[go: up one dir, main page]

CN106531888A - Porphyrin derivative used for interface modification of hole transport layer/perovskite layer in inverted perovskite solar cell - Google Patents

Porphyrin derivative used for interface modification of hole transport layer/perovskite layer in inverted perovskite solar cell Download PDF

Info

Publication number
CN106531888A
CN106531888A CN201610652091.6A CN201610652091A CN106531888A CN 106531888 A CN106531888 A CN 106531888A CN 201610652091 A CN201610652091 A CN 201610652091A CN 106531888 A CN106531888 A CN 106531888A
Authority
CN
China
Prior art keywords
perovskite
layer
hole transport
transport layer
porphyrin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610652091.6A
Other languages
Chinese (zh)
Other versions
CN106531888B (en
Inventor
高德青
李波波
郑朝月
朱杰
黄维
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN201610652091.6A priority Critical patent/CN106531888B/en
Publication of CN106531888A publication Critical patent/CN106531888A/en
Application granted granted Critical
Publication of CN106531888B publication Critical patent/CN106531888B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/331Metal complexes comprising an iron-series metal, e.g. Fe, Co, Ni
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/371Metal complexes comprising a group IB metal element, e.g. comprising copper, gold or silver
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/381Metal complexes comprising a group IIB metal element, e.g. comprising cadmium, mercury or zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及卟啉衍生物在倒置钙钛矿型太阳能电池中空穴传输层/钙钛矿层的界面修饰方面的应用,器件结构为:ITO/空穴传输层/钙钛矿层/电子传输层/阴极。将卟啉用于钙钛矿太阳能电池中的空穴传输层/钙钛矿层的界面上,首先,可调节钙钛矿层的形貌,减少膜中的缺陷密度,提高钙钛矿层的质量;其次,引入卟啉界面修饰层,可以有效地阻挡电子从钙钛矿向空穴传输层的传输,同时有利于空穴从钙钛矿向空穴传输层的注入与传输,从而有利于器件效率的提高。此外,由于卟啉的溶解性较好,可通过溶液旋涂法将其引入到钙钛矿太阳能电池中,操作非常简单,可重复性好。The invention relates to the application of porphyrin derivatives in the interface modification of hole transport layer/perovskite layer in inverted perovskite solar cells. The device structure is: ITO/hole transport layer/perovskite layer/electron transport layer/cathode . Using porphyrin on the interface of the hole transport layer/perovskite layer in perovskite solar cells, firstly, it can adjust the morphology of the perovskite layer, reduce the defect density in the film, and improve the quality of the perovskite layer; secondly , the introduction of a porphyrin interface modification layer can effectively block the transport of electrons from the perovskite to the hole transport layer, and at the same time facilitate the injection and transport of holes from the perovskite to the hole transport layer, which is conducive to the improvement of device efficiency. improve. In addition, due to the good solubility of porphyrin, it can be introduced into perovskite solar cells by solution spin-coating method, which is very simple and reproducible.

Description

卟啉衍生物用于倒置钙钛矿太阳能电池中空穴传输层/钙钛 矿层的界面修饰Porphyrin derivatives for hole transport layer/perovskite in inverted perovskite solar cells Interface Modification of Mineral Seams

技术领域technical field

本发明涉及卟啉衍生物在倒置钙钛矿型太阳能电池中空穴传输层/钙钛矿层的界面修饰方面的应用。The invention relates to the application of porphyrin derivatives in the interface modification of hole transport layer/perovskite layer in inverted perovskite solar cells.

背景技术Background technique

21世纪以来,能源问题日益突出,目前煤炭、石油等非可再生化石能源是当今社会的主要能量来源,但它们在开采、运输加工及使用的过程中会造成严重的环境污染,如温室效应、雾霾、土壤结块等等,因此开发可再生的清洁能源迫在眉睫。其中,太阳能资源取之不尽、用之不竭,且清洁无污染,可安全使用,所以合理地利用太阳能是解决能源问题的有效途径之一,而太阳能电池能将太阳能直接转化成电能,一直受到研究者们的关注。Since the 21st century, energy problems have become increasingly prominent. At present, non-renewable fossil energy such as coal and oil is the main energy source in today's society, but they will cause serious environmental pollution during the process of mining, transportation, processing and use, such as the greenhouse effect, Haze, soil agglomeration, etc., so the development of renewable clean energy is imminent. Among them, solar energy resources are inexhaustible, inexhaustible, clean and pollution-free, and can be used safely. Therefore, rational use of solar energy is one of the effective ways to solve energy problems, and solar cells can directly convert solar energy into electrical energy. received the attention of researchers.

自太阳能电池被报道以来,其发展历程可划分为四代:第一代是以单晶硅、多晶硅为代表的硅基太阳能电池;第二代是以碲化镉(CdTe)和铜铟镓硒(CIGS)为代表的薄膜太阳能电池;第三代是以染料敏化(DSSC)、有机(OPV)及量子点为代表的太阳能电池;第四代是以钙钛矿为代表的新型太阳能电池。其中第-、二代太阳能电池均已实现了商业化,但是这些太阳能电池技术的大规模生产存在着生产耗能大、成本高及环境污染等问题。相比之下,第三、四代太阳能电池成本低、易于制备,发展前景广阔,尤其是新兴的钙钛矿太阳能电池自2009年被报道以来,其光电转换效率(PCE)已由最初的3.8%提高到了22%以上,发展速度非常惊人,已成为光伏领域的研究热点。Since the solar cell was reported, its development process can be divided into four generations: the first generation is silicon-based solar cells represented by monocrystalline silicon and polycrystalline silicon; the second generation is based on cadmium telluride (CdTe) and copper indium gallium selenide Thin-film solar cells represented by CIGS; the third generation is solar cells represented by dye-sensitized (DSSC), organic (OPV) and quantum dots; the fourth generation is a new type of solar cell represented by perovskite. Among them, the first- and second-generation solar cells have been commercialized, but the large-scale production of these solar cell technologies has problems such as large production energy consumption, high cost, and environmental pollution. In contrast, the third and fourth generation solar cells are low in cost, easy to prepare, and have broad development prospects, especially since the emerging perovskite solar cells were reported in 2009, their photoelectric conversion efficiency (PCE) has changed from the original 3.8 % increased to more than 22%, the development speed is very alarming, has become a research hotspot in the field of photovoltaics.

钙钛矿太阳能电池是以钙钛矿作为光吸收层。钙钛矿材料的基本结构为正八面体型,化学组成为ABX3(A代表有机铵阳离子,如CH3NH3 +、HC(NH2)2 +;B代表二价金属阳离子,如Pb2+、Sn2+;X代表卤素离子,如I-、Cl-、Br-)。钙钛矿本身具有光吸收谱较宽、能隙可调节、载流子扩散长度及寿命较长以及价廉、制备工艺简单等优点。钙钛矿的成膜工艺具有多样化,主要分为一步旋涂法、两步旋涂或浸泡法以及真空蒸镀法等;钙钛矿型太阳能电池器件结构也具有多样化,主要分为两种类型,一种是传统结构:FTO导电玻璃/电子传输层/钙钛矿层/空穴传输层/金属电极(金或银),另一种是倒置结构:ITO导电玻璃/空穴传输层/钙钛矿层/电子传输层/金属电极。钙钛矿太阳能电池的工作原理涉及到钙钛矿层对光子的吸收及激子的产生过程,电子、空穴分别向电子、空穴传输层的注入及传输过程,电极的收集过程。其中,载流子的提取和注入发生在钙钛矿/电子传输层、钙钛矿/空穴传输层以及电子、空穴传输层/电极的界面之间,界面层的性质对于器件性能的优劣有着很大的影响,因此,对界面层进行修饰改性是获得高性能太阳能电池的有效途径之一。通过界面修饰不仅可以提高开路电压、减少或消除光电流的滞回现象,同时载流子传输层与钙钛矿层之间的界面修饰有效地保护钙钛矿层不被腐蚀,从而在一定程度上提高器件的稳定性。Ogomi等人先是在电子传输层二氧化钛(TiO2)/钙钛矿层之间引入HOCO-R-NH3 +I-自组装单分子层,可以抑制TiO2中电子与钙钛矿中空穴的复合,从而提高器件的性能;富勒烯(C60)及其衍生物自组装单分子层用于修饰TiO2/钙钛矿间的界面,同时提高开路电压和填充因子,从而进一步提高电池的效率;其他用来修饰电子传输层(TiO2、氧化锌)与钙钛矿的界面的材料,如丙氨酸、4-氨基苯甲酸、有机硅烷等,可通过提高钙钛矿膜的质量,从而有利于器件光电性能的提高。此外,C12-硅烷等疏水性分子被引入到钙钛矿/空穴传输层(spiro-OMeTAD)的界面上,可一定程度上减少水、氧等对钙钛矿膜的腐蚀,从而提高器件的稳定性。Perovskite solar cells use perovskite as the light-absorbing layer. The basic structure of perovskite materials is octahedral, and the chemical composition is ABX 3 (A represents organic ammonium cations, such as CH 3 NH 3 + , HC(NH 2 ) 2 + ; B represents divalent metal cations, such as Pb 2+ , Sn 2+ ; X represents halide ions, such as I - , Cl - , Br - ). Perovskite itself has the advantages of wide optical absorption spectrum, adjustable energy gap, long carrier diffusion length and lifetime, low cost, and simple preparation process. The film-forming process of perovskite is diversified, mainly divided into one-step spin coating method, two-step spin coating or immersion method, and vacuum evaporation method; the device structure of perovskite solar cells is also diversified, mainly divided into two types: Two types, one is the traditional structure: FTO conductive glass/electron transport layer/perovskite layer/hole transport layer/metal electrode (gold or silver), and the other is an inverted structure: ITO conductive glass/hole transport layer/ Perovskite layer/electron transport layer/metal electrode. The working principle of perovskite solar cells involves the absorption of photons by the perovskite layer and the generation of excitons, the injection and transmission of electrons and holes to the electron and hole transport layers, and the collection process of electrodes. Among them, the extraction and injection of carriers occur between the interfaces of perovskite/electron transport layer, perovskite/hole transport layer and electron, hole transport layer/electrode, and the properties of the interface layer have a great influence on the performance of the device. Therefore, modifying the interface layer is one of the effective ways to obtain high-performance solar cells. The interface modification can not only increase the open circuit voltage, reduce or eliminate the hysteresis phenomenon of photocurrent, but also the interface modification between the carrier transport layer and the perovskite layer can effectively protect the perovskite layer from being corroded, thus improving to a certain extent device stability. Ogomi et al. first introduced HOCO-R-NH 3 + I - self-assembled monolayer between the electron transport layer titanium dioxide (TiO 2 )/perovskite layer, which can inhibit the recombination of electrons in TiO 2 and holes in perovskite, Thereby improving the performance of the device; fullerene (C 60 ) and its derivative self-assembled monolayers are used to modify the interface between TiO 2 /perovskite, and at the same time increase the open circuit voltage and fill factor, thereby further improving the efficiency of the battery; Other materials used to modify the interface between the electron transport layer (TiO 2 , zinc oxide) and perovskite, such as alanine, 4-aminobenzoic acid, organosilane, etc., can improve the quality of the perovskite film, thereby effectively It is conducive to the improvement of the photoelectric performance of the device. In addition, hydrophobic molecules such as C 12 -silane are introduced into the interface of the perovskite/hole transport layer (spiro-OMeTAD), which can reduce the corrosion of the perovskite film by water and oxygen to a certain extent, thereby improving the performance of the device. stability.

目前,已报道的关于钙钛矿器件的界面修饰方面的工作多数都是针对传统的器件结构,针对倒置的器件结构的界面修饰方面的工作尚且不多。本发明主要是通过对倒置的钙钛矿器件中的空穴传输层/钙钛矿层的界面进行修饰,修饰材料为卟啉的衍生物。卟啉分子具有较大平面的π共轭结构,较强光吸收,独特的光电子和磁学性能以及优异的热稳定性。将卟啉用于钙钛矿太阳能电池中的空穴传输层/钙钛矿层的界面上,首先,可调节钙钛矿层的形貌,减少膜中的缺陷密度,提高钙钛矿层的质量;其次,引入卟啉界面修饰层,可以有效地阻挡电子从钙钛矿向空穴传输层的传输,同时有利于空穴从钙钛矿向空穴传输层的注入与传输,从而有利于器件效率的提高。此外,由于卟啉的溶解性较好,可通过溶液旋涂法将其引入到钙钛矿太阳能电池中,操作非常简单,可重复性好。At present, most of the reported work on the interface modification of perovskite devices is aimed at the traditional device structure, and there are not many works on the interface modification of the inverted device structure. The invention mainly modifies the interface of the hole transport layer/perovskite layer in the inverted perovskite device, and the modified material is a derivative of porphyrin. Porphyrin molecules have a large planar π-conjugated structure, strong light absorption, unique optoelectronic and magnetic properties, and excellent thermal stability. Using porphyrin on the interface of the hole transport layer/perovskite layer in perovskite solar cells, firstly, it can adjust the morphology of the perovskite layer, reduce the defect density in the film, and improve the quality of the perovskite layer; secondly , the introduction of a porphyrin interface modification layer can effectively block the transport of electrons from the perovskite to the hole transport layer, and at the same time facilitate the injection and transport of holes from the perovskite to the hole transport layer, which is conducive to the improvement of device efficiency. improve. In addition, due to the good solubility of porphyrin, it can be introduced into perovskite solar cells by solution spin-coating method, which is very simple and reproducible.

发明目的purpose of invention

本发明目的是将卟啉衍生物应用于倒置的钙钛矿太阳能电池中空穴传输层/钙钛矿层的界面修饰。The purpose of the present invention is to apply porphyrin derivatives to the interface modification of the hole transport layer/perovskite layer in an inverted perovskite solar cell.

发明内容Contents of the invention

1.一种基于卟啉衍生物的倒置钙钛矿太阳能电池中空穴传输层/钙钛矿层的界面修饰,分子结构式如下:1. Interface modification of hole transport layer/perovskite layer in an inverted perovskite solar cell based on porphyrin derivatives, the molecular structural formula is as follows:

n=1-16,M=Zn2+,Fe2+,Co2+,Ni2+,Cu2+,X=-SAcn=1-16, M=Zn 2+ , Fe 2+ , Co 2+ , Ni 2+ , Cu 2+ , X=-SAc

2.卟啉在空穴传输层界面修饰的制备方法,包括旋涂法、蒸镀法、自组装等。2. The preparation method of porphyrin at the hole transport layer interface modification, including spin coating method, evaporation method, self-assembly and so on.

3.基于卟啉修饰的空穴传输层/钙钛矿层的太阳能电池的制备。3. Preparation of solar cells based on porphyrin modified hole transport layer/perovskite layer.

附图说明Description of drawings

图1:基于卟啉修饰的钙钛矿太阳能电池的器件结构示意图(PEDOT:PSS代表聚3,4-乙撑二氧噻吩/聚苯乙烯磺酸盐,Porphyrin代表卟啉,Perovskite代表钙钛矿,PCBM代表一种富勒烯衍生物,C60代表富勒烯,BCP代表二甲基-4,7-二苯基-1,10-菲啰啉,Al代表铝)Figure 1: Schematic diagram of the device structure based on porphyrin-modified perovskite solar cells (PEDOT: PSS stands for poly-3,4-ethylenedioxythiophene/polystyrene sulfonate, Porphyrin stands for porphyrin, Perovskite stands for perovskite , PCBM represents a fullerene derivative, C 60 represents fullerene, BCP represents dimethyl-4,7-diphenyl-1,10-phenanthroline, Al represents aluminum)

图2:基于卟啉修饰与未修饰的太阳能电池的光电流密度-电压曲线图(Voc代表开路电压,Jsc代表短路电流密度,FF代表填充因子,PCE代表光电转换效率)Figure 2: Photocurrent density-voltage curves of porphyrin-modified and unmodified solar cells (V oc represents open circuit voltage, J sc represents short-circuit current density, FF represents fill factor, and PCE represents photoelectric conversion efficiency)

具体实施方式detailed description

实施案例1Implementation Case 1

将锌(II)5,10,15,20-四[5-(乙酰基巯基戊氧烷基)苯基]卟啉用作钙钛矿太阳能电池中聚3,4-乙撑二氧噻吩/聚苯乙烯磺酸盐(PEDOT:PSS)/钙钛矿的界面修饰层,其分子结构式如下:Zinc(II) 5,10,15,20-tetrakis[5-(acetylmercaptopentyloxy)phenyl]porphyrin as poly(3,4-ethylenedioxythiophene/ The interface modification layer of polystyrene sulfonate (PEDOT:PSS)/perovskite has the following molecular structure formula:

步骤一:ITO基片清洗Step 1: ITO substrate cleaning

使用锌粉和稀盐酸的混合液将1.5cmx1.5cm的ITO基片刻蚀,再将刻蚀后的ITO分别在去离子水、丙酮以及异丙醇中各超声清洗15分钟,最后用氮气吹干并在UV-臭氧中照射15分钟。Use a mixture of zinc powder and dilute hydrochloric acid to etch a 1.5cmx1.5cm ITO substrate, then ultrasonically clean the etched ITO in deionized water, acetone, and isopropanol for 15 minutes, and finally blow dry with nitrogen And irradiated in UV-ozone for 15 minutes.

步骤二:器件制备Step 2: Device Preparation

(1)加修饰层器件ITO/PEDOT:PSS/porphyrin/perovskite/PCBM/C60/BCP/Al的制备:(1) Preparation of modified layer device ITO/PEDOT:PSS/porphyrin/perovskite/PCBM/C 60 /BCP/Al:

先将PEDOT:PSS旋涂到臭氧处理过的ITO基片上(6000转/分钟(rpm),60秒(S))并在120℃的条件下退火30分钟,之后将其转移到氮气气氛手套箱中;再将锌(II)5,10,15,20-四[5-(乙酰基巯基戊氧烷基)苯基]卟啉的二氯苯溶液(0.5mM)旋涂到ITO/PEDOT:PSS上(6000rpm,30S),并在常温条件下过夜干燥;然后将1M的碘化铅(PbI2)溶液旋涂到ITO/PEDOT:PSS/卟啉上(3000rpm,40S),随即立刻旋涂一层甲基碘化铵(3000rpm,40S),紧接着在100℃的条件下退火5分钟左右;接下来将20mg/ml的PCBM的二氯苯溶液旋涂到钙钛矿上(6000rpm,30S),并在常温下放置10分钟以上;最后将C60(20nm)、BCP(8nm)缓冲层以及Al(100nm)电极蒸镀上去。PEDOT:PSS was first spin-coated onto an ozone-treated ITO substrate (6000 revolutions per minute (rpm), 60 seconds (S)) and annealed at 120°C for 30 minutes, then transferred to a nitrogen atmosphere glove box In; Zinc (II) 5,10,15,20-tetra[5-(acetylmercaptopentyloxy)phenyl]porphyrin dichlorobenzene solution (0.5mM) is then spin-coated to ITO/PEDOT: On PSS (6000rpm, 30S), and dry overnight at room temperature; then spin-coat 1M lead iodide (PbI 2 ) solution onto ITO/PEDOT:PSS/porphyrin (3000rpm, 40S), and immediately spin-coat A layer of methyl ammonium iodide (3000rpm, 40S), followed by annealing at 100°C for about 5 minutes; next, spin-coat a 20mg/ml solution of PCBM in dichlorobenzene onto the perovskite (6000rpm, 30S ), and placed at room temperature for more than 10 minutes; finally, C 60 (20nm), BCP (8nm) buffer layer and Al (100nm) electrode were vapor-deposited.

(2)不加修饰层器件ITO/PEDOT:PSS/perovskite/PCBM/C60/BCP/Al的制备:(2) Preparation of ITO/PEDOT: PSS/perovskite/PCBM/C 60 /BCP/Al without modification layer:

使用同样的制备工艺,不同之处在于没有porphyrin修饰层。Using the same preparation process, the difference is that there is no porphyrin modification layer.

步骤三:电池性能测试Step 3: Battery Performance Test

使用Keithley2400对器件进行性能测试:在模拟的AM 1.5G的太阳光照射条件下(光强度为100mW/cm2)可获得光电流-电压曲线,扫描电压范围是反向扫描1.2V→-1.2V,正向扫描-1.2V→1.2V,扫描速率50mV/S。Use Keithley2400 to test the performance of the device: under the simulated AM 1.5G sunlight irradiation condition (light intensity is 100mW/cm 2 ), the photocurrent-voltage curve can be obtained, and the scanning voltage range is reverse scanning 1.2V→-1.2V , Forward scan -1.2V→1.2V, scan rate 50mV/S.

在PEDOT:PSS/钙钛矿的界面引入锌(II)5,10,15,20-四[5-(乙酰基巯基戊氧烷)苯基]卟啉,卟啉可通过其上的-SCOCH3基团化学吸附在PEDOT:PSS表面,这种分子间的静电相互作用可增加钙钛矿膜在PEDOT:PSS上的表面覆盖率,同时经过修饰后的PEDOT:PSS表面疏水性增强,钙钛矿膜在其表面成形时可降低异相成核点的密度,从而有利于膜中较大晶粒的形成,提高钙钛矿层的质量。此外,卟啉的最高占据轨道(HOMO)与最低未占据轨道(LUMO)能级与钙钛矿相匹配,可以有效地阻挡电子从钙钛矿向PEDOT:PSS的传输,同时有利于空穴从钙钛矿向PEDOT:PSS的注入与传输,最终经过修饰后的器件的效率由原来的11.35%提高到了13.55%。Zinc(II) 5,10,15,20-tetrakis[5-(acetylmercaptopentoxane)phenyl]porphyrin was introduced at the interface of PEDOT:PSS/perovskite, and the porphyrin could pass through the -SCOCH The 3 groups are chemically adsorbed on the surface of PEDOT:PSS, and this intermolecular electrostatic interaction can increase the surface coverage of the perovskite film on PEDOT:PSS, and the modified PEDOT:PSS surface has enhanced hydrophobicity, and the perovskite When the mineral film is formed on its surface, the density of heterogeneous nucleation sites can be reduced, which is conducive to the formation of larger grains in the film and improves the quality of the perovskite layer. In addition, the energy levels of the highest occupied orbital (HOMO) and the lowest unoccupied orbital (LUMO) of porphyrin are matched with perovskite, which can effectively block the transport of electrons from perovskite to PEDOT:PSS, while facilitating the transfer of holes from the perovskite to PEDOT:PSS. The implantation and transport of perovskite to PEDOT:PSS, the efficiency of the modified device was increased from 11.35% to 13.55%.

总结以上结果表明,经过卟啉修饰过的钙钛矿太阳能电池的器件性能有着明显提高,且制备界面层的方法简单以及可重复性好。The above results show that the device performance of porphyrin-modified perovskite solar cells has been significantly improved, and the method of preparing the interface layer is simple and reproducible.

以上对本发明实施例所提供的卟啉衍生物在钙钛矿太阳能电池中的空穴传输层界面修饰进行了详细介绍,应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例只是用于帮助理解本发明的方法及其核心思想,内容不应理解为对本发明的限制。The interface modification of the hole transport layer of the porphyrin derivatives provided in the embodiments of the present invention in perovskite solar cells has been introduced in detail above, and the principles and implementation methods of the present invention have been described by using specific examples. The above examples It is only used to help understand the method and core idea of the present invention, and the content should not be construed as limiting the present invention.

Claims (3)

1.一种基于卟啉衍生物的钙钛矿太阳能电池中空穴传输层/钙钛矿层的界面修饰材料,分子结构式如下:1. A kind of interface modification material of hole transport layer/perovskite layer in the perovskite solar cell based on porphyrin derivative, molecular structural formula is as follows: 其中,n=1-16,M=Zn2+,Fe2+,Co2+,Ni2+,Cu2+,X=-SAc。Wherein, n=1-16, M=Zn 2+ , Fe 2+ , Co 2+ , Ni 2+ , Cu 2+ , X=-SAc. 2.如权利要求1中的卟啉在空穴传输层界面修饰的制备方法。2. The preparation method of porphyrin as claimed in claim 1 in hole transport layer interface modification. 3.卟啉修饰的空穴传输层/钙钛矿层在太阳能电池中应用。3. Application of porphyrin-modified hole transport layer/perovskite layer in solar cells.
CN201610652091.6A 2016-08-04 2016-08-04 Interface modification material Active CN106531888B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610652091.6A CN106531888B (en) 2016-08-04 2016-08-04 Interface modification material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610652091.6A CN106531888B (en) 2016-08-04 2016-08-04 Interface modification material

