CN106559659B - Stereoscopic image depth map generation device and method - Google Patents
Stereoscopic image depth map generation device and method Download PDFInfo
- Publication number
- CN106559659B CN106559659B CN201510622205.8A CN201510622205A CN106559659B CN 106559659 B CN106559659 B CN 106559659B CN 201510622205 A CN201510622205 A CN 201510622205A CN 106559659 B CN106559659 B CN 106559659B
- Authority
- CN
- China
- Prior art keywords
- value
- depth
- cost
- depth map
- difference
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Image Processing (AREA)
Abstract
一种立体影像深度图产生装置及方法,该装置包含:深度计算模块、第一阶双边滤波模块以及第二阶双边滤波模块。深度计算模块接收包含多个参考像素的参考影像以及包含多个目标像素的目标影像,并根据参考像素以及目标像素的像素差异产生初始深度图。第一阶双边滤波模块接收初始深度图,以对初始深度图与初始深度图自身进行第一阶双边滤波计算,以产生平均深度图。第二阶双边滤波模块接收平均深度图以及目标影像,以对平均深度图以及目标影像进行第二阶双边滤波计算,以产生精炼深度图。本发明还公开了立体影像深度图产生的方法。
A device and method for generating a stereoscopic image depth map, the device comprising: a depth calculation module, a first-order bilateral filtering module and a second-order bilateral filtering module. The depth calculation module receives a reference image including a plurality of reference pixels and a target image including a plurality of target pixels, and generates an initial depth map according to the pixel differences between the reference pixels and the target pixels. The first-order bilateral filtering module receives the initial depth map to perform a first-order bilateral filtering calculation on the initial depth map and the initial depth map itself to generate an average depth map. The second-order bilateral filtering module receives the average depth map and the target image to perform a second-order bilateral filtering calculation on the average depth map and the target image to generate a refined depth map. The present invention also discloses a method for generating a stereoscopic image depth map.
Description
技术领域technical field
本发明涉及一种影像处理技术,特别是一种立体影像深度图产生装置及方法。The invention relates to an image processing technology, in particular to a device and method for generating a stereoscopic image depth map.
背景技术Background technique
立体视觉技术(stereo vision)被广泛应用于各种领域如三维电影等,而深度图(depth map)则是产生立体视觉的重要信息。深度图可经由立体匹配(stereo matching)而得,其精确度将影响影像的品质。然而,在目前的技术中,深度图的品质往往受限于视差的破碎部分及边缘膨胀状况,而造成所产生的三维影像在观看时产生抖动现象。Stereo vision technology (stereo vision) is widely used in various fields such as 3D movies, etc., and a depth map (depth map) is important information for generating stereo vision. The depth map can be obtained through stereo matching, and its accuracy will affect the quality of the image. However, in the current technology, the quality of the depth map is often limited by the broken part of the parallax and the expansion of the edge, which causes the generated 3D image to shake when viewed.
因此,如何设计一个新的立体影像深度图产生装置及方法,以解决上述的缺失,乃为业界亟待解决的问题。Therefore, how to design a new device and method for generating a depth map of a stereoscopic image to solve the above-mentioned deficiency is an urgent problem to be solved in the industry.
发明内容Contents of the invention
本发明所要解决的技术问题是提供一种立体影像深度图产生装置及方法,以解决现有技术的上述缺陷。The technical problem to be solved by the present invention is to provide a stereoscopic image depth map generation device and method to solve the above-mentioned defects in the prior art.
为了实现上述目的,本发明提供了一种立体影像深度图产生装置,包含:深度计算模块、第一阶双边滤波(bilateral filter)模块以及第二阶双边滤波模块。深度计算模块接收包含多个参考像素的参考影像以及包含多个目标像素的目标影像,并根据参考像素以及目标像素的像素差异产生初始深度图(initial depth map)。第一阶双边滤波(bilateral filter)模块接收初始深度图,以对初始深度图与初始深度图自身进行第一阶双边滤波计算,以产生平均深度图。第二阶双边滤波模块接收平均深度图以及目标影像,以对平均深度图以及目标影像进行第二阶双边滤波计算,以产生精炼(refined)深度图。In order to achieve the above object, the present invention provides a stereoscopic image depth map generation device, including: a depth calculation module, a first-order bilateral filter module and a second-order bilateral filter module. The depth calculation module receives a reference image including a plurality of reference pixels and a target image including a plurality of target pixels, and generates an initial depth map (initial depth map) according to pixel differences between the reference pixels and the target pixels. The first-order bilateral filter (bilateral filter) module receives the initial depth map to perform first-order bilateral filter calculation on the initial depth map and the initial depth map itself to generate an average depth map. The second-order bilateral filter module receives the average depth map and the target image, and performs second-order bilateral filter calculation on the average depth map and the target image to generate a refined depth map.
为了更好地实现上述目的,本发明还提供了一种立体影像深度图产生方法,包含:深度计算模块接收包含多个参考像素的参考影像以及包含多个目标像素的目标影像,并根据参考像素以及目标像素的像素差异产生初始深度图;第一阶双边滤波模块接收初始深度图,以对初始深度图与初始深度图自身进行第一阶双边滤波计算,以产生平均深度图;以及第二阶双边滤波模块接收平均深度图以及目标影像,以对平均深度图以及目标影像进行第二阶双边滤波计算,以产生精炼深度图。In order to better achieve the above object, the present invention also provides a method for generating a stereoscopic image depth map, comprising: the depth calculation module receives a reference image containing a plurality of reference pixels and a target image containing a plurality of target pixels, and And the pixel difference of the target pixel generates an initial depth map; the first-order bilateral filtering module receives the initial depth map, and performs the first-order bilateral filtering calculation on the initial depth map and the initial depth map itself to generate an average depth map; and the second-order The bilateral filtering module receives the average depth map and the target image, and performs a second-order bilateral filter calculation on the average depth map and the target image to generate a refined depth map.
本发明的技术效果在于:Technical effect of the present invention is:
本发明通过两阶双边滤波,对深度图进行进一步的精炼,以增进深度图的品质,轻易地达到上述的目的。The present invention further refines the depth map through two-order bilateral filtering to improve the quality of the depth map and easily achieve the above purpose.
以下结合附图和具体实施例对本发明进行详细描述,但不作为对本发明的限定。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments, but not as a limitation of the present invention.
附图说明Description of drawings
图1为本发明一实施例的立体影像深度图产生装置的框图;FIG. 1 is a block diagram of a device for generating a stereoscopic image depth map according to an embodiment of the present invention;
图2为本发明一实施例的深度计算模块的框图;Fig. 2 is a block diagram of a depth calculation module according to an embodiment of the present invention;
图3为本发明一实施例的参数差值与权重值的对应曲线关系图:Fig. 3 is a graph of the corresponding curve relationship between the parameter difference and the weight value according to an embodiment of the present invention:
图4为本发明一实施例的立体影像深度图产生方法的流程图。FIG. 4 is a flowchart of a method for generating a depth map of a stereoscopic image according to an embodiment of the present invention.
其中,附图标记Among them, reference signs
1 立体影像深度图产生装置 10 深度计算模块1 Stereoscopic image depth map generation device 10 Depth calculation module
12 第一阶双边滤波模块 14 第二阶双边滤波模块12 First-order bilateral filter module 14 Second-order bilateral filter module
16A、16B 转换单元 20 权重计算单元16A, 16B conversion unit 20 weight calculation unit
21 权重值 22 成本计算单元21 Weight value 22 Cost calculation unit
23 成本值 24 成本聚合单元23 Cost Value 24 Cost Aggregation Unit
25 成本聚合值 26 后处理单元25 Cost aggregation value 26 Postprocessing unit
28 均值滤波单元 30、32 曲线28 mean filtering unit 30, 32 curves
400 立体影像深度图产生方法 401-403 步骤400 Stereoscopic image depth map generation method 401-403 steps
具体实施方式Detailed ways
下面结合附图对本发明的结构原理和工作原理作具体的描述Below in conjunction with accompanying drawing, structural principle and working principle of the present invention are described in detail
请参照图1。图1为本发明一实施例中,一种立体影像深度图产生装置1的框图。立体影像深度图产生装置1包含深度计算模块10、第一阶双边滤波模块12以及第二阶双边滤波模块14。Please refer to Figure 1. FIG. 1 is a block diagram of a stereoscopic image depth map generation device 1 in an embodiment of the present invention. The stereo image depth map generation device 1 includes a depth calculation module 10 , a first-order bilateral filter module 12 and a second-order bilateral filter module 14 .
深度计算模块10接收参考影像Ir及目标影像It。参考影像Ir及目标影像It均为二维影像。于一实施例中,参考影像Ir为右眼影像,且目标影像It为左眼影像。于另一实施例中,参考影像Ir为左眼影像,且目标影像It为右眼影像。参考影像Ir包含多个参考像素(未绘示),目标影像It则包含多个目标像素(未绘示)。The depth calculation module 10 receives a reference image Ir and a target image It. Both the reference image Ir and the target image It are two-dimensional images. In one embodiment, the reference image Ir is a right-eye image, and the target image It is a left-eye image. In another embodiment, the reference image Ir is a left-eye image, and the target image It is a right-eye image. The reference image Ir includes a plurality of reference pixels (not shown), and the target image It includes a plurality of target pixels (not shown).
于一实施例中,立体影像深度图产生装置1包含转换单元16A及16B,分别先将参考影像Ir以及目标影像It由RGB色彩空间转换为YcbCr色彩空间后,再由深度计算模块10接收转换后的参考影像Ir’以及目标影像It’进行处理。In one embodiment, the stereoscopic image depth map generation device 1 includes conversion units 16A and 16B, which respectively first convert the reference image Ir and the target image It from the RGB color space to the YcbCr color space, and then receive the converted images from the depth calculation module 10. The reference image Ir' and the target image It' are processed.
深度计算模块10根据参考影像Ir’的参考像素以及目标影像It’的目标像素的像素差异产生初始深度图(initial depth map)ID。The depth calculation module 10 generates an initial depth map (initial depth map) ID according to the pixel difference between the reference pixels of the reference image Ir' and the target pixels of the target image It'.
第一阶双边滤波(bilateral filter)模块12接收初始深度图ID,以对初始深度图ID与初始深度图ID自身进行第一阶双边滤波计算,以产生平均深度图ID’。The first-order bilateral filter module 12 receives the initial depth map ID to perform first-order bilateral filter calculation on the initial depth map ID and the initial depth map ID itself to generate an average depth map ID'.
于一实施例中,第一阶双边滤波模块12所进行的第一阶双边滤波计算为双边网格(bilateral grid)滤波计算。双边网格滤波技术是由基本的双边滤波技术演变而来。In one embodiment, the first-order bilateral filtering calculation performed by the first-order bilateral filtering module 12 is a bilateral grid (bilateral grid) filtering calculation. The bilateral grid filtering technique is evolved from the basic bilateral filtering technique.
其中,双边滤波技术为非线性的滤波技术,可将影像模糊化与保留影像边缘的内容信息。双边网格滤波技术则进一步提高计算效率,将二维的影像映射至三维空间。通过网格大小的控制,将可对映射到三维空间的像素进行双边滤波,再将取值映射回原本的影像,取得平滑的画面。于一实施例中,第一阶双边滤波模块12对初始深度图ID与初始深度图ID自身进行的第一阶双边滤波计算,可进行像素距离的权重以及像素色差的权重,以使初始深度图ID所包含的视差(disparity)信息产生平滑的效果,达到校正视差信息破碎的问题。Among them, the bilateral filtering technology is a non-linear filtering technology, which can blur the image and retain the content information at the edge of the image. Bilateral grid filtering technology further improves computational efficiency and maps two-dimensional images to three-dimensional space. Through the control of the grid size, bilateral filtering can be performed on the pixels mapped to the three-dimensional space, and then the values are mapped back to the original image to obtain a smooth picture. In one embodiment, the first-order bilateral filter calculation performed by the first-order bilateral filtering module 12 on the initial depth map ID and the initial depth map ID itself can carry out the weight of pixel distance and the weight of pixel color difference, so that the initial depth map The disparity information contained in the ID produces a smoothing effect, so as to correct the problem of fragmentation of the disparity information.
第二阶双边滤波模块14接收平均深度图ID’以及目标影像It,以对平均深度图ID’以及目标影像It’进行第二阶双边滤波计算,以产生精炼(refined)深度图IDR。The second-order bilateral filtering module 14 receives the average depth map ID' and the target image It to perform second-order bilateral filtering calculations on the average depth map ID' and the target image It' to generate a refined depth map IDR.
类似地,于一实施例中,第二阶双边滤波模块14所进行的第二阶双边滤波计算为双边网格滤波计算。第二阶双边滤波计算利用二维的目标影像It’修正初始深度图ID中的视差信息在边界会膨胀的问题。Similarly, in one embodiment, the second-order bilateral filtering calculation performed by the second-order bilateral filtering module 14 is a bilateral grid filtering calculation. The second-order bilateral filtering calculation uses the two-dimensional target image It' to correct the problem that the disparity information in the initial depth map ID will expand at the boundary.
因此,本发明的立体影像深度图产生装置1通过两阶双边滤波,对深度图进行进一步的精炼,以增进深度图的品质。Therefore, the stereoscopic image depth map generation device 1 of the present invention further refines the depth map through two-order bilateral filtering, so as to improve the quality of the depth map.
请参照图2。图2为本发明一实施例中,深度计算模块10更详细的框图。深度计算模块10包含权重计算单元20、成本计算单元22、成本聚合(cost aggregation)单元24以及后处理单元26。Please refer to Figure 2. FIG. 2 is a more detailed block diagram of the depth calculation module 10 in an embodiment of the present invention. The depth calculation module 10 includes a weight calculation unit 20 , a cost calculation unit 22 , a cost aggregation unit 24 and a post-processing unit 26 .
于一实施例中,深度计算模块10还可包含均值滤波单元,用以将参考影像Ir’进行均值滤波后,再由权重计算单元20接收并处理。于一实施例中,平均滤波的大小可采用例如,但不限于三乘三大小的视窗进行,以将参考影像Ir’的噪点滤除。In an embodiment, the depth calculation module 10 may further include an average filtering unit, which is used to perform mean filtering on the reference image Ir', and then be received and processed by the weight calculation unit 20. In one embodiment, the size of the average filter can be, for example, but not limited to, a three-by-three window size, so as to filter out the noise of the reference image Ir'.
权重计算单元20判断参考像素间的参数差值所位于的差值范围,以对各参考像素指定差值范围对应的权重值21。其中,参数差值为色彩参数差值或空间参数差值。举例来说,色彩参数差值可为灰阶值的差值,而空间参数差值则可为像素距离的差值。于一实施例中,上述的差值范围与权重值21间具有二进位对应关系。The weight calculation unit 20 determines the difference range where the parameter difference between the reference pixels is located, so as to assign a weight value 21 corresponding to the difference range to each reference pixel. Wherein, the parameter difference is a color parameter difference or a space parameter difference. For example, the color parameter difference may be the difference of the grayscale value, and the spatial parameter difference may be the difference of the pixel distance. In one embodiment, there is a binary correspondence between the above-mentioned difference range and the weight value 21 .
请同时参照图3。图3为本发明一实施例中,参数差值与权重值21的对应曲线关系图。其中,横轴代表参数差值,纵轴代表权重值21。Please also refer to Figure 3. FIG. 3 is a graph showing the relationship between the parameter difference and the weight value 21 according to an embodiment of the present invention. Wherein, the horizontal axis represents the parameter difference, and the vertical axis represents the weight value 21 .
于部分技术中,差值范围与权重值是采用如较细的曲线30所代表的指数对应关系。以指数对应关系来产生权重的优点是对权重敏感度较高,但相对地,每个像素的参考视窗中的每个值都需要重新计算,造成计算量庞大。In some technologies, the difference range and the weight value adopt an exponential correspondence relationship as represented by the thinner curve 30 . The advantage of using exponential correspondence to generate weights is that it is more sensitive to weights, but relatively, each value in the reference window of each pixel needs to be recalculated, resulting in a huge amount of calculation.
较粗的曲线32所代表的二进位对应关系是将每个差值范围的区间设定一个权重值。和指数的点对点对应关系不同,二进位是以线对点的方式来指定权重,不但可以大幅减少运算量,也可以忽略部分噪点造成的误差。The binary correspondence represented by the thicker curve 32 is to set a weight value for each interval of the difference range. Different from the point-to-point correspondence of the index, the binary is to specify the weight in a line-to-point manner, which can not only greatly reduce the amount of calculation, but also ignore the error caused by some noise points.
成本计算单元22通过视窗匹配(window matching)以及预设搜寻范围,对参考影像Ir’的参考像素以及目标影像It’的目标像素计算成本值23。The cost calculation unit 22 calculates the cost value 23 for the reference pixels of the reference image Ir' and the target pixels of the target image It' through window matching and a preset search range.
于一实施例中,成本计算单元22所计算的各成本值23,分别为参考像素其中之一以及目标像素其中之一的绝对差截值(truncated absolute difference)。更详细的说,像素间的差值会针对一个预设的临界值来取绝对值,其目的在于降低噪点带来的影响。于一实施例中,成本值23的数目是由搜寻范围的大小决定,当搜寻范围愈大,计算成本的次数就会愈多。In one embodiment, each cost value 23 calculated by the cost calculation unit 22 is a truncated absolute difference between one of the reference pixels and one of the target pixels. More specifically, the difference between pixels will take an absolute value against a preset critical value, the purpose of which is to reduce the impact of noise. In one embodiment, the number of cost values 23 is determined by the size of the search range. The larger the search range, the more times the cost is calculated.
成本聚合单元24根据权重值21以及成本值23进行成本聚合计算,以产生对应初始深度图ID的多个深度像素的多组成本聚合值25。于一实施例中,成本聚合单元24将参考视窗内的值进行统计,以根据权重值21以及成本值23计算出像素差异值的总和。于不同的实施例中,成本聚合单元24可将参考视窗内相对应的权重值21以及成本值23相乘后再加总,或是采用水平跟垂直方向分开聚合的方式。其中,各组成本聚合值包含最大成本聚合值以及最小成本聚合值。The cost aggregation unit 24 performs cost aggregation calculation according to the weight value 21 and the cost value 23 to generate multiple sets of cost aggregation values 25 corresponding to multiple depth pixels of the initial depth map ID. In one embodiment, the cost aggregation unit 24 performs statistics on the values in the reference window to calculate the sum of pixel difference values according to the weight value 21 and the cost value 23 . In different embodiments, the cost aggregation unit 24 may multiply the corresponding weight value 21 and the cost value 23 in the reference window before summing up, or adopt a manner of separately aggregation in the horizontal and vertical directions. Wherein, each group of cost aggregation values includes a maximum cost aggregation value and a minimum cost aggregation value.
后处理单元26接收多组成本聚合值25,除找出最小成本聚合值外,更进一步计算最大成本聚合值以及最小成本聚合值间的比值。当比值大于预设的门槛值时,后处理单元26判断此最小成本聚合值为可靠。而当比值小于门槛值时,后处理单元26判断最小成本聚合值为不可靠。通过上述的方式,后处理单元26可获得可靠度遮罩的分布。于一实施例中,对于不可靠的像素,后处理单元26可产生修正成本聚合值。其中,修正成本聚合值可通过其他周边的像素参数进行平均或是其他处理来产生。The post-processing unit 26 receives multiple sets of cost aggregation values 25 , and besides finding the minimum cost aggregation value, further calculates the ratio between the maximum cost aggregation value and the minimum cost aggregation value. When the ratio is greater than the preset threshold, the post-processing unit 26 judges that the minimum cost aggregation value is reliable. And when the ratio is smaller than the threshold value, the post-processing unit 26 judges that the minimum cost aggregation value is unreliable. Through the above method, the post-processing unit 26 can obtain the distribution of the reliability mask. In one embodiment, for unreliable pixels, the post-processing unit 26 may generate a modified cost aggregation value. Wherein, the modified cost aggregation value can be generated by averaging or other processing on other surrounding pixel parameters.
后处理单元26进一步输出对应所有深度像素的可靠的最小成本聚合值,以及修正成本聚合值,以产生初始深度图ID。经过可靠度遮罩的产生,初始深度图ID可被精炼,以提升其正确性。The post-processing unit 26 further outputs reliable minimum cost aggregation values corresponding to all depth pixels and modified cost aggregation values to generate an initial depth map ID. After the reliability mask is generated, the initial depth map ID can be refined to improve its correctness.
因此,本发明的深度计算模块10可通过二进位的权重对应关系以及可靠度遮罩的产生,达到提升运算速度以及精炼初始深度图ID的功效。Therefore, the depth calculation module 10 of the present invention can increase the calculation speed and refine the initial depth map ID through the binary weight correspondence and the generation of the reliability mask.
请参照图4。图4为本发明一实施例中,一种立体影像深度图产生方法400的流程图。立体影像深度图产生方法400可应用于如图1所示的立体影像深度图产生装置1。立体影像深度图产生方法400包含下列步骤(应了解到,在本实施方式中所提及的步骤,除特别叙明其顺序者外,均可依实际需要调整其前后顺序,甚至可同时或部分同时执行)。Please refer to Figure 4. FIG. 4 is a flowchart of a method 400 for generating a stereoscopic image depth map in an embodiment of the present invention. The stereoscopic image depth map generation method 400 can be applied to the stereoscopic image depth map generation device 1 shown in FIG. 1 . The stereoscopic image depth map generation method 400 includes the following steps (it should be understood that the steps mentioned in this embodiment, unless the order is specifically stated, can be adjusted according to actual needs, or even simultaneously or partially executed simultaneously).
于步骤401,使深度计算模块10接收参考影像Ir以及目标影像It,并根据参考像素以及目标像素的像素差异产生初始深度图ID。In step 401, the depth calculation module 10 receives the reference image Ir and the target image It, and generates an initial depth map ID according to the pixel differences between the reference pixels and the target pixels.
于步骤402,使第一阶双边滤波模块12接收初始深度图ID,以对初始深度图ID与初始深度图ID自身进行第一阶双边滤波计算,以产生平均深度图ID’。In step 402, the first-order bilateral filter module 12 receives the initial depth map ID to perform first-order bilateral filter calculation on the initial depth map ID and the initial depth map ID itself to generate an average depth map ID'.
于步骤403,使第二阶双边滤波模块14接收平均深度图ID’以及目标影像It,以对平均深度图ID’以及目标影像It进行第二阶双边滤波计算,以产生精炼深度图IDR。In step 403, the second-order bilateral filter module 14 receives the average depth map ID' and the target image It to perform second-order bilateral filter calculation on the average depth map ID' and the target image It to generate a refined depth map IDR.
当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。Certainly, the present invention also can have other multiple embodiments, without departing from the spirit and essence of the present invention, those skilled in the art can make various corresponding changes and deformations according to the present invention, but these corresponding Changes and deformations should belong to the scope of protection of the appended claims of the present invention.
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510622205.8A CN106559659B (en) | 2015-09-25 | 2015-09-25 | Stereoscopic image depth map generation device and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510622205.8A CN106559659B (en) | 2015-09-25 | 2015-09-25 | Stereoscopic image depth map generation device and method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106559659A CN106559659A (en) | 2017-04-05 |
CN106559659B true CN106559659B (en) | 2018-07-10 |
Family
ID=58415610
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510622205.8A Active CN106559659B (en) | 2015-09-25 | 2015-09-25 | Stereoscopic image depth map generation device and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106559659B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3698323B1 (en) * | 2018-10-04 | 2021-09-08 | Google LLC | Depth from motion for augmented reality for handheld user devices |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102098526A (en) * | 2011-01-28 | 2011-06-15 | 清华大学 | Depth map calculating method and device |
CN102447939A (en) * | 2011-10-12 | 2012-05-09 | 绍兴南加大多媒体通信技术研发有限公司 | Optimization method for converting 2D (two-dimensional) film and television works into 3D (three-dimensional) |
CN102542541A (en) * | 2011-12-31 | 2012-07-04 | 浙江大学 | Deep image post-processing method |
CN102682446A (en) * | 2011-01-28 | 2012-09-19 | 索尼公司 | Method and apparatus for generating a dense depth map using an adaptive joint bilateral filter |
CN102819837A (en) * | 2012-07-12 | 2012-12-12 | 清华大学 | Method and device for depth map processing based on feedback control |
CN103903256A (en) * | 2013-09-22 | 2014-07-02 | 四川虹微技术有限公司 | Depth estimation method based on relative height-depth clue |
CN103927717A (en) * | 2014-03-28 | 2014-07-16 | 上海交通大学 | Depth image recovery method based on improved bilateral filters |
CN103971366A (en) * | 2014-04-18 | 2014-08-06 | 天津大学 | Stereoscopic matching method based on double-weight aggregation |
-
2015
- 2015-09-25 CN CN201510622205.8A patent/CN106559659B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102098526A (en) * | 2011-01-28 | 2011-06-15 | 清华大学 | Depth map calculating method and device |
CN102682446A (en) * | 2011-01-28 | 2012-09-19 | 索尼公司 | Method and apparatus for generating a dense depth map using an adaptive joint bilateral filter |
CN102447939A (en) * | 2011-10-12 | 2012-05-09 | 绍兴南加大多媒体通信技术研发有限公司 | Optimization method for converting 2D (two-dimensional) film and television works into 3D (three-dimensional) |
CN102542541A (en) * | 2011-12-31 | 2012-07-04 | 浙江大学 | Deep image post-processing method |
CN102819837A (en) * | 2012-07-12 | 2012-12-12 | 清华大学 | Method and device for depth map processing based on feedback control |
CN103903256A (en) * | 2013-09-22 | 2014-07-02 | 四川虹微技术有限公司 | Depth estimation method based on relative height-depth clue |
CN103927717A (en) * | 2014-03-28 | 2014-07-16 | 上海交通大学 | Depth image recovery method based on improved bilateral filters |
CN103971366A (en) * | 2014-04-18 | 2014-08-06 | 天津大学 | Stereoscopic matching method based on double-weight aggregation |
Also Published As
Publication number | Publication date |
---|---|
CN106559659A (en) | 2017-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102625127B (en) | Optimization method suitable for virtual viewpoint generation of 3D television | |
KR101198320B1 (en) | Method and apparatus for converting 2d image into 3d image | |
CN101933335A (en) | Method and system for converting two-dimensional image data into stereoscopic image data | |
JP5197683B2 (en) | Depth signal generation apparatus and method | |
CN102665086B (en) | Method for obtaining parallax by using region-based local stereo matching | |
US10154242B1 (en) | Conversion of 2D image to 3D video | |
TWI608447B (en) | Stereo image depth map generation device and method | |
CN102819837B (en) | Method and device for depth map processing based on feedback control | |
CN102368826A (en) | Real time adaptive generation method from double-viewpoint video to multi-viewpoint video | |
CN103106651A (en) | Method for obtaining parallax error plane based on three-dimensional hough | |
CN102892021A (en) | New method for synthesizing virtual viewpoint image | |
CN102831602B (en) | Image rendering method and image rendering device based on depth image forward mapping | |
CN101557534B (en) | Method for generating disparity map from video close frames | |
CN103337081A (en) | Shading judgment method and device based on depth layer | |
CN104200453A (en) | Parallax image correcting method based on image segmentation and credibility | |
CN108681753B (en) | Image stereo matching method and system based on semantic segmentation and neural network | |
CN104270624A (en) | A Region-Based 3D Video Mapping Method | |
JP2015012429A (en) | Image processing apparatus, image processing method, and image processing program | |
CN106559659B (en) | Stereoscopic image depth map generation device and method | |
CN102708379B (en) | Stereoscopic vision shielding pixel classification algorithm | |
CN102567992B (en) | Image matching method of occluded area | |
Farid et al. | Edge enhancement of depth based rendered images | |
CN102831603A (en) | Method and device for carrying out image rendering based on inverse mapping of depth maps | |
KR20110099526A (en) | How to convert flat images into stereoscopic images | |
US9380285B2 (en) | Stereo image processing method, stereo image processing device and display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |