CN106558564B - Improved structure of copper metal on back of semiconductor element - Google Patents
Improved structure of copper metal on back of semiconductor element Download PDFInfo
- Publication number
- CN106558564B CN106558564B CN201610146262.8A CN201610146262A CN106558564B CN 106558564 B CN106558564 B CN 106558564B CN 201610146262 A CN201610146262 A CN 201610146262A CN 106558564 B CN106558564 B CN 106558564B
- Authority
- CN
- China
- Prior art keywords
- layer
- metal
- high temperature
- substrate
- copper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 239
- 239000002184 metal Substances 0.000 title claims abstract description 239
- 239000010949 copper Substances 0.000 title claims abstract description 81
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 79
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 79
- 239000004065 semiconductor Substances 0.000 title claims abstract description 56
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims abstract description 97
- 239000000758 substrate Substances 0.000 claims abstract description 65
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical group [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 48
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 48
- 239000000463 material Substances 0.000 claims abstract description 43
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 37
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 37
- 239000011574 phosphorus Substances 0.000 claims abstract description 37
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 24
- 229910000990 Ni alloy Inorganic materials 0.000 claims abstract description 19
- 239000004332 silver Substances 0.000 claims abstract description 14
- 239000010931 gold Substances 0.000 claims description 13
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 claims description 11
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 10
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 10
- 229910052737 gold Inorganic materials 0.000 claims description 10
- 229910000756 V alloy Inorganic materials 0.000 claims description 6
- HBVFXTAPOLSOPB-UHFFFAOYSA-N nickel vanadium Chemical compound [V].[Ni] HBVFXTAPOLSOPB-UHFFFAOYSA-N 0.000 claims description 6
- 229910052709 silver Inorganic materials 0.000 claims description 5
- 229910001252 Pd alloy Inorganic materials 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 4
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 3
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 claims description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 3
- 230000002045 lasting effect Effects 0.000 claims 10
- 239000003963 antioxidant agent Substances 0.000 claims 3
- 230000003078 antioxidant effect Effects 0.000 claims 3
- 235000006708 antioxidants Nutrition 0.000 claims 3
- 229910002601 GaN Inorganic materials 0.000 claims 2
- 229910010271 silicon carbide Inorganic materials 0.000 claims 2
- 230000003064 anti-oxidating effect Effects 0.000 abstract description 19
- 238000012360 testing method Methods 0.000 abstract description 14
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 abstract description 11
- 230000005923 long-lasting effect Effects 0.000 abstract description 10
- 229910001316 Ag alloy Inorganic materials 0.000 abstract description 9
- 238000010586 diagram Methods 0.000 description 14
- 230000004888 barrier function Effects 0.000 description 10
- 238000009792 diffusion process Methods 0.000 description 10
- 238000005530 etching Methods 0.000 description 7
- 229910001020 Au alloy Inorganic materials 0.000 description 6
- 239000003353 gold alloy Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000001465 metallisation Methods 0.000 description 4
- MSNOMDLPLDYDME-UHFFFAOYSA-N gold nickel Chemical compound [Ni].[Au] MSNOMDLPLDYDME-UHFFFAOYSA-N 0.000 description 3
- BSIDXUHWUKTRQL-UHFFFAOYSA-N nickel palladium Chemical compound [Ni].[Pd] BSIDXUHWUKTRQL-UHFFFAOYSA-N 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000013021 overheating Methods 0.000 description 2
- 230000002085 persistent effect Effects 0.000 description 2
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical group 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/482—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body (electrodes)
- H01L23/4825—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body (electrodes) for devices consisting of semiconductor layers on insulating or semi-insulating substrates, e.g. silicon on sapphire devices, i.e. SOS
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/482—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body (electrodes)
- H01L23/485—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body (electrodes) consisting of layered constructions comprising conductive layers and insulating layers, e.g. planar contacts
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Electrodes Of Semiconductors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
一种半导体元件背面铜金属的改良结构,其中前述改良结构由上而下依序包括有一有源层、一基板、一背面金属种子层、一耐持久高温缓冲层、一背面金属层以及至少一抗氧化金属层,其中该背面金属种子层的材料包含钯以及磷,该耐持久高温缓冲层的材料为镍、银或镍合金,且背面金属层的材料为铜。运用本发明所提供的结构可使半导体晶片具有耐持久高温操作的特性;其背面的各金属层结构在通过持久性高温测试后,仍维持其结构的完整性,且不易产生空隙、剥离或裂痕,不易产生接地不良的现象,并有效增强晶片的耐持久高温操作特性以及晶片的可靠度。
An improved structure of copper metal on the back side of a semiconductor element, wherein the improved structure includes, from top to bottom, an active layer, a substrate, a back metal seed layer, a long-lasting high temperature buffer layer, a back metal layer, and at least one anti-oxidation metal layer, wherein the material of the back metal seed layer includes palladium and phosphorus, the material of the long-lasting high temperature buffer layer is nickel, silver or nickel alloy, and the material of the back metal layer is copper. The structure provided by the present invention can make the semiconductor chip have the characteristic of long-lasting high temperature operation; after passing the long-lasting high temperature test, the metal layer structures on the back side still maintain their structural integrity, and are not prone to voids, peeling or cracks, and are not prone to poor grounding, and effectively enhance the chip's long-lasting high temperature operation characteristics and the chip's reliability.
Description
技术领域technical field
本发明涉及一种半导体元件背面铜金属的改良结构,尤指一种以铜做为背面金属层,背面金属种子层包含钯(Pd)以及磷(P),且于前述两层之间插入一耐持久高温缓冲层,使半导体元件具有耐持久高温操作特性的改良结构。The present invention relates to an improved structure of copper metal on the back of a semiconductor element, especially a kind of copper as the back metal layer, the back metal seed layer contains palladium (Pd) and phosphorus (P), and a layer is inserted between the two layers The long-lasting high-temperature buffer layer enables the semiconductor element to have an improved structure of long-lasting high-temperature operation characteristics.
背景技术Background technique
半导体元件的制程当中通常会包含背面金属化的制程,该背面金属化的制程关系到半导体元件的抗折强度、散热以及接地等特性。第1图为一现有的半导体元件背面铜金属结构示意图,其中结构依次包含有一基板101、一扩散阻挡层105、一应力消除金属层107、一背面金属层109以及一抗氧化层111;其中该扩散阻挡层105形成于该基板101之下,该扩散阻挡层105的材料为氮化钽(TaN),主要功能在于阻挡其他金属材料扩散进入该基板101,进而对元件产生不利影响;该应力消除金属层107形成于该扩散阻挡层105之下,该应力消除金属层107的材料为金(Au),主要功能在于减缓或消除其下结构因不均匀的膨胀或收缩所导致的结构剥离;该背面金属层109的材料为铜(Cu),其厚度需足够支持该基板101在封装时所受的应力,同时亦可帮助该基板101上的元件散热;该抗氧化层111的材料为金(Au),可防止该背面金属层109氧化。The manufacturing process of the semiconductor device usually includes a backside metallization process, which is related to the flexural strength, heat dissipation and grounding characteristics of the semiconductor device. Fig. 1 is a schematic diagram of an existing copper metal structure on the back of a semiconductor element, wherein the structure sequentially includes a substrate 101, a diffusion barrier layer 105, a stress relief metal layer 107, a back metal layer 109 and an anti-oxidation layer 111; The diffusion barrier layer 105 is formed under the substrate 101, and the material of the diffusion barrier layer 105 is tantalum nitride (TaN), and its main function is to prevent other metal materials from diffusing into the substrate 101, thereby adversely affecting the components; the stress Elimination of the metal layer 107 is formed under the diffusion barrier layer 105, the material of the stress relief metal layer 107 is gold (Au), the main function is to slow down or eliminate the structural peeling caused by the uneven expansion or contraction of the underlying structure; The material of the back metal layer 109 is copper (Cu), and its thickness needs to be sufficient to support the stress suffered by the substrate 101 during packaging, and also help the components on the substrate 101 to dissipate heat; the material of the anti-oxidation layer 111 is gold (Au), which can prevent the back metal layer 109 from being oxidized.
然而以氮化钽(TaN)做为扩散阻挡层、以金(Au)做为应力消除金属层、再以铜(Cu)做为背面金属层,此三层结构材料的选用对于半导体元件耐高温操作的表现并不尽理想;现今半导体元件的散热及耐高温特性是很重要的课题,若该元件的耐高温特性不理想,可能导致半导体元件因过热而受损,尤其当半导体元件有背面导孔时,通常背面导孔的深宽比都很大,在高温操作下,此三层结构较容易产生空隙、出现裂痕、剥离等现象,造成接地不良的状况,而使该半导体元件受损。However, tantalum nitride (TaN) is used as the diffusion barrier layer, gold (Au) is used as the stress relief metal layer, and copper (Cu) is used as the back metal layer. The performance of the operation is not ideal; the heat dissipation and high temperature resistance of semiconductor components are very important issues nowadays. If the high temperature resistance of the components is not ideal, the semiconductor components may be damaged due to overheating, especially when the semiconductor components have backside conductors. When conducting holes, the aspect ratio of the backside guide holes is usually very large. Under high temperature operation, the three-layer structure is more likely to produce voids, cracks, peeling, etc., resulting in poor grounding and damage to the semiconductor element.
有鉴于此,本发明为了改善上述的缺点,本发明提出一种耐持久高温操作的半导体元件背面铜金属的改良结构,不但可以有效提升半导体元件的耐高温操作特性,降低元件因过热而受损的机率,同时又可改善晶片的导热效果,并且降低材料成本。In view of this, in order to improve the above-mentioned shortcomings, the present invention proposes an improved structure of the copper metal on the back of the semiconductor element that is resistant to long-term high-temperature operation, which can not only effectively improve the high-temperature-resistant operation characteristics of the semiconductor element, but also reduce the damage of the element due to overheating. chance, and at the same time, it can improve the heat conduction effect of the chip, and reduce the material cost.
发明内容Contents of the invention
本发明的主要目的在于提供一种半导体元件背面铜金属的改良结构,有助于提升元件的耐持久高温操作特性。The main purpose of the present invention is to provide an improved structure of the copper metal on the back of the semiconductor element, which helps to improve the long-lasting high-temperature operation characteristics of the element.
为了达到上述之目的,本发明提供一种半导体元件背面铜金属改良结构,包括:一有源层、一基板、一背面金属种子层、一耐持久高温缓冲层以及一背面金属层。该有源层形成于该基板的一正面,且该有源层包含至少一集成电路。该背面金属种子层形成于该基板的一背面,且构成该背面金属种子层的材料包含钯以及磷。该耐持久高温缓冲层形成于该背面金属种子层的下方。该背面金属层形成于该耐持久高温缓冲层的下方,且构成该背面金属层的材料为铜。In order to achieve the above purpose, the present invention provides an improved copper metal structure on the back of a semiconductor element, including: an active layer, a substrate, a back metal seed layer, a durable high temperature buffer layer and a back metal layer. The active layer is formed on a front surface of the substrate, and the active layer includes at least one integrated circuit. The back metal seed layer is formed on a back side of the substrate, and the material constituting the back metal seed layer includes palladium and phosphorus. The durable high temperature resistant buffer layer is formed under the back metal seed layer. The back metal layer is formed under the durable high temperature buffer layer, and the material constituting the back metal layer is copper.
于一实施例中,包含于该背面金属种子层的钯的分布与包含于该背面金属种子层的磷的分布至少部分相重迭。In one embodiment, the distribution of palladium contained in the back metal seed layer and the distribution of phosphorus contained in the back metal seed layer at least partially overlap.
于一实施例中,包含于该背面金属种子层的钯是均匀地分布于该背面金属种子层,且包含于该背面金属种子层的磷是均匀地分布于该背面金属种子层。In one embodiment, the palladium contained in the back metal seed layer is uniformly distributed in the back metal seed layer, and the phosphorus contained in the back metal seed layer is uniformly distributed in the back metal seed layer.
于一实施例中,包含于该背面金属种子层的钯是分布于较接近该基板的该背面,而包含于该背面金属种子层的磷是分布于较接近该耐持久高温缓冲层。In one embodiment, the palladium included in the backside metal seed layer is distributed closer to the backside of the substrate, and the phosphorus included in the backside metal seed layer is distributed closer to the durable high temperature buffer layer.
于一实施例中,该背面金属种子层包含一第一次层以及一第二次层,构成该第一次层的材料为钯,且构成该第二次层的材料为磷。In one embodiment, the metal seed layer on the back side includes a first layer and a second layer, the material constituting the first layer is palladium, and the material constituting the second layer is phosphorus.
于一实施例中,该第一次层形成于该基板的该背面,该第二次层形成于该第一次层的下方,且该耐持久高温缓冲层形成于该第二次层的下方。In one embodiment, the first layer is formed on the back surface of the substrate, the second layer is formed under the first layer, and the durable high temperature buffer layer is formed under the second layer .
于一实施例中,构成该耐持久高温缓冲层的材料为镍合金。In one embodiment, the material constituting the durable high temperature buffer layer is nickel alloy.
于一实施例中,构成该耐持久高温缓冲层的材料为镍。In one embodiment, the material constituting the durable high temperature buffer layer is nickel.
于一实施例中,构成该耐持久高温缓冲层的材料为银。In one embodiment, the material constituting the durable high temperature resistant buffer layer is silver.
于一实施例中,该耐持久高温缓冲层的一厚度大于且小于大于且小于大于且小于大于且小于大于且小于大于且小于大于且小于大于且小于大于且小于或大于且小于 In one embodiment, a thickness of the durable high temperature resistant buffer layer is greater than and less than more than the and less than more than the and less than more than the and less than more than the and less than more than the and less than more than the and less than more than the and less than more than the and less than or greater than and less than
于一实施例中,更包括至少一抗氧化金属层,其中该至少一抗氧化金属层形成于该背面金属层的下方。In one embodiment, at least one anti-oxidation metal layer is further included, wherein the at least one anti-oxidation metal layer is formed under the back metal layer.
于一实施例中,构成该至少一抗氧化金属层的材料包括选自以下群组之一:镍、金、钯、钒、镍金合金、镍钯合金、钯金合金、镍合金以及镍钒合金。In one embodiment, the material constituting the at least one anti-oxidation metal layer includes one selected from the following group: nickel, gold, palladium, vanadium, nickel-gold alloy, nickel-palladium alloy, palladium-gold alloy, nickel alloy, and nickel-vanadium alloy.
于一实施例中,更包括至少一导孔,其中该至少一导孔形成于该基板的该背面,该至少一导孔的一内表面被该背面金属种子层所覆盖。In one embodiment, at least one guide hole is further included, wherein the at least one guide hole is formed on the back surface of the substrate, and an inner surface of the at least one guide hole is covered by the back metal seed layer.
于一实施例中,该背面金属种子层的一厚度大于且小于大于且小于大于且小于大于且小于大于且小于大于且小于大于且小于大于且小于大于且小于或大于且小于 In one embodiment, a thickness of the back metal seed layer is greater than and less than more than the and less than more than the and less than more than the and less than more than the and less than more than the and less than more than the and less than more than the and less than more than the and less than or greater than and less than
为进一步了解本发明,以下举较佳的实施例,配合图式、图号,将本发明的具体构成内容及其所达成的功效详细说明如下。In order to further understand the present invention, preferred embodiments are given below, and with reference to the drawings and figure numbers, the specific components of the present invention and the effects achieved are described in detail as follows.
附图说明Description of drawings
图1为现有技术的背面铜金属化的剖面结构示意图。FIG. 1 is a schematic cross-sectional structure diagram of back copper metallization in the prior art.
图2A为本发明的半导体元件背面铜金属改良结构的一具体实施例于背面铜金属化前的剖面结构示意图。FIG. 2A is a schematic cross-sectional structure diagram of a specific embodiment of an improved copper metal structure on the backside of a semiconductor element before the backside copper metallization of the present invention.
图2B为本发明的半导体元件背面铜金属改良结构的一具体实施例的剖面结构示意图。FIG. 2B is a schematic cross-sectional structure diagram of a specific embodiment of the improved structure of the copper metal on the back side of the semiconductor device according to the present invention.
图2C为本发明的半导体元件背面铜金属改良结构的一具体实施例于背面金属层形成街道状凹槽的剖面结构示意图。FIG. 2C is a cross-sectional schematic view of a street-like groove formed on the back metal layer of a specific embodiment of the improved copper metal structure on the back of the semiconductor element of the present invention.
图2D为本发明的半导体元件背面铜金属改良结构的一具体实施例形成至少一抗氧化金属层后的剖面结构示意图。FIG. 2D is a schematic cross-sectional structure diagram of a specific embodiment of the improved structure of the copper metal on the back of the semiconductor device according to the present invention after at least one anti-oxidation metal layer is formed.
图2E为本发明的半导体元件背面铜金属改良结构的另一具体实施例的剖面结构示意图。FIG. 2E is a schematic cross-sectional structure diagram of another specific embodiment of the improved structure of the copper metal on the back of the semiconductor device according to the present invention.
图2F为本发明的半导体元件背面铜金属改良结构的另一具体实施例于背面金属层形成街道状凹槽的剖面结构示意图。FIG. 2F is a cross-sectional schematic diagram of street-shaped grooves formed on the back metal layer of another embodiment of the improved copper metal structure on the back of the semiconductor device according to the present invention.
图2G为本发明的半导体元件背面铜金属改良结构的另一具体实施例形成至少一抗氧化金属层后的剖面结构示意图。FIG. 2G is a schematic cross-sectional structure diagram of another embodiment of the improved structure of the copper metal on the back of the semiconductor device according to the present invention after at least one anti-oxidation metal layer is formed.
图2H为图2B的局部放大图。FIG. 2H is a partially enlarged view of FIG. 2B .
图3A为本发明的半导体元件背面铜金属改良结构经持久性高温测试后,再以能量色散X-射线光谱仪(EDS,Energy-Dispersive X-Ray Spectroscope)分析图2H中的c—c’剖面线的结构的分析结果。Figure 3A shows the improved structure of the copper metal on the back of the semiconductor element of the present invention after a durable high-temperature test, and then an energy-dispersive X-ray spectrometer (EDS, Energy-Dispersive X-Ray Spectroscope) is used to analyze the cc' section line in Figure 2H The analysis results of the structure.
图3B局部显示图3A的测试结果。Figure 3B partially shows the test results of Figure 3A.
附图标记说明:101-基板;105-扩散阻挡层;107-应力消除金属层;109-背面金属层;111-抗氧化层;201-基板、203-有源层;205-背面金属种子层;207-耐持久高温缓冲层;209-背面金属层;211-抗氧化金属层;213-导孔;215-凹槽;11-第一次层;12-第二次层。Description of reference signs: 101-substrate; 105-diffusion barrier layer; 107-stress relief metal layer; 109-back metal layer; 111-anti-oxidation layer; 201-substrate, 203-active layer; 205-back metal seed layer ; 207-durable high temperature resistant buffer layer; 209-back metal layer; 211-oxidation-resistant metal layer; 213-guide hole; 215-groove; 11-first layer;
具体实施方式Detailed ways
第2A图为本发明的半导体元件背面铜金属改良结构的一具体实施例于背面铜金属化前的剖面结构示意图。其中包括一基板201、一有源层203以及至少一导孔213。基板201通常是使用砷化镓(GaAs)、磷化铟(InP)、氮化镓(GaN)或碳化硅(SiC)等半导体材料所构成。于基板201的正面设置有一有源层203,而有源层203则是包括了至少一集成电路。由于在有源层203中的集成电路需要接地点,因此会在基板201的背面以蚀刻技术制作出所需数量的背面导孔213,通过背面导孔213可以让有源层203中的集成电路的接地被连接到远端配置的接地区。FIG. 2A is a schematic cross-sectional structure diagram of a specific embodiment of the improved structure of copper metal on the back of the semiconductor device before the back copper metallization of the present invention. It includes a substrate 201 , an active layer 203 and at least one guide hole 213 . The substrate 201 is usually made of semiconductor materials such as gallium arsenide (GaAs), indium phosphide (InP), gallium nitride (GaN) or silicon carbide (SiC). An active layer 203 is disposed on the front side of the substrate 201, and the active layer 203 includes at least one integrated circuit. Since the integrated circuit in the active layer 203 needs a grounding point, the required number of backside vias 213 will be made by etching technology on the back side of the substrate 201, through which the integrated circuit in the active layer 203 can The ground of the is connected to the ground plane of the remote configuration.
第2B图为本发明的半导体元件背面铜金属改良结构的一具体实施例的剖面结构示意图。其主要结构与第2A图所示的实施例大致相同,惟,其中一背面金属种子层205形成于基板201的一背面、一耐持久高温缓冲层207形成于背面金属种子层205的下方以及一背面金属层209形成于耐持久高温缓冲层207的下方。背面金属种子层205覆盖住基板201的背面以及导孔213的内表面。构成背面金属种子层205的材料包含钯以及磷。构成耐持久高温缓冲层207较佳的材料为镍、镍合金或银。构成背面金属层209的材料为铜。FIG. 2B is a schematic cross-sectional structure diagram of a specific embodiment of the improved structure of the copper metal on the back of the semiconductor device according to the present invention. Its main structure is substantially the same as the embodiment shown in Fig. 2A, except that a back metal seed layer 205 is formed on a back side of the substrate 201, a durable high temperature buffer layer 207 is formed under the back metal seed layer 205 and a The back metal layer 209 is formed under the durable high temperature resistant buffer layer 207 . The backside metal seed layer 205 covers the backside of the substrate 201 and the inner surface of the via hole 213 . Materials constituting the back metal seed layer 205 include palladium and phosphorus. The preferred material for forming the durable high temperature resistant buffer layer 207 is nickel, nickel alloy or silver. The material constituting the back metal layer 209 is copper.
在一实施例中,包含于背面金属种子层205的钯的分布与包含于背面金属种子层205的磷的分布至少部分相重迭。在另一实施例中,包含于背面金属种子层205的钯以及磷是混合在一起。在又一实施例中,包含于背面金属种子层205的钯以及磷是部分混合在一起。在再一实施例中,包含于背面金属种子层205的钯以及磷是均匀地混合在一起,其中包含于背面金属种子层205的钯是均匀地分布于背面金属种子层205,且包含于背面金属种子层205的磷是均匀地分布于背面金属种子层205。在另一实施例中,部分的包含于背面金属种子层205的钯以及磷是均匀地混合在一起。In one embodiment, the distribution of palladium contained in the back metal seed layer 205 and the distribution of phosphorus contained in the back metal seed layer 205 at least partially overlap. In another embodiment, the palladium and phosphorus contained in the back metal seed layer 205 are mixed together. In yet another embodiment, the palladium and phosphorus contained in the back metal seed layer 205 are partially mixed together. In yet another embodiment, the palladium and phosphorus contained in the back metal seed layer 205 are uniformly mixed together, wherein the palladium contained in the back metal seed layer 205 is evenly distributed in the back metal seed layer 205, and contained in the back surface The phosphorus in the metal seed layer 205 is uniformly distributed in the back metal seed layer 205 . In another embodiment, part of the palladium and phosphorous contained in the back metal seed layer 205 are uniformly mixed together.
在另一实施例中,包含于背面金属种子层205的钯是分布于较接近基板201的背面,而包含于背面金属种子层205的磷是分布于较接近耐持久高温缓冲层207。In another embodiment, the palladium contained in the back metal seed layer 205 is distributed closer to the back of the substrate 201 , and the phosphorus contained in the back metal seed layer 205 is distributed closer to the durable high temperature resistant buffer layer 207 .
背面金属种子层205包含了钯以及磷,可以做为一扩散障碍,以防止背面金属层209的铜金属扩散进入基板201。使用钯做为背面金属种子层205的材料的一部分,也可以改善对基板201的附着力。此外,使用磷做为背面金属种子层205的材料的一部分,更可以提高防止背面金属层209的铜金属扩散进入基板201的功效。The back metal seed layer 205 includes palladium and phosphorus, which can be used as a diffusion barrier to prevent the copper metal of the back metal layer 209 from diffusing into the substrate 201 . Using palladium as part of the material of the back metal seed layer 205 can also improve the adhesion to the substrate 201 . In addition, using phosphorus as part of the material of the back metal seed layer 205 can further improve the effect of preventing the copper metal of the back metal layer 209 from diffusing into the substrate 201 .
第2C图为本发明的半导体元件背面铜金属改良结构的一具体实施例于背面金属层形成街道状凹槽的剖面结构示意图。其主要结构与第2B图所示的实施例大致相同,惟,其中于背面金属层209形成了街道状凹槽215。形成街道状凹槽215的结构,首先是以曝光显影技术于背面金属层209上定义出至少一街道状凹槽215的区域,然后再对至少一街道状凹槽215的区域内的背面金属层209进行蚀刻,使蚀刻终止于耐持久高温缓冲层207。FIG. 2C is a cross-sectional schematic diagram of a street-like groove formed in the back metal layer of a specific embodiment of the improved copper metal structure on the back of the semiconductor element of the present invention. Its main structure is substantially the same as the embodiment shown in FIG. 2B , except that a street-shaped groove 215 is formed on the back metal layer 209 . To form the structure of the street-shaped groove 215, at first define at least one street-shaped groove 215 area on the back metal layer 209 by exposure and development technology, and then define the back metal layer in the area of at least one street-shaped groove 215 209 performs etching, so that the etching ends at the durable high temperature resistant buffer layer 207 .
第2D图为本发明的半导体元件背面铜金属改良结构的一具体实施例形成至少一抗氧化金属层后的剖面结构示意图。其主要结构与第2C图所示的实施例大致相同,惟,其中至少一抗氧化金属层211形成于背面金属层209的下方。因此背面金属层209以及街道状凹槽215被至少一抗氧化金属层211所覆盖住,从而防止了背面金属层209的氧化。构成至少一抗氧化金属层211的材料包括选自以下群组之一者:镍、金、钯、钒、镍金合金、镍钯合金、钯金合金、镍合金以及镍钒合金。在一较佳的实施例中,至少一抗氧化金属层211包含了一金层以及一镍钒合金层。FIG. 2D is a schematic cross-sectional structure diagram of a specific embodiment of the improved structure of the copper metal on the back of the semiconductor element according to the present invention after at least one anti-oxidation metal layer is formed. Its main structure is substantially the same as the embodiment shown in FIG. 2C , except that at least one anti-oxidation metal layer 211 is formed under the back metal layer 209 . Therefore, the back metal layer 209 and the street-shaped grooves 215 are covered by at least one anti-oxidation metal layer 211 , thereby preventing the back metal layer 209 from being oxidized. The material constituting the at least one anti-oxidation metal layer 211 includes one selected from the following group: nickel, gold, palladium, vanadium, nickel-gold alloy, nickel-palladium alloy, palladium-gold alloy, nickel alloy and nickel-vanadium alloy. In a preferred embodiment, at least one anti-oxidation metal layer 211 includes a gold layer and a nickel-vanadium alloy layer.
第2E图为本发明的半导体元件背面铜金属改良结构的另一具体实施例的剖面结构示意图。其主要结构与第2B图所示的实施例大致相同,惟,其中背面金属种子层205包含一第一次层11以及一第二次层12。构成第一次层11的材料为钯,且第一次层11形成于基板201的背面。构成第二次层12的材料为磷,且第二次层12形成于第一次层11的下方。且耐持久高温缓冲层207形成于第二次层12的下方。因为钯可以改善对基板201的附着力,因此背面金属种子层205的第一次层11被设计形成于基板201的背面。且因为磷可以更加提高防止背面金属层209的铜金属扩散进入基板201的功效,因此背面金属种子层205的第二次层12被设计形成于介于第一次层11与耐持久高温缓冲层207之间。FIG. 2E is a schematic cross-sectional structure diagram of another embodiment of the improved structure of the copper metal on the back of the semiconductor element according to the present invention. Its main structure is substantially the same as the embodiment shown in FIG. 2B , except that the back metal seed layer 205 includes a first layer 11 and a second layer 12 . The material constituting the first layer 11 is palladium, and the first layer 11 is formed on the back side of the substrate 201 . The material constituting the second sub-layer 12 is phosphorus, and the second sub-layer 12 is formed below the first sub-layer 11 . And the durable high temperature resistant buffer layer 207 is formed under the second sub-layer 12 . Because palladium can improve the adhesion to the substrate 201 , the first layer 11 of the backside metal seed layer 205 is designed to be formed on the backside of the substrate 201 . And because phosphorus can further improve the effect of preventing the copper metal of the back metal layer 209 from diffusing into the substrate 201, the second layer 12 of the back metal seed layer 205 is designed to be formed between the first layer 11 and the durable high temperature buffer layer Between 207.
第2F图为本发明的半导体元件背面铜金属改良结构的另一具体实施例于背面金属层形成街道状凹槽的剖面结构示意图。其主要结构与第2E图所示的实施例大致相同,惟,其中于背面金属层209形成了街道状凹槽215。形成街道状凹槽215的结构,首先以曝光显影技术于背面金属层209上定义出至少一街道状凹槽215的区域,然后再对至少一街道状凹槽215的区域内的背面金属层209进行蚀刻,使蚀刻终止于耐持久高温缓冲层207。FIG. 2F is a schematic cross-sectional structure diagram of another embodiment of the improved copper metal structure on the back of the semiconductor element of the present invention, in which street-shaped grooves are formed on the back metal layer. Its main structure is substantially the same as the embodiment shown in FIG. 2E , except that a street-shaped groove 215 is formed on the back metal layer 209 . To form the structure of the street-shaped groove 215, first define at least one area of the street-shaped groove 215 on the back metal layer 209 by exposure and development technology, and then define the back metal layer 209 in the area of at least one street-shaped groove 215 Etching is performed such that the etch terminates at the durable high temperature resistant buffer layer 207 .
第2G图为本发明的半导体元件背面铜金属改良结构的另一具体实施例形成至少一抗氧化金属层后的剖面结构示意图。其主要结构与第2F图所示的实施例大致相同,惟,其中至少一抗氧化金属层211形成于背面金属层209的下方。因此背面金属层209以及街道状凹槽215被至少一抗氧化金属层211所覆盖住,从而防止了背面金属层209的氧化。构成至少一抗氧化金属层211的材料包括选自以下群组之一者:镍、金、钯、钒、镍金合金、镍钯合金、钯金合金、镍合金以及镍钒合金。在一较佳的实施例中,至少一抗氧化金属层211包含了一金层以及一镍钒合金层。FIG. 2G is a cross-sectional schematic view of another embodiment of the improved structure of copper metal on the back of the semiconductor device according to the present invention after at least one anti-oxidation metal layer is formed. Its main structure is substantially the same as the embodiment shown in FIG. 2F , except that at least one anti-oxidation metal layer 211 is formed under the back metal layer 209 . Therefore, the back metal layer 209 and the street-shaped grooves 215 are covered by at least one anti-oxidation metal layer 211 , thereby preventing the back metal layer 209 from being oxidized. The material constituting the at least one anti-oxidation metal layer 211 includes one selected from the following group: nickel, gold, palladium, vanadium, nickel-gold alloy, nickel-palladium alloy, palladium-gold alloy, nickel alloy and nickel-vanadium alloy. In a preferred embodiment, at least one anti-oxidation metal layer 211 includes a gold layer and a nickel-vanadium alloy layer.
本发明的主要目的在于提供一种半导体元件背面铜金属的改良结构,有助于提升元件的耐持久高温操作特性。半导体元件背面铜金属的改良结构必须能通过持久性高温测试(350℃,30分钟)。因此,半导体元件背面铜金属的改良结构必须要有整体性地考量。首先,背面金属种子层205对基板201(GaAs)必须有良好的附着力。而本发明中,包含于背面金属种子层205中的钯对基板201(GaAs)即具有良好的附着力。其次,还需要有良好的扩散障碍层,以防止背面金属层209的铜金属扩散进入基板201。包含于背面金属种子层205中的钯也具有扩散障碍的功能,能防止部分的背面金属层209的铜金属扩散进入基板201。但钯的功效还不够好。因此,本发明的半导体元件背面铜金属的改良结构的背面金属种子层205包含了钯以及磷。其中磷的扩散障碍功能非常卓著,能够更加有效地防止背面金属层209的铜金属扩散进入基板201。包含于背面金属种子层205中的钯以及磷两者可高度地防止背面金属层209的铜金属扩散进入基板201。在一实施例中,当包含于背面金属种子层205中的钯的分布较接近于基板201时,钯更可以发挥其与基板201(GaAs)的良好的附着力的功效。而包含于背面金属种子层205中的磷的分布则较接近耐持久高温缓冲层207,可与钯同时扮演着防止背面金属层209的铜金属扩散进入基板201的功效。而其中耐持久高温缓冲层207由镍、银或镍合金所构成。选择镍、银或镍合金的主要因素是在各相邻的金属间的互熔性的考量。背面金属层209(铜)以及耐持久高温缓冲层207(镍、银或镍合金)在350℃时具有良好的互熔性。因此,经过持久性高温测试(350℃,30分钟),背面金属层209(铜)以及耐持久高温缓冲层207(镍、银或镍合金)会在彼此边界附近良好地互熔在一起。相似地,耐持久高温缓冲层207(镍、银或镍合金)以及背面金属种子层205(钯)在350℃时具有良好的互熔性。因此,经过持久性高温测试(350℃,30分钟),耐持久高温缓冲层207(镍、银或镍合金)以及背面金属种子层205(钯)会在彼此边界附近良好地互熔在一起。在一最佳的实施例中,半导体元件背面铜金属的改良结构的设计包括背面金属种子层205(包含了钯以及磷)、耐持久高温缓冲层207(镍、银或镍合金)以及背面金属层209(铜)。此半导体元件背面铜金属的改良结构的设计可通过持久性高温测试(350℃,30分钟)。且经过持久性高温测试(350℃,30分钟)之后,并不会有任何的金属剥离现象或是产生任何元件的接地不良。因此,元件的可靠度可被大幅地提升。The main purpose of the present invention is to provide an improved structure of the copper metal on the back of the semiconductor element, which helps to improve the long-lasting high-temperature operation characteristics of the element. The modified structure of the copper metal on the back of the semiconductor component must pass the endurance high temperature test (350°C, 30 minutes). Therefore, the improved structure of the copper metal on the back of the semiconductor device must be considered holistically. First, the back metal seed layer 205 must have good adhesion to the substrate 201 (GaAs). However, in the present invention, the palladium contained in the back metal seed layer 205 has good adhesion to the substrate 201 (GaAs). Secondly, a good diffusion barrier layer is also required to prevent the copper metal of the back metal layer 209 from diffusing into the substrate 201 . The palladium contained in the back metal seed layer 205 also acts as a diffusion barrier, preventing part of the copper metal in the back metal layer 209 from diffusing into the substrate 201 . But palladium isn't good enough. Therefore, the back metal seed layer 205 of the improved structure of the copper metal on the back of the semiconductor element of the present invention contains palladium and phosphorus. Among them, the diffusion barrier function of phosphorus is very outstanding, which can more effectively prevent the copper metal of the back metal layer 209 from diffusing into the substrate 201 . Both palladium and phosphorus contained in the back metal seed layer 205 can highly prevent the copper metal of the back metal layer 209 from diffusing into the substrate 201 . In one embodiment, when the distribution of palladium contained in the back metal seed layer 205 is closer to the substrate 201 , the palladium can exert its good adhesion to the substrate 201 (GaAs). The distribution of phosphorus contained in the back metal seed layer 205 is closer to the durable high temperature resistant buffer layer 207 , and can play the role of preventing the copper metal of the back metal layer 209 from diffusing into the substrate 201 together with palladium. Wherein, the durable high temperature resistant buffer layer 207 is made of nickel, silver or nickel alloy. The main factor in choosing nickel, silver or nickel alloys is the consideration of mutual fusion between the respective adjacent metals. The back metal layer 209 (copper) and the durable high temperature resistant buffer layer 207 (nickel, silver or nickel alloy) have good mutual melting at 350°C. Therefore, after the durable high temperature test (350° C., 30 minutes), the back metal layer 209 (copper) and the durable high temperature resistant buffer layer 207 (nickel, silver or nickel alloy) can fuse together well near their boundaries. Similarly, the durable high temperature resistant buffer layer 207 (nickel, silver or nickel alloy) and the back metal seed layer 205 (palladium) have good mutual melting at 350°C. Therefore, after a durable high temperature test (350° C., 30 minutes), the durable high temperature resistant buffer layer 207 (nickel, silver or nickel alloy) and the back metal seed layer 205 (palladium) can fuse together well near their boundaries. In a preferred embodiment, the design of the improved structure of the copper metal on the back of the semiconductor element includes a back metal seed layer 205 (comprising palladium and phosphorus), a durable high temperature buffer layer 207 (nickel, silver or nickel alloy) and a back metal Layer 209 (copper). The design of the improved structure of the copper metal on the back of the semiconductor element can pass the endurance high temperature test (350° C., 30 minutes). And after the persistent high temperature test (350°C, 30 minutes), there will be no metal peeling phenomenon or poor grounding of any components. Therefore, the reliability of components can be greatly improved.
第2H图为第2B图的局部放大图。第3A图为本发明的半导体元件背面铜金属改良结构经持久性高温测试后,再以能量色散X-射线光谱仪(EDS,Energy-Dispersive X-RaySpectroscope)分析图2H中的c—c’剖面线的结构的分析结果。由3A图可以很清楚地看出,当经过持久性高温测试(350℃,30分钟)之后,背面金属层209(铜)以及耐持久高温缓冲层207(镍)在彼此边界附近良好地互熔在一起。在背面金属层209(铜)以及耐持久高温缓冲层207(镍)之间并没有明显地边界。相似地,经过持久性高温测试(350℃,30分钟)之后,耐持久高温缓冲层207(镍)以及背面金属种子层205(磷、钯)在彼此边界附近良好地混合在一起。甚至有部分的耐持久高温缓冲层207(镍)已经扩散到基板201(GaAs)的背面,且与部分的基板201(GaAs)混合在一起。其中背面金属种子层205包含了磷以及钯。其中包含于背面金属种子层205的钯是分布于较接近基板201的背面,而包含于背面金属种子层205的磷是分布于较接近耐持久高温缓冲层207。相似地,经过持久性高温测试(350℃,30分钟)之后,背面金属种子层205(磷、钯)以及基板201(GaAs)在彼此边界附近良好地混合在一起(尤其是较靠近基板201这一侧,包含于背面金属种子层205的钯)。包含于背面金属种子层205的磷扮演防止背面金属层209的铜金属扩散进入基板201的角色。由结果来看,有部分背面金属层209的铜金属扩散进入耐持久高温缓冲层207(镍)。还有很少部分的背面金属层209的铜金属扩散进入包含于背面金属种子层205的磷的区域。然而,包含于背面金属种子层205的磷阻挡了绝大部分的背面金属层209的铜金属扩散进入基板201。仅有极小部分的背面金属层209的铜金属扩散进入基板201。请同时参阅第3B图,是局部显示第3A图的测试结果。3B图与3A图大致相同,惟,其中基板201(GaAs)并未显示在3B图中。由3B图更清楚地显示了背面金属种子层205的磷的分布以及背面金属层209的铜金属的分布。Figure 2H is a partially enlarged view of Figure 2B. Figure 3A shows the improved structure of the copper metal on the back of the semiconductor element of the present invention after a durable high-temperature test, and then an Energy-Dispersive X-ray Spectrometer (EDS, Energy-Dispersive X-Ray Spectroscope) was used to analyze the c—c' section line in Figure 2H The analysis results of the structure. It can be clearly seen from Figure 3A that after the durable high temperature test (350°C, 30 minutes), the back metal layer 209 (copper) and the durable high temperature resistant buffer layer 207 (nickel) are well interfused near the boundaries of each other together. There is no clear boundary between the back metal layer 209 (copper) and the durable high temperature buffer layer 207 (nickel). Similarly, after the enduring high temperature test (350° C., 30 minutes), the enduring high temperature buffer layer 207 (nickel) and the back metal seed layer 205 (phosphorus, palladium) are well mixed together near the boundaries of each other. Even part of the durable high temperature resistant buffer layer 207 (nickel) has diffused to the back of the substrate 201 (GaAs), and mixed with part of the substrate 201 (GaAs). Wherein the back metal seed layer 205 contains phosphorus and palladium. The palladium contained in the back metal seed layer 205 is distributed closer to the back of the substrate 201 , and the phosphorus contained in the back metal seed layer 205 is distributed closer to the durable high temperature resistant buffer layer 207 . Similarly, after a persistent high temperature test (350° C., 30 minutes), the back metal seed layer 205 (phosphorus, palladium) and the substrate 201 (GaAs) are well mixed together near the boundaries of each other (especially closer to the substrate 201) On one side, palladium contained in the back metal seed layer 205). The phosphorous contained in the back metal seed layer 205 plays a role in preventing the copper metal of the back metal layer 209 from diffusing into the substrate 201 . From the results, it can be seen that part of the copper metal in the back metal layer 209 diffuses into the durable high temperature resistant buffer layer 207 (nickel). There is also a small portion of the copper metal of the backside metal layer 209 diffused into the phosphorous region contained in the backside metal seed layer 205 . However, the phosphorous contained in the back metal seed layer 205 blocks most of the copper metal of the back metal layer 209 from diffusing into the substrate 201 . Only a very small portion of the copper metal of the backside metal layer 209 diffuses into the substrate 201 . Please also refer to Figure 3B, which partially shows the test results of Figure 3A. Figure 3B is substantially the same as Figure 3A, except that the substrate 201 (GaAs) is not shown in Figure 3B. The distribution of phosphorus in the back metal seed layer 205 and the distribution of copper metal in the back metal layer 209 are more clearly shown in FIG. 3B .
其中耐持久高温缓冲层207的一厚度大于且小于大于且小于大于且小于大于且小于大于且小于大于且小于大于且小于大于且小于大于且小于或大于且小于 Wherein a thickness of the durable high temperature buffer layer 207 is greater than and less than more than the and less than more than the and less than more than the and less than more than the and less than more than the and less than more than the and less than more than the and less than more than the and less than or greater than and less than
其中背面金属种子层205的一厚度大于且小于大于且小于大于且小于大于且小于大于且小于大于且小于大于且小于大于且小于大于且小于或大于且小于 Wherein the back metal seed layer 205 has a thickness greater than and less than more than the and less than more than the and less than more than the and less than more than the and less than more than the and less than more than the and less than more than the and less than more than the and less than or greater than and less than
本发明更提供了一种半导体元件背面铜金属的改良结构的制造方法,包括以下步骤:A1:形成一有源层203于一基板201的一正面,其中有源层203包含了至少一集成电路;A2:形成一背面金属种子层205于基板201的一背面以覆盖基板201的背面,其中构成背面金属种子层205的材料包含钯以及磷;A3:形成一耐持久高温缓冲层207以覆盖背面金属种子层205;以及A4:形成一背面金属层209以覆盖耐持久高温缓冲层207,其中构成背面金属层209的材料为铜。其中包含于背面金属种子层205的钯是分布于较接近基板201的背面,而包含于背面金属种子层205的磷是分布于较接近耐持久高温缓冲层207。The present invention further provides a method for manufacturing an improved structure of copper metal on the back side of a semiconductor element, comprising the following steps: A1: forming an active layer 203 on a front side of a substrate 201, wherein the active layer 203 includes at least one integrated circuit A2: form a backside metal seed layer 205 on a backside of the substrate 201 to cover the backside of the substrate 201, wherein the material constituting the backside metal seed layer 205 includes palladium and phosphorus; A3: form a durable high temperature buffer layer 207 to cover the backside Metal seed layer 205; and A4: forming a back metal layer 209 to cover the durable high temperature buffer layer 207, wherein the material constituting the back metal layer 209 is copper. The palladium contained in the back metal seed layer 205 is distributed closer to the back of the substrate 201 , and the phosphorus contained in the back metal seed layer 205 is distributed closer to the durable high temperature resistant buffer layer 207 .
此外,本发明的一种半导体元件背面铜金属的改良结构的制造方法更包括以下的步骤:借助使用蚀刻技术制作至少一背面导孔213于基板201的背面,其中背面导孔213的一内表面被背面金属种子层205所覆盖。In addition, a method for manufacturing an improved structure of copper metal on the back of a semiconductor element of the present invention further includes the following steps: making at least one back via 213 on the back of the substrate 201 by using etching technology, wherein an inner surface of the back via 213 covered by the metal seed layer 205 on the back side.
此外,步骤A2更包括以下的步骤:形成背面金属种子层205的一第一次层11于基板201的背面,其中构成第一次层11的材料为钯;以及形成背面金属种子层205的一第二次层12于第一次层11之下,其中构成第二次层12的材料为磷,其中耐持久高温缓冲层207形成于背面金属种子层205的第二次层12的下方。In addition, step A2 further includes the following steps: forming a first layer 11 of the back metal seed layer 205 on the back side of the substrate 201, wherein the material constituting the first layer 11 is palladium; and forming a first layer 11 of the back metal seed layer 205 The second sub-layer 12 is under the first sub-layer 11 , wherein the material constituting the second sub-layer 12 is phosphorus, wherein the durable high temperature resistant buffer layer 207 is formed under the second sub-layer 12 of the back metal seed layer 205 .
此外,本发明的一种半导体元件背面铜金属的改良结构的制造方法更包括以下的步骤:于背面金属层209上以光罩定义至少一街道状凹槽的区域;蚀刻街道状凹槽的区域内的背面金属层209;终止蚀刻于耐持久高温缓冲层207,以形成街道状凹槽215于背面金属层209;以及形成至少一抗氧化金属层211以覆盖背面金属层209以及街道状凹槽215以防止金属的氧化。In addition, a method for manufacturing an improved structure of copper metal on the back of a semiconductor element of the present invention further includes the following steps: defining at least one street-shaped groove area with a photomask on the back metal layer 209; etching the street-shaped groove area The inner back metal layer 209; stop etching on the durable high temperature buffer layer 207 to form street-like grooves 215 on the back metal layer 209; and form at least one anti-oxidation metal layer 211 to cover the back metal layer 209 and street-like grooves 215 to prevent metal oxidation.
综上所述,依上文所揭示的内容,本发明的一种半导体元件背面铜金属的改良结构,系通过使用包括背面金属种子层205(磷、钯)、耐持久高温缓冲层207(镍、银或镍合金)以及背面金属层209(铜)的三层结构,并搭配上基板201(GaAs),其材料的选择的组合使得其背面的各金属层结构在通过持久性高温测试后,仍维持其结构的完整性,且不易产生空隙、剥离或裂痕,不易产生接地不良的现象,并有效增强晶片的耐持久高温操作特性以及晶片的可靠度。并且有效地阻挡背面金属层209的铜金属扩散进入基板201。因此,本发明确可达到发明的预期目的,提供一种半导体元件背面铜金属的改良结构,极具产业上利用的价值。In summary, according to the content disclosed above, the improved structure of the copper metal on the back side of a semiconductor element of the present invention is by using the back metal seed layer 205 (phosphorus, palladium), the durable high temperature buffer layer 207 (nickel , silver or nickel alloy) and the three-layer structure of the back metal layer 209 (copper), and with the upper substrate 201 (GaAs), the combination of the material selection makes each metal layer structure on the back pass the durable high temperature test, It still maintains the integrity of its structure, and it is not easy to produce voids, peeling or cracks, and it is not easy to cause poor grounding, and effectively enhances the long-lasting high-temperature operation characteristics of the chip and the reliability of the chip. And effectively prevent the copper metal of the back metal layer 209 from diffusing into the substrate 201 . Therefore, the present invention can clearly achieve the expected purpose of the invention, and provide an improved structure of the copper metal on the back of the semiconductor element, which is extremely valuable in industry.
以上这些实施例仅是范例性的,并不对本发明的范围构成任何限制。本领域技术人员应该理解的是,在不偏离本发明的精神和范围下可以对本发明技术方案的细节和形式进行修改或替换,但这些修改和替换均落入本发明的保护范围内。The above embodiments are only exemplary, and do not constitute any limitation to the scope of the present invention. Those skilled in the art should understand that the details and forms of the technical solutions of the present invention can be modified or replaced without departing from the spirit and scope of the present invention, but these modifications and replacements all fall within the protection scope of the present invention.
Claims (12)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/868,798 US9548276B2 (en) | 2012-04-18 | 2015-09-29 | Structure of backside copper metallization for semiconductor devices and a fabrication method thereof |
US14/868,798 | 2015-09-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106558564A CN106558564A (en) | 2017-04-05 |
CN106558564B true CN106558564B (en) | 2019-08-27 |
Family
ID=58417985
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610146262.8A Active CN106558564B (en) | 2015-09-29 | 2016-03-15 | Improved structure of copper metal on back of semiconductor element |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106558564B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107579032B (en) * | 2017-07-27 | 2019-04-09 | 厦门市三安集成电路有限公司 | A kind of backside process method of compound semiconductor device |
CN110767604B (en) * | 2019-10-31 | 2022-03-18 | 厦门市三安集成电路有限公司 | Compound semiconductor device and back copper processing method of compound semiconductor device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1233856A (en) * | 1998-04-27 | 1999-11-03 | 国际商业机器公司 | Copper interconnection structure incorporating metal seed layer |
TW200810126A (en) * | 2006-08-14 | 2008-02-16 | Au Optronics Corp | Bottom substrate for liquid crystal display device and the method of making the same |
TW201109470A (en) * | 2009-09-04 | 2011-03-16 | Win Semiconductors Corp | A method of using an electroless plating for depositing a metal seed layer on semiconductor chips for the backside and via-hole manufacturing processes |
CN103377914A (en) * | 2012-04-18 | 2013-10-30 | 稳懋半导体股份有限公司 | Improved structure of copper metal on back surface of semiconductor element and processing method thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006036798B4 (en) * | 2006-08-07 | 2013-08-29 | Infineon Technologies Ag | Electronic component and method for manufacturing |
JP5585080B2 (en) * | 2007-12-04 | 2014-09-10 | 日立金属株式会社 | Electrode structure and manufacturing method thereof, circuit board, semiconductor module |
-
2016
- 2016-03-15 CN CN201610146262.8A patent/CN106558564B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1233856A (en) * | 1998-04-27 | 1999-11-03 | 国际商业机器公司 | Copper interconnection structure incorporating metal seed layer |
TW200810126A (en) * | 2006-08-14 | 2008-02-16 | Au Optronics Corp | Bottom substrate for liquid crystal display device and the method of making the same |
TW201109470A (en) * | 2009-09-04 | 2011-03-16 | Win Semiconductors Corp | A method of using an electroless plating for depositing a metal seed layer on semiconductor chips for the backside and via-hole manufacturing processes |
CN103377914A (en) * | 2012-04-18 | 2013-10-30 | 稳懋半导体股份有限公司 | Improved structure of copper metal on back surface of semiconductor element and processing method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN106558564A (en) | 2017-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6028367A (en) | Bonds pads equipped with heat dissipating rings and method for forming | |
US11398440B2 (en) | Polymer layers embedded with metal pads for heat dissipation | |
CN102148203B (en) | Semiconductor chip and method of forming conductor pillar | |
US7397260B2 (en) | Structure and method for monitoring stress-induced degradation of conductive interconnects | |
US8802554B2 (en) | Patterns of passivation material on bond pads and methods of manufacture thereof | |
TW201344869A (en) | An improved structure of backside copper metallization for semiconductor devices and a fabrication method thereof | |
JP2010157703A (en) | Structure and method for improving solder bump connection in semiconductor device | |
JP2012147006A (en) | High current structures with compatible of active area bonding | |
US20160233179A1 (en) | Reliable interconnect | |
US20120180018A1 (en) | Increasing Dielectric Strength by Optimizing Dummy Metal Distribution | |
CN106558564B (en) | Improved structure of copper metal on back of semiconductor element | |
KR101095373B1 (en) | Semiconductor chip comprising bump having barrier layer and method for manufacturing same | |
KR20180013711A (en) | Semiconductor device and method of manufacturing same | |
JP5705130B2 (en) | Structure and method for improving solder bump connections in semiconductor devices | |
TW201438107A (en) | Semiconductor device and manufacturing method thereof | |
CN103377914A (en) | Improved structure of copper metal on back surface of semiconductor element and processing method thereof | |
CN101740547B (en) | Semiconductor device and method of manufacturing semiconductor device, target of sputtering device | |
US10374129B2 (en) | Compound semiconductors having an improved high temperature resistant backside metallization | |
US10199345B2 (en) | Method of fabricating substrate structure | |
CN100499108C (en) | Interconnection structure and chip | |
TWI544574B (en) | Copper metal connecting wire of tri-five compound semiconductor component | |
US9548276B2 (en) | Structure of backside copper metallization for semiconductor devices and a fabrication method thereof | |
US8652960B2 (en) | Active area bonding compatible high current structures | |
TW201227889A (en) | Semiconductor device and assembling method thereof | |
KR20100124161A (en) | Fabricating method for semiconductor package |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |