CN106549058A - Semiconductor device manufacturing method - Google Patents
Semiconductor device manufacturing method Download PDFInfo
- Publication number
- CN106549058A CN106549058A CN201510609662.3A CN201510609662A CN106549058A CN 106549058 A CN106549058 A CN 106549058A CN 201510609662 A CN201510609662 A CN 201510609662A CN 106549058 A CN106549058 A CN 106549058A
- Authority
- CN
- China
- Prior art keywords
- silicon
- layer
- germanium
- dummy gate
- impurity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- 239000004065 semiconductor Substances 0.000 title claims description 17
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 77
- 239000010703 silicon Substances 0.000 claims abstract description 77
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 67
- 238000000034 method Methods 0.000 claims abstract description 53
- 239000000463 material Substances 0.000 claims abstract description 25
- 229910052732 germanium Inorganic materials 0.000 claims abstract description 19
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims abstract description 19
- 238000001039 wet etching Methods 0.000 claims abstract description 10
- 238000001312 dry etching Methods 0.000 claims abstract description 7
- 239000000758 substrate Substances 0.000 claims description 24
- 239000012535 impurity Substances 0.000 claims description 21
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 claims description 20
- 239000002210 silicon-based material Substances 0.000 claims description 7
- 230000004888 barrier function Effects 0.000 claims description 6
- 238000005530 etching Methods 0.000 claims description 6
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 3
- 238000011065 in-situ storage Methods 0.000 claims description 3
- 239000003960 organic solvent Substances 0.000 claims description 3
- 238000003475 lamination Methods 0.000 claims 4
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 238000002347 injection Methods 0.000 claims 1
- 239000007924 injection Substances 0.000 claims 1
- 239000012212 insulator Substances 0.000 claims 1
- 238000001465 metallisation Methods 0.000 claims 1
- 150000003376 silicon Chemical class 0.000 claims 1
- 239000002070 nanowire Substances 0.000 abstract description 19
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 16
- 125000006850 spacer group Chemical group 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 238000002513 implantation Methods 0.000 description 3
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000407 epitaxy Methods 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 230000012447 hatching Effects 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- 229910003855 HfAlO Inorganic materials 0.000 description 1
- 229910004129 HfSiO Inorganic materials 0.000 description 1
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 1
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 1
- -1 LaAlO 3 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005293 physical law Methods 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/024—Manufacture or treatment of FETs having insulated gates [IGFET] of fin field-effect transistors [FinFET]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/62—Fin field-effect transistors [FinFET]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/82—Heterojunctions
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thin Film Transistor (AREA)
Abstract
本发明提供了一种FinFET制造方法,通过形成硅/锗硅叠层并去除其中一种材料以形成纳米线,由于硅/锗硅叠层包含于鳍片之中,纳米线并不需要采用额外的pad进行支撑,降低了工艺的难度,并且,由于硅和锗硅的材料性质差异,可以采用高选择比的湿法刻蚀工艺去除其中一种材料,而无需采用干法刻蚀工艺,进一步简化了工艺;而且并发明的方法与常规FinFET工艺兼容,可以简便有效地获得FinFET纳米线器件。
The present invention provides a FinFET manufacturing method, by forming a silicon/germanium silicon stack and removing one of the materials to form a nanowire, since the silicon/germanium silicon stack is included in the fin, the nanowire does not need to use additional The pad is supported, which reduces the difficulty of the process, and, due to the difference in material properties between silicon and germanium, one of the materials can be removed by a wet etching process with a high selectivity ratio, without using a dry etching process, further The process is simplified; and the invented method is compatible with the conventional FinFET process, and the FinFET nanowire device can be easily and effectively obtained.
Description
技术领域technical field
本发明涉及半导体器件制造方法领域,具体而言,涉及一种FinFET半导体器件的制造方法。The present invention relates to the field of semiconductor device manufacturing methods, in particular to a method for manufacturing FinFET semiconductor devices.
背景技术Background technique
近30年来,半导体器件一直按照摩尔定律等比例缩小,半导体集成电路的特征尺寸不断缩小,集成度不断提高。随着技术节点进入深亚微米领域,例如100nm以内,甚至45nm以内,传统场效应晶体管(FET),也即平面FET,开始遭遇各种基本物理定律的限制,使其等比例缩小的前景受到挑战。众多新型结构的FET被开发出来,以应对现实的需求,其中,FinFET就是一种很具等比例缩小潜力的新结构器件。In the past 30 years, semiconductor devices have been proportionally reduced in accordance with Moore's law, the feature size of semiconductor integrated circuits has been continuously reduced, and the integration level has been continuously improved. As the technology node enters the deep sub-micron field, such as within 100nm or even within 45nm, the traditional field effect transistor (FET), that is, planar FET, begins to encounter the limitations of various basic physical laws, making its prospect of scaling down challenged . Many new structure FETs have been developed to meet the actual needs, among which FinFET is a new structure device with great potential for scaling down.
FinFET,鳍状场效应晶体管,是一种多栅半导体器件。由于结构上的独有特点,FinFET成为深亚微米集成电路领域很具发展前景的器件。顾名思义,FinFET包括一个垂直于体硅的衬底的Fin,Fin被称为鳍片或鳍状半导体柱,不同的FinFET被STI结构分割开来。不同于常规的平面FET,FinFET的沟道区位于Fin之内。栅极绝缘层和栅极在侧面和顶面包围Fin,从而形成至少两面的栅极,即位于Fin的两个侧面上的栅极;同时,通过控制Fin的厚度,使得FinFET具有极佳的特性:更好的短沟道效应抑制能力,更好的亚阈值斜率,较低的关态电流,消除了浮体效应,更低的工作电压,更有利于按比例缩小。FinFET, Fin Field Effect Transistor, is a multi-gate semiconductor device. Due to its unique structure, FinFET has become a promising device in the field of deep submicron integrated circuits. As the name implies, FinFET includes a Fin perpendicular to the bulk silicon substrate, and Fin is called fin or fin-shaped semiconductor pillar, and different FinFETs are separated by STI structure. Unlike conventional planar FETs, the channel region of the FinFET is located within the Fin. The gate insulating layer and the gate surround Fin on the side and top surface, thereby forming a gate on at least two sides, that is, a gate on both sides of Fin; at the same time, by controlling the thickness of Fin, FinFET has excellent characteristics : Better short channel effect suppression ability, better sub-threshold slope, lower off-state current, eliminating floating body effect, lower operating voltage, and more conducive to scaling down.
虽然FinFET具有上述种种优点,但是仍然存在电流小、栅控弱的情况。为了解决上述问题,纳米线被认为是一种比较好的解决方案。但是常规的方法形成纳米线的刻蚀方法比较复杂,与常规FinFET工艺并不很兼容;同时纳米线需要pad进行支撑。这导致工艺比较复杂,提高了制作成本Although FinFET has the above-mentioned advantages, there are still situations where the current is small and the gate control is weak. In order to solve the above problems, nanowires are considered to be a better solution. However, the conventional etching method for forming nanowires is relatively complicated and not very compatible with conventional FinFET processes; at the same time, nanowires need pads for support. This leads to a more complicated process and increases the production cost
因此,需要提供一种新的FinFET制造方法,以更加简便和有效的方法形成纳米线。Therefore, it is necessary to provide a new FinFET manufacturing method to form nanowires in a more convenient and effective way.
发明内容Contents of the invention
本发明提出了一种FinFET制造方法,采用了硅/锗硅叠层以及高选择比刻蚀工艺,以简便有效地制造具有纳米线结构的FinFET器件。The invention proposes a FinFET manufacturing method, which adopts silicon/germanium-silicon stacking and high selectivity etching process to easily and effectively manufacture the FinFET device with nanowire structure.
本发明提供了一种半导体器件制造方法,用于制造FinFET器件,包括如下步骤:The invention provides a method for manufacturing a semiconductor device, which is used to manufacture a FinFET device, comprising the following steps:
用于制造FinFET器件,其特征在于包括如下步骤:For manufacturing a FinFET device, it is characterized in that comprising the following steps:
提供衬底,在所述衬底的表面形成杂质层;providing a substrate, and forming an impurity layer on a surface of the substrate;
在所述杂质层上形成硅层和锗硅层交替层叠的硅/锗硅叠层;forming a silicon/germanium-silicon stack in which silicon layers and germanium-silicon layers are alternately stacked on the impurity layer;
通过图案化处理,形成鳍片;Fins are formed by patterning;
在所述鳍片两侧形成STI;forming STIs on both sides of the fin;
形成虚设栅氧化层,虚设栅极堆栈,栅极侧墙;Form dummy gate oxide layer, dummy gate stack, gate sidewall;
形成源漏延伸区以及源漏区;Forming source and drain extension regions and source and drain regions;
全面性沉积介质层,覆盖所述虚设栅极堆栈;Depositing a dielectric layer comprehensively to cover the dummy gate stack;
平坦化处理暴露出所述虚设栅极堆栈上表面,并去除所述虚设栅极堆栈和所述虚设栅氧化层;planarizing to expose the upper surface of the dummy gate stack, and removing the dummy gate stack and the dummy gate oxide layer;
去除所述硅/锗硅叠层中的硅或者锗硅材料;removing the silicon or silicon germanium material in the silicon/germanium silicon stack;
形成栅极绝缘层和栅极。A gate insulating layer and a gate are formed.
根据本发明的一个方面,所述杂质层为在所述衬底上注入或者外延原位掺杂形成的层,其具有与所要制作的半导体器件源漏区掺杂类型相反的杂质;在所述杂质层和所述衬底之间,形成防止杂质扩散的阻挡层;所述阻挡层为原子序数小于硅的元素,优选为碳元素。According to one aspect of the present invention, the impurity layer is a layer formed by implantation or epitaxial in-situ doping on the substrate, which has an impurity opposite to the doping type of the source and drain regions of the semiconductor device to be fabricated; A barrier layer for preventing impurity diffusion is formed between the impurity layer and the substrate; the barrier layer is an element with an atomic number smaller than silicon, preferably carbon.
根据本发明的一个方面,所述STI的顶部高于所述硅/锗硅叠层的底部。According to one aspect of the invention, the top of the STI is higher than the bottom of the silicon/germanium stack.
根据本发明的一个方面,在去除所述硅/锗硅叠层中的硅或者锗硅材料时,采用高刻蚀选择比的工艺去除硅或者锗硅材料;去除所述硅/锗硅叠层中的硅时,采用干法刻蚀或者湿法刻蚀;采用湿法刻蚀时,选择具有羟基的有机溶剂,优选为TMAH。According to one aspect of the present invention, when removing the silicon or silicon germanium material in the silicon/germanium silicon stack, the silicon or germanium silicon material is removed by a process with a high etching selectivity; the silicon/germanium silicon stack is removed When silicon is contained in the silicon, dry etching or wet etching is used; when wet etching is used, an organic solvent having a hydroxyl group is selected, preferably TMAH.
本发明的优点在于:通过形成硅/锗硅叠层并去除其中一种材料以形成纳米线,由于硅/锗硅叠层包含于鳍片之中,纳米线并不需要采用额外的pad进行支撑,降低了工艺的难度,并且,由于硅和锗硅的材料性质差异,可以采用高选择比的湿法刻蚀工艺去除其中一种材料,而无需采用干法刻蚀工艺,进一步简化了工艺;而且并发明的方法与常规FinFET工艺兼容,可以简便有效地获得FinFET纳米线器件。The advantage of the present invention is that by forming a silicon/germanium-silicon stack and removing one of the materials to form a nanowire, since the silicon/germanium-silicon stack is contained in the fin, the nanowire does not need to be supported by an additional pad , which reduces the difficulty of the process, and, due to the difference in material properties between silicon and germanium, one of the materials can be removed by a wet etching process with a high selectivity ratio, without using a dry etching process, which further simplifies the process; Moreover, the invented method is compatible with the conventional FinFET process, and the FinFET nanowire device can be obtained simply and effectively.
附图说明Description of drawings
图1-10本发明提供的半导体制造方法的流程示意图。1-10 are schematic flow charts of the semiconductor manufacturing method provided by the present invention.
具体实施方式detailed description
以下,通过附图中示出的具体实施例来描述本发明。但是应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。Hereinafter, the present invention is described by means of specific embodiments shown in the drawings. It should be understood, however, that these descriptions are exemplary only and are not intended to limit the scope of the present invention. Also, in the following description, descriptions of well-known structures and techniques are omitted to avoid unnecessarily obscuring the concept of the present invention.
本发明提供一种半导体器件制造方法,具体而言,涉及一种FinFET器件制造方法。下面,参见说明书附图,将详细描述本发明提供的半导体器件制造方法。The invention provides a method for manufacturing a semiconductor device, and in particular, relates to a method for manufacturing a FinFET device. Hereinafter, referring to the accompanying drawings, the semiconductor device manufacturing method provided by the present invention will be described in detail.
首先,参见附图1,提供衬底1,在衬底1的表面形成杂质层2。衬底1可以依器件用途需要而合理选择,包括但不限于体硅衬底,SOI衬底,锗衬底,锗硅(SiGe)衬底,化合物半导体材料,例如氮化镓(GaN)、砷化镓(GaAs)、磷化铟(InP)等。出于与传统半导体工艺兼容以及成本的考虑,本实施例中的衬底1优选地采用了体硅衬底。First, referring to FIG. 1 , a substrate 1 is provided, and an impurity layer 2 is formed on the surface of the substrate 1 . The substrate 1 can be reasonably selected according to the needs of device applications, including but not limited to bulk silicon substrates, SOI substrates, germanium substrates, silicon germanium (SiGe) substrates, compound semiconductor materials, such as gallium nitride (GaN), arsenic Gallium (GaAs), Indium Phosphide (InP), etc. In consideration of compatibility with conventional semiconductor processes and cost, the substrate 1 in this embodiment preferably adopts a bulk silicon substrate.
杂质层2为在衬底1上注入或者外延原位掺杂形成的层,其具有与所要制作的半导体器件源漏区掺杂类型相反的杂质。另外,可选地,在杂质层2和衬底1之间,形成防止杂质扩散的阻挡层(未图示)。阻挡层可以防止杂质层2中的杂质元素扩散以及防止衬底1内的掺杂元素扩散,可以采用在衬底1上注入或者外延形成。阻挡层包括原子序数小于硅的元素,优选采用碳元素产生阻挡作用。The impurity layer 2 is a layer formed by implantation or epitaxial in-situ doping on the substrate 1 , which has an impurity opposite to the doping type of the source and drain regions of the semiconductor device to be fabricated. In addition, optionally, between the impurity layer 2 and the substrate 1, a barrier layer (not shown) for preventing diffusion of impurities is formed. The barrier layer can prevent the diffusion of impurity elements in the impurity layer 2 and the diffusion of dopant elements in the substrate 1 , and can be formed by implantation or epitaxy on the substrate 1 . The blocking layer includes an element with an atomic number smaller than silicon, and carbon element is preferably used to produce a blocking effect.
接着,参见图2,在杂质层2上,形成硅层和锗硅层交替层叠的硅/锗硅叠层3。硅/锗硅叠层3优选采用外延工艺形成,其最底层为硅或者锗,在本发明图示的实施例中,采用了锗硅层为最底层;可选的实施例中,可以采用硅层为最底层。硅/锗硅叠层3用于在随后的工艺中形成纳米线,每层硅层和锗硅层的厚度为2-50nm,优选为5-15nm,层叠的数目通常在3层以上,优选为5层,即自下向上的锗硅/硅/锗硅/硅/锗硅。Next, referring to FIG. 2 , on the impurity layer 2 , a silicon/germanium-silicon stack 3 in which silicon layers and germanium-silicon layers are alternately stacked is formed. The silicon/germanium-silicon stack 3 is preferably formed by an epitaxial process, and its bottom layer is silicon or germanium. In the illustrated embodiment of the present invention, a germanium-silicon layer is used as the bottom layer; in an optional embodiment, silicon can be used. layer is the bottom layer. The silicon/germanium-silicon stack 3 is used to form nanowires in subsequent processes, the thickness of each layer of silicon and germanium-silicon layer is 2-50nm, preferably 5-15nm, and the number of stacks is usually more than 3 layers, preferably 5 layers, that is, silicon germanium/silicon/silicon germanium/silicon/silicon germanium from bottom to top.
参见图3,其为侧视图,通过图案化处理,形成鳍片。优选地,鳍片包括硅/锗硅叠层3、杂质层2以及衬底1的凸出部4。Referring to FIG. 3 , which is a side view, fins are formed by patterning. Preferably, the fin includes a silicon/germanium silicon stack 3 , an impurity layer 2 and a protruding portion 4 of the substrate 1 .
接着,参见图4,其为侧视图,在鳍片两侧形成STI结构5。其中,STI结构5形成在衬底1之上,采用SiO2、SiON等材料,具体的工艺包括但是不限于PECVD、HDP-CVD、RTO(快速热氧化)等。优选地,STI结构5的顶部高于硅/锗硅叠层3的底部,以实现纳米线器件之间的隔离。Next, referring to FIG. 4 , which is a side view, STI structures 5 are formed on both sides of the fin. Wherein, the STI structure 5 is formed on the substrate 1 using materials such as SiO 2 and SiON, and specific processes include but are not limited to PECVD, HDP-CVD, RTO (rapid thermal oxidation) and the like. Preferably, the top of the STI structure 5 is higher than the bottom of the silicon/germanium silicon stack 3 to achieve isolation between nanowire devices.
在形成STI结构5之后,参见图5,形成虚设栅氧化层6,虚设栅极堆栈7,栅极侧墙8。虚设栅氧化层6、虚设栅极堆栈7、栅极侧墙8线条跨于鳍片之上,通常是与鳍片线条垂直相交。虚设栅氧化层6例如为SiO2,虚设栅极堆栈7的材料为多晶硅或者非晶硅等,在本发明的一个实施例中,采用了非晶硅。栅极侧墙8的具体形成方法包括:全面沉积栅极侧墙材料,并进行回刻蚀,其中,栅极侧墙材料包括但不限于Si3N4。After the STI structure 5 is formed, referring to FIG. 5 , a dummy gate oxide layer 6 , a dummy gate stack 7 and a gate spacer 8 are formed. The lines of the dummy gate oxide layer 6 , the dummy gate stack 7 , and the gate sidewall 8 straddle the fins, usually perpendicular to the lines of the fins. The dummy gate oxide layer 6 is, for example, SiO 2 , and the material of the dummy gate stack 7 is polysilicon or amorphous silicon. In one embodiment of the present invention, amorphous silicon is used. The specific method for forming the gate spacer 8 includes: depositing gate spacer material on the entire surface, and performing etching back, wherein the gate spacer material includes but not limited to Si 3 N 4 .
接着,参见图6,形成源漏延伸区和源漏区9。具体工艺包括去除部分硅/锗硅叠层3材料,形成源漏极凹槽,然后进行源漏延伸区和源漏区9的填充,例如采用外延等工艺。源漏延伸区和源漏区9还可以采用硅化物,或者应力材料。Next, referring to FIG. 6 , a source-drain extension region and a source-drain region 9 are formed. The specific process includes removing part of the silicon/germanium-silicon stack 3 material, forming source and drain grooves, and then filling the source and drain extension regions and the source and drain regions 9, for example, by using epitaxy and other processes. The source-drain extension region and the source-drain region 9 may also use silicide or stress material.
参见图7,全面性沉积介质层10,覆盖虚设栅极堆栈7、栅极侧墙8等。介质层10材料为SiO2等。Referring to FIG. 7 , a dielectric layer 10 is deposited all over to cover the dummy gate stack 7 , the gate spacer 8 and so on. The material of the dielectric layer 10 is SiO 2 or the like.
接着,参见图8,采用平坦化工艺处理以暴露出虚设栅极堆栈7的上表面,然后,去除虚设栅极堆栈7和虚设栅氧化层6,以形成栅极凹槽11。栅极凹槽11也暴露出包括硅/锗硅叠层3的鳍片的顶面和侧面。Next, referring to FIG. 8 , a planarization process is used to expose the upper surface of the dummy gate stack 7 , and then the dummy gate stack 7 and the dummy gate oxide layer 6 are removed to form a gate groove 11 . The gate recess 11 also exposes the top and side surfaces of the fin including the silicon/germanium silicon stack 3 .
参见图9,经由暴露出的栅极凹槽11,去除硅/锗硅叠层3中的硅或者锗硅材料之一。优选地,采用高选择比刻蚀工艺,例如干法或者湿刻蚀,去除硅或锗硅。更有选地采用湿法刻蚀,而不采用干法刻蚀工艺,可以进一步简化工艺。本发明优选的实施例中去除了硅材料,在采用湿法刻蚀时,选择具有羟基的有机溶剂,优选为TMAH,此情况下,保留锗硅作为纳米线,也即器件的沟道区,锗硅沟道区会具有更好的器件性能;在可选的实施例中,可以选择去除锗硅而保留硅材料。图9中为去除了硅材料后的示意图,其中斜线阴影表示去除了硅材料后形成的空间。Referring to FIG. 9 , one of the silicon or silicon germanium materials in the silicon/silicon germanium stack 3 is removed through the exposed gate groove 11 . Preferably, silicon or silicon germanium is removed by using a high selectivity etching process, such as dry or wet etching. The more selective use of wet etching rather than dry etching processes further simplifies the process. In the preferred embodiment of the present invention, the silicon material is removed. When wet etching is used, an organic solvent with hydroxyl groups, preferably TMAH, is selected. In this case, silicon germanium is retained as the nanowire, that is, the channel region of the device. The silicon germanium channel region will have better device performance; in an alternative embodiment, the silicon germanium can be selectively removed while the silicon material remains. FIG. 9 is a schematic diagram after the silicon material is removed, wherein oblique hatching indicates the space formed after the silicon material is removed.
接着,参见图10,形成栅极绝缘层和栅极12。栅极绝缘层和栅极12为HKMG,其中,栅极绝缘层采用高K栅极绝缘层材料,选自以下材料之一或其组合构成的一层或多层:Al2O3,HfO2,包括HfSiOx、HfSiON、HfAlOx、HfTaOx、HfLaOx、HfAlSiOx以及HfLaSiOx至少之一在内的铪基高K介质材料,包括ZrO2、La2O3、LaAlO3、TiO2、或Y2O3至少之一在内的稀土基高K介质材料。而栅极的材料为金属、合金或金属化合物,例如TiN,TaN,W等。栅极绝缘层和栅极12包围硅/锗硅叠层3中剩余的锗硅或者硅纳米线,从而形成器件。图10中为包围锗硅纳米线的示意图,其中方格阴影表示栅极绝缘层和栅极12。Next, referring to FIG. 10 , a gate insulating layer and a gate 12 are formed. The gate insulating layer and the gate 12 are HKMG, wherein the gate insulating layer adopts a high-K gate insulating layer material, one or more layers selected from one or a combination of the following materials: Al 2 O 3 , HfO 2 , a hafnium-based high-K dielectric material including at least one of HfSiO x , HfSiON, HfAlO x , HfTaO x , HfLaO x , HfAlSiO x , and HfLaSiO x , including ZrO 2 , La 2 O 3 , LaAlO 3 , TiO 2 , or A rare earth-based high-K dielectric material containing at least one of Y 2 O 3 . The material of the gate is metal, alloy or metal compound, such as TiN, TaN, W and so on. The gate insulating layer and the gate 12 surround the remaining silicon germanium or silicon nanowires in the silicon/silicon germanium stack 3 to form a device. FIG. 10 is a schematic diagram surrounding silicon germanium nanowires, where the square hatching represents the gate insulating layer and the gate 12 .
以上,本发明的半导体器件制造方法已得到说明。在本发明的方法中,通过形成硅/锗硅叠层并去除其中一种材料以形成纳米线,由于硅/锗硅叠层包含于鳍片之中,纳米线并不需要采用额外的pad进行支撑,降低了工艺的难度,并且,由于硅和锗硅的材料性质差异,可以采用高选择比的湿法刻蚀工艺去除其中一种材料,而无需采用干法刻蚀工艺,进一步简化了工艺;而且并发明的方法与常规FinFET工艺兼容,可以简便有效地获得FinFET纳米线器件。In the above, the semiconductor device manufacturing method of the present invention has been described. In the method of the present invention, nanowires are formed by forming a silicon/germanium-silicon stack and removing one of the materials. Since the silicon/germanium-silicon stack is contained in the fins, the nanowire does not need to use an additional pad for processing. support, which reduces the difficulty of the process, and, due to the difference in material properties between silicon and germanium, one of the materials can be removed by a wet etching process with a high selectivity ratio, without using a dry etching process, which further simplifies the process ; and the invented method is compatible with the conventional FinFET process, and can easily and effectively obtain the FinFET nanowire device.
尽管已参照一个或多个示例性实施例说明本发明,本领域技术人员可以知晓无需脱离本发明范围而对器件结构和/或工艺流程做出各种合适的改变和等价方式。此外,由所公开的教导可做出许多可能适于特定情形或材料的修改而不脱离本发明范围。因此,本发明的目的不在于限定在作为用于实现本发明的最佳实施方式而公开的特定实施例,而所公开的器件结构及其制造方法将包括落入本发明范围内的所有实施例。Although the invention has been described with reference to one or more exemplary embodiments, those skilled in the art will recognize various suitable changes and equivalents in device structures and/or process flows without departing from the scope of the invention. In addition, many modifications, possibly suited to a particular situation or material, may be made from the disclosed teaching without departing from the scope of the invention. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode for carrying out this invention, but that the disclosed device structures and methods of making the same will include all embodiments falling within the scope of the invention .
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510609662.3A CN106549058A (en) | 2015-09-22 | 2015-09-22 | Semiconductor device manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510609662.3A CN106549058A (en) | 2015-09-22 | 2015-09-22 | Semiconductor device manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106549058A true CN106549058A (en) | 2017-03-29 |
Family
ID=58364337
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510609662.3A Pending CN106549058A (en) | 2015-09-22 | 2015-09-22 | Semiconductor device manufacturing method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106549058A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050224889A1 (en) * | 2004-04-09 | 2005-10-13 | Chang-Woo Oh | Surrounded-channel transistors with directionally etched gate or insulator formation regions and methods of fabrication therefor |
CN103238208A (en) * | 2010-12-01 | 2013-08-07 | 英特尔公司 | Silicon and silicon germanium nanowire structures |
US20140264253A1 (en) * | 2013-03-14 | 2014-09-18 | Seiyon Kim | Leakage reduction structures for nanowire transistors |
CN104126228A (en) * | 2011-12-23 | 2014-10-29 | 英特尔公司 | Non-planar gate all-around device and manufacturing method thereof |
-
2015
- 2015-09-22 CN CN201510609662.3A patent/CN106549058A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050224889A1 (en) * | 2004-04-09 | 2005-10-13 | Chang-Woo Oh | Surrounded-channel transistors with directionally etched gate or insulator formation regions and methods of fabrication therefor |
CN103238208A (en) * | 2010-12-01 | 2013-08-07 | 英特尔公司 | Silicon and silicon germanium nanowire structures |
CN104126228A (en) * | 2011-12-23 | 2014-10-29 | 英特尔公司 | Non-planar gate all-around device and manufacturing method thereof |
US20140264253A1 (en) * | 2013-03-14 | 2014-09-18 | Seiyon Kim | Leakage reduction structures for nanowire transistors |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106981488B (en) | Semiconductor device and method for manufacturing the same | |
TWI782150B (en) | Field effect transistor, system on chip, and method of manufacturing the same | |
TWI624932B (en) | 3D fin tunneling effect transistor | |
CN107039503A (en) | Horizontal grid is isolated around the bottom of nano-wire transistor | |
CN107978630A (en) | The field-effect transistor and its manufacture method of nanometer wire raceway groove with stacking | |
CN107492568A (en) | Semiconductor devices and its manufacture method | |
CN110634939A (en) | Dielectric spacer between nanowire transistor and substrate | |
CN102668089A (en) | Techniques for forming contacts to quantum well transistors | |
CN104465763A (en) | Asymmetric semiconductor device | |
US10062689B2 (en) | Method to fabricate vertical fin field-effect-transistors | |
US9640660B2 (en) | Asymmetrical FinFET structure and method of manufacturing same | |
CN104716171B (en) | Semiconductor arrangement and method for the production thereof | |
CN107516668A (en) | Semiconductor device and manufacturing method thereof | |
US20160380074A1 (en) | Method of forming field effect transistors (fets) with abrupt junctions and integrated circuit chips with the fets | |
CN105470254B (en) | U-shaped FinFET NOR gate structure and manufacturing method thereof | |
CN103377946A (en) | Semiconductor structure and manufacturing method thereof | |
CN105762190B (en) | Semiconductor device and method for manufacturing the same | |
CN104217948B (en) | Semiconductor manufacturing method | |
CN104124198A (en) | Semiconductor device and method for manufacturing the same | |
CN106558489A (en) | Nanowire structure, fence nanowire device and manufacturing method thereof | |
WO2016037396A1 (en) | Finfet structure and manufacturing method thereof | |
CN105470301B (en) | FinFET structure and manufacturing method thereof | |
CN104217947B (en) | Semiconductor manufacturing method | |
CN104078466B (en) | Flash device and manufacturing method thereof | |
CN106549043A (en) | Semiconductor device manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170329 |
|
RJ01 | Rejection of invention patent application after publication |