CN106531809B - A deep trench power MOS device structure and its preparation method - Google Patents
A deep trench power MOS device structure and its preparation method Download PDFInfo
- Publication number
- CN106531809B CN106531809B CN201611005996.0A CN201611005996A CN106531809B CN 106531809 B CN106531809 B CN 106531809B CN 201611005996 A CN201611005996 A CN 201611005996A CN 106531809 B CN106531809 B CN 106531809B
- Authority
- CN
- China
- Prior art keywords
- region
- type
- layer
- lightly doped
- trenches
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 15
- 238000000034 method Methods 0.000 claims abstract description 45
- 239000004065 semiconductor Substances 0.000 claims abstract description 20
- 238000005468 ion implantation Methods 0.000 claims abstract description 13
- 238000004519 manufacturing process Methods 0.000 claims abstract description 8
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 40
- 229920005591 polysilicon Polymers 0.000 claims description 40
- 210000000746 body region Anatomy 0.000 claims description 30
- 239000000758 substrate Substances 0.000 claims description 24
- 238000002513 implantation Methods 0.000 claims description 13
- 238000005530 etching Methods 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 9
- 150000004767 nitrides Chemical class 0.000 claims description 4
- 238000000151 deposition Methods 0.000 claims description 3
- 238000011049 filling Methods 0.000 claims description 2
- 238000000137 annealing Methods 0.000 abstract description 7
- 238000005516 engineering process Methods 0.000 abstract description 3
- 238000002955 isolation Methods 0.000 abstract description 3
- 150000002500 ions Chemical class 0.000 description 9
- 229910052710 silicon Inorganic materials 0.000 description 9
- 239000010703 silicon Substances 0.000 description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 238000000206 photolithography Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 229910015900 BF3 Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000004148 unit process Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/63—Vertical IGFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/025—Manufacture or treatment of FETs having insulated gates [IGFET] of vertical IGFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
Landscapes
- Electrodes Of Semiconductors (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
本发明涉及半导体制造技术领域,尤其涉及一种深沟槽功率MOS器件结构及其制备方法,通过在做完体区离子注入和退火制程后,增加一道覆盖式P型离子注入工艺,于N型保护环上部及相邻N型保护环之间的P型轻掺杂外延层的上部形成P型轻掺杂区,以抵抗工艺中的N型离子污染,使器件外围的隔离由于没直接的大漏电路径而得以保持正常的工作,从而提高了器件的性能。
The present invention relates to the field of semiconductor manufacturing technology, in particular to a deep trench power MOS device structure and its preparation method. After the bulk ion implantation and annealing processes are completed, an overlay P-type ion implantation process is added to N-type The upper part of the guard ring and the upper part of the P-type lightly doped epitaxial layer between adjacent N-type guard rings forms a P-type lightly doped region to resist N-type ion pollution in the process, so that the isolation of the device periphery is not directly large The leakage path can maintain normal operation, thereby improving the performance of the device.
Description
技术领域technical field
本发明涉及半导体制造技术领域,尤其涉及一种深沟槽功率MOS器件结构及其制备方法。The invention relates to the technical field of semiconductor manufacturing, in particular to a deep trench power MOS device structure and a preparation method thereof.
背景技术Background technique
随着半导体技术的不断发展,功率MOS晶体管器件以其输入阻抗高、低损耗、开关速度快、无二次击穿、安全工作区宽、动态性能好、易与前极耦合实现大电流化、转换效率高等优点,逐渐替代双极型器件成为当今功率器件发展的主流。With the continuous development of semiconductor technology, power MOS transistor devices have high input impedance, low loss, fast switching speed, no secondary breakdown, wide safe working area, good dynamic performance, and easy coupling with the front electrode to achieve high current, With the advantages of high conversion efficiency, gradually replacing bipolar devices has become the mainstream of power device development today.
目前,在常规的深沟槽功率MOS器件工艺制备过程中,无尘室中会存在游离的N型离子。N型离子的来源有各单元制程的机台,生产循环使用的挡空片,机台维护过程中的异常处理,厂务的环境以及原物料的进料;N型游离离子在制程过程中会造成器件电性的漂移.特别是对P型MOS管而言,在做完体区(body)离子注入和退火后的制程后,到一定浓度比例的游离的N型离子在器件表面会形成很淡的N型界面,易导致MOS器件的终端区中外围隔离结构失效,进而导致器件的漏电流偏大和耐压偏低,这是本领域技术人员所不期望见到的。At present, during the fabrication process of conventional deep trench power MOS devices, there will be free N-type ions in the clean room. The sources of N-type ions include the machines of each unit process, the blanks used in the production cycle, abnormal handling during machine maintenance, the factory environment, and the feeding of raw materials; N-type free ions will be produced during the process. Causes electrical drift of the device. Especially for P-type MOS tubes, after the body region (body) ion implantation and annealing process are completed, a certain concentration of free N-type ions will form a large A weak N-type interface will easily lead to the failure of the peripheral isolation structure in the terminal area of the MOS device, which will lead to relatively large leakage current and relatively low withstand voltage of the device, which is not expected by those skilled in the art.
发明内容Contents of the invention
针对上述存在的问题,本发明公开了一种深沟槽功率MOS器件结构,包括:In view of the above existing problems, the present invention discloses a deep trench power MOS device structure, including:
P型重掺杂衬底,所述P型重掺杂衬底上方分为元胞区和终端区;a P-type heavily doped substrate, and the P-type heavily doped substrate is divided into a cell region and a terminal region above the P-type heavily doped substrate;
P型轻掺杂外延层,设置于所述P型重掺杂衬底之上;a P-type lightly doped epitaxial layer disposed on the P-type heavily doped substrate;
N型掺杂层,设置于所述元胞区的P型轻掺杂外延层之上;N-type doped layer disposed on the P-type lightly doped epitaxial layer of the cell region;
P型源区层,设置于所述N型掺杂层之上;a P-type source region layer disposed on the N-type doped layer;
若干元胞区沟槽,依次贯穿所述P型源区层和所述N型掺杂层,并设置于所述P型轻掺杂外延层中;A plurality of trenches in the cell region, which sequentially penetrate through the P-type source region layer and the N-type doped layer, and are arranged in the P-type lightly doped epitaxial layer;
若干终端区沟槽,设置于所述终端区的P型轻掺杂外延层中;A plurality of trenches in the termination region are arranged in the P-type lightly doped epitaxial layer of the termination region;
若干N型保护环,设置于所述终端区的P型轻掺杂外延层中,且相邻所述N型保护环之间的P型轻掺杂外延层的上部形成有P型轻掺杂区。Several N-type guard rings are arranged in the P-type lightly doped epitaxial layer of the terminal region, and the upper part of the P-type lightly doped epitaxial layer between adjacent N-type guard rings is formed with P-type lightly doped Area.
上述的深沟槽功率MOS器件结构,其中,所述深沟槽功率MOS器件结构还包括:The above-mentioned deep trench power MOS device structure, wherein the deep trench power MOS device structure further includes:
绝缘介质层,设置于所述若干元胞区沟槽和所述若干终端区沟槽的底部及其侧壁表面上,并将所述P型源区层的上表面、所述N型保护环裸露的上表面以及所述P型轻掺杂区裸露的上表面均予以覆盖;an insulating dielectric layer, disposed on the bottoms and sidewall surfaces of the plurality of cell region trenches and the plurality of terminal region trenches, and the upper surface of the P-type source region layer, the N-type guard ring Both the exposed upper surface and the exposed upper surface of the P-type lightly doped region are covered;
多晶硅层,设置于所述若干元胞区沟槽和所述若干终端区沟槽中,且所述多晶硅层的上表面低于所述P型源区层的上表面。The polysilicon layer is arranged in the plurality of cell region trenches and the plurality of terminal region trenches, and the upper surface of the polysilicon layer is lower than the upper surface of the P-type source region layer.
上述的深沟槽功率MOS器件结构,其中,所述多晶硅层的上表面与所述P型源区层的上表面之间的高度差为10~50埃。In the above deep trench power MOS device structure, the height difference between the upper surface of the polysilicon layer and the upper surface of the P-type source region layer is 10-50 angstroms.
上述的深沟槽功率MOS器件结构,其中,所述绝缘介质层为氧化层。In the above deep trench power MOS device structure, the insulating dielectric layer is an oxide layer.
上述的深沟槽功率MOS器件结构,其中,相邻所述元胞区沟槽之间的N型掺杂层中均形成有N型体区接触区。In the above-mentioned deep trench power MOS device structure, N-type body region contact regions are formed in the N-type doped layers between the trenches of adjacent cell regions.
上述的深沟槽功率MOS器件结构,其中,所述深沟槽功率MOS器件结构还包括位于所述元胞区的若干元胞区接触孔和位于所述终端区的若干终端区接触孔:In the above-mentioned deep trench power MOS device structure, wherein the deep trench power MOS device structure further includes several cell area contact holes located in the cell area and several terminal area contact holes located in the terminal area:
所述若干元胞区接触孔贯穿位于所述P型源区层之上的所述绝缘介质层设置于所述N型体区接触区中,且所述若干终端区接触孔贯穿位于所述终端区沟槽之上的绝缘介质层设置于所述终端区沟槽内的多晶硅层中。The plurality of cell region contact holes penetrate through the insulating dielectric layer located on the P-type source region layer and are disposed in the N-type body region contact region, and the plurality of terminal region contact holes penetrate through the terminal region The insulating dielectric layer above the trench in the region is set in the polysilicon layer in the trench in the terminal region.
上述的深沟槽功率MOS器件结构,其中,所述深沟槽功率MOS器件结构还包括:The above-mentioned deep trench power MOS device structure, wherein the deep trench power MOS device structure further includes:
金属,充满所述若干元胞区接触孔和所述若干终端区接触孔。metal, filling the plurality of cell area contact holes and the plurality of terminal area contact holes.
本发明还公开了一种深沟槽功率MOS器件结构的制备方法,包括如下步骤:The invention also discloses a method for preparing a deep trench power MOS device structure, comprising the following steps:
提供一包括元胞区和终端区的半导体结构,所述半导体结构包括P型重掺杂衬底和位于所述P型重掺杂衬底之上的P型轻掺杂外延层;A semiconductor structure comprising a cell region and a terminal region is provided, the semiconductor structure comprising a P-type heavily doped substrate and a P-type lightly doped epitaxial layer on the P-type heavily doped substrate;
对所述半导体结构进行沟槽刻蚀工艺,以于所述元胞区的P型轻掺杂外延层中形成若干元胞区沟槽,于所述终端区的P型轻掺杂外延层中形成若干终端区沟槽;Performing a trench etching process on the semiconductor structure to form a plurality of cell region trenches in the P-type lightly doped epitaxial layer of the cell region, and forming a plurality of cell region trenches in the P-type lightly doped epitaxial layer of the terminal region forming a plurality of termination region trenches;
于所述终端区的P型轻掺杂外延层中形成若干N型保护环;forming several N-type guard rings in the P-type lightly doped epitaxial layer in the terminal region;
于所述若干元胞区沟槽和终端区沟槽中形成多晶硅层;forming a polysilicon layer in the plurality of trenches in the cell region and the trench in the terminal region;
进行体区注入工艺以于所述元胞区的所述P型轻掺杂外延层上部形成N型体区掺杂区;Performing a body region implantation process to form an N-type body region doped region on the upper part of the P-type lightly doped epitaxial layer in the cell region;
对所述半导体结构进行P型离子注入工艺以于所述N型体区掺杂区的上部形成第一P型轻掺杂区,于相邻所述N型保护环之间的P型轻掺杂外延层的上部形成第二P型轻掺杂区;Performing a P-type ion implantation process on the semiconductor structure to form a first P-type lightly doped region on the upper part of the N-type body doped region, and a P-type lightly doped region between adjacent N-type guard rings The upper part of the hetero-epitaxial layer forms a second P-type lightly doped region;
继续后续的深沟槽功率MOS器件结构的制备工艺。The subsequent preparation process of the deep trench power MOS device structure is continued.
上述的深沟槽功率MOS器件结构的制备方法,其中,所述沟槽刻蚀工艺包括:The method for preparing the above-mentioned deep trench power MOS device structure, wherein the trench etching process includes:
于所述P型轻掺杂外延层之上形成具有沟槽图形的硬掩膜;forming a hard mask with a groove pattern on the P-type lightly doped epitaxial layer;
以所述硬掩膜为掩膜刻蚀所述P型轻掺杂外延层以形成所述元胞区沟槽和所述终端区沟槽。Etching the P-type lightly doped epitaxial layer by using the hard mask as a mask to form the trenches in the cell region and the trenches in the terminal region.
上述的深沟槽功率MOS器件结构的制备方法,其中,所述硬掩膜为氧化物、氮化物以及氧化物形成的叠层结构。In the above-mentioned method for manufacturing a deep trench power MOS device structure, the hard mask is a stacked structure formed of oxide, nitride and oxide.
上述的深沟槽功率MOS器件结构的制备方法,其中,所述于所述若干元胞区沟槽和终端区沟槽中形成多晶硅层的步骤包括:The above-mentioned method for preparing a deep trench power MOS device structure, wherein the step of forming a polysilicon layer in the trenches in the plurality of cell regions and the trenches in the termination region includes:
制备栅极介质层覆盖所述若干元胞区沟槽和所述若干终端区沟槽的底部及其侧壁表面上,并将所述P型轻掺杂外延层的上表面予以覆盖;Prepare a gate dielectric layer to cover the bottoms and sidewall surfaces of the trenches in the plurality of cell regions and the trenches in the termination region, and cover the upper surface of the P-type lightly doped epitaxial layer;
沉积多晶硅层以充满所述若干元胞区沟槽和终端区沟槽,并覆盖所述栅极介质层裸露的上表面;Depositing a polysilicon layer to fill the trenches in the plurality of cell regions and the trenches in the terminal region, and cover the exposed upper surface of the gate dielectric layer;
回刻所述多晶硅层,以使得所述多晶硅层的上表面低于所述P型轻掺杂外延层的上表面;Etching back the polysilicon layer, so that the upper surface of the polysilicon layer is lower than the upper surface of the P-type lightly doped epitaxial layer;
上述的深沟槽功率MOS器件结构的制备方法,其中,所述多晶硅层的上表面与所述P型轻掺杂外延层的上表面之间的高度差为10~50埃。In the method for preparing a deep trench power MOS device structure above, the height difference between the upper surface of the polysilicon layer and the upper surface of the P-type lightly doped epitaxial layer is 10-50 angstroms.
上述的深沟槽功率MOS器件结构的制备方法,其中,所述继续后续的功率MOS器件的制备工艺包括如下步骤:The method for preparing the above-mentioned deep trench power MOS device structure, wherein the subsequent preparation process of the power MOS device includes the following steps:
于相邻所述元胞区沟槽之间的所述N型体区掺杂区的上部形成P型源区,所述P型源区覆盖所述第一P型轻掺杂区;A P-type source region is formed on the upper part of the N-type body region doped region between adjacent cell region trenches, and the P-type source region covers the first P-type lightly doped region;
于所述半导体结构之上形成绝缘介质层;forming an insulating dielectric layer on the semiconductor structure;
按照从上至下的顺序依次刻蚀所述绝缘介质层、所述P型源区至所述N型体区掺杂区中停止以形成元胞区接触孔,并刻蚀位于所述终端区沟槽之上的绝缘介质层至所述终端区沟槽内的多晶硅层中停止以形成终端区接触孔。In order from top to bottom, etch the insulating dielectric layer, the P-type source region to the N-type body region doped region to form a contact hole in the cell region, and etch the terminal region The insulating dielectric layer above the trench stops in the polysilicon layer in the trench of the termination region to form a contact hole in the termination region.
通过所述元胞区接触孔对所述N型体区掺杂区进行孔注入工艺,并通过所述终端区接触孔对所述终端区沟槽内的多晶硅层进行孔注入工艺,以于所述元胞区接触孔和终端区接触孔的底部周围形成N型体区接触区;A hole implantation process is performed on the N-type body doped region through the contact hole in the cell region, and a hole implantation process is performed on the polysilicon layer in the trench of the termination region through the contact hole in the termination region, so that the forming an N-type body region contact region around the bottom of the cell region contact hole and the terminal region contact hole;
于所述接触孔中沉积金属以形成所述功率MOS器件。Metal is deposited in the contact hole to form the power MOS device.
上述发明具有如下优点或者有益效果:The above invention has the following advantages or beneficial effects:
本发明公开了一种深沟槽功率MOS器件结构及其制备方法,通过在做完体区离子注入和退火后制程,增加一道覆盖式(blanket)P型离子注入工艺,于N型保护环上部及相邻N型保护环之间的P型轻掺杂外延层的上部形成P型轻掺杂区,以抵抗工艺中的N型离子污染,使器件外围的隔离由于没直接的大漏电路径而得以保持正常的工作,从而提高了器件的性能。The invention discloses a deep trench power MOS device structure and a preparation method thereof. After the body region ion implantation and annealing process are completed, a blanket P-type ion implantation process is added to the upper part of the N-type guard ring. and the upper part of the P-type lightly doped epitaxial layer between the adjacent N-type guard rings to form a P-type lightly doped region to resist N-type ion contamination in the process, so that the isolation of the device periphery is not possible because there is no direct large leakage path To maintain normal work, thereby improving the performance of the device.
附图说明Description of drawings
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明及其特征、外形和优点将会变得更加明显。在全部附图中相同的标记指示相同的部分。并未可以按照比例绘制附图,重点在于示出本发明的主旨。The invention and its characteristics, configurations and advantages will become more apparent by reading the detailed description of non-limiting embodiments made with reference to the following drawings. Like numbers designate like parts throughout the drawings. The drawings may not be drawn to scale, emphasis instead being placed upon illustrating the gist of the invention.
图1是本发明实施例中深沟槽功率MOS器件结构的示意图;Fig. 1 is the schematic diagram of deep trench power MOS device structure in the embodiment of the present invention;
图2是本发明实施例中深沟槽功率MOS器件结构的方法流程图;Fig. 2 is a flow chart of a method for a deep trench power MOS device structure in an embodiment of the present invention;
图3~17是本发明实施例中深沟槽功率MOS器件结构的制备方法的流程结构示意图。3 to 17 are schematic flow charts of the manufacturing method of the deep trench power MOS device structure in the embodiment of the present invention.
具体实施方式Detailed ways
下面结合附图和具体的实施例对本发明作进一步的说明,但是不作为本发明的限定。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments, but not as a limitation of the present invention.
实施例一:Embodiment one:
如图1所示,本实施例涉及本发明公开了一种深沟槽功率MOS器件结构,具体的,该深沟槽功率MOS器件结构包括上方分为元胞区和终端区的P型重掺杂衬底100、设置于P型重掺杂衬底100之上的P型轻掺杂外延层101(例如P-硅层),设置于元胞区的P型轻掺杂外延层101之上的N型掺杂层102、设置于N型掺杂层102之上的P型源区层103、依次贯穿P型源区层103和N型掺杂层102,并设置于元胞区的P型轻掺杂外延层101中的若干元胞区沟槽104、设置于终端区的P型轻掺杂外延层101中的若干终端区沟槽105以及设置于终端区的P型轻掺杂外延层101中的若干N型保护环106,相邻N型保护环106之间的P型轻掺杂外延层101的上部形成有P型轻掺杂区107;进一步的,上述P型重掺杂衬底100包括作为漏极区域的具有第一掺杂浓度的P型重掺杂衬底(例如P++硅片)101和位于该具有第一掺杂浓度的P型重掺杂衬底1001上方的具有第二掺杂浓度的P型重掺杂衬底(例如外延P+硅层)1002,且第一掺杂浓度大于第二掺杂浓度。As shown in Figure 1, this embodiment relates to a deep trench power MOS device structure disclosed by the present invention. Specifically, the deep trench power MOS device structure includes a P-type heavily doped upper part divided into a cell region and a terminal region. A heterogeneous substrate 100, a P-type lightly doped epitaxial layer 101 (such as a P-silicon layer) disposed on the P-type heavily doped substrate 100, disposed on the P-type lightly doped epitaxial layer 101 of the cell region The N-type doped layer 102, the P-type source region layer 103 disposed on the N-type doped layer 102, sequentially penetrate the P-type source region layer 103 and the N-type doped layer 102, and are disposed in the P Several trenches 104 in the cell region in the lightly doped epitaxial layer 101, several trenches 105 in the termination region in the lightly doped P-type epitaxial layer 101 disposed in the A number of N-type guard rings 106 in the layer 101, and a P-type lightly doped region 107 is formed on the upper part of the P-type lightly doped epitaxial layer 101 between adjacent N-type guard rings 106; further, the above-mentioned P-type heavily doped The substrate 100 includes a P-type heavily doped substrate (such as a P++ silicon wafer) 101 with a first doping concentration as a drain region and a P-type heavily doped substrate 1001 above the first doping concentration. A P-type heavily doped substrate (such as an epitaxial P+ silicon layer) 1002 with a second doping concentration, and the first doping concentration is greater than the second doping concentration.
在本发明一个优选的实施例中,上述深沟槽功率MOS器件结构还包括设置于若干元胞区沟槽104和若干终端区沟槽105中的多晶硅层109、设置于元胞区沟槽104和多晶硅层109之间以及若干终端区沟槽105和多晶硅层109之间以将多晶硅层109和元胞区沟槽104内壁表面、多晶硅层109和终端区沟槽105内壁表面予以隔离,并将P型源区层103的上表面、N型保护环106的上表面、多晶硅层109的上表面以及P型轻掺杂区107裸露的上表面均予以覆盖的绝缘介质层108,上述多晶硅层109的上表面低于P型源区层103的上表面,且上述多晶硅层109的上表面与P型源区层103的上表面之间的高度差为10~50埃(例如10埃、20埃、25埃或50埃等);进一步的,上述绝缘介质层108为氧化层。In a preferred embodiment of the present invention, the above-mentioned deep trench power MOS device structure further includes a polysilicon layer 109 disposed in several trenches 104 in the cell area and several trenches 105 in the terminal area, and a polysilicon layer 109 disposed in the trenches 104 in the cell area and between the polysilicon layer 109 and between several termination region trenches 105 and the polysilicon layer 109 to isolate the polysilicon layer 109 from the inner wall surface of the cell region trench 104, the polysilicon layer 109 and the termination region trench 105 inner wall surface, and The upper surface of the P-type source region layer 103, the upper surface of the N-type guard ring 106, the upper surface of the polysilicon layer 109, and the exposed upper surface of the P-type lightly doped region 107 are all covered by the insulating dielectric layer 108, and the above-mentioned polysilicon layer 109 The upper surface of the upper surface of the P-type source region layer 103 is lower than the upper surface of the P-type source region layer 103, and the height difference between the upper surface of the polysilicon layer 109 and the upper surface of the P-type source region layer 103 is 10 to 50 angstroms (for example, 10 angstroms, 20 angstroms , 25 angstroms or 50 angstroms, etc.); further, the insulating dielectric layer 108 is an oxide layer.
在本发明一个优选的实施例中,上述相邻元胞区沟槽104之间的N型掺杂层102中均形成有N型体区接触区110。In a preferred embodiment of the present invention, N-type body region contact regions 110 are formed in the N-type doped layer 102 between the trenches 104 of adjacent cell regions.
在本发明一个优选的实施例中,上述深沟槽功率MOS器件结构还包括位于元胞区的若干元胞区接触孔111和位于终端区的若干终端区接触孔112:若干元胞区接触孔111贯穿位于P型源区层103之上的绝缘介质层108设置于N型体区接触区110中,且若干终端区接触孔112贯穿位于终端区沟槽105之上的绝缘介质层108设置于终端区沟槽105内的多晶硅层109中。In a preferred embodiment of the present invention, the above-mentioned deep trench power MOS device structure further includes several cell area contact holes 111 located in the cell area and several terminal area contact holes 112 located in the terminal area: several cell area contact holes 111 is disposed in the N-type body region contact region 110 through the insulating dielectric layer 108 located on the P-type source region layer 103, and a plurality of termination region contact holes 112 are disposed in the insulating dielectric layer 108 disposed on the termination region trench 105. In the polysilicon layer 109 within the trench 105 in the termination region.
在本发明一个优选的实施例中,上述深沟槽功率MOS器件结构还包括充满上述若干元胞区接触孔111和若干终端区接触孔112,且覆盖绝缘介质层108的上表面的金属层113。In a preferred embodiment of the present invention, the above-mentioned deep trench power MOS device structure further includes a metal layer 113 that fills the above-mentioned several cell region contact holes 111 and several terminal region contact holes 112 and covers the upper surface of the insulating dielectric layer 108 .
实施例二:Embodiment two:
如图2所示,本实施例涉及一种深沟槽功率MOS器件结构的制备方法,具体的,该方法包括如下步骤:As shown in FIG. 2, this embodiment relates to a method for preparing a deep trench power MOS device structure. Specifically, the method includes the following steps:
步骤S1,提供一具有元胞区和终端区的半导体结构,该半导体结构包括P型重掺杂衬底200和位于P型重掺杂衬底200之上的P型轻掺杂外延层201(例如P-硅层);优选的,该P型重掺杂衬底200包括具有第一掺杂浓度的P型重掺杂衬底200(N++硅层)和位于该具有第一掺杂浓度的P型重掺杂衬底2001之上的具有第二掺杂浓度的P型重掺杂衬底2002(N+硅层),且第一掺杂浓度大于第二掺杂浓度,如图3所示的结构。Step S1, providing a semiconductor structure with a cell region and a terminal region, the semiconductor structure includes a P-type heavily doped substrate 200 and a P-type lightly doped epitaxial layer 201 on the P-type heavily doped substrate 200 ( Such as P-silicon layer); preferably, the P-type heavily doped substrate 200 includes a P-type heavily doped substrate 200 (N++ silicon layer) with a first doping concentration and the A P-type heavily doped substrate 2002 (N+ silicon layer) with a second doping concentration on the P-type heavily doped substrate 2001, and the first doping concentration is greater than the second doping concentration, as shown in FIG. 3 Structure.
具体的,该半导体结构的形成方法包括:在作为漏极区域的P++硅片上方外延P+硅层和P-硅层,且其中P型掺杂离子可以为硼(B)、氟化硼(BF2)中的一种或组合。Specifically, the formation method of the semiconductor structure includes: epitaxial P+ silicon layer and P- silicon layer above the P++ silicon wafer as the drain region, and wherein the P-type dopant ions can be boron (B), boron fluoride (BF2 ) in one or a combination.
步骤S2,对半导体结构进行沟槽刻蚀工艺,以于元胞区的P型轻掺杂外延层201中形成若干元胞区沟槽2031,于终端区的P型轻掺杂外延层201中形成若干终端区沟槽2032,如图4~5所示的结构。Step S2, performing a trench etching process on the semiconductor structure to form a number of trenches 2031 in the cell region in the P-type lightly doped epitaxial layer 201 in the cell region, and in the P-type lightly doped epitaxial layer 201 in the terminal region A plurality of terminal area trenches 2032 are formed, such as the structures shown in FIGS. 4-5 .
在本发明实施例中,该步骤S2具体包括如下步骤:In the embodiment of the present invention, the step S2 specifically includes the following steps:
步骤S21,于上述半导体结构(也可以说是(P型轻掺杂外延层201)之上依次沉积氧化物层(OX)、氮化物层(SIN)和氧化物层(OX),以形成硬掩膜202,即该硬掩膜202为由氧化物、氮化物和氧化物形成的叠层结构。Step S21, sequentially depositing an oxide layer (OX), a nitride layer (SIN) and an oxide layer (OX) on the above-mentioned semiconductor structure (also called (P-type lightly doped epitaxial layer 201) to form a hard The mask 202 , that is, the hard mask 202 is a stacked structure formed of oxide, nitride and oxide.
步骤S22,对硬掩膜202进行光刻和刻蚀,以形成具有沟槽图形的硬掩膜202,如图4所示的结构。In step S22 , photolithography and etching are performed on the hard mask 202 to form the hard mask 202 with a groove pattern, such as the structure shown in FIG. 4 .
步骤S23,以上述硬掩膜202为掩膜刻蚀P型轻掺杂外延层201,以形成位于元胞区的P型轻掺杂外延层201中的若干元胞区沟槽2031和位于终端区的P型轻掺杂外延层201中的若干终端区沟槽2032,如图5所示的结构。In step S23, the P-type lightly doped epitaxial layer 201 is etched using the hard mask 202 as a mask to form several cell region trenches 2031 in the P-type lightly doped epitaxial layer 201 in the cell region and the terminal Several terminal region trenches 2032 in the P-type lightly doped epitaxial layer 201 of the region, the structure shown in FIG. 5 .
步骤S3,于终端区的P型轻掺杂外延层201中形成若干N型保护环204;由于形成该若干N型保护环204的工艺为本领域技术人员所熟知,在此便不予以赘述,如图6所示的结构。Step S3, forming a plurality of N-type guard rings 204 in the P-type lightly doped epitaxial layer 201 in the terminal region; since the process of forming the plurality of N-type guard rings 204 is well known to those skilled in the art, it will not be repeated here. The structure shown in Figure 6.
步骤S4,于若干元胞区沟槽2031和终端区沟槽2032中形成多晶硅层207′,如图7~10所示的结构。Step S4 , forming a polysilicon layer 207 ′ in several cell region trenches 2031 and terminal region trenches 2032 , as shown in FIGS. 7-10 .
在本发明实施例中,该步骤S4具体包括如下步骤:In the embodiment of the present invention, the step S4 specifically includes the following steps:
步骤S41,移除上述硬掩膜202后,制备牺牲氧化层205覆盖上述若干元胞区沟槽2031和终端区沟槽2032的底部及其侧壁表面,如图7所示的结构。Step S41 , after removing the hard mask 202 , prepare a sacrificial oxide layer 205 covering the bottoms and sidewall surfaces of the plurality of cell region trenches 2031 and terminal region trenches 2032 , as shown in FIG. 7 .
步骤S42,并于移除上述牺牲氧化层202后,制备栅极介质层206覆盖若干元胞区沟槽2031和终端区沟槽2032的底部及其侧壁表面上,并将P型轻掺杂外延层201的上表面予以覆盖,优选的,栅极介质层206的材质为氧化物,如图8所示的结构。Step S42, and after removing the sacrificial oxide layer 202, prepare a gate dielectric layer 206 covering the bottoms and sidewall surfaces of the trenches 2031 in the cell region and the trenches 2032 in the terminal region, and lightly doped with P-type The upper surface of the epitaxial layer 201 is covered. Preferably, the material of the gate dielectric layer 206 is oxide, as shown in FIG. 8 .
步骤S43,沉积多晶硅207以充满若干2031和终端区沟槽2032,并覆盖栅极介质层206裸露的上表面,如图9所示的结构。In step S43 , polysilicon 207 is deposited to fill the plurality 2031 and the termination region trench 2032 , and cover the exposed upper surface of the gate dielectric layer 206 , as shown in FIG. 9 .
步骤S44,回刻多晶硅207,以使得形成的多晶硅层207′的上表面低于P型轻掺杂外延层201的上表面;优选的,多晶硅层207′的上表面与P型轻掺杂外延层201的上表面之间的高度差为10~50埃(例如10埃、20埃、25埃或50埃等),如图10所示的结构。Step S44, etching back the polysilicon 207, so that the upper surface of the formed polysilicon layer 207' is lower than the upper surface of the P-type lightly doped epitaxial layer 201; The height difference between the upper surfaces of the layers 201 is 10-50 angstroms (for example, 10 angstroms, 20 angstroms, 25 angstroms or 50 angstroms, etc.), as shown in the structure shown in FIG. 10 .
步骤S5,进行体区注入工艺以于元胞区的P型轻掺杂外延层201上部形成N型体区掺杂区208,具体的,上述体区注入工艺中注入的离子可以为磷(P),该体区注入工艺包括体区光刻、掺杂注入和高温退火的步骤。此时,在做完体区(body)离子注入和退火的制程后,在终端区的器件表面会形成很淡的N型界面209(N--区),如图11所示的结构。Step S5, performing a body region implantation process to form an N-type body region doped region 208 on the top of the P-type lightly doped epitaxial layer 201 in the cell region. Specifically, the ion implanted in the above body region implantation process can be phosphorus (P ), the body region implantation process includes the steps of body region photolithography, doping implantation and high temperature annealing. At this time, after the body region (body) ion implantation and annealing processes are completed, a very thin N-type interface 209 (N-- region) will be formed on the device surface of the terminal region, as shown in FIG. 11 .
步骤S6,对完成步骤S5的半导体结构进行P型离子注入工艺(blanket IMP)以于N型体区掺杂区208的上部形成第一P型轻掺杂区2101,于相邻N型保护环204之间的P型轻掺杂外延层201的上部形成第二P型轻掺杂区2102;如图12所示的结构。Step S6, perform a P-type ion implantation process (blanket IMP) on the semiconductor structure completed in step S5 to form a first P-type lightly doped region 2101 on the upper part of the N-type body doped region 208, and form a first P-type lightly doped region 2101 in the adjacent N-type guard ring The upper part of the P-type lightly doped epitaxial layer 201 between 204 forms a second P-type lightly doped region 2102; the structure shown in FIG. 12 .
步骤S7,继续后续的深沟槽功率MOS器件结构的制备工艺,如图13~17所示的结构。Step S7, continuing the subsequent manufacturing process of the deep trench power MOS device structure, such as the structures shown in FIGS. 13-17 .
在本发明一个优选的实施例中,继续后续的功率MOS器件的制备工艺包括如下步骤:In a preferred embodiment of the present invention, continuing the preparation process of subsequent power MOS devices includes the following steps:
步骤S71,进行源区光刻和P+离子注入(采用XP光罩),注入离子可以为B、BF、BF2P的一种或组合,之后进行退火工艺,以于相邻元胞区沟槽2031之间的N型体区掺杂区208的上部形成P型源区(P+型源区)211,且该P型源区211覆盖第一P型轻掺杂区2101,即原第一P型轻掺杂区2101经离子注入形成P型源区211的一部分或全部,如图13所示的结构。Step S71, perform source region photolithography and P+ ion implantation (using XP mask), implanted ions can be one or a combination of B, BF, BF 2 P, and then perform an annealing process to form trenches in adjacent cell regions The upper part of the N-type body region doped region 208 between 2031 forms a P-type source region (P+ type source region) 211, and the P-type source region 211 covers the first P-type lightly doped region 2101, that is, the original first P A part or all of the P-type source region 211 is formed by ion implantation into the P-type lightly doped region 2101 , as shown in FIG. 13 .
步骤S72,于步骤S71所形成的半导体结构之上形成绝缘介质层212,该绝缘介质层212充满元胞区沟槽2031和终端区沟槽2032,且覆盖栅极介质层206的上表面,如图14所示的结构。In step S72, an insulating dielectric layer 212 is formed on the semiconductor structure formed in step S71, the insulating dielectric layer 212 is filled with the cell region trench 2031 and the terminal region trench 2032, and covers the upper surface of the gate dielectric layer 206, as The structure shown in Figure 14.
步骤S73,按照从上至下的顺序依次刻蚀绝缘介质层212、P型源区211至N型体区掺杂区208中停止以形成元胞区接触孔2131,并刻蚀位于终端区沟槽2032之上的绝缘介质层212至终端区沟槽2032内的多晶硅层207′中停止以形成终端区接触孔2132,如图15所示的结构。Step S73, sequentially etch the insulating dielectric layer 212, the P-type source region 211 to the N-type body region doped region 208 in sequence from top to bottom to form the contact hole 2131 in the cell region, and etch the groove located in the terminal region The insulating dielectric layer 212 above the trench 2032 stops in the polysilicon layer 207 ′ in the termination region trench 2032 to form a termination region contact hole 2132 , as shown in FIG. 15 .
步骤S74,通过元胞区接触孔2131对N型体区掺杂区208进行孔注入工艺,并通过终端区接触孔2132对终端区沟槽2032内的多晶硅层207′进行孔注入工艺,以于元胞区接触孔2131和终端区接触孔2132的底部周围形成N型体区接触区214,即在体区接触区域和其他无需源区注入的区域进行N++离子注入,使这些区域转型为N型,注入离子可以为P,并在离子注入后进行高温退火,以形成N型体区接触区域,如图16所示的结构。In step S74, a hole implantation process is performed on the N-type body doped region 208 through the cell region contact hole 2131, and a hole implantation process is performed on the polysilicon layer 207' in the termination region trench 2032 through the termination region contact hole 2132, so as to An N-type body region contact region 214 is formed around the bottom of the cell region contact hole 2131 and the terminal region contact hole 2132, that is, N++ ion implantation is performed in the body region contact region and other regions that do not require source region implantation, so that these regions are transformed into N-type , the implanted ions may be P, and high-temperature annealing is performed after ion implantation to form an N-type body region contact region, as shown in FIG. 16 .
步骤S75,继续于上述元胞区接触孔2131和终端区接触孔2132中沉积金属215,并对金属215进行光刻、刻蚀形成金属电性接触,其中元胞区域为整片源体接触金属靠深沟槽表面的绝缘介质层212进行电性隔离,如图17所示的结构Step S75, continue to deposit the metal 215 in the contact hole 2131 of the cell region and the contact hole 2132 of the terminal region, and perform photolithography and etching on the metal 215 to form a metal electrical contact, wherein the cell region is the entire piece of source-body contact metal Electrically isolated by the insulating dielectric layer 212 on the surface of the deep trench, the structure shown in Figure 17
不难发现,本实施例为与上述深沟槽功率MOS器件结构的实施例相对应的方法实施例,本实施例可与上述深沟槽功率MOS器件结构的实施例互相配合实施。上述深沟槽功率MOS器件结构的实施例中提到的相关技术细节在本实施例中依然有效,为了减少重复,这里不再赘述。相应地,本实施方式中提到的相关技术细节也可应用在上述深沟槽功率MOS器件结构的实施例中。It is not difficult to find that this embodiment is a method embodiment corresponding to the above embodiment of the deep trench power MOS device structure, and this embodiment can be implemented in cooperation with the above embodiment of the deep trench power MOS device structure. The relevant technical details mentioned in the above embodiments of the deep trench power MOS device structure are still valid in this embodiment, and will not be repeated here in order to reduce repetition. Correspondingly, the relevant technical details mentioned in this implementation manner can also be applied to the above embodiments of the deep trench power MOS device structure.
本领域技术人员应该理解,本领域技术人员在结合现有技术以及上述实施例可以实现变化例,在此不做赘述。这样的变化例并不影响本发明的实质内容,在此不予赘述。Those skilled in the art should understand that those skilled in the art can implement variations by combining the existing technology and the foregoing embodiments, and details are not described here. Such variations do not affect the essence of the present invention, and will not be repeated here.
以上对本发明的较佳实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,其中未尽详细描述的设备和结构应该理解为用本领域中的普通方式予以实施;任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案作出许多可能的变动和修饰,或修改为等同变化的等效实施例,这并不影响本发明的实质内容。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。The preferred embodiments of the present invention have been described above. It should be understood that the present invention is not limited to the specific embodiments described above, and the devices and structures that are not described in detail should be understood to be implemented in a common manner in the art; Within the scope of the technical solution of the invention, many possible changes and modifications can be made to the technical solution of the present invention by using the methods and technical content disclosed above, or be modified into equivalent embodiments with equivalent changes, which does not affect the essence of the present invention. Therefore, any simple modifications, equivalent changes and modifications made to the above embodiments according to the technical essence of the present invention, which do not deviate from the technical solution of the present invention, still fall within the protection scope of the technical solution of the present invention.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611005996.0A CN106531809B (en) | 2016-11-15 | 2016-11-15 | A deep trench power MOS device structure and its preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611005996.0A CN106531809B (en) | 2016-11-15 | 2016-11-15 | A deep trench power MOS device structure and its preparation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106531809A CN106531809A (en) | 2017-03-22 |
CN106531809B true CN106531809B (en) | 2019-12-17 |
Family
ID=58353349
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611005996.0A Active CN106531809B (en) | 2016-11-15 | 2016-11-15 | A deep trench power MOS device structure and its preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106531809B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102403346A (en) * | 2010-09-08 | 2012-04-04 | 株式会社电装 | Semiconductor device and method of manufacturing the same |
CN103972289A (en) * | 2013-01-31 | 2014-08-06 | 瑞萨电子株式会社 | Semiconductor Device And Method Of Manufacturing Semiconductor Device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7750412B2 (en) * | 2008-08-06 | 2010-07-06 | Fairchild Semiconductor Corporation | Rectifier with PN clamp regions under trenches |
-
2016
- 2016-11-15 CN CN201611005996.0A patent/CN106531809B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102403346A (en) * | 2010-09-08 | 2012-04-04 | 株式会社电装 | Semiconductor device and method of manufacturing the same |
CN103972289A (en) * | 2013-01-31 | 2014-08-06 | 瑞萨电子株式会社 | Semiconductor Device And Method Of Manufacturing Semiconductor Device |
Also Published As
Publication number | Publication date |
---|---|
CN106531809A (en) | 2017-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8399921B2 (en) | Metal oxide semiconductor (MOS) structure and manufacturing method thereof | |
CN113130633B (en) | Trench type field effect transistor structure and manufacturing method thereof | |
CN108091573B (en) | Fabrication method of shielded gate trench MOSFET ESD structure | |
TW201330262A (en) | Semiconductor device and method of manufacturing same | |
CN101290936A (en) | Semiconductor device and manufacturing method thereof | |
CN110400846B (en) | MOS structure with stepped deep groove shielded gate and manufacturing method | |
CN105428241B (en) | The manufacture method of trench-gate power devices with shield grid | |
CN112713192A (en) | Shielded gate trench MOSFET device with electrostatic protection capability and manufacturing method thereof | |
CN106129105B (en) | Trench gate power MOSFET and manufacturing method | |
CN106449753A (en) | Low on-state resistance groove power MOS (Metal Oxide Semiconductor) device structure and fabrication method thereof | |
CN113053738A (en) | Split gate type groove MOS device and preparation method thereof | |
CN107895737A (en) | Trench-gate power transistor and its manufacture method | |
CN104617045A (en) | Manufacturing method of trench gate power device | |
CN111564493A (en) | Trench power transistor and method of making the same | |
US20230100307A1 (en) | Method for manufacturing trench-gate mosfet | |
US10541241B2 (en) | Semiconductor device having thyristor and metal-oxide semiconductor transistor | |
US8581347B2 (en) | Forming bipolar transistor through fast EPI-growth on polysilicon | |
CN104766885A (en) | A symmetrical isolated LDMOS device and its manufacturing method | |
EP3933895B1 (en) | Trench field effect transistor structure, and manufacturing method for same | |
CN106531809B (en) | A deep trench power MOS device structure and its preparation method | |
CN111276476B (en) | Preparation method of semiconductor device | |
CN112509983B (en) | Semiconductor device and method for manufacturing the same | |
CN112509982B (en) | Semiconductor device and method for manufacturing the same | |
CN102347359B (en) | Power metal oxide semiconductor field effect transistor (MOSFET) device and method for manufacturing same | |
CN114512403B (en) | Manufacturing method of semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Address after: 401331 No. 25 Xiyong Avenue, Xiyong Town, Shapingba District, Chongqing Applicant after: Huarun Microelectronics (Chongqing) Co., Ltd. Address before: 401331 No. 25 Xiyong Avenue, Xiyong Town, Shapingba District, Chongqing Applicant before: China Aviation (Chongqing) Microelectronics Co., Ltd. |
|
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Address after: 401331 No. 25 Xiyong Avenue, Shapingba District, Chongqing Applicant after: Huarun Microelectronics (Chongqing) Co., Ltd. Address before: 401331 No. 25 Xiyong Avenue, Xiyong Town, Shapingba District, Chongqing Applicant before: Huarun Microelectronics (Chongqing) Co., Ltd. |
|
GR01 | Patent grant | ||
GR01 | Patent grant |