CN106558466A - A kind of preparation method of monocrystalline lanthanum hexaboride field emitter arrays - Google Patents
A kind of preparation method of monocrystalline lanthanum hexaboride field emitter arrays Download PDFInfo
- Publication number
- CN106558466A CN106558466A CN201611114913.1A CN201611114913A CN106558466A CN 106558466 A CN106558466 A CN 106558466A CN 201611114913 A CN201611114913 A CN 201611114913A CN 106558466 A CN106558466 A CN 106558466A
- Authority
- CN
- China
- Prior art keywords
- lanthanum hexaboride
- field emission
- monocrystalline
- substrate
- etching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052746 lanthanum Inorganic materials 0.000 title claims abstract description 81
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 title claims abstract description 81
- 238000002360 preparation method Methods 0.000 title claims description 13
- 238000003491 array Methods 0.000 title description 5
- 238000005530 etching Methods 0.000 claims abstract description 43
- 238000000034 method Methods 0.000 claims abstract description 39
- 230000008569 process Effects 0.000 claims abstract description 27
- 238000012545 processing Methods 0.000 claims abstract description 14
- 239000000758 substrate Substances 0.000 claims description 50
- 239000011241 protective layer Substances 0.000 claims description 29
- 238000004140 cleaning Methods 0.000 claims description 23
- 229920002120 photoresistant polymer Polymers 0.000 claims description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 15
- 239000010410 layer Substances 0.000 claims description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 12
- 239000000126 substance Substances 0.000 claims description 12
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 10
- 239000008367 deionised water Substances 0.000 claims description 9
- 229910021641 deionized water Inorganic materials 0.000 claims description 9
- CGEORJKFOZSMEZ-MBZVMHRFSA-N (+)-sesamin monocatechol Chemical compound C1=C(O)C(O)=CC=C1[C@@H]1[C@@H](CO[C@@H]2C=3C=C4OCOC4=CC=3)[C@@H]2CO1 CGEORJKFOZSMEZ-MBZVMHRFSA-N 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 8
- 238000000151 deposition Methods 0.000 claims description 7
- 238000001020 plasma etching Methods 0.000 claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- 239000003153 chemical reaction reagent Substances 0.000 claims description 5
- 239000003792 electrolyte Substances 0.000 claims description 5
- 239000010439 graphite Substances 0.000 claims description 5
- 229910002804 graphite Inorganic materials 0.000 claims description 5
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 4
- 230000008021 deposition Effects 0.000 claims description 4
- 238000011161 development Methods 0.000 claims description 4
- 238000005498 polishing Methods 0.000 claims description 4
- 239000003292 glue Substances 0.000 claims description 2
- 238000004528 spin coating Methods 0.000 claims description 2
- 229910001868 water Inorganic materials 0.000 claims 6
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims 2
- 229960000935 dehydrated alcohol Drugs 0.000 claims 2
- 238000001259 photo etching Methods 0.000 claims 2
- 229910004205 SiNX Inorganic materials 0.000 claims 1
- 229940022682 acetone Drugs 0.000 claims 1
- 239000013078 crystal Substances 0.000 abstract description 63
- 230000007797 corrosion Effects 0.000 abstract description 7
- 238000005260 corrosion Methods 0.000 abstract description 7
- 238000006056 electrooxidation reaction Methods 0.000 abstract description 7
- 230000010287 polarization Effects 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 14
- 239000000243 solution Substances 0.000 description 14
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 9
- 238000004506 ultrasonic cleaning Methods 0.000 description 8
- 229910052581 Si3N4 Inorganic materials 0.000 description 7
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000012459 cleaning agent Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 238000000059 patterning Methods 0.000 description 4
- 238000001039 wet etching Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000004807 localization Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003487 electrochemical reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 2
- 206010044038 Tooth erosion Diseases 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000002242 deionisation method Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J9/00—Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
- H01J9/02—Manufacture of electrodes or electrode systems
- H01J9/022—Manufacture of electrodes or electrode systems of cold cathodes
- H01J9/025—Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Cold Cathode And The Manufacture (AREA)
Abstract
本发明公开了一种单晶六硼化镧场发射阵列阴极的制备方法,属于阴极场发射技术领域。本发明采用纳秒脉冲电化学腐蚀工艺刻蚀形成单晶六硼化镧场发射阵列阴极,通过调节加工脉冲电流参数和刻蚀时间,使得单晶六硼化镧基底加工区和非加工区的极化过电位产生显著差别,从而有效地克服了电化学腐蚀工艺进行尖锥阵列刻蚀过程中的杂散腐蚀,提高了尖锥阵列阴极的均匀性,进而改善和提高阴极场发射性能,使得单晶六硼化镧场发射尖锥阵列阴极作为电子源在行波管、速调管等微波器件和大型动态真空设备等领域具有广阔应用的前景。
The invention discloses a method for preparing a single crystal lanthanum hexaboride field emission array cathode, which belongs to the technical field of cathode field emission. The present invention adopts nanosecond pulse electrochemical corrosion process to etch to form single crystal lanthanum hexaboride field emission array cathode, and adjusts processing pulse current parameters and etching time to make The polarization overpotential produces a significant difference, which effectively overcomes the stray corrosion in the process of etching the cone array by the electrochemical corrosion process, improves the uniformity of the cone array cathode, and then improves and enhances the field emission performance of the cathode, making The single crystal lanthanum hexaboride field emission cone array cathode has a broad application prospect as an electron source in microwave devices such as traveling wave tubes and klystrons and large dynamic vacuum equipment.
Description
技术领域technical field
本发明属于阴极场发射技术领域,具体涉及一种单晶六硼化镧场发射阵列阴极的制备方法。The invention belongs to the technical field of cathode field emission, and in particular relates to a preparation method of a single crystal lanthanum hexaboride field emission array cathode.
背景技术Background technique
由于场致发射阵列阴极(Field emissionarrays)具有瞬时启动、室温工作、发射电流密度大等一系列优点,在许多领域有较好的应用前景。各种不同的应用环境,对场致发射阴极本身有着各自特殊的要求,然而即便是针对各种迥异的应用场合,阴极的发射稳定性始终是一个器件本身能够正常运行不可或缺的基本保障。Because Field emission array cathodes (Field emission arrays) have a series of advantages such as instant start, room temperature operation, and high emission current density, they have good application prospects in many fields. Various application environments have their own special requirements for the field emission cathode itself. However, even for various applications, the emission stability of the cathode is always an indispensable basic guarantee for the normal operation of a device itself.
根据研究,尖锥场致发射阴极现存主要问题在于:发射电流密度低和电流发射不稳定。根据实验和分析得出阵列阴极整体电流密度不高的原因在于并非所有的阴极尖锥都参与发射。究其原因如下:在阴极制作过程中,由于微细加工技术原因引起的栅极孔阵列较小的不均匀性会导致较为明显的发射尖锥个体之间的差异,而从尖锥形成的原理来看,它们形状的差异也会是必然的。发射尖锥几何形状的差异会导致它们表面电场的不同,而根据场致发射的原理:According to the research, the existing main problems of the tapered field emission cathode are: low emission current density and unstable current emission. According to experiments and analysis, the reason why the overall current density of the array cathode is not high is that not all the cathode cones participate in the emission. The reason is as follows: in the cathode manufacturing process, the small inhomogeneity of the grid hole array caused by the microfabrication technology will lead to obvious differences between the emission cones, and from the principle of the formation of the cones See, the difference in their shape will also be inevitable. The difference in the geometry of the emitting cones will cause the difference in their surface electric fields, and according to the principle of field emission:
(T=0K时F-N公式)(F-N formula when T=0K)
发射电场强度E不同引起的发射电流密度J的变化是十分明显的。在阴极测试过程中,阵列中部分形状较好、尖端曲率半径较小的尖锥会先于其他尖锥达到电场阈值,产生场致发射,而在逐步提高栅极电压期望所有尖锥都发射而获得较大的发射电流的过程中,这些尖锥往往又会由于局部电流密度高导致过热而烧毁。这种局部的热损毁往往还容易造成部分栅极的熔化,更有甚者会引起电极间的放电,造成整个阵列阴极的失效。所以,解决电子发射均匀性的问题已成为场发射阵列走向实用的关键。故而,如何能够提高尖锥阵列均匀性,进而提高阴极的发射水平,成为研究中所要解决的技术问题。The change of the emission current density J caused by the different emission electric field strength E is very obvious. During the cathode test, some cones with better shape and smaller tip curvature radius in the array will reach the electric field threshold before other cones, resulting in field emission, and when the gate voltage is gradually increased, it is expected that all the cones will emit. In the process of obtaining a larger emission current, these cones are often burned due to overheating due to high local current density. This kind of local heat damage is often easy to cause the melting of part of the grid, and what is more, it will cause the discharge between the electrodes, resulting in the failure of the entire array cathode. Therefore, solving the problem of electron emission uniformity has become the key to the practicality of field emission arrays. Therefore, how to improve the uniformity of the cone array, thereby increasing the emission level of the cathode, has become a technical problem to be solved in the research.
经试验证明,单晶六硼化镧(LaB6)具有高熔点、高导电率和良好的热稳定性、化学稳定性、低功函数以及活性阴极表面,因此,单晶六硼化镧(LaB6)是一种非常理想的场发射阴极材料。单晶LaB6尖锥场发射阵列阴极的制备工艺主要包括以下几个步骤:保护层的沉积、保护层的图案化及LaB6尖锥阵列刻蚀。其中,LaB6尖锥阵列刻蚀是整个工艺中最难、最关键的步骤。单晶LaB6尖锥阵列的刻蚀方法包括:湿法腐蚀、氧等离子体氧化与氩等离子体干法刻蚀氧化层相结合、氧等离子体氧化与盐酸湿法刻蚀氧化层相结合、电化学腐蚀等工艺。其中,湿法刻蚀中腐蚀液易对掩膜造成损坏,导致尖锥形貌发生改变;氧等离子体氧化与氩等离子体干法刻蚀氧化层相结合的方法中会对掩膜材料产生腐蚀,导致掩膜材料提前脱落;氧等离子体氧化与盐酸湿法刻蚀氧化层相结合的工艺周期长,易造成尖锥阵列均匀性降低。电化学腐蚀工艺是广泛采用的LaB6尖锥阵列刻蚀工艺,传统工艺采用直流电化学腐蚀,对LaB6基底进行刻蚀,工艺简单且尖锥形貌比较完好,但是由于电化学反应的杂散腐蚀现象,造成其加工的定域性较差。因此,在利用电化学腐蚀工艺进行尖锥阵列的刻蚀过程中为提高尖锥阵列的均匀性就需要解决尖锥阵列刻蚀的定域性问题。Experiments have proved that single crystal lanthanum hexaboride (LaB 6 ) has high melting point, high electrical conductivity and good thermal stability, chemical stability, low work function and active cathode surface, therefore, single crystal lanthanum hexaboride (LaB 6 ) 6 ) is a very ideal field emission cathode material. The preparation process of single crystal LaB 6 cone field emission array cathode mainly includes the following steps: deposition of protective layer, patterning of protective layer and etching of LaB 6 cone array. Among them, the etching of LaB 6 cone array is the most difficult and critical step in the whole process. The etching methods of single crystal LaB 6 cone arrays include: wet etching, oxygen plasma oxidation combined with argon plasma dry etching oxide layer, oxygen plasma oxidation combined with hydrochloric acid wet etching oxide layer, electrodeposition chemical corrosion etc. Among them, the corrosive solution in wet etching is easy to damage the mask, resulting in a change in the shape of the cone; the combination of oxygen plasma oxidation and argon plasma dry etching of the oxide layer will corrode the mask material , causing the mask material to fall off in advance; the combination of oxygen plasma oxidation and hydrochloric acid wet etching of the oxide layer has a long process cycle, which can easily lead to a decrease in the uniformity of the cone array. The electrochemical etching process is a widely used LaB 6 cone array etching process. The traditional process uses DC electrochemical corrosion to etch the LaB 6 substrate. The process is simple and the cone shape is relatively intact. However, due to the stray electrochemical reaction Corrosion phenomenon, resulting in poor localization of its processing. Therefore, in order to improve the uniformity of the cone array in the etching process of the cone array by using the electrochemical etching process, it is necessary to solve the localization problem of the cone array etching.
发明内容Contents of the invention
本发明所要解决的技术问题是为了克服上述技术问题,提供一种单晶六硼化镧场发射阵列阴极的制备方法,具体包括单晶六硼化镧基片预处理、保护层的沉积、保护层的图案化及单晶六硼化镧尖锥阵列刻蚀,该制备方法能够有效减少杂散腐蚀,提高刻蚀的定域性,从而得到尖锥阵列均匀性良好的单晶六硼化镧场发射阵列阴极。The technical problem to be solved by the present invention is to overcome the above technical problems and provide a method for preparing a single crystal lanthanum hexaboride field emission array cathode, which specifically includes pretreatment of a single crystal lanthanum hexaboride substrate, deposition of a protective layer, protection Layer patterning and single crystal lanthanum hexaboride cone array etching, this preparation method can effectively reduce stray corrosion and improve the localization of etching, thereby obtaining single crystal lanthanum hexaboride with good uniformity of the cone array Field emission array cathode.
为实现上述发明目的,本发明采用以下技术方案:In order to realize the above-mentioned purpose of the invention, the present invention adopts the following technical solutions:
一种单晶六硼化镧场发射阴极阵列的制备方法,其特征在于,包括以下步骤:A method for preparing a single crystal lanthanum hexaboride field emission cathode array, characterized in that it comprises the following steps:
步骤A:将单晶六硼化物基片进行研磨抛光后清洗干净;Step A: cleaning the single crystal hexaboride substrate after grinding and polishing;
步骤B:在经步骤A处理所得基片上沉积保护层,并通过光刻和刻蚀使得所述保护层上形成所需图形;Step B: depositing a protective layer on the substrate processed in step A, and forming a desired pattern on the protective layer by photolithography and etching;
步骤C:将步骤B制得的单晶六硼化镧基片和石墨棒浸入电解液中,然后将所述单晶六硼化镧与电源正极相连,将石墨棒与电源负极相连,利用外加脉冲电流进行刻蚀形成单晶六硼化镧尖锥阵列;将所述单晶六硼化镧尖锥阵列上剩余的保护层去除,最终制得单晶六硼化镧场发射阴极阵列。Step C: immerse the single crystal lanthanum hexaboride substrate and the graphite rod prepared in step B into the electrolyte, then connect the single crystal lanthanum hexaboride to the positive pole of the power supply, connect the graphite rod to the negative pole of the power supply, and use an external Pulse current is used for etching to form a single crystal lanthanum hexaboride cone array; the remaining protective layer on the single crystal lanthanum hexaboride cone array is removed, and finally a single crystal lanthanum hexaboride field emission cathode array is produced.
根据本发明实施例,本发明步骤A具体为将单晶六硼化镧基片进行抛磨后采用RCA清洗工艺,所述RCA清洗工艺是将基片依次用去离子水、无水乙醇、丙酮、无水乙醇、SC-1清洗剂和SC-2清洗剂进行超声清洗,每种试剂清洗后均使用去离子水清洗干净;According to the embodiment of the present invention, step A of the present invention is specifically to use the RCA cleaning process after polishing the single crystal lanthanum hexaboride substrate. The RCA cleaning process is to wash the substrate with deionized water, absolute ethanol, acetone , absolute ethanol, SC-1 cleaning agent and SC-2 cleaning agent for ultrasonic cleaning, each reagent is cleaned with deionized water after cleaning;
具体地,所述SC-1清洗剂的化学组成为NH4OH、H2O2和H2O,其体积配比为NH4OH∶H2O2∶H2O=1∶1∶5;所述SC-2清洗剂的化学组成为HCl、H2O2和H2O,其体积配比为HCl∶H2O2∶H2O=1∶1∶6。Specifically, the chemical composition of the SC-1 cleaning agent is NH 4 OH, H 2 O 2 and H 2 O, and its volume ratio is NH 4 OH:H 2 O 2 :H 2 O=1:1:5 ; The chemical composition of the SC-2 cleaning agent is HCl, H 2 O 2 and H 2 O, and its volume ratio is HCl:H 2 O 2 :H 2 O=1:1:6.
作为优选实施方式,本发明步骤B中保护层材料为SiNx。As a preferred embodiment, the material of the protective layer in step B of the present invention is SiN x .
具体地,本发明步骤B中使得保护层形成所需要图形的具体操作为:Specifically, the specific operation of making the protective layer form the required pattern in step B of the present invention is:
B1:匀胶;避光条件下,在上述单晶六硼化物基片上均匀的涂覆一层光刻胶;B1: Uniform glue; under the condition of avoiding light, uniformly coat a layer of photoresist on the above-mentioned single crystal hexaboride substrate;
B2:曝光;将基片进行软烘处理,然后将掩膜板覆盖于涂覆有光刻胶的单晶六硼化镧基片上,采用紫外光充分照射单晶六硼化镧基片进行曝光处理;B2: Exposure: The substrate is subjected to soft baking treatment, and then the mask plate is covered on the single crystal lanthanum hexaboride substrate coated with photoresist, and the single crystal lanthanum hexaboride substrate is fully irradiated with ultraviolet light for exposure deal with;
B3:显影;将曝光后的单晶六硼化镧基片用显影液进行显影,而后将充分显影的单晶六硼化镧基片进行坚膜处理;B3: Developing: developing the exposed single crystal lanthanum hexaboride substrate with a developer, and then hardening the fully developed single crystal lanthanum hexaboride substrate;
B4:刻蚀;采用反应离子刻蚀法进行刻蚀去除多余保护层,得到表面具有所需图形的单晶六硼化镧基片;B4: Etching: Reactive ion etching is used to etch to remove the redundant protective layer to obtain a single crystal lanthanum hexaboride substrate with the desired pattern on the surface;
B5:去除光刻胶;将保护层图案化的单晶六硼化镧基片放入试剂中清洗,去除表层光刻胶。B5: Removing the photoresist; putting the single crystal lanthanum hexaboride substrate with the patterned protective layer into the reagent for cleaning, and removing the photoresist on the surface layer.
作为优选实施方式,所述步骤B中反应离子刻蚀法的工艺参数如下:刻蚀气体为SF6,气体流量为30sccm,刻蚀功率为40~60W,刻蚀时间为5~10分钟。As a preferred embodiment, the process parameters of the reactive ion etching method in the step B are as follows: the etching gas is SF 6 , the gas flow rate is 30 sccm, the etching power is 40-60 W, and the etching time is 5-10 minutes.
进一步地,本发明步骤C中具体采用氢氟酸溶液去除剩余掩膜。Further, in step C of the present invention, a hydrofluoric acid solution is specifically used to remove the remaining mask.
进一步地,本发明步骤C中电解液的化学组成为H3PO4、C2H5OH和H2O,优选地,其中各组成的体积比为H3PO4∶C2H5OH∶H2O=1∶8~12∶8~12,其中当各组成的体积比为H3PO4∶C2H5OH∶H2O=1∶10∶10为最佳。Further, the chemical composition of the electrolyte in Step C of the present invention is H 3 PO 4 , C 2 H 5 OH and H 2 O, preferably, the volume ratio of each composition is H 3 PO 4 :C 2 H 5 OH: H 2 O=1:8~12:8~12, wherein the volume ratio of each component is H 3 PO 4 :C 2 H 5 OH:H 2 O=1:10:10 is the best.
进一步地,本发明步骤C中所述脉冲电流的脉宽优选为5ns~100ns,占空比优选为1∶9~12,脉冲电压优选为3.5V~4V。Further, the pulse width of the pulse current in step C of the present invention is preferably 5 ns-100 ns, the duty ratio is preferably 1:9-12, and the pulse voltage is preferably 3.5 V-4V.
本发明在原有直流电化学腐蚀工艺基础上结合微细加工技术,采用纳秒脉冲电化学腐蚀工艺刻蚀形成单晶六硼化镧场发射阵列阴极。场发射阵列阴极的基底和发射体均采用单晶六硼化镧(LaB6)材料,该材料的使用有效降低了场发射阵列阴极所需的开启电压,相比现用材料大大提高了阴极发射电流密度和发射稳定性;更为重要的是,采取纳秒脉冲电化学腐蚀工艺对六硼化镧基底进行刻蚀,通过调节加工脉冲电流参数和刻蚀时间,使得单晶六硼化镧基底未覆盖保护层的区域(加工区)过电位高于分解电位,电流密度大,此区域单晶六硼化镧材料的电化学蚀除量大;单晶六硼化镧材料的覆盖保护层的区域(非加工区)过电位低于分解电位,电流密度小,此区域单晶六硼化镧材料几乎不发生电化学反应,从而显著增强定域蚀除能力,减小影响加工精度的杂散腐蚀,实现微米级的电解加工。Based on the original DC electrochemical corrosion process, the present invention combines micro-processing technology, adopts nanosecond pulse electrochemical corrosion process to etch to form single crystal lanthanum hexaboride field emission array cathode. Both the substrate and the emitter of the cathode of the field emission array are made of single crystal lanthanum hexaboride (LaB 6 ), which effectively reduces the turn-on voltage required for the cathode of the field emission array, and greatly improves the emission of the cathode compared with the current materials. Current density and emission stability; more importantly, the nanosecond pulse electrochemical corrosion process is used to etch the lanthanum hexaboride substrate, and by adjusting the processing pulse current parameters and etching time, the single crystal lanthanum hexaboride substrate The overpotential of the area (processing area) not covered by the protective layer is higher than the decomposition potential, and the current density is large. The electrochemical erosion of the single crystal lanthanum hexaboride material in this area is large; The overpotential of the area (non-processing area) is lower than the decomposition potential, and the current density is small. The single crystal lanthanum hexaboride material in this area hardly undergoes electrochemical reactions, thereby significantly enhancing the localized erosion ability and reducing strays that affect processing accuracy. Corrosion, to achieve micron-scale electrolytic machining.
相比现有技术,本发明具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
本发明通过采用纳秒脉冲电化学腐蚀使得单晶六硼化镧基底加工区和非加工区的极化过电位产生显著差别,从而有效地减少了尖锥阵列刻蚀过程中的杂散腐蚀,提高了尖锥阵列阴极的均匀性,制作出的阴极场发射性能得到了改善和提高,使得单晶六硼化镧场发射尖锥阵列阴极作为电子源在行波管、速调管等微波器件和大型动态真空设备等领域具有广阔应用的前景。In the present invention, by adopting nanosecond pulse electrochemical corrosion, the polarization overpotential of the single crystal lanthanum hexaboride substrate processing area and non-processing area is significantly different, thereby effectively reducing the stray corrosion in the process of etching the cone array, The uniformity of the cone array cathode is improved, and the field emission performance of the fabricated cathode is improved and enhanced, so that the single crystal lanthanum hexaboride field emission cone array cathode is used as an electron source in microwave devices such as traveling wave tubes and klystrons. And large dynamic vacuum equipment and other fields have broad application prospects.
附图说明Description of drawings
图1是本发明实施例在单晶六硼化镧(LaB6)基片表面沉积氮化硅SiNx保护层的示意图;1 is a schematic diagram of depositing a silicon nitride SiN x protective layer on the surface of a single crystal lanthanum hexaboride (LaB 6 ) substrate according to an embodiment of the present invention;
图2是本发明实施例在氮化硅(SiNx)保护层表面涂覆光刻胶的示意图;2 is a schematic diagram of coating photoresist on the surface of a silicon nitride (SiN x ) protective layer according to an embodiment of the present invention;
图3是本发明实施例对涂覆光刻胶的氮化硅(SiNx)保护层紫外光曝光的示意图;3 is a schematic diagram of ultraviolet light exposure of a silicon nitride (SiN x ) protective layer coated with photoresist according to an embodiment of the present invention;
图4是本发明实施例对氮化硅(SiNx)保护层显影后的示意图;Fig. 4 is a schematic diagram of an embodiment of the present invention after developing a silicon nitride (SiN x ) protective layer;
图5是本发明实施例对氮化硅(SiNx)保护层采用反应离子刻蚀法(RIE)刻蚀并去除光刻胶后的示意图;5 is a schematic diagram of an embodiment of the present invention after the silicon nitride (SiN x ) protection layer is etched by reactive ion etching (RIE) and the photoresist is removed;
图6是本发明实施例采用纳秒脉冲电化学刻蚀后的示意图;Fig. 6 is a schematic diagram of an embodiment of the present invention after adopting nanosecond pulse electrochemical etching;
图7是本发明实施例将刻蚀所得尖锥状发射体顶部剩余掩膜去除后的示意图;7 is a schematic diagram of the embodiment of the present invention after removing the remaining mask on the top of the tapered emitter obtained by etching;
图8是本发明实施例所得单晶六硼化镧(LaB6)场发射体的几何形状示意图;Fig. 8 is a schematic diagram of the geometry of a single crystal lanthanum hexaboride (LaB 6 ) field emitter obtained in an embodiment of the present invention;
图9是本发明实施例所得单晶六硼化镧(LaB6)场发射阵列阴极的结构示意图。Fig. 9 is a schematic structural view of a single crystal lanthanum hexaboride (LaB 6 ) field emission array cathode obtained in an embodiment of the present invention.
具体实施方式detailed description
以下结合说明书附图及具体实施例对本发明进行详细说明:The present invention is described in detail below in conjunction with accompanying drawing and specific embodiment of description:
本发明提供一种单晶六硼化镧场发射阴极阵列的制备方法,具体包括单晶六硼化镧基片预处理、保护层的沉积、保护层的图案化及单晶六硼化镧尖锥阵列刻蚀,由于通过电化学腐蚀工艺刻蚀形成单晶六硼化镧尖锥阵列过程中电化学参数直接决定着刻蚀尖锥的形貌,进而决定了阵列阴极的场发射性能,因此本发明选用合适的加工脉冲参数,调节加工区和非加工区的极化过电位使两者产生显著差别,从而达到控制单晶六硼化镧材料在不同区域的溶解蚀除量,进而减小影响加工精度的杂散腐蚀。The invention provides a method for preparing a single crystal lanthanum hexaboride field emission cathode array, which specifically includes pretreatment of a single crystal lanthanum hexaboride substrate, deposition of a protective layer, patterning of the protective layer, and single crystal lanthanum hexaboride tip Cone array etching, because the electrochemical parameters in the process of forming single-crystal lanthanum hexaboride cone arrays through electrochemical etching process directly determine the shape of the etched cones, which in turn determines the field emission performance of the array cathode. The present invention selects suitable processing pulse parameters, adjusts the polarization overpotential of the processing area and the non-processing area to make a significant difference between the two, so as to control the dissolution and erosion of single crystal lanthanum hexaboride material in different areas, thereby reducing the Stray corrosion that affects machining accuracy.
实施例:Example:
一种单晶六硼化镧场发射阴极阵列的制备方法,包括以下步骤:A method for preparing a single crystal lanthanum hexaboride field emission cathode array, comprising the following steps:
步骤A:单晶六硼化物基片预处理;Step A: pretreatment of single crystal hexaboride substrate;
本发明采用合适粒度的碳化硅、氧化镁、二氧化硅、氧化铝等微粉对单晶六硼化镧基片进行磨片以去除表面机械损伤层,然后采用氧化铝或者过氧化氢进行抛光处理制得符合实验要求的搞平整度、高光洁度基片表面;将抛磨处理后的单晶六硼化镧基片进行清洗以去除分子型、离子型和原子型杂质;本实施例采用半导体制造工艺常用的RCA清洗工艺,具体如下:依次用去离子水、无水乙醇、丙酮、无水乙醇、1号标准清洗液(SC-1清洗液)和2号标准清洗液(SC-2清洗液)超声清洗,每种试剂清洗后均使用去离子水清洗干净。其中,SC-1清洗液的化学组成为NH4OH、H2O2和H2O,这三者的体积比为NH4OH∶H2O2∶H2O=1∶1∶5~1∶2∶7;SC-2清洗液的化学组成为HCl、H2O2和H2O,其体积配比为HCl∶H2O2∶H2O=1∶1∶6~1∶2∶8;本实施例采用化学配比为NH4OH∶H2O2∶H2O=1∶1∶5的SC-1清洗液和化学配比为HCl∶H2O2∶H2O=1∶1∶6的SC-2清洗液;本实施采用的具体清洗方法为:将单晶六硼化镧基片放入去离子水中超声清洗10分钟,重复5次,使用去离子清洗干净;放入无水乙醇液体中超声清洗10分钟,使用去离子清洗干净;放入丙酮液体中超声清洗20分钟,使用去离子清洗干净,放入无水乙醇液体中超声清洗10分钟,使用去离子清洗干净后放入SC-1清洗液中,加热至80℃超声清洗15分钟,使用去离子清洗干净后放入SC-2清洗液中,加热至80℃后超声15分钟,最后放入去离子水中超声清洗15分钟,重复5次;In the present invention, micropowders such as silicon carbide, magnesium oxide, silicon dioxide, and aluminum oxide with suitable particle sizes are used to grind the single crystal lanthanum hexaboride substrate to remove the surface mechanical damage layer, and then use aluminum oxide or hydrogen peroxide to perform polishing treatment The flatness and high-gloss substrate surface meeting the experimental requirements were obtained; the polished single crystal lanthanum hexaboride substrate was cleaned to remove molecular, ionic and atomic impurities; this embodiment uses semiconductor manufacturing The RCA cleaning process commonly used in the process is as follows: sequentially use deionized water, absolute ethanol, acetone, absolute ethanol, No. 1 standard cleaning solution (SC-1 cleaning solution) and No. 2 standard cleaning solution (SC-2 cleaning solution) ) ultrasonic cleaning, each reagent was cleaned with deionized water after cleaning. Among them, the chemical composition of the SC-1 cleaning solution is NH 4 OH, H 2 O 2 and H 2 O, and the volume ratio of these three is NH 4 OH:H 2 O 2 :H 2 O=1:1:5~ 1:2:7; the chemical composition of SC-2 cleaning solution is HCl, H 2 O 2 and H 2 O, and its volume ratio is HCl:H 2 O 2 :H 2 O=1:1:6~1: 2:8; In this embodiment, the SC-1 cleaning solution with a chemical ratio of NH 4 OH:H 2 O 2 :H 2 O=1:1:5 and the chemical ratio of HCl:H 2 O 2 :H 2 are used O=1:1:6 SC-2 cleaning solution; the specific cleaning method used in this implementation is: put the single crystal lanthanum hexaboride substrate in deionized water for ultrasonic cleaning for 10 minutes, repeat 5 times, and use deionized cleaning clean; put it in anhydrous ethanol liquid for ultrasonic cleaning for 10 minutes, and use deionization to clean it; put it in acetone liquid for ultrasonic cleaning for 20 minutes, use deionized cleaning to clean it, put it in absolute ethanol liquid for ultrasonic cleaning for 10 minutes, use deionized After ion cleaning, put it into SC-1 cleaning solution, heat it to 80°C for ultrasonic cleaning for 15 minutes. Ultrasonic cleaning in deionized water for 15 minutes, repeated 5 times;
步骤B:沉积保护层及保护层图案化;Step B: Depositing a protective layer and patterning the protective layer;
如图1所示,本实施例采用射频磁控溅射法在基片表面沉积一层厚度为500nm的氮化硅(SiNx)薄膜作为单晶六硼化镧(LaB6)发射体刻蚀所需的保护层;As shown in Figure 1, in this embodiment, a silicon nitride (SiN x ) film with a thickness of 500 nm is deposited on the surface of the substrate by radio frequency magnetron sputtering as a monocrystalline lanthanum hexaboride (LaB 6 ) emitter for etching. required protective layer;
本实施例采用普通光刻工艺和刻蚀工艺在沉积有氮化硅(SiNx)薄膜的单晶六硼化镧(LaB6)基片进行保护层图案化处理,具体步骤依次为:In this embodiment, common photolithography and etching processes are used to pattern the protective layer on a single crystal lanthanum hexaboride (LaB 6 ) substrate deposited with a silicon nitride (SiN x ) film, and the specific steps are as follows:
B1:匀胶;避光条件下,采用旋转涂胶法在上述单晶六硼化物基片上均匀的涂覆一层光刻胶,其中匀胶台的转速为3000rpm,匀胶时间为30秒,所得样品的结构示意图如图2所示;B1: Coating; under the condition of darkening, use the spin coating method to evenly coat a layer of photoresist on the above-mentioned single crystal hexaboride substrate, wherein the speed of the coating table is 3000rpm, and the coating time is 30 seconds. The schematic diagram of the structure of the obtained sample is shown in Figure 2;
B2:曝光;将基片进行软烘处理,然后将掩膜板覆盖于涂覆有光刻胶的单晶六硼化镧基片上,采用紫外光充分照射单晶六硼化镧基片进行曝光处理,本实施例曝光时间为90秒,所得样品的结构示意图如图3所示;B2: Exposure: The substrate is subjected to soft baking treatment, and then the mask plate is covered on the single crystal lanthanum hexaboride substrate coated with photoresist, and the single crystal lanthanum hexaboride substrate is fully irradiated with ultraviolet light for exposure Treatment, the exposure time of the present embodiment is 90 seconds, and the structural representation of the obtained sample is shown in Figure 3;
B3:显影;将曝光后的单晶六硼化镧基片用4%的四甲基氢氧化胺溶液进行显影,仔细观察基片表面光刻胶的变化情况,本实施显影时间为30秒时已曝光区域的光刻胶基本被除去,而后将充分显影的单晶六硼化镧基片用去离子水反复冲洗,采用氮气吹干后放入100℃烘箱中烘烤10分钟以实现坚膜处理,所得样品的结构示意图如图4所示;B3: Development; develop the exposed single crystal lanthanum hexaboride substrate with 4% tetramethylammonium hydroxide solution, carefully observe the change of the photoresist on the surface of the substrate, and the development time in this implementation is 30 seconds The photoresist in the exposed area is basically removed, and then the fully developed single crystal lanthanum hexaboride substrate is rinsed repeatedly with deionized water, blown dry with nitrogen, and baked in an oven at 100°C for 10 minutes to achieve film hardening Processing, the structural representation of obtained sample is as shown in Figure 4;
B4:刻蚀;采用反应离子刻蚀法进行刻蚀去除多余保护层,因为SF6对单晶六硼化镧没有明显的刻蚀作用,因此本实施例采用SF6作为刻蚀气体,并调节气体流量为30sccm,刻蚀功率为50W,刻蚀时间为8分钟,根据实验此工艺参数下刻蚀效果良好;B4: Etching; Reactive ion etching is used to etch and remove the redundant protective layer, because SF 6 has no obvious etching effect on single crystal lanthanum hexaboride, so this embodiment uses SF 6 as the etching gas, and adjusts The gas flow rate is 30sccm, the etching power is 50W, and the etching time is 8 minutes. According to the experiment, the etching effect is good under this process parameter;
B5:去除光刻胶;将保护层图案化的单晶六硼化镧基片放入丙酮溶液中超声清洗3分钟,去除表层光刻胶,所得样品的结构示意图如图5所示;B5: Removing the photoresist; put the single crystal lanthanum hexaboride substrate patterned on the protective layer into an acetone solution and ultrasonically clean it for 3 minutes to remove the photoresist on the surface layer. The structure diagram of the obtained sample is shown in Figure 5;
步骤C:单晶六硼化镧尖锥阵列刻蚀;Step C: single crystal lanthanum hexaboride cone array etching;
将步骤B制得的单晶六硼化镧基片进行清洗,然后放置于纳秒脉冲电化学刻蚀装置中进行刻蚀处理,其中,上述单晶六硼化镧基片与电源正极连接作为阳极,石墨棒连接电源负极做阴极,纳秒脉冲电化学刻蚀装置中电解液为H3PO4水溶液,并加入乙醇作为缓冲剂以减缓反应速率,各组分体积比优选为1∶1∶10;开启纳米脉冲电源,调节脉冲电压为4V,脉冲宽度为40ns,占空比为1∶10,刻蚀3小时后,形成高度为2.5μm的圆台形单晶六硼化镧发射体,所得样品的结构示意图如图6所示,将所述单晶六硼化镧发射体上剩余的保护层去除,最终制得单晶六硼化镧场发射阴极阵列,所得样品的结构示意图如图7所示。The single crystal lanthanum hexaboride substrate prepared in step B is cleaned, and then placed in a nanosecond pulse electrochemical etching device for etching treatment, wherein the above-mentioned single crystal lanthanum hexaboride substrate is connected to the positive electrode of the power supply as The anode and the graphite rod are connected to the negative pole of the power supply as the cathode, and the electrolyte in the nanosecond pulse electrochemical etching device is H 3 PO 4 aqueous solution, and ethanol is added as a buffer to slow down the reaction rate. The volume ratio of each component is preferably 1:1: 10. Turn on the nano-pulse power supply, adjust the pulse voltage to 4V, the pulse width to 40ns, and the duty ratio to 1:10. After etching for 3 hours, a frustum-shaped single crystal lanthanum hexaboride emitter with a height of 2.5 μm is formed, and the obtained The structural diagram of the sample is shown in Figure 6. The remaining protective layer on the single crystal lanthanum hexaboride emitter is removed to finally obtain a single crystal lanthanum hexaboride field emission cathode array. The structural diagram of the obtained sample is shown in Figure 7 shown.
如图8所示为本发明实施例制得单晶六硼化镧场发射体的几何形状示意图,其属Spindt型结构,其几何形状通常可用一个锥体来表示,顶端近似为一个与锥体相切的球,球体曲率半径很小,多为纳米量级;如图9所示为本发明实施例所得单晶六硼化镧(LaB6)场发射阵列阴极的结构示意图。As shown in Figure 8, it is a schematic diagram of the geometric shape of the single crystal lanthanum hexaboride field emitter obtained in the embodiment of the present invention, which belongs to the Spindt type structure, and its geometric shape can usually be represented by a cone, and the top is approximately a cone. For tangent spheres, the radius of curvature of the spheres is very small, mostly on the order of nanometers; FIG. 9 is a schematic diagram of the structure of the single crystal lanthanum hexaboride (LaB 6 ) field emission array cathode obtained in the embodiment of the present invention.
以上所述实施例仅表达了本发明的实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only express the implementation manner of the present invention, and the description thereof is relatively specific and detailed, but should not be construed as limiting the patent scope of the present invention. It should be noted that those skilled in the art can make several modifications and improvements without departing from the concept of the present invention, and these all belong to the protection scope of the present invention. Therefore, the protection scope of the patent for the present invention should be based on the appended claims.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611114913.1A CN106558466A (en) | 2016-12-07 | 2016-12-07 | A kind of preparation method of monocrystalline lanthanum hexaboride field emitter arrays |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611114913.1A CN106558466A (en) | 2016-12-07 | 2016-12-07 | A kind of preparation method of monocrystalline lanthanum hexaboride field emitter arrays |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106558466A true CN106558466A (en) | 2017-04-05 |
Family
ID=58445927
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611114913.1A Pending CN106558466A (en) | 2016-12-07 | 2016-12-07 | A kind of preparation method of monocrystalline lanthanum hexaboride field emitter arrays |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106558466A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107352502A (en) * | 2017-08-10 | 2017-11-17 | 南京航空航天大学 | A kind of preparation method of the pure titanium surface microprotrusion array structure of bioconjugation |
CN108807109A (en) * | 2018-06-08 | 2018-11-13 | 电子科技大学 | A kind of preparation method of field emitter arrays |
CN109360778A (en) * | 2018-10-18 | 2019-02-19 | 北京工业大学 | A method for preparing field emission single tip by stepper motor assisted electrochemical corrosion |
CN110808198A (en) * | 2019-11-19 | 2020-02-18 | 中国航空制造技术研究院 | Processing method of rare earth hexaboride field emission pointed cone array |
CN112103155A (en) * | 2020-09-22 | 2020-12-18 | 成都创元电子有限公司 | Electron bombardment type lanthanum hexaboride cathode |
CN112447467A (en) * | 2020-10-28 | 2021-03-05 | 湖南稀土金属材料研究院 | LaB6Preparation method and application of field emission array film cathode |
CN114639579A (en) * | 2022-03-17 | 2022-06-17 | 中国科学技术大学 | Electrochemical etching device and etching method |
CN114944311A (en) * | 2022-06-02 | 2022-08-26 | 安阳工学院 | A kind of preparation method of hexaboride nano-spike cone array |
CN116344686A (en) * | 2023-05-31 | 2023-06-27 | 季华实验室 | Preparation method of full-color display panel, display panel and display device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101969275A (en) * | 2010-09-30 | 2011-02-09 | 南京工程学院 | Programmable nanosecond double-pulse integrated power supply |
CN105197952A (en) * | 2015-09-06 | 2015-12-30 | 浙江大学 | Preparation of nano single crystal lanthanum hexaboride and application of nano single crystal lanthanum hexaboride in electron microscope filament preparation |
-
2016
- 2016-12-07 CN CN201611114913.1A patent/CN106558466A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101969275A (en) * | 2010-09-30 | 2011-02-09 | 南京工程学院 | Programmable nanosecond double-pulse integrated power supply |
CN105197952A (en) * | 2015-09-06 | 2015-12-30 | 浙江大学 | Preparation of nano single crystal lanthanum hexaboride and application of nano single crystal lanthanum hexaboride in electron microscope filament preparation |
Non-Patent Citations (1)
Title |
---|
王小菊: "单晶六硼化镧场发射阵列阴极及特性研究", 《中国博士学位论文全文数据库 基础科学辑》 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107352502A (en) * | 2017-08-10 | 2017-11-17 | 南京航空航天大学 | A kind of preparation method of the pure titanium surface microprotrusion array structure of bioconjugation |
CN108807109A (en) * | 2018-06-08 | 2018-11-13 | 电子科技大学 | A kind of preparation method of field emitter arrays |
CN109360778A (en) * | 2018-10-18 | 2019-02-19 | 北京工业大学 | A method for preparing field emission single tip by stepper motor assisted electrochemical corrosion |
CN109360778B (en) * | 2018-10-18 | 2020-10-13 | 北京工业大学 | Method for preparing field emission single tip by using stepping motor to assist electrochemical corrosion |
CN110808198A (en) * | 2019-11-19 | 2020-02-18 | 中国航空制造技术研究院 | Processing method of rare earth hexaboride field emission pointed cone array |
CN112103155A (en) * | 2020-09-22 | 2020-12-18 | 成都创元电子有限公司 | Electron bombardment type lanthanum hexaboride cathode |
CN112103155B (en) * | 2020-09-22 | 2023-11-21 | 成都创元电子有限公司 | Electron bombardment type lanthanum hexaboride cathode |
CN112447467A (en) * | 2020-10-28 | 2021-03-05 | 湖南稀土金属材料研究院 | LaB6Preparation method and application of field emission array film cathode |
CN114639579A (en) * | 2022-03-17 | 2022-06-17 | 中国科学技术大学 | Electrochemical etching device and etching method |
CN114944311A (en) * | 2022-06-02 | 2022-08-26 | 安阳工学院 | A kind of preparation method of hexaboride nano-spike cone array |
CN116344686A (en) * | 2023-05-31 | 2023-06-27 | 季华实验室 | Preparation method of full-color display panel, display panel and display device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106558466A (en) | A kind of preparation method of monocrystalline lanthanum hexaboride field emitter arrays | |
CN106549083B (en) | A kind of preparation method of crystal silicon solar energy battery suede structure | |
CN102447061B (en) | Preparation method of high-speed low-power-consumption phase change memory | |
CN101638781B (en) | Method for directly heating metal membrane to grow oxide nanowires in array-type arranged microcavity structure, and application thereof | |
CN103700733A (en) | Cleaning treatment method of N-type crystalline silicon substrate of solar cell | |
CN107623056A (en) | A method for repairing surface defects of nano-textured surfaces formed by reactive ion etching | |
JP2008290888A (en) | Surface treating method of silicon carbide | |
CN103979487A (en) | Method for preparing doping porous silicon ball | |
CN108231992A (en) | A kind of Superconducting Quantum chips in etching method of the film containing niobium | |
CN111082307A (en) | Low-stress high-thermal-conductivity semiconductor substrate and preparation method thereof | |
CN102140697A (en) | Manufacturing method based on porous pyramid structure on monocrystalline silicon substrate | |
CN106449394A (en) | Method for making GaN HEMT backside through hole by electrolytic polishing process | |
CN110391317A (en) | A kind of suede surface preparation method of monocrystalline silicon wafer | |
CN110767515B (en) | A preparation method of carbon nanotube array beam with adjustable aspect ratio applied to field emission cold cathode | |
CN110518075A (en) | A kind of black silicon passivating film, preparation method and application | |
CN118588513A (en) | Porous silicon-based electron emission source and preparation method and equipment thereof | |
CN115692189B (en) | Gallium nitride nanowire array and processing method thereof | |
CN111362225A (en) | Nano needle tip structure, composite structure and preparation method thereof | |
CN207529904U (en) | Plasma generator electrode | |
CN104103470A (en) | Polycrystal hexaboride annular field emission cathode and preparation method thereof | |
CN103746038A (en) | Preparation method of porous silicon template | |
CN114879455A (en) | Method for removing photoresist | |
CN102655179A (en) | Method for preparing black silicon | |
CN108807109B (en) | Preparation method of field emission array cathode | |
CN102324351A (en) | A new type of carbon nanotube field emission cold cathode and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20170405 |
|
WD01 | Invention patent application deemed withdrawn after publication |