Publications (2)

Publication Number Publication Date
CN106531888A true CN106531888A (en) 2017-03-22
CN106531888B CN106531888B (en) 2019-06-21

Family

ID=58343497

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610652091.6A Active CN106531888B (en) 2016-08-04 2016-08-04 Interface modification material

Country Status (1)

Country Link
CN (1) CN106531888B (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107833970A (en) * 2017-10-19 2018-03-23 华中科技大学鄂州工业技术研究院 A kind of surface modification method of perovskite film
CN108832002A (en) * 2018-06-20 2018-11-16 南京邮电大学 A perovskite solar cell based on PVA modified hole transport layer
CN109860394A (en) * 2019-03-01 2019-06-07 兰州大学 A method for high-efficiency and stable large-area perovskite solar cells based on porphyrin doping
CN110212093A (en) * 2019-04-18 2019-09-06 上海黎元新能源科技有限公司 A kind of solar battery and preparation method thereof
CN110289354A (en) * 2019-06-10 2019-09-27 上海交通大学 A method for preparing solar cells based on double-sided passivation films of perovskite layers
CN110311042A (en) * 2019-05-31 2019-10-08 南京邮电大学 A kind of preparation method of self-assembled monolayer and perovskite solar cell and perovskite solar cell
CN110429180A (en) * 2019-07-16 2019-11-08 上海黎元新能源科技有限公司 A kind of solar battery and preparation method thereof
CN113651825A (en) * 2021-08-17 2021-11-16 华侨大学 Fullerene derivative, preparation method thereof and perovskite solar cell
CN113754893A (en) * 2021-09-01 2021-12-07 兰州大学 Preparation of perovskite solar cells by self-assembled supramolecules of porphyrin complexes
CN113943301A (en) * 2020-07-17 2022-01-18 厦门稀土材料研究所 Metalloporphyrin hole transport material for perovskite solar cell
CN114725296A (en) * 2022-04-11 2022-07-08 河北工业大学 Perovskite light-emitting diode containing modification layer and evaporation preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103943781A (en) * 2014-03-26 2014-07-23 中国科学院长春应用化学研究所 Polymer solar cell active layer ink liquid, high-stability polymer solar cell and manufacturing methods of polymer solar cell active layer ink liquid and high-stability polymer solar cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103943781A (en) * 2014-03-26 2014-07-23 中国科学院长春应用化学研究所 Polymer solar cell active layer ink liquid, high-stability polymer solar cell and manufacturing methods of polymer solar cell active layer ink liquid and high-stability polymer solar cell

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MIGUEL A. MORALES VÁSQUEZ,ET AL.: ""Gold and silver anchored cobalt porphyrins used for catalytic water splitting"", 《MATERIALS CHEMISTRY AND PHYSICS》 *
THOMAS NANN ET AL.: ""Electrochemical metallization of self-assembled porphyrin monolayers"", 《ANAL BIOANAL CHEM》 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107833970B (en) * 2017-10-19 2020-04-28 华中科技大学鄂州工业技术研究院 A kind of surface modification method of perovskite thin film
CN107833970A (en) * 2017-10-19 2018-03-23 华中科技大学鄂州工业技术研究院 A kind of surface modification method of perovskite film
CN108832002A (en) * 2018-06-20 2018-11-16 南京邮电大学 A perovskite solar cell based on PVA modified hole transport layer
CN108832002B (en) * 2018-06-20 2022-04-22 南京邮电大学 A perovskite solar cell based on PVA-modified hole transport layer
CN109860394B (en) * 2019-03-01 2021-06-22 兰州大学 A method for high-efficiency and stable large-area perovskite solar cells based on porphyrin doping
CN109860394A (en) * 2019-03-01 2019-06-07 兰州大学 A method for high-efficiency and stable large-area perovskite solar cells based on porphyrin doping
CN110212093A (en) * 2019-04-18 2019-09-06 上海黎元新能源科技有限公司 A kind of solar battery and preparation method thereof
CN110311042A (en) * 2019-05-31 2019-10-08 南京邮电大学 A kind of preparation method of self-assembled monolayer and perovskite solar cell and perovskite solar cell
CN110311042B (en) * 2019-05-31 2022-10-14 南京邮电大学 Preparation method of self-assembled monolayer and perovskite solar cell
CN110289354A (en) * 2019-06-10 2019-09-27 上海交通大学 A method for preparing solar cells based on double-sided passivation films of perovskite layers
CN110429180A (en) * 2019-07-16 2019-11-08 上海黎元新能源科技有限公司 A kind of solar battery and preparation method thereof
CN113943301A (en) * 2020-07-17 2022-01-18 厦门稀土材料研究所 Metalloporphyrin hole transport material for perovskite solar cell
CN113943301B (en) * 2020-07-17 2022-12-16 厦门稀土材料研究所 Metalloporphyrin hole transport material for perovskite solar cell
CN113651825B (en) * 2021-08-17 2022-07-26 华侨大学 Fullerene derivative, preparation method thereof and perovskite solar cell
CN113651825A (en) * 2021-08-17 2021-11-16 华侨大学 Fullerene derivative, preparation method thereof and perovskite solar cell
CN113754893A (en) * 2021-09-01 2021-12-07 兰州大学 Preparation of perovskite solar cells by self-assembled supramolecules of porphyrin complexes
CN113754893B (en) * 2021-09-01 2022-10-04 兰州大学 Preparation of perovskite solar cells by self-assembled supramolecules of porphyrin complexes
CN114725296A (en) * 2022-04-11 2022-07-08 河北工业大学 Perovskite light-emitting diode containing modification layer and evaporation preparation method thereof

Also Published As

Publication number Publication date
CN106531888B (en) 2019-06-21

Similar Documents

Publication Publication Date Title
Pan et al. Quantum dot-sensitized solar cells
CN106531888A (en) Porphyrin derivative used for interface modification of hole transport layer/perovskite layer in inverted perovskite solar cell
Ragoussi et al. New generation solar cells: concepts, trends and perspectives
Fan et al. Delayed annealing treatment for high-quality CuSCN: Exploring its impact on bifacial semitransparent nip planar perovskite solar cells
Haider et al. Nickel phthalocyanine as an excellent hole-transport material in inverted planar perovskite solar cells
CN103296211B (en) Heterojunction solar battery device of organic-two dimensional crystal-inorganic hybridization and preparation method thereof
CN102386336B (en) Inverted-structure polymer body heterojunction solar cell and manufacturing method thereof
CN102064281A (en) Organic photovoltaic battery with cesium acetate as cathode modification layer and preparation method thereof
Patel et al. Solution processed approaches for bulk-heterojunction solar cells based on Pb and Cd chalcogenide nanocrystals
CN112909181A (en) Tunneling junction of perovskite/perovskite two-end laminated solar cell
Sahdan et al. Fabrication of inverted bulk heterojunction organic solar cells based on conjugated P3HT: PCBM using various thicknesses of ZnO buffer layer
CN102005537A (en) Organic photovoltaic cell using lithium benzoate as cathode modifying layer and preparation method thereof
Kothandapani et al. Optimization of Cu2O and CuSCN as HTL of planar perovskite solar cells via numerical simulation
CN113707809A (en) Organic solar device electron transport layer composition, organic solar device and preparation method
KR20170000422A (en) Method for preparing Perovskite Solar Cell using 1,8-diiodooctane
Safriani et al. Calculation of DSSC parameters based on ZnO nanorod/TiO2 mesoporous photoanode
CN101692481A (en) Solar cell having integrated structure of plane-bulk heterojunction and preparation method thereof
Kumar et al. Conducting Polymers for Organic Solar Cell Applications
CN108461635B (en) A kind of method and application of boron compound surface modification perovskite thin film
CN106893082A (en) Extract the perovskite solar cell of layer material and its composition in new polymers hole
CN107068868B (en) A kind of reversed organic solar batteries and preparation method thereof
Hema et al. Polymer blend nanocomposites for solar cell applications
Seroka et al. Solar Energy Materials-Evolution and Niche Applications: A Literature Review. Materials 2022, 15, 5338
CN101471424A (en) Organic inorganic composite solar battery based on polycrystal gallium arsenic film
CN102315392A (en) Polymer solar battery without PEDOT and preparation method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant