide Mo2Ga2C composite flower-like MoS2 nanoparticle composite material and its preparation method and application
CN111285359A (en) * 2020-01-14 2020-06-16 武汉理工大学 Preparation method of single-layer/few-layer MXene two-dimensional material
CN111312522A (en) * 2018-12-12 2020-06-19 南京理工大学 Quantum dot sensitized solar cell CuS/Ti3C2 composite counter electrode and preparation method thereof
CN111384387A (en) * 2020-06-01 2020-07-07 杭州德飙新能源设备有限公司 Lithium ion battery and preparation method thereof
CN111916290A (en) * 2020-06-30 2020-11-10 河海大学 Transition metal sulfide/Ti3C2TxMethod for preparing composite material
CN112018352A (en) * 2020-08-13 2020-12-01 五邑大学 WSe2Mxene composite material and preparation method thereof
CN112967891A (en) * 2021-02-01 2021-06-15 湖北大学 Flexible composite electrode and preparation method thereof
CN113422112A (en) * 2021-07-05 2021-09-21 大连理工大学 High-energy and high-safety all-solid-state secondary battery based on lithium sulfide anode and preparation method thereof
CN113675408A (en) * 2020-09-02 2021-11-19 山东大学 A preparation method of MoS2/Ti3C2 MXene composites for high-performance potassium-ion batteries
CN114334472A (en) * 2022-01-25 2022-04-12 齐鲁工业大学 A kind of NiS2/Ti3C2MXene supercapacitor composite material and preparation method and application
CN114920566A (en) * 2022-05-18 2022-08-19 中国科学技术大学 Carbonitride two-dimensional nanosheet and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102064313A (en) * 2009-03-12 2011-05-18 巴莱诺斯清洁能源控股公司 Open porous electrically conductive nanocomposite material
CN102142536A (en) * 2009-04-01 2011-08-03 斯沃奇集团研究和开发有限公司 Electrically conductive nanocomposite material and open porous nanocomposites produced by the same
CN102484210A (en) * 2009-10-27 2012-05-30 大日本印刷株式会社 Nanoparticles containing transition metal compound and method for producing same, ink for hole injection transport layer, device having hole injection transport layer, and method for producing device
CN104762660A (en) * 2015-04-13 2015-07-08 中国科学院宁波材料技术与工程研究所 Carbide crystal material with two-dimensional lamellar structure and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102064313A (en) * 2009-03-12 2011-05-18 巴莱诺斯清洁能源控股公司 Open porous electrically conductive nanocomposite material
CN102142536A (en) * 2009-04-01 2011-08-03 斯沃奇集团研究和开发有限公司 Electrically conductive nanocomposite material and open porous nanocomposites produced by the same
CN102484210A (en) * 2009-10-27 2012-05-30 大日本印刷株式会社 Nanoparticles containing transition metal compound and method for producing same, ink for hole injection transport layer, device having hole injection transport layer, and method for producing device
CN104762660A (en) * 2015-04-13 2015-07-08 中国科学院宁波材料技术与工程研究所 Carbide crystal material with two-dimensional lamellar structure and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张天 等: "二维晶体Ti2 CTx MXene的制备、剥离及其电化学性能", 《人工晶体学报》 *

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107565105B (en) * 2017-07-25 2021-02-26 北京理工大学 Composite cathode material for long-life thermal battery and preparation method thereof
CN107565105A (en) * 2017-07-25 2018-01-09 北京理工大学 A kind of long life thermal battery composite positive pole and preparation method thereof
CN107394180B (en) * 2017-08-04 2020-12-29 南京工业大学 Two-dimensional transition metal carbon (nitride) compound-nano-silicon particle composite material and its preparation and application
CN107394180A (en) * 2017-08-04 2017-11-24 南京工业大学 Two-dimensional transition group metal carbide (nitride) -nano silicon particle composite material, preparation and application
CN107706372A (en) * 2017-09-12 2018-02-16 山东大学 A kind of combination electrode material of Mxene claddings and preparation method thereof
CN107706372B (en) * 2017-09-12 2020-05-22 山东大学 A kind of Mxene-coated composite electrode material and preparation method thereof
CN108183212A (en) * 2017-12-27 2018-06-19 山东大学 A kind of combination electrode material of the coated porous silicon of Mxene and preparation method thereof
CN108258222A (en) * 2018-01-17 2018-07-06 山东大学 A kind of MXene/ lithium sulfides/carbon composite anode material and preparation method thereof
CN108258222B (en) * 2018-01-17 2020-04-14 山东大学 A kind of MXene/lithium sulfide/carbon composite cathode material and preparation method thereof
CN108735984A (en) * 2018-04-11 2018-11-02 燕山大学 A kind of preparation method of molybdenum disulfide/carbonization titanium composite material
CN108328616A (en) * 2018-04-20 2018-07-27 昆明理工大学 A kind of preparation method of three-dimensional MXene
CN109096754A (en) * 2018-07-12 2018-12-28 大连理工大学 A kind of MXene- poly-dopamine composite material and preparation method
CN109273281A (en) * 2018-08-27 2019-01-25 重庆大学 Method for preparing NiSe2/Ti3C2Tx high performance supercapacitor nano composite material
CN109374711A (en) * 2018-11-19 2019-02-22 浙江大学 An all-solid-state ion-selective electrode based on MXene nanosheets and its preparation method
CN109449002A (en) * 2018-11-28 2019-03-08 北京大学 A kind of modified Ti3C2TxMaterial and its preparation and application
CN109449002B (en) * 2018-11-28 2020-05-05 北京大学 Modified Ti3C2TxMaterial, its preparation and use
CN111312522B (en) * 2018-12-12 2022-02-18 南京理工大学 Quantum dot sensitized solar cell CuS/Ti3C2Composite counter electrode and preparation method thereof
CN111312522A (en) * 2018-12-12 2020-06-19 南京理工大学 Quantum dot sensitized solar cell CuS/Ti3C2 composite counter electrode and preparation method thereof
CN109437202A (en) * 2018-12-26 2019-03-08 南京工业大学 Two-dimensional transition metal carbon (nitride) aerogel and preparation method and application thereof
CN109437202B (en) * 2018-12-26 2022-04-26 南京工业大学 Two-dimensional transition metal carbon (nitride) aerogel and preparation method and application thereof
CN109850899A (en) * 2019-01-22 2019-06-07 河海大学 A kind of two dimensional crystal Nb2CTxThe preparation method of nano material
CN110010862B (en) * 2019-03-15 2022-03-29 辽宁科技大学 MXene-Ti as positive electrode material of magnesium secondary battery3C2/TiS2And method for preparing the same
CN110010862A (en) * 2019-03-15 2019-07-12 辽宁科技大学 A kind of magnesium secondary battery cathode material MXene-Ti3C2/TiS2 and preparation method thereof
CN109830381A (en) * 2019-04-04 2019-05-31 兰州理工大学 MXene/MoS for electrode of super capacitor2Composite material and preparation method thereof
CN110416507A (en) * 2019-07-12 2019-11-05 广东工业大学 A kind of in-situ self-assembled three-dimensional flower-like cobalt disulfide/MXene composite material and its preparation method and application
CN110416507B (en) * 2019-07-12 2022-06-03 广东工业大学 In situ self-assembled three-dimensional flower-like cobalt disulfide/MXene composite material and its preparation method and application
CN110550660B (en) * 2019-09-04 2021-07-02 江苏理工学院 A kind of preparation method of tungsten disulfide/MXene composite material
CN110550660A (en) * 2019-09-04 2019-12-10 江苏理工学院 preparation method of tungsten disulfide/MXene composite material
CN110615440B (en) * 2019-09-24 2022-02-11 哈尔滨师范大学 MXene nanosheet with large size and rich oxygen functional group and preparation method and application thereof
CN110615440A (en) * 2019-09-24 2019-12-27 黑龙江科技大学 MXene nanosheet with large size and rich oxygen functional group and preparation method and application thereof
CN110648864A (en) * 2019-09-30 2020-01-03 常州大学 Manufacturing method of flexible low-temperature-resistant water system supercapacitor
CN110931731A (en) * 2019-11-08 2020-03-27 上海应用技术大学 Two-dimensional carbide crystal-based antimony sulfide negative electrode material and preparation method and application thereof
CN110931731B (en) * 2019-11-08 2020-10-23 上海应用技术大学 Two-dimensional carbide crystal-based antimony sulfide negative electrode material and preparation method and application thereof
CN111082047A (en) * 2019-12-26 2020-04-28 上海应用技术大学 Preparation method and application of two-dimensional carbide crystal-based Zif-67-derived cobalt oxide materials
CN111162257A (en) * 2019-12-31 2020-05-15 广东工业大学 High-performance battery negative electrode material and preparation method and application thereof
CN111285359A (en) * 2020-01-14 2020-06-16 武汉理工大学 Preparation method of single-layer/few-layer MXene two-dimensional material
CN111229272A (en) * 2020-01-19 2020-06-05 华东师范大学 Ternary layered carbide Mo2Ga2C composite flower-like MoS2 nanoparticle composite material and its preparation method and application
CN111384387A (en) * 2020-06-01 2020-07-07 杭州德飙新能源设备有限公司 Lithium ion battery and preparation method thereof
CN111916290A (en) * 2020-06-30 2020-11-10 河海大学 Transition metal sulfide/Ti3C2TxMethod for preparing composite material
CN112018352A (en) * 2020-08-13 2020-12-01 五邑大学 WSe2Mxene composite material and preparation method thereof
CN113675408A (en) * 2020-09-02 2021-11-19 山东大学 A preparation method of MoS2/Ti3C2 MXene composites for high-performance potassium-ion batteries
CN112967891A (en) * 2021-02-01 2021-06-15 湖北大学 Flexible composite electrode and preparation method thereof
CN112967891B (en) * 2021-02-01 2022-05-24 湖北大学 A kind of flexible composite electrode and preparation method thereof
CN113422112A (en) * 2021-07-05 2021-09-21 大连理工大学 High-energy and high-safety all-solid-state secondary battery based on lithium sulfide anode and preparation method thereof
CN114334472A (en) * 2022-01-25 2022-04-12 齐鲁工业大学 A kind of NiS2/Ti3C2MXene supercapacitor composite material and preparation method and application
CN114334472B (en) * 2022-01-25 2023-09-22 齐鲁工业大学 NiS (nickel-zinc sulfide) 2 /Ti 3 C 2 MXene super capacitor composite material, preparation method and application
CN114920566A (en) * 2022-05-18 2022-08-19 中国科学技术大学 Carbonitride two-dimensional nanosheet and preparation method and application thereof

Similar Documents

Publication Publication Date Title
CN106571244A (en) Two-dimensional transition group metal carbon (nitrogen) compound and two-dimensional transition group metal sulfide nano composite powder, preparation and application
Greaves et al. MXene‐based anodes for metal‐ion batteries
CN106450205B (en) Two-dimensional transition metal carbon/nitride and nano-sulfur particle composites and their preparation and application
CN107394180B (en) Two-dimensional transition metal carbon (nitride) compound-nano-silicon particle composite material and its preparation and application
Chen et al. In situ generation of few‐layer graphene coatings on SnO2‐SiC core‐shell nanoparticles for high‐performance lithium‐ion storage
Qu et al. Graphene oxides-guided growth of ultrafine Co3O4 nanocrystallites from MOFs as high-performance anode of Li-ion batteries
CN106532015B (en) Molybdenum disulfide hybrid titanium carbide lithium ion battery negative material and preparation method thereof
Cao et al. 3D hierarchical porous α‐Fe2O3 nanosheets for high‐performance lithium‐ion batteries
Shi et al. Catalytic cobalt phosphide Co2P/carbon nanotube nanocomposite as host material for high performance lithium-sulfur battery cathode
CN107681142B (en) A kind of molybdenum disulfide-coated carbon nanofiber used as negative electrode material of lithium ion battery and preparation method thereof
Liu et al. Carbon fiber cloth@ VO 2 (B): excellent binder-free flexible electrodes with ultrahigh mass-loading
CN102142537B (en) A kind of graphene/MoS2 Composite nano material lithium ion battery electrode and preparation method
Zhang et al. MoS2 wrapped MOFs-derived N-doped carbon nanorods as an effective sulfur host for high-performance lithium-sulfur batteries
CN104538207B (en) TiNb2O7The preparation method of/carbon nano tube compound material and using the material as the lithium-ion capacitor of negative pole
CN101572327A (en) Lithium ion battery adopting graphene as cathode material
Kang et al. Bimetallic coordination polymer composites: A new choice of electrode materials for lithium ion batteries
Zhou et al. Enhanced electrochemical performance of hierarchical CoFe 2 O 4/MnO 2/C nanotubes as anode materials for lithium-ion batteries
Liu et al. Synthesis and characterization of SiO 2/Ti 3 C 2 anode materials for lithium-ion batteries via different methods
Jiang et al. An ionic-liquid-assisted approach to synthesize a reduced graphene oxide loading iron-based fluoride as a cathode material for sodium-ion batteries
Qi et al. Spindle MnCO3 tightly encapsulated by MXene nanoflakes with strengthened interface effect for lithium-ion battery
Liu et al. Is there a demand of conducting agent of acetylene black for graphene-wrapped natural spherical graphite as anode material for lithium-ion batteries?
Zhu et al. A facial solvothermal reduction route for the production of Li4Ti5O12/graphene composites with enhanced electrochemical performance
Zhang et al. NiS2 nanoparticles anchored on MXene conductive frameworks with enhanced lithium and sodium storage properties
Zhang et al. Super-thin LiV3O8 nanosheets/graphene sandwich-like nanostructures with ultrahigh lithium ion storage properties
CN105826556A (en) Ultrathin-layered NbS2, preparing method thereof and application of ultrathin-layered NbS2 to lithium/sodium-ion battery

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170419