[go: up one dir, main page]

CN106530197A - Image encryption method based on Kent mapping and generalized Gray codes - Google Patents

Image encryption method based on Kent mapping and generalized Gray codes Download PDF

Info

Publication number
CN106530197A
CN106530197A CN201610890798.0A CN201610890798A CN106530197A CN 106530197 A CN106530197 A CN 106530197A CN 201610890798 A CN201610890798 A CN 201610890798A CN 106530197 A CN106530197 A CN 106530197A
Authority
CN
China
Prior art keywords
image
sequence
kent
plaintext
chaotic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201610890798.0A
Other languages
Chinese (zh)
Inventor
谢国波
朱柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201610890798.0A priority Critical patent/CN106530197A/en
Publication of CN106530197A publication Critical patent/CN106530197A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • G06T1/0021Image watermarking

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Editing Of Facsimile Originals (AREA)
  • Image Processing (AREA)

Abstract

本发明公开了一种基于Kent映射和广义Gray码的图像加密方法,包括步骤:对待加密的图像明文按照行优先的顺序扫描,转化成为一维序列;求出混沌系统的混沌参数S和混沌系统的迭代次数c;将将参数S和初始值x1代入到Kent映射中,然后Kent映射迭代c次,再迭代a×b次产生一个长度为a×b的混沌序列L,并运用堆排序算法对混沌序列进行从小到大的排列,从而再次生成一个记录顺序序列中的各元素在原序列L中新的位置的序列w;利用序列w来置乱明文图像I;和用二进制的广义Gray码对位置置乱后的图像进行像素值的替换。本发明的密钥敏感性更强,加密完成后的图像完美地隐藏了明文信息;加密后的图像的相关性更差,分布更加均匀。

The invention discloses an image encryption method based on Kent mapping and generalized Gray code, which comprises the steps of: scanning the plain text of the image to be encrypted according to the order of row priority, and transforming it into a one-dimensional sequence; obtaining the chaos parameter S of the chaos system and the chaos system The number of iterations c; the parameter S and the initial value x 1 are substituted into the Kent map, then the Kent map iterates c times, and then iterates a×b times to generate a chaotic sequence L of length a×b, and uses the heap sorting algorithm Arrange the chaotic sequence from small to large, so as to generate a sequence w that records the new position of each element in the sequence sequence in the original sequence L; use the sequence w to scramble the plaintext image I; and use the binary generalized Gray code to pair The image after position scrambling is replaced by pixel value. The key sensitivity of the present invention is stronger, and the image after encryption perfectly hides the plaintext information; the correlation of the encrypted image is worse, and the distribution is more uniform.

Description

一种基于Kent映射和广义Gray码的图像加密方法An Image Encryption Method Based on Kent Map and Generalized Gray Code

技术领域technical field

本发明涉及信息安全领域,尤其涉及一种基于Kent映射和广义Gray码的图像加密方法。The invention relates to the field of information security, in particular to an image encryption method based on Kent mapping and generalized Gray code.

背景技术Background technique

加密通常指的是发送方运用特定的加密函数和加密密钥,将明文信息进行转换,而转换后的信息是不具备直接可读意义的,这种转换后的信息被称为密文信息。而接收方再利用指定的解密密钥和解密函数对不含有直接本意的密文信息进行解密,还原成明文信息,从而完成解密过程。由以上可知,要完成一个加密解密的过程,其必须包含明文空间、加密函数、密钥空间、密文空间、解密函数等五个部分。Encryption usually means that the sender uses a specific encryption function and encryption key to convert plaintext information, and the converted information does not have a directly readable meaning. This converted information is called ciphertext information. The recipient then uses the specified decryption key and decryption function to decrypt the ciphertext information that does not contain the direct intention, and restore it to plaintext information, thereby completing the decryption process. It can be seen from the above that to complete an encryption and decryption process, it must include five parts: plaintext space, encryption function, key space, ciphertext space, and decryption function.

明文空间:所有需要被采取加密手段的信息的集合,其种类并不单一,包括视频信息、文本信息、图像信息、音频信息等。Plaintext space: the collection of all information that needs to be encrypted, and its types are not single, including video information, text information, image information, audio information, etc.

加密函数:将明文转化成密文的特定的算法(数学公式等)。Encryption function: A specific algorithm (mathematical formula, etc.) that converts plaintext into ciphertext.

密钥空间:包含全部的密钥。密钥子所以能够发挥作用在于发送方和接收方之间的先期约定,比如密钥的生成,密钥的使用,密钥的管理分配等等。传统的有加密密钥和解密密钥相同的DES算法,以及后来的加密密钥可以公开而解密密钥需要保密的RSA算法。Keyspace: Contains all keys. The reason why the key child can play a role lies in the prior agreement between the sender and the receiver, such as the generation of the key, the use of the key, the management and distribution of the key, and so on. The traditional DES algorithm has the same encryption key and decryption key, and the later RSA algorithm that the encryption key can be disclosed and the decryption key needs to be kept secret.

密文空间:明文信息完成加密操作后所产生的内容Ciphertext space: the content generated after the plaintext information completes the encryption operation

解密函数:与加密函数相反,用来将密文转换成明文。Decryption function: Contrary to the encryption function, it is used to convert ciphertext into plaintext.

但是由于图像信息具有数据之间相关性高、数据冗余度强,数据量大等特点,使用传统的针对文本信息密码学算法比如:非对称加密算法RSA、数据加密标准(DES)、国际数据加密算法等,并不完全适合图像加密。However, because image information has the characteristics of high correlation between data, strong data redundancy, and large data volume, traditional cryptographic algorithms for text information such as: asymmetric encryption algorithm RSA, Data Encryption Standard (DES), International Data Encryption algorithms, etc., are not completely suitable for image encryption.

混沌因其初值敏感性、无周期性、伪随机性、混沌序列的遍历性等密码学特性,使其大量被应用于图像加密中来保证信息的安全传播。因此各种基于混沌系统或者与之相结合的图像加密算法被大量的提出。Due to its cryptographic characteristics such as initial value sensitivity, aperiodicity, pseudo-randomness, and ergodicity of chaotic sequences, chaos has been widely used in image encryption to ensure the safe transmission of information. Therefore, a variety of image encryption algorithms based on chaotic systems or combined with them have been proposed in large numbers.

陈光荣等提出的一种典型的置乱和替代结构的混沌加密算法一度成为学者们竞相争抢的研究热点。该算法首先利用三维的Arnold变换来对完成图像的位置置乱,接下来再通过Logistic混沌系统产生的中间密钥对像素的灰度值进行替换。虽然这种算法时间代价小,复杂度低,但是其无法抵抗明文攻击。A typical chaotic encryption algorithm with scrambling and substitution structures proposed by Chen Guangrong once became a research hotspot among scholars. The algorithm first uses the three-dimensional Arnold transformation to scramble the position of the completed image, and then uses the intermediate key generated by the Logistic chaotic system to replace the gray value of the pixel. Although this algorithm has a small time cost and low complexity, it cannot resist plaintext attacks.

发明内容Contents of the invention

为克服现有技术的不足,本发明提出一种基于Kent映射和广义Gray码的图像加密方法。In order to overcome the deficiencies of the prior art, the present invention proposes an image encryption method based on Kent mapping and generalized Gray code.

本发明的技术方案是这样实现的,一种基于Kent映射和广义Gray码的图像加密方法,包括步骤The technical scheme of the present invention is realized like this, a kind of image encryption method based on Kent mapping and generalized Gray code, comprises steps

S1:对待加密的图像明文按照行优先的顺序扫描,转化成为长度为a×b的一维序列I={i1,i2,i3…ia×b};S1: The plaintext of the image to be encrypted is scanned in row-first order, and converted into a one-dimensional sequence I={i 1 , i 2 , i 3 ...i a×b } with a length of a×b;

S2:求出混沌系统的混沌参数S和混沌系统的迭代次数c;S2: Calculate the chaotic parameter S of the chaotic system and the number of iterations c of the chaotic system;

S3:将将参数S和初始值x1代入到Kent映射中,然后Kent映射迭代c次以消弱暂态效应的不良影响,接下来再迭代a×b次产生一个长度为a×b的混沌序列L={l1,l2,l3...la×b},并运用堆排序算法对混沌序列进行从小到大的排列,从而再次生成一个记录顺序序列中的各元素在原序列L中新的位置的序列w={w1,w2,w3....wa×b};S3: Substitute the parameter S and the initial value x 1 into the Kent map, then the Kent map iterates c times to weaken the adverse effects of transient effects, and then iterates a×b times to generate a chaos with a length of a×b Sequence L={l 1 , l 2 , l 3 ...l a×b }, and use the heap sorting algorithm to arrange the chaotic sequence from small to large, so as to generate a record order sequence in which each element in the original sequence L The sequence w={w 1 , w 2 , w 3 ....w a×b } of the new position in

S4:利用序列w来置乱明文图像I;S4: Use the sequence w to scramble the plaintext image I;

S5:用二进制的广义Gray码对位置置乱后的图像进行像素值的替换。S5: Use binary generalized Gray codes to replace the pixel values of the scrambled image.

进一步地,步骤S2中中混沌参数S的计算公式为混沌系统的迭代次数c的计算公式为c=mod(a*a+b*b,a+b)+2a+b。Further, the calculation formula of the chaotic parameter S in step S2 is The calculation formula of the number of iterations c of the chaotic system is c=mod(a*a+b*b, a+b)+2a+b.

进一步地,步骤S5包括步骤Further, step S5 includes the step

S51:将明文位置置乱后的图像的像素点进行异或操作;S51: performing an XOR operation on the pixel points of the image after the position of the plaintext is scrambled;

S52:将异或后所得的像素点的像素值按照广义格雷码的替换规则进行替换。S52: Replace the pixel values of the pixel points obtained after the XOR according to the replacement rule of the generalized Gray code.

本发明的有益效果在于,与现有技术相比,本发明的密钥敏感性更强,在极其微小变化的情况下,都会导致图像发生明显变化;加密完成后的图像完美地隐藏了明文信息;加密后的图像的相关性更差,分布更加均匀。The beneficial effect of the present invention is that, compared with the prior art, the key sensitivity of the present invention is stronger, and in the case of extremely small changes, it will cause obvious changes in the image; the encrypted image perfectly hides the plaintext information ; The correlation of the encrypted image is worse and the distribution is more uniform.

附图说明Description of drawings

图1是本发明基于Kent映射和广义Gray码的图像加密方法流程图。Fig. 1 is the flow chart of the image encryption method based on Kent mapping and generalized Gray code in the present invention.

图2是明文图像。Figure 2 is a plaintext image.

图3是图2加密完成后的密文图像。Fig. 3 is the ciphertext image after the encryption in Fig. 2 is completed.

图4是图2的图像直方图。FIG. 4 is an image histogram of FIG. 2 .

图5是图3的图像直方图。FIG. 5 is an image histogram of FIG. 3 .

图6是图2相邻像素点的相关性。Fig. 6 is the correlation of adjacent pixels in Fig. 2 .

图7是图3相邻像素点的相关性。Fig. 7 is the correlation of adjacent pixels in Fig. 3 .

具体实施方式detailed description

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention.

Kent映射是一个性能优良的混沌系统,映射关系为:Kent mapping is a chaotic system with excellent performance, and the mapping relationship is:

其中的S为混沌系统的控制参数,当x∈(0,1),S∈(0,1)时,式(1)具有一个正的Lyapunov指数,Kent映射将处于混沌状态,因此由初始条件x0在Kent映射中产生的序列具有很好的自相关性,互相关性和平衡性等伪随机性能。Among them, S is the control parameter of the chaotic system. When x∈(0,1), S∈(0,1), the formula (1) has a positive Lyapunov exponent, and the Kent map will be in a chaotic state, so the initial condition The sequence generated by x0 in the Kent map has good pseudo-random properties such as autocorrelation, cross-correlation and balance.

同时,Kent映射具有强初始条件敏感性,即使当初始条件发生微小变化,所产生的随机序列也将会完全的不同,根据这一特性,Kent映射能被良好的运用在混沌图像加密中。At the same time, the Kent map has strong sensitivity to initial conditions. Even when the initial conditions change slightly, the generated random sequence will be completely different. According to this characteristic, the Kent map can be well used in the encryption of chaotic images.

广义Gray码变换Generalized Gray code transformation

对于非负整数u,其q进制码记为u=(upup-1...u0)q,定义如下变换:For a non-negative integer u, its q-ary code is recorded as u=(u p u p-1 ... u 0 ) q , and the transformation is defined as follows:

其中,q≥2为正整数,aij为整数,i,j=0,1,…..,p。当且系数矩阵的行列式|aij|与q互为素数时候,则将该变换符合u的广义Gray变换,g(u)=(gpgp-1...g0)q称为广义Gray码。Wherein, q≥2 is a positive integer, a ij is an integer, i,j=0,1,...,p. When and the determinant of the coefficient matrix |a ij | and q are mutually prime numbers, the transformation conforms to the generalized Gray transformation of u, and g(u)=(g p g p-1 ...g 0 ) q is called Generalized Gray code.

请参见图1,本发明包括步骤Please refer to Fig. 1, the present invention comprises steps

S1:对待加密的图像明文按照行优先的顺序扫描,转化成为长度为a×b的一维序列I={i1,i2,i3…ia×b};S1: Scan the plaintext of the image to be encrypted in line-first order, and convert it into a one-dimensional sequence of length a×b I={i 1 , i 2 , i 3 ...i a×b };

S2:求出混沌系统的混沌参数S和混沌系统的迭代次数c.S2: Calculate the chaotic parameter S of the chaotic system and the number of iterations c of the chaotic system.

首先对明文图像的像素值sum进行求和运算。First, sum the pixel values sum of the plaintext image.

接下来分别运用公式2求出混沌系统的混沌参数S,公式3求出混沌系统的迭代次数c。Next, formula 2 is used to calculate the chaotic parameter S of the chaotic system, and formula 3 is used to calculate the number of iterations c of the chaotic system.

c=mod(a*a+b*b,a+b)+2a+b (3)c=mod(a*a+b*b, a+b)+2a+b (3)

S3:产生新的位置序列利用下标进行位置置乱。S3: Generating a new position sequence and performing position scrambling using subscripts.

结合S2得出的混沌参数S,对混沌系统设置一个初始值x1,将参数S和初始值x1代入到公式(1)中。Combined with the chaotic parameter S obtained from S2, an initial value x 1 is set for the chaotic system, and the parameter S and the initial value x 1 are substituted into formula (1).

Kent映射迭代c次以消弱暂态效应的不良影响。The Kent mapping iterates c times to weaken the bad influence of the transient effect.

接下来再迭代a×b次产生一个长度为a×b的混沌序列L={l1,l2,l3...la×b}。Next, iterate a×b times to generate a chaotic sequence L={l 1 , l 2 , l 3 . . . l a×b } whose length is a×b.

运用堆排序算法对混沌序列进行从小到大的排列,从而再次生成一个记录顺序序列中的各元素在原序列L中新的位置的序列w={w1,w2,w3....wa×b}。Use the heap sorting algorithm to arrange the chaotic sequence from small to large, so as to generate a sequence w={w 1 , w 2 , w 3 ....w that records the new position of each element in the original sequence L. a×b }.

S4:利用序列w来置乱明文图像I,置乱的依存规则为置乱后的序列记录为:S4: Use the sequence w to scramble the plaintext image I, and the dependency rule of scrambling is The sequence record after scrambling is:

L′={l′i,l′i,l′i...l′a×b}L'={l' i , l' i , l' i ...l' a×b }

S5:图像的像素值替换。S5: Pixel value replacement of the image.

此阶段使用二进制的广义Gray码对位置置乱后的图像I′进行像素值得替换。In this stage, the binary generalized Gray code is used to replace the pixel value of the image I' after the position scrambling.

对于任意的非负整数u对照的二进制码为u=(un-1un-2...u0)2 The binary code for any non-negative integer u is u=(u n-1 u n-2 ...u 0 ) 2

make

通过变换产生一个新的二进制码g=(gn-1gn-2…g0)2 Generate a new binary code g=(g n-1 g n-2 …g 0 ) 2 by transformation

S51:将明文位置置乱后的图像I′的像素点进行异或操作。其异或的规则如下为 S51: Execute an XOR operation on the pixels of the image I′ after the positions of the plaintext are scrambled. The XOR rules are as follows

S52:将步骤一异或后所得的像素点的像素值按照广义格雷码的替换规则进行替换。S52: Replace the pixel values of the pixels obtained after the XOR in step 1 according to the replacement rule of the generalized Gray code.

加密完成后所得到的即为密文图像。After the encryption is completed, the ciphertext image is obtained.

实验分析experiment analysis

实验环境lab environment

本实验采用的测试平台为:The test platform used in this experiment is:

Intel(R)Core(TM)i5CPU主频2.67GHz,内存为4.0GB。Intel(R) Core(TM) i5 CPU clocked at 2.67GHz, memory 4.0GB.

Win10操作系统。Win10 operating system.

图片采用256×256的灰度Lena图仿真软件MATLAB 2015a。The picture uses 256×256 grayscale Lena image simulation software MATLAB 2015a.

实验内容Experimental content

算法统计特性分析Algorithm Statistical Characteristic Analysis

首先对加密前后的灰度直方图进行观察,对图2的明文直方图和图3密文直方图对比发现,原始图像在未经任何加密处理的情况下它所展现出的像素分布是不均匀分布的,而加密处理后得到密文图像的灰度直方分布是均匀的,极好的隐藏了图像信息。First observe the grayscale histogram before and after encryption, compare the plaintext histogram in Figure 2 and the ciphertext histogram in Figure 3, and find that the pixel distribution of the original image without any encryption processing is uneven distribution, while the distribution of the gray histogram of the ciphertext image obtained after encryption is uniform, which hides the image information very well.

接着对对明文图像加密前后的像素的水平、垂直、对角三个方向的相关性进行比较分析,计算所采用的数学公式如下:Then compare and analyze the horizontal, vertical, and diagonal correlations of pixels before and after encryption of plaintext images. The mathematical formula used for calculation is as follows:

其中x和y分别表示图像中两个相邻像素点的灰度值,rx,y为两个相邻像素的相关系数。Among them, x and y represent the gray values of two adjacent pixels in the image, and r x, y are the correlation coefficients of two adjacent pixels.

密钥敏感性分析Key Sensitivity Analysis

密钥的敏感性必须具备的特性是在极其微小变化的情况下,都会导致图像发生明显变化。在对密文图像进行明文解密操作时,如果其中一个密钥发生微小变化,最终得到的解密图像也将与明文完全不同。Sensitivity of the key must have the property that even the slightest change can cause a noticeable change in the image. When the plaintext decryption operation is performed on the ciphertext image, if one of the keys changes slightly, the final decrypted image will be completely different from the plaintext.

对比图2明文图像和图3加密完成后的密文图像可以发现,加密完成后的完美的隐藏了明文信息。Comparing the plaintext image in Figure 2 and the ciphertext image after encryption in Figure 3, it can be found that the plaintext information is perfectly hidden after encryption.

微小改变混沌系统的初始值,所得到的解密图像与明文图像完全不同,进一步验证了算法对密钥的敏感性。By slightly changing the initial value of the chaotic system, the decrypted image obtained is completely different from the plaintext image, which further verifies the sensitivity of the algorithm to the key.

对比图4明文图像和图5密文图像的直方图发现,加密完成后的密文图像像素值的分布更加均匀,从而极好的掩盖了图像信息。Comparing the histograms of the plaintext image in Figure 4 and the ciphertext image in Figure 5, it is found that the distribution of pixel values in the ciphertext image after encryption is more uniform, thus covering up the image information very well.

对比图6明文图像和图7密文图像的相邻位置的像素点在二维坐标系的位置发现加密后的图像的相关性更差,分布更加均匀。Comparing the adjacent positions of the plaintext image in Figure 6 and the ciphertext image in Figure 7 in the two-dimensional coordinate system, it is found that the correlation of the encrypted image is worse and the distribution is more uniform.

以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。The above description is a preferred embodiment of the present invention, it should be pointed out that for those skilled in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications are also considered Be the protection scope of the present invention.

Claims (3)

1.一种基于Kent映射和广义Gray码的图像加密方法,其特征在于,包括步骤1. an image encryption method based on Kent mapping and generalized Gray code, it is characterized in that, comprising steps S1:对待加密的图像明文按照行优先的顺序扫描,转化成为长度为a×b的一维序列I={i1,i2,i3...ia×b};S1: The plaintext of the image to be encrypted is scanned in row-first order, and converted into a one-dimensional sequence I={i 1 , i 2 , i 3 ...i a×b } with a length of a×b; S2:求出混沌系统的混沌参数S和混沌系统的迭代次数c;S2: Calculate the chaotic parameter S of the chaotic system and the number of iterations c of the chaotic system; S3:将将参数S和初始值x1代入到Kent映射中,然后Kent映射迭代c次以消弱暂态效应的不良影响,接下来再迭代a×b次产生一个长度为a×b的混沌序列L={l1,l2,l3...la×b},并运用堆排序算法对混沌序列进行从小到大的排列,从而再次生成一个记录顺序序列中的各元素在原序列L中新的位置的序列w={w1,w2,w3....wa×b};S3: Substitute the parameter S and the initial value x 1 into the Kent map, then the Kent map iterates c times to weaken the adverse effects of transient effects, and then iterates a×b times to generate a chaos with a length of a×b Sequence L={l 1 , l 2 , l 3 ...l a×b }, and use the heap sorting algorithm to arrange the chaotic sequence from small to large, so as to generate a record order sequence in which each element in the original sequence L The sequence w={w 1 , w 2 , w 3 ....w a×b } of the new position in S4:利用序列w来置乱明文图像I;S4: Use the sequence w to scramble the plaintext image I; S5:用二进制的广义Gray码对位置置乱后的图像进行像素值的替换。S5: Use binary generalized Gray codes to replace the pixel values of the scrambled image. 2.如权利要求1所述的基于Kent映射和广义Gray码的图像加密方法,其特征在于,步骤S2中中混沌参数S的计算公式为混沌系统的迭代次数c的计算公式为c=mod(a*a+b*b,a+b)+2a+b。2. the image encryption method based on Kent mapping and generalized Gray code as claimed in claim 1, is characterized in that, the computing formula of chaos parameter S among the step S2 is The calculation formula of the number of iterations c of the chaotic system is c=mod(a*a+b*b, a+b)+2a+b. 3.如权利要求1所述的基于Kent映射和广义Gray码的图像加密方法,其特征在于,步骤S5包括步骤3. the image encryption method based on Kent mapping and generalized Gray code as claimed in claim 1, is characterized in that, step S5 comprises the step S51:将明文位置置乱后的图像的像素点进行异或操作;S51: performing an XOR operation on the pixel points of the image after the position of the plaintext is scrambled; S52:将异或后所得的像素点的像素值按照广义格雷码的替换规则进行替换。S52: Replace the pixel values of the pixel points obtained after the XOR according to the replacement rule of the generalized Gray code.
CN201610890798.0A 2016-10-12 2016-10-12 Image encryption method based on Kent mapping and generalized Gray codes Withdrawn CN106530197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610890798.0A CN106530197A (en) 2016-10-12 2016-10-12 Image encryption method based on Kent mapping and generalized Gray codes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610890798.0A CN106530197A (en) 2016-10-12 2016-10-12 Image encryption method based on Kent mapping and generalized Gray codes

Publications (1)

Publication Number Publication Date
CN106530197A true CN106530197A (en) 2017-03-22

Family

ID=58331587

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610890798.0A Withdrawn CN106530197A (en) 2016-10-12 2016-10-12 Image encryption method based on Kent mapping and generalized Gray codes

Country Status (1)

Country Link
CN (1) CN106530197A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108199828A (en) * 2018-02-08 2018-06-22 广东工业大学 A kind of color image Encryption Algorithm and device
WO2019242270A1 (en) * 2018-06-20 2019-12-26 北京微播视界科技有限公司 Image mapping method and apparatus, hardware apparatus, and computer-readable storage medium
CN110827187A (en) * 2018-08-13 2020-02-21 厦门雅迅网络股份有限公司 Information steganography and recovery method
CN113067958A (en) * 2021-03-02 2021-07-02 甘肃同兴智能科技发展有限责任公司 Image encryption method, device, electronic device and storage medium
CN114157408A (en) * 2021-11-16 2022-03-08 华中科技大学 Digital image encryption method, digital image decryption method and digital image decryption system based on chaotic system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104574259A (en) * 2015-01-08 2015-04-29 大连大学 Image encryption method based on chaotic system and insertion-deletion model
CN105550972A (en) * 2016-02-03 2016-05-04 广东工业大学 Image encryption method for high dimension digital domain chaotic system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104574259A (en) * 2015-01-08 2015-04-29 大连大学 Image encryption method based on chaotic system and insertion-deletion model
CN105550972A (en) * 2016-02-03 2016-05-04 广东工业大学 Image encryption method for high dimension digital domain chaotic system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
宋莉莉 等: "Arnold 变换与 Gray 码变换相融合的双置乱算法研究", 《计算机应用与软件》 *
邓晓衡 等: "像素位置与比特双重置乱的图像混沌加密算法", 《通信学报》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108199828A (en) * 2018-02-08 2018-06-22 广东工业大学 A kind of color image Encryption Algorithm and device
CN108199828B (en) * 2018-02-08 2021-10-01 广东工业大学 A color image encryption method and device
WO2019242270A1 (en) * 2018-06-20 2019-12-26 北京微播视界科技有限公司 Image mapping method and apparatus, hardware apparatus, and computer-readable storage medium
CN110827187A (en) * 2018-08-13 2020-02-21 厦门雅迅网络股份有限公司 Information steganography and recovery method
CN110827187B (en) * 2018-08-13 2023-10-31 厦门雅迅网络股份有限公司 Information steganography and recovery method
CN113067958A (en) * 2021-03-02 2021-07-02 甘肃同兴智能科技发展有限责任公司 Image encryption method, device, electronic device and storage medium
CN114157408A (en) * 2021-11-16 2022-03-08 华中科技大学 Digital image encryption method, digital image decryption method and digital image decryption system based on chaotic system
CN114157408B (en) * 2021-11-16 2024-07-02 华中科技大学 Digital image encryption method, decryption method and system based on chaotic system

Similar Documents

Publication Publication Date Title
Zhan et al. Cross-utilizing hyperchaotic and DNA sequences for image encryption
Tang et al. Image encryption with double spiral scans and chaotic maps
Ping et al. Image encryption based on non-affine and balanced cellular automata
Mirzaei et al. A new image encryption method: parallel sub-image encryption with hyper chaos
Toktas et al. A robust bit-level image encryption based on Bessel map
Musanna et al. A novel fractional order chaos-based image encryption using Fisher Yates algorithm and 3-D cat map
Chen et al. A novel digital watermarking based on general non-negative matrix factorization
CN107094072B (en) A Hybrid Chaos Encryption Method Based on Generalized Henon Map
CN107610191B (en) Color image encryption method and device
Rad et al. A new fast and simple image encryption algorithm using scan patterns and XOR
CN106530197A (en) Image encryption method based on Kent mapping and generalized Gray codes
Mehmood et al. Advances and vulnerabilities in modern cryptographic techniques: A comprehensive survey on cybersecurity in the domain of machine/deep learning and quantum techniques
Gafsi et al. Efficient encryption system for numerical image safe transmission
CN107330338B (en) Color image encryption and decryption method and system based on double chaotic cross-diffusion
CN107220923A (en) Digital picture feedback encryption method based on image network
CN108122188A (en) A kind of image encryption method
CN107590394A (en) A kind of image encryption method based on chaotic maps and bit recombination
Liu et al. A color image encryption scheme based on a novel 3d chaotic mapping
CN107911572A (en) Image Encryption Method Based on Fractional Fourier Transform Improved Logistic Chaotic System
CN108199828A (en) A kind of color image Encryption Algorithm and device
CN107292805B (en) Image encryption method based on multi-parameter fractional order discrete Tchebichef transformation
CN113407955A (en) Image encryption method, medium, equipment and terminal based on four-dimensional hyper-chaotic system
Rajput et al. A novel image encryption and authentication scheme using chaotic maps
Ahmad et al. A pixel-based encryption method for privacy-preserving deep learning models
Atee et al. Cryptography and image steganography using dynamic encryption on LSB and color image based data hiding

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20170322