CN106530114A - Power grid equipment monitoring method and system - Google Patents
Power grid equipment monitoring method and system Download PDFInfo
- Publication number
- CN106530114A CN106530114A CN201610841001.8A CN201610841001A CN106530114A CN 106530114 A CN106530114 A CN 106530114A CN 201610841001 A CN201610841001 A CN 201610841001A CN 106530114 A CN106530114 A CN 106530114A
- Authority
- CN
- China
- Prior art keywords
- sensor
- logical node
- detection data
- data table
- identification code
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
Landscapes
- Business, Economics & Management (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Economics (AREA)
- Public Health (AREA)
- Water Supply & Treatment (AREA)
- General Health & Medical Sciences (AREA)
- Human Resources & Organizations (AREA)
- Marketing (AREA)
- Primary Health Care (AREA)
- Strategic Management (AREA)
- Tourism & Hospitality (AREA)
- Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Alarm Systems (AREA)
Abstract
本发明公开了一种电网设备监测方法及其系统,方法包括:对传感器进行命名,得到对应传感器的唯一标识码;将传感器分解为至少一个的逻辑节点;生成与逻辑节点对应的电子表单;根据传感器的唯一标识码、至少一个的逻辑节点及其对应的电子表单,生成对应的抽象数据模型;传感器获取对应的逻辑节点参数,并依据抽象数据模型生成检测数据表;传感器将检测数据表发送至应用系统;将电网设备与安装其上的传感器进行关联,得到关联表;应用系统获取检测数据表中的逻辑节点参数,并判断所述逻辑节点参数是否正常;若不正常,则根据关联表获取对应的电网设备并进行提示。利用抽象数据模型上传检测数据表,实现对传感器数据的智能化统一监测管理。
The invention discloses a method and system for monitoring power grid equipment. The method includes: naming a sensor to obtain a unique identification code corresponding to the sensor; decomposing the sensor into at least one logical node; generating an electronic form corresponding to the logical node; The unique identification code of the sensor, at least one logical node and its corresponding electronic form generate a corresponding abstract data model; the sensor obtains the corresponding logical node parameters, and generates a detection data table according to the abstract data model; the sensor sends the detection data table to Application system; associate the grid equipment with the sensors installed on it to obtain an association table; the application system obtains the logical node parameters in the detection data table, and judges whether the logical node parameters are normal; if not, obtains according to the association table Corresponding grid equipment and prompt. Use the abstract data model to upload the detection data table to realize the intelligent unified monitoring and management of sensor data.
Description
技术领域technical field
本发明涉及数据管理技术领域,尤其涉及一种电网设备监测方法及其系统。The invention relates to the technical field of data management, in particular to a method and system for monitoring power grid equipment.
背景技术Background technique
目前,为了实现电网设备运行管理的自动化与智能化,为用户提供更为可靠、安全、优质的电力,基于物联网技术,通过安装相关传感器装置,实现对变压器低压侧负荷、设备温度、开关状态等进行实时监测和远程传送,实现对电网运行设备的故障预警和报警。但由于传感器种类繁多以及各传感器的标识、语义、数据表达格式、通信接口等信息各样,致使电力物联网内的各应用系统不易于更换传感器且软件开发复杂度较高,电网相关人员无法对各家厂商的传感器所上传的数据进行统一管理;随着电力物联网应用的普及,这个问题会变得愈发重要。At present, in order to realize the automation and intelligence of power grid equipment operation management and provide users with more reliable, safe and high-quality power, based on the Internet of Things technology, through the installation of relevant sensor devices, the low-voltage side load of transformers, equipment temperature, and switch status are realized. Real-time monitoring and remote transmission, etc., to realize fault warning and alarm for power grid operation equipment. However, due to the wide variety of sensors and the various information such as the identification, semantics, data expression formats, and communication interfaces of each sensor, it is not easy for each application system in the power Internet of Things to replace sensors and the complexity of software development is high. The data uploaded by the sensors of various manufacturers is managed in a unified manner; with the popularization of power Internet of Things applications, this issue will become more and more important.
发明内容Contents of the invention
本发明所要解决的技术问题是:提供一种电网设备监测方法及其系统,实现对传感器数据的智能化统一监测管理。The technical problem to be solved by the present invention is to provide a monitoring method and system for power grid equipment to realize intelligent unified monitoring and management of sensor data.
为了解决上述技术问题,本发明采用的技术方案为:一种电网设备监测方法,包括:In order to solve the above technical problems, the technical solution adopted in the present invention is: a method for monitoring power grid equipment, comprising:
根据预设的命名规则,对传感器进行命名,得到对应所述传感器的唯一标识码;Naming the sensor according to a preset naming rule to obtain a unique identification code corresponding to the sensor;
根据传感器的应用功能,将传感器分解为至少一个的逻辑节点;According to the application function of the sensor, decompose the sensor into at least one logical node;
根据预设的数据表达格式,生成与所述逻辑节点对应的电子表单,所述电子表单包括传感器信息和逻辑节点信息;Generating an electronic form corresponding to the logical node according to a preset data expression format, the electronic form including sensor information and logical node information;
根据所述传感器的唯一标识码、所述至少一个的逻辑节点及其对应的电子表单,生成对应的抽象数据模型;Generate a corresponding abstract data model according to the unique identification code of the sensor, the at least one logical node and its corresponding electronic form;
传感器获取对应的逻辑节点参数,并依据所述抽象数据模型生成检测数据表;The sensor obtains the corresponding logical node parameters, and generates a detection data table according to the abstract data model;
传感器将检测数据表通过监测装置发送至汇聚控制器;The sensor sends the detection data table to the aggregation controller through the monitoring device;
汇聚控制器将所述检测数据表通过网关发送至应用系统;The aggregation controller sends the detection data table to the application system through the gateway;
将电网设备与安装其上的传感器进行关联,得到关联表,并存储在应用系统中;Associate the grid equipment with the sensors installed on it, obtain the association table, and store it in the application system;
应用系统获取检测数据表中的逻辑节点参数,并判断所述逻辑节点参数是否正常;The application system obtains the logical node parameters in the detection data table, and judges whether the logical node parameters are normal;
若不正常,则根据所述关联表,获取所述检测数据表对应的传感器所对应的电网设备,并进行提示。If it is not normal, according to the association table, obtain the grid equipment corresponding to the sensor corresponding to the detection data table, and give a prompt.
本发明还涉及一种电网设备监测系统,包括:The present invention also relates to a power grid equipment monitoring system, comprising:
命名模块,用于根据预设的命名规则,对传感器进行命名,得到对应所述传感器的唯一标识码;A naming module, configured to name the sensor according to a preset naming rule, and obtain a unique identification code corresponding to the sensor;
分解模块,用于根据传感器的应用功能,将传感器分解为至少一个的逻辑节点;A decomposition module, configured to decompose the sensor into at least one logical node according to the application function of the sensor;
第一生成模块,用于根据预设的数据表达格式,生成与所述逻辑节点对应的电子表单,所述电子表单包括传感器信息和逻辑节点信息;A first generating module, configured to generate an electronic form corresponding to the logical node according to a preset data expression format, the electronic form including sensor information and logical node information;
第二生成模块,用于根据所述传感器的唯一标识码、所述至少一个的逻辑节点及其对应的电子表单,生成对应的抽象数据模型;The second generation module is used to generate a corresponding abstract data model according to the unique identification code of the sensor, the at least one logical node and its corresponding electronic form;
第三生成模块,用于传感器获取对应的逻辑节点参数,并依据所述抽象数据模型生成检测数据表;The third generating module is used for the sensor to obtain corresponding logical node parameters, and generate a detection data table according to the abstract data model;
第一发送模块,用于传感器将检测数据表通过监测装置发送至汇聚控制器;The first sending module is used for the sensor to send the detection data table to the aggregation controller through the monitoring device;
第二发送模块,用于汇聚控制器将所述检测数据表通过网关发送至应用系统;The second sending module is used for the aggregation controller to send the detection data table to the application system through the gateway;
关联模块,用于将电网设备与安装其上的传感器进行关联,得到关联表,并存储在应用系统中;The association module is used to associate the grid equipment with the sensors installed on it, obtain an association table, and store it in the application system;
判断模块,用于应用系统获取检测数据表中的逻辑节点参数,并判断所述逻辑节点参数是否正常;A judging module, used for the application system to obtain the logical node parameters in the detection data table, and judge whether the logical node parameters are normal;
提示模块,用于若不正常,则根据所述关联表,获取所述检测数据表对应的传感器所对应的电网设备,并进行提示。The prompting module is configured to obtain, according to the association table, the power grid equipment corresponding to the sensor corresponding to the detection data table if it is abnormal, and give a prompt.
本发明的有益效果在于:通过预设命名规则,使每个传感器都有一个与其对应的唯一标识码;通过构建与传感器一一对应的抽象数据模型,清楚地描述出传感器的唯一标识码和传感器的各应用功能;利用抽象数据模型上传参数数据,应用系统根据所述抽象数据模型即可对各个传感器的数据进行管理;提高电力物联网的数据之间的规范统一性,方便应用系统对传感器的数据进行统一管理,并可方便地根据统一规范后的参数数据进行快速、准确、高效率地故障判断,进行预警和告警;同时,消除了厂商、型号等因素带来的数据差异性,方便了传感器的更换,降低了开发难度。The beneficial effect of the present invention is that: through preset naming rules, each sensor has a corresponding unique identification code; by constructing an abstract data model corresponding to the sensor one-to-one, the unique identification code of the sensor and the sensor Each application function; upload parameter data by using the abstract data model, and the application system can manage the data of each sensor according to the abstract data model; improve the standard uniformity between the data of the power Internet of Things, and facilitate the application system to the sensor The data is managed in a unified manner, and it is convenient to perform fast, accurate and efficient fault judgments, early warnings and alarms according to the unified and standardized parameter data; at the same time, it eliminates the data differences caused by factors such as manufacturers and models, which is convenient The replacement of the sensor reduces the difficulty of development.
附图说明Description of drawings
图1为本发明实施例一的流程图;Fig. 1 is the flow chart of embodiment one of the present invention;
图2为本发明实施例一中抽象数据模型的示意图;FIG. 2 is a schematic diagram of an abstract data model in Embodiment 1 of the present invention;
图3为本发明实施例二步骤S1的流程图;FIG. 3 is a flowchart of step S1 of the second embodiment of the present invention;
图4为本发明实施例二步骤S7的流程图;FIG. 4 is a flowchart of step S7 of the second embodiment of the present invention;
图5为本发明一种电网设备监测系统的结构示意图;Fig. 5 is a schematic structural diagram of a grid equipment monitoring system of the present invention;
图6为本发明实施例三的系统结构示意图。FIG. 6 is a schematic diagram of the system structure of Embodiment 3 of the present invention.
标号说明:Label description:
1、命名模块;2、分解模块;3、第一生成模块;4、第二生成模块;5、第三生成模块;6、第一发送模块;7、第二发送模块;8、关联模块;9、判断模块;10、提示模块;11、转义模块;1. Naming module; 2. Decomposition module; 3. First generating module; 4. Second generating module; 5. Third generating module; 6. First sending module; 7. Second sending module; 8. Associated module; 9. Judgment module; 10. Prompt module; 11. Escape module;
101、划分单元;102、第一分配单元;103、第二分配单元;104、得到单元;101. Division unit; 102. First allocation unit; 103. Second allocation unit; 104. Obtaining unit;
701、转换单元;702、校验单元;703、发送单元。701. A converting unit; 702. A checking unit; 703. A sending unit.
具体实施方式detailed description
为详细说明本发明的技术内容、所实现目的及效果,以下结合实施方式并配合附图详予说明。In order to describe the technical content, achieved goals and effects of the present invention in detail, the following will be described in detail in conjunction with the implementation and accompanying drawings.
本发明最关键的构思在于:利用抽象数据模型上传数据,使应用系统可得到统一规范后的数据,从而实现快速高效的故障判断。The most critical idea of the present invention is to upload data by using the abstract data model, so that the application system can obtain unified and standardized data, thereby realizing fast and efficient fault judgment.
名词解释:Glossary:
物联网(Internet of Things):是指通过部署具有一定感知、计算、执行和通信等能力的各种设备,获得物理世界的信息或对物理世界的物体进行控制,通过网络实现信息的传输、协同和处理,从而实现人与物通信、物与物通信的网络。Internet of Things (Internet of Things): refers to the deployment of various devices with certain perception, calculation, execution and communication capabilities to obtain information in the physical world or control objects in the physical world, and to realize information transmission and collaboration through the network. and processing, so as to realize the network of communication between people and things, and between things and things.
应用系统:指能接入各类基于物联网的电力系统状态监测信息,并进行集中存储、统一处理和应用的一种计算机系统。应用系统包括统一接入网关、集中数据库、数据服务、数据加工及各类状态监测应用功能模块。Application system: refers to a computer system that can access various types of power system status monitoring information based on the Internet of Things, and perform centralized storage, unified processing and application. The application system includes unified access gateway, centralized database, data service, data processing and various state monitoring application function modules.
统一接入网关(Unified Acquisition Gateway):即网关,部署在主站系统侧的一种关口设备,能以标准方式远程连接汇聚控制器或监测代理,获取并校验汇聚控制器发出的各类状态监测信息,并可对汇聚控制器进行控制的一种计算机。Unified Acquisition Gateway (Unified Acquisition Gateway): a gateway, a gateway device deployed on the main station system side, can remotely connect to the aggregation controller or monitoring agent in a standard way, and obtain and verify various states sent by the aggregation controller A computer that monitors information and controls the aggregation controller.
汇聚控制器(Acquisition Controller):部署在配电线路环节,可接入不同类型、不同厂家甚至不同线路上的监测装置,实现在配电环节下各类监测装置的标准化接入、安全接入和智能化接入,实现监测装置数据接入代理功能。Convergence Controller (Acquisition Controller): Deployed in the power distribution line link, it can be connected to monitoring devices of different types, different manufacturers or even on different lines, so as to realize the standardized access, safe access and monitoring of various monitoring devices in the power distribution link. Intelligent access realizes the proxy function of monitoring device data access.
监测装置(Monitoring Devices):指安装在被监测的对象附近或之上,能自动采集和处理被监测对象的状态数据,并能与综合监测单元或汇聚控制器进行信息交换的一种数据采集、处理与通信装置。监测装置也可向数据采集单元(传感器)发送控制指令。Monitoring Devices: refers to a kind of data collection, monitoring device that is installed near or on the monitored object, can automatically collect and process the status data of the monitored object, and can exchange information with the integrated monitoring unit or aggregation controller. processing and communication devices. The monitoring device can also send control instructions to the data acquisition unit (sensor).
传感器(Sensor):能感受规定的被测量件并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。Sensor (Sensor): A device or device that can sense a specified measured object and convert it into a usable signal according to certain rules, usually consisting of a sensitive element and a conversion element. A sensor is a detection device that can feel the measured information, and can convert the detected information into electrical signals or other required forms of information output according to certain rules, so as to meet the needs of information transmission, processing, storage, display, recording and control requirements. It is the first link to realize automatic detection and automatic control.
公共信息模型(Common Information Model):是一个抽象模型,它描述了电力企业的所有主要对象,特别是那些与电力运行有关的对象。通过提供一种用对象类和属性及他们之间的关系来表示电力系统资源的标准方法,公共信息模型方便了不同电力业务系统的集成。公共信息模型规范使用统一建模语言(UML)定义,可基于UML模型定义和生成各种其他格式的模型,如RDF(资源描述框架)模式版本,采用XML来描述电力系统模型,主要用于各系统间的数据交换。Common Information Model (Common Information Model): It is an abstract model that describes all the main objects of the power enterprise, especially those related to power operation. The Common Information Model facilitates the integration of different power business systems by providing a standard way of representing power system resources with object classes and attributes and the relationships between them. The public information model specification is defined by the Unified Modeling Language (UML), and models in various other formats can be defined and generated based on the UML model, such as the RDF (Resource Description Framework) schema version, and XML is used to describe the power system model, which is mainly used in various Data exchange between systems.
请参阅图1,一种电网设备监测方法,包括:Please refer to Figure 1, a grid equipment monitoring method, including:
根据预设的命名规则,对传感器进行命名,得到对应所述传感器的唯一标识码;Naming the sensor according to a preset naming rule to obtain a unique identification code corresponding to the sensor;
根据传感器的应用功能,将传感器分解为至少一个的逻辑节点;According to the application function of the sensor, decompose the sensor into at least one logical node;
根据预设的数据表达格式,生成与所述逻辑节点对应的电子表单,所述电子表单包括传感器信息和逻辑节点信息;Generating an electronic form corresponding to the logical node according to a preset data expression format, the electronic form including sensor information and logical node information;
根据所述传感器的唯一标识码、所述至少一个的逻辑节点及其对应的电子表单,生成对应的抽象数据模型;Generate a corresponding abstract data model according to the unique identification code of the sensor, the at least one logical node and its corresponding electronic form;
传感器获取对应的逻辑节点参数,并依据所述抽象数据模型生成检测数据表;The sensor obtains the corresponding logical node parameters, and generates a detection data table according to the abstract data model;
传感器将检测数据表通过监测装置发送至汇聚控制器;The sensor sends the detection data table to the aggregation controller through the monitoring device;
汇聚控制器将所述检测数据表通过网关发送至应用系统;The aggregation controller sends the detection data table to the application system through the gateway;
将电网设备与安装其上的传感器进行关联,得到关联表,并存储在应用系统中;Associate the grid equipment with the sensors installed on it, obtain the association table, and store it in the application system;
应用系统获取检测数据表中的逻辑节点参数,并判断所述逻辑节点参数是否正常;The application system obtains the logical node parameters in the detection data table, and judges whether the logical node parameters are normal;
若不正常,则根据所述关联表,获取所述检测数据表对应的传感器所对应的电网设备,并进行提示。If it is not normal, according to the association table, obtain the grid equipment corresponding to the sensor corresponding to the detection data table, and give a prompt.
从上述描述可知,本发明的有益效果在于:传感器根据抽象数据模型上传检测数据表,可使应用系统实现对传感器数据的智能化统一监测管理。From the above description, it can be seen that the beneficial effect of the present invention is that the sensor uploads the detection data table according to the abstract data model, so that the application system can realize the intelligent unified monitoring and management of the sensor data.
进一步地,所述“根据预设的命名规则,对传感器进行命名,得到对应所述传感器的唯一标识码”具体为:Further, the "name the sensor according to the preset naming rules to obtain the unique identification code corresponding to the sensor" is specifically:
将传感器依据所属变电站或机房进行划分,得到信息岛集群;Divide the sensors according to their substations or machine rooms to obtain information island clusters;
对所述信息岛集群中的各信息岛分配第一标识码;allocating a first identification code to each information island in the information island cluster;
对信息岛中的传感器分配第二标识码;assigning a second identification code to the sensor in the information island;
根据所述第一标识码和第二标识码,得到对应所述传感器的唯一标识码。According to the first identification code and the second identification code, a unique identification code corresponding to the sensor is obtained.
由上述描述可知,通过自上而下的命名,保证了各信息岛中各传感器标识码的唯一性,又降低了命名编码的复杂度。It can be seen from the above description that the uniqueness of each sensor identification code in each information island is guaranteed through top-down naming, and the complexity of naming and coding is reduced.
进一步地,根据传感器所获取的参数类型,将传感器进行分解,得到至少一个的逻辑节点,其中,一个逻辑节点对应一种参数类型。Further, according to the parameter type acquired by the sensor, the sensor is decomposed to obtain at least one logical node, wherein one logical node corresponds to one parameter type.
由上述描述可知,将传感器的应用功能分解为与之交换信息最小实体,即最小功能模块,从而对各功能模块所获取的参数进行分类划分。It can be seen from the above description that the application function of the sensor is decomposed into the smallest entity exchanging information with it, that is, the smallest functional module, so as to classify and divide the parameters acquired by each functional module.
进一步地,所述“汇聚控制器将所述检测数据表通过网关发送至应用系统”具体为:Further, the "convergence controller sends the detection data table to the application system through the gateway" is specifically:
汇聚控制器将所述检测数据表转换为CIM XML格式,并发送至网关;The aggregation controller converts the detection data table into CIM XML format, and sends it to the gateway;
网关对所述检测数据表进行校验;The gateway checks the detection data table;
网关将校验合格的检测数据表发送至应用系统。The gateway sends the qualified detection data table to the application system.
由上述描述可知,建立基于公共信息模型(CIM)的可扩展标记语言(XML),不仅可以实现高效率的数据交换,而且也便于系统模型的扩展。It can be seen from the above description that the establishment of Extensible Markup Language (XML) based on Common Information Model (CIM) can not only realize high-efficiency data exchange, but also facilitate the expansion of the system model.
进一步地,所述“汇聚控制器将所述检测数据表通过网关发送至应用系统”之后,进一步包括:Further, after the "convergence controller sends the detection data table to the application system through the gateway", it further includes:
应用系统将所述检测数据表中的数据转义为可识别的数据,并进行保存。The application system converts the data in the detection data table into identifiable data and saves it.
由上述描述可知,通过将数据进行转义,使得电网相关人员也可通过应用系统查看传感器上传的数据。It can be seen from the above description that by escaping the data, relevant personnel in the power grid can also view the data uploaded by the sensor through the application system.
请参照图5,本发明还提出一种电网设备监测系统,包括:Please refer to Fig. 5, the present invention also proposes a grid equipment monitoring system, including:
命名模块,用于根据预设的命名规则,对传感器进行命名,得到对应所述传感器的唯一标识码;A naming module, configured to name the sensor according to a preset naming rule, and obtain a unique identification code corresponding to the sensor;
分解模块,用于根据传感器的应用功能,将传感器分解为至少一个的逻辑节点;A decomposition module, configured to decompose the sensor into at least one logical node according to the application function of the sensor;
第一生成模块,用于根据预设的数据表达格式,生成与所述逻辑节点对应的电子表单,所述电子表单包括传感器信息和逻辑节点信息;A first generating module, configured to generate an electronic form corresponding to the logical node according to a preset data expression format, the electronic form including sensor information and logical node information;
第二生成模块,用于根据所述传感器的唯一标识码、所述至少一个的逻辑节点及其对应的电子表单,生成对应的抽象数据模型;The second generation module is used to generate a corresponding abstract data model according to the unique identification code of the sensor, the at least one logical node and its corresponding electronic form;
第三生成模块,用于传感器获取对应的逻辑节点参数,并依据所述抽象数据模型生成检测数据表;The third generating module is used for the sensor to obtain corresponding logical node parameters, and generate a detection data table according to the abstract data model;
第一发送模块,用于传感器将检测数据表通过监测装置发送至汇聚控制器;The first sending module is used for the sensor to send the detection data table to the aggregation controller through the monitoring device;
第二发送模块,用于汇聚控制器将所述检测数据表通过网关发送至应用系统;The second sending module is used for the aggregation controller to send the detection data table to the application system through the gateway;
关联模块,用于将电网设备与安装其上的传感器进行关联,得到关联表,并存储在应用系统中;The association module is used to associate the grid equipment with the sensors installed on it, obtain an association table, and store it in the application system;
判断模块,用于应用系统获取检测数据表中的逻辑节点参数,并判断所述逻辑节点参数是否正常;A judging module, used for the application system to obtain the logical node parameters in the detection data table, and judge whether the logical node parameters are normal;
提示模块,用于若不正常,则根据所述关联表,获取所述检测数据表对应的传感器所对应的电网设备,并进行提示。The prompting module is configured to obtain, according to the association table, the power grid equipment corresponding to the sensor corresponding to the detection data table if it is abnormal, and give a prompt.
进一步地,所述命名模块包括:Further, the naming module includes:
划分单元,用于将传感器依据所属变电站或机房进行划分,得到信息岛集群;The dividing unit is used to divide the sensor according to the substation or machine room to which it belongs, to obtain the information island cluster;
第一分配单元,用于对所述信息岛集群中的各信息岛分配第一标识码;a first allocation unit, configured to allocate a first identification code to each information island in the information island cluster;
第二分配单元,用于对信息岛中的传感器分配第二标识码;a second allocation unit, configured to allocate a second identification code to the sensors in the information island;
得到单元,用于根据所述第一标识码和第二标识码,得到对应所述传感器的唯一标识码。The obtaining unit is configured to obtain a unique identification code corresponding to the sensor according to the first identification code and the second identification code.
进一步地,所述分解模块具体用于根据传感器所获取的参数类型,将传感器进行分解,得到至少一个的逻辑节点,其中,一个逻辑节点对应一种参数类型。Further, the decomposing module is specifically configured to decompose the sensor according to the parameter type acquired by the sensor to obtain at least one logical node, wherein one logical node corresponds to one parameter type.
进一步地,所述第二发送模块包括:Further, the second sending module includes:
转换单元,用于汇聚控制器将所述检测数据表转换为CIM XML格式,并发送至网关;The conversion unit is used for the aggregation controller to convert the detection data table into CIM XML format and send it to the gateway;
校验单元,用于网关对所述检测数据表进行校验;A verification unit, used for the gateway to verify the detection data table;
发送单元,用于网关将校验合格的检测数据表发送至应用系统。The sending unit is used for the gateway to send the verified detection data table to the application system.
进一步地,还包括:Further, it also includes:
转义模块,用于应用系统将所述检测数据表中的数据转义为可识别的数据,并进行保存。The escaping module is used for the application system to escaping the data in the detection data table into recognizable data and saving them.
实施例一Embodiment one
请参照图1,本发明的实施例一为:一种电网设备监测方法,可应用于电力物联网,基于自下而上为传感器、监测装置、汇聚控制器、网关和应用系统的电网架构,其中,传感器安装在电网设备上,采集电网设备的相关信息,并依次通过监测装置、汇聚控制器、网关发送至应用系统;Please refer to Fig. 1, Embodiment 1 of the present invention is: a grid equipment monitoring method, which can be applied to the Internet of Things, based on a bottom-up grid architecture consisting of sensors, monitoring devices, aggregation controllers, gateways, and application systems. Among them, the sensor is installed on the grid equipment, collects the relevant information of the grid equipment, and sends it to the application system through the monitoring device, the convergence controller, and the gateway in turn;
所述方法包括如下步骤:The method comprises the steps of:
S1:根据预设的命名规则,对传感器进行命名,得到对应所述传感器的唯一标识码。S1: Name the sensor according to a preset naming rule, and obtain a unique identification code corresponding to the sensor.
S2:根据传感器的应用功能,将传感器分解为至少一个的逻辑节点;即根据传感器所获取的参数类型,将传感器进行分解,得到至少一个的逻辑节点,其中,一个逻辑节点对应一种参数类型。S2: According to the application function of the sensor, decompose the sensor into at least one logical node; that is, according to the parameter type obtained by the sensor, decompose the sensor to obtain at least one logical node, wherein one logical node corresponds to one parameter type.
S3:根据预设的数据表达格式,生成与所述逻辑节点对应的电子表单,所述电子表单包括传感器信息和逻辑节点信息;传感器信息可以包括厂商编号、传感器类型编号等,逻辑节点信息可以包括逻辑节点编号,所述逻辑节点编号可以为逻辑节点相对对应的传感器的编号。S3: According to the preset data expression format, generate an electronic form corresponding to the logical node, the electronic form includes sensor information and logical node information; sensor information may include manufacturer number, sensor type number, etc., and logical node information may include A logical node number, where the logical node number may be a corresponding sensor number of the logical node.
S4:根据所述传感器的唯一标识码、所述至少一个的逻辑节点及其对应的电子表单,生成对应的抽象数据模型。S4: Generate a corresponding abstract data model according to the unique identification code of the sensor, the at least one logical node and its corresponding electronic form.
S5:传感器获取对应的逻辑节点参数,并依据所述抽象数据模型生成检测数据表。S5: The sensor obtains corresponding logical node parameters, and generates a detection data table according to the abstract data model.
S6:传感器将检测数据表通过监测装置发送至汇聚控制器。进一步地,传感器按照预设的频率上报检测数据表,例如15分钟;若发生异常情况,则增加上报频率,如每隔1分钟就发送检测数据表。S6: The sensor sends the detection data table to the aggregation controller through the monitoring device. Further, the sensor reports the detection data table at a preset frequency, for example, 15 minutes; if an abnormal situation occurs, the reporting frequency is increased, such as sending the detection data table every 1 minute.
S7:汇聚控制器将所述检测数据表通过网关发送至应用系统。优选地,应用系统接收所述检测数据表后,将所述检测数据表中的数据转义为可识别的数据,并进行保存;例如,检测数据表中的数据为十六进制,则转义为十进制,使得电网相关人员也可通过应用系统查看传感器上传的数据。S7: The aggregation controller sends the detection data table to the application system through the gateway. Preferably, after receiving the detection data table, the application system converts the data in the detection data table into identifiable data and saves them; for example, if the data in the detection data table is in hexadecimal, then the It is defined as decimal, so that relevant personnel of the power grid can also view the data uploaded by the sensor through the application system.
S8:将电网设备与安装其上的传感器进行关联,得到关联表,并存储在应用系统中;可将电网设备的唯一标识符与传感器的唯一标识码进行关联。S8: Associating the grid equipment with the sensors installed on it to obtain an association table and store it in the application system; the unique identifier of the grid equipment can be associated with the unique identification code of the sensor.
S9:应用系统获取检测数据表中的逻辑节点参数,并判断所述逻辑节点参数是否正常,若否,执行步骤S10。可将逻辑节点参数与预设的阈值范围进行比较,若超出阈值范围,则为不正常。S9: The application system obtains the logical node parameters in the detection data table, and judges whether the logical node parameters are normal, and if not, executes step S10. The logical node parameter can be compared with a preset threshold range, and if it exceeds the threshold range, it is abnormal.
S10:根据所述关联表,获取所述检测数据表对应的传感器所对应的电网设备,并进行提示。S10: Obtain, according to the association table, the power grid equipment corresponding to the sensor corresponding to the detection data table, and give a prompt.
优选地,在步骤S1之前,预设统一的语义,使节点跟上层通信使用同样的语言,具体地,在描述具体物理量时应遵循相关的国际标准或惯例,即使用该物理量对应的英文单词对其进行描述。Preferably, before step S1, a unified semantics is preset so that the nodes communicate with the upper layer using the same language. Specifically, relevant international standards or practices should be followed when describing specific physical quantities, that is, using the English word pair corresponding to the physical quantity It describes.
对于抽象数据模型,具体地,如图2所示,传感器的抽象数据模型主要由逻辑设备、逻辑节点和数据对象三部分组成。其中逻辑设备(LD)代表现实世界中的各种传感器。逻辑节点(LN)代表传感器的最小功能模块。数据对象(DO)是逻辑节点的数据描述。一个逻辑设备可以有多个逻辑节点,一个逻辑节点可以通过数据对象来描述。Regarding the abstract data model, specifically, as shown in FIG. 2 , the abstract data model of the sensor mainly consists of three parts: logical devices, logical nodes and data objects. Among them, the logic device (LD) represents various sensors in the real world. A logical node (LN) represents the smallest functional module of a sensor. A data object (DO) is a data description of a logical node. A logical device can have multiple logical nodes, and a logical node can be described by a data object.
一个传感器一般可测量多个物理参数,一个物理参数对应一个逻辑节点。例如,对于避雷器泄露电流监测传感器,即包括CM(电流检测)、VM(电压检测)、HM(谐波检测)、CO(计数器)、TP(温度)、HU(湿度)等逻辑节点,其中,CM用于监测电网设备的电流信息,VM用于监测电网设备的电压信息,HM用于监测电网设备的谐波信息,CO用于监测电网设备的动作次数,TP用于监测电网设备的运行温度信息,HU用于监测电网设备运行中的环境湿度信息。当然,也有单功能的传感器,只测量一个物理参数,如温度传感器,则包括逻辑节点TP,用于监测电网设备的运行温度信息。同时,逻辑节点可以通用,例如传感器中测量温度的应用功能均对应逻辑节点TP。A sensor can generally measure multiple physical parameters, and one physical parameter corresponds to one logical node. For example, for the arrester leakage current monitoring sensor, it includes logic nodes such as CM (current detection), VM (voltage detection), HM (harmonic detection), CO (counter), TP (temperature), HU (humidity), among which, CM is used to monitor the current information of grid equipment, VM is used to monitor the voltage information of grid equipment, HM is used to monitor the harmonic information of grid equipment, CO is used to monitor the operation times of grid equipment, and TP is used to monitor the operating temperature of grid equipment Information, the HU is used to monitor the environmental humidity information during the operation of the power grid equipment. Of course, there are also single-function sensors that only measure one physical parameter, such as a temperature sensor, which includes a logical node TP for monitoring the operating temperature information of grid equipment. At the same time, the logical nodes can be common, for example, the application function of measuring temperature in the sensor all corresponds to the logical node TP.
一个数据对象对应一个传感器电子表单。传感器的地址和功能可以通过传感器电子表单来描述。传感器电子表单(TEDS)由基本TEDS、实时TEDS和用户开放区三部分组成。基本TEDS由厂商编号、传感器类型编号、逻辑节点类型编号、设备流水号组成。基本TEDS由64bits组成,可以唯一标识每一个逻辑节点。将64bits基本TEDS的数据填写到传感器统一标识的低64bits。传感器在出厂时只需要64bits(十六进制数16个字节)即可。如果需要,在汇聚控制器上再通过映射等方式加载传感器统一标识另外的部分。例如省网公司,地市公司等信息。实时TEDS用于记录逻辑节点参数,进一步地,还可以记录参数的计量范围、计量误差等。用户开放区即用于让电网相关人员填写相关备注信息,也可以为空。也就是说,传感器将检测获取到的逻辑节点参数填入抽象信息模型中对应的逻辑节点的电子表单的实时TEDS,即可得到检测数据表。One data object corresponds to one sensor spreadsheet. The address and function of the sensor can be described by the sensor spreadsheet. Transducer electronic form (TEDS) consists of three parts: basic TEDS, real-time TEDS and user open area. The basic TEDS consists of manufacturer number, sensor type number, logical node type number, and equipment serial number. The basic TEDS consists of 64 bits, which can uniquely identify each logical node. Fill in the 64bits basic TEDS data to the lower 64bits of the sensor uniform identification. The sensor only needs 64bits (16 bytes of hexadecimal number) when it leaves the factory. If necessary, another part of the sensor uniform identification is loaded on the aggregation controller by means of mapping or the like. For example, information such as provincial network companies, prefecture and city companies. Real-time TEDS is used to record logical node parameters, and further, it can also record the measurement range and measurement error of parameters. The user open area is used for grid related personnel to fill in relevant remarks, and it can also be empty. That is to say, the sensor fills the detected logical node parameters into the real-time TEDS of the electronic form of the corresponding logical node in the abstract information model to obtain the detected data table.
例如,对于温度的逻辑节点TP,其电子表单如表1所示;其中,厂商编号为1,传感器类型编号为05,逻辑节点类型编号为28,设备流水号为149087,计量范围为-40℃到+80℃,计量误差为±0.5℃,当前所测得的温度值为25℃,传感器数据采集时间为2013-06-09 14:23,传感器当前状态为1(1表示在线,0表示离线),电池容量为80%。For example, for the logical node TP of temperature, its electronic form is shown in Table 1; among them, the manufacturer number is 1, the sensor type number is 05, the logical node type number is 28, the equipment serial number is 149087, and the measurement range is -40°C To +80°C, the measurement error is ±0.5°C, the current measured temperature value is 25°C, the sensor data collection time is 2013-06-09 14:23, the current status of the sensor is 1 (1 means online, 0 means offline ), the battery capacity is 80%.
表1Table 1
本实施例利用抽象数据模型上传参数数据,应用系统根据所述抽象数据模型即可对各个传感器的数据进行管理;提高电力物联网的数据之间的规范统一性,方便应用系统对传感器的数据进行统一管理,并可方便地根据统一规范后的参数数据进行快速、准确、高效率地故障判断,进行预警和告警;同时,消除了厂商、型号等因素带来的数据差异性,方便了传感器的更换,降低了开发难度。In this embodiment, the abstract data model is used to upload parameter data, and the application system can manage the data of each sensor according to the abstract data model; the standard uniformity among the data of the electric power Internet of Things is improved, and it is convenient for the application system to process the sensor data Unified management, and it is convenient to perform fast, accurate and efficient fault judgment, early warning and alarm according to the parameter data after unified specification; at the same time, it eliminates the data differences caused by factors such as manufacturers and models, and facilitates the sensor Replacement reduces the difficulty of development.
实施例二Embodiment two
本实施例是实施例一中步骤S1和S7的进一步拓展。This embodiment is a further extension of steps S1 and S7 in the first embodiment.
请参照图3,步骤S1具体包括如下步骤:Please refer to Fig. 3, step S1 specifically includes the following steps:
S101:将传感器依据所属变电站或机房进行划分,得到信息岛集群;即一个变电站或机房即为一个信息岛,安装在一个变电站上或一个机房内的传感器,以及安装在所述变电站或所述机房下属的电网设备上的传感器,将这些同属于一个变电站或一个机房的传感器划分成一个集合,即一个信息岛集群。S101: Divide the sensors according to their substations or computer rooms to obtain information island clusters; that is, a substation or a computer room is an information island, sensors installed on a substation or in a computer room, and sensors installed in the substation or the computer room The sensors on the subordinate grid equipment divide these sensors belonging to a substation or a machine room into a collection, that is, an information island cluster.
S102:对所述信息岛集群中的各信息岛分配第一标识码。S102: Allocate a first identification code to each information island in the information island cluster.
S103:对信息岛中的传感器分配第二标识码。S103: Allocate a second identification code to the sensor in the information island.
S104:根据所述第一标识码和第二标识码,得到对应所述传感器的唯一标识码。S104: Obtain a unique identification code corresponding to the sensor according to the first identification code and the second identification code.
各信息岛的第一标识码各不相同,一个信息岛中各传感器的第二标识码各不相同,但不同信息岛中的传感器的第二标识码可以一致,由此,自上而下的命名保证了各信息岛中各传感器标识码的唯一性,又降低了命名编码的复杂度。The first identification codes of each information island are different, and the second identification codes of each sensor in an information island are different, but the second identification codes of sensors in different information islands can be consistent, thus, top-down The naming ensures the uniqueness of each sensor identification code in each information island, and reduces the complexity of naming and encoding.
请参照图4,步骤S7具体包括如下步骤:Please refer to Fig. 4, step S7 specifically includes the following steps:
S701:汇聚控制器将所述检测数据表转换为CIM XML格式,并发送至网关。CIM即公用信息模型。S701: The convergence controller converts the detection data table into a CIM XML format, and sends it to the gateway. CIM stands for Common Information Model.
S702:网关对所述检测数据表进行校验。S702: The gateway verifies the detection data table.
S703:网关将校验合格的检测数据表发送至应用系统。S703: the gateway sends the verified detection data table to the application system.
建立基于公共信息模型(CIM)的可扩展标记语言(Extensible Markup Language,XML),不仅可以实现高效率的数据交换,而且也便于系统模型的扩展。模型的建立方法是将开关/节点模型扩展为母线/支路模型,再描述为通用信息模型/可扩展标记语言(CIM/XML)的形式。Establishing an Extensible Markup Language (XML) based on the Common Information Model (CIM) can not only realize high-efficiency data exchange, but also facilitate the expansion of the system model. The establishment method of the model is to expand the switch/node model into a bus/branch model, and then describe it in the form of Common Information Model/Extensible Markup Language (CIM/XML).
实施例三Embodiment Three
请参照图6,本实施例是对应上述实施例的一种电网设备监测系统,包括:Please refer to Figure 6, this embodiment is a grid equipment monitoring system corresponding to the above embodiments, including:
命名模块1,用于根据预设的命名规则,对传感器进行命名,得到对应所述传感器的唯一标识码;Naming module 1, configured to name the sensor according to a preset naming rule, and obtain a unique identification code corresponding to the sensor;
分解模块2,用于根据传感器的应用功能,将传感器分解为至少一个的逻辑节点;Decomposition module 2, configured to decompose the sensor into at least one logical node according to the application function of the sensor;
第一生成模块3,用于根据预设的数据表达格式,生成与所述逻辑节点对应的电子表单,所述电子表单包括传感器信息和逻辑节点信息;The first generation module 3 is used to generate an electronic form corresponding to the logical node according to a preset data expression format, and the electronic form includes sensor information and logical node information;
第二生成模块4,用于根据所述传感器的唯一标识码、所述至少一个的逻辑节点及其对应的电子表单,生成对应的抽象数据模型;The second generation module 4 is used to generate a corresponding abstract data model according to the unique identification code of the sensor, the at least one logical node and its corresponding electronic form;
第三生成模块5,用于传感器获取对应的逻辑节点参数,并依据所述抽象数据模型生成检测数据表;The third generating module 5 is used for the sensor to obtain corresponding logical node parameters, and generate a detection data table according to the abstract data model;
第一发送模块6,用于传感器将检测数据表通过监测装置发送至汇聚控制器;The first sending module 6 is used for the sensor to send the detection data table to the aggregation controller through the monitoring device;
第二发送模块7,用于汇聚控制器将所述检测数据表通过网关发送至应用系统;The second sending module 7 is used for the aggregation controller to send the detection data table to the application system through the gateway;
关联模块8,用于将电网设备与安装其上的传感器进行关联,得到关联表,并存储在应用系统中;An association module 8, configured to associate the grid equipment with the sensors installed thereon, obtain an association table, and store it in the application system;
判断模块9,用于应用系统获取检测数据表中的逻辑节点参数,并判断所述逻辑节点参数是否正常;Judgment module 9, used for the application system to obtain the logical node parameters in the detection data table, and judge whether the logical node parameters are normal;
提示模块10,用于若不正常,则根据所述关联表,获取所述检测数据表对应的传感器所对应的电网设备,并进行提示。The prompting module 10 is configured to obtain, according to the association table, the power grid equipment corresponding to the sensor corresponding to the detection data table if it is abnormal, and give a prompt.
进一步地,所述命名模块1包括:Further, the naming module 1 includes:
划分单元101,用于将传感器依据所属变电站或机房进行划分,得到信息岛集群;The dividing unit 101 is used to divide the sensors according to the substations or machine rooms to which they belong, to obtain information island clusters;
第一分配单元102,用于对所述信息岛集群中的各信息岛分配第一标识码;A first allocation unit 102, configured to allocate a first identification code to each information island in the information island cluster;
第二分配单元103,用于对信息岛中的传感器分配第二标识码;The second allocation unit 103 is configured to allocate a second identification code to the sensors in the information island;
得到单元104,用于根据所述第一标识码和第二标识码,得到对应所述传感器的唯一标识码。The obtaining unit 104 is configured to obtain a unique identification code corresponding to the sensor according to the first identification code and the second identification code.
进一步地,所述分解模块2具体用于根据传感器所获取的参数类型,将传感器进行分解,得到至少一个的逻辑节点,其中,一个逻辑节点对应一种参数类型。Further, the decomposing module 2 is specifically configured to decompose the sensor according to the parameter type acquired by the sensor to obtain at least one logical node, wherein one logical node corresponds to one parameter type.
进一步地,所述第二发送模块7包括:Further, the second sending module 7 includes:
转换单元701,用于汇聚控制器将所述检测数据表转换为CIM XML格式,并发送至网关;The conversion unit 701 is used for the aggregation controller to convert the detection data table into CIM XML format and send it to the gateway;
校验单元702,用于网关对所述检测数据表进行校验;A verification unit 702, configured for the gateway to verify the detection data table;
发送单元703,用于网关将校验合格的检测数据表发送至应用系统。The sending unit 703 is used for the gateway to send the verified detection data table to the application system.
进一步地,还包括:Further, it also includes:
转义模块11,用于应用系统将所述检测数据表中的数据转义为可识别的数据,并进行保存。The escape module 11 is used for the application system to translate the data in the detection data table into recognizable data and store them.
综上所述,本发明提供的一种电网设备监测方法及其系统,通过预设命名规则,使每个传感器都有一个与其对应的唯一标识码;同时,通过自上而下的命名,保证了各信息岛中各传感器标识码的唯一性,又降低了命名编码的复杂度;通过构建与传感器一一对应的抽象数据模型,清楚地描述出传感器的唯一标识码和传感器的各应用功能;利用抽象数据模型上传参数数据,应用系统根据所述抽象数据模型即可对各个传感器的数据进行管理;提高电力物联网的数据之间的规范统一性,方便应用系统对传感器的数据进行统一管理,并可方便地根据统一规范后的参数数据进行快速、准确、高效率地故障判断,进行预警和告警;同时,消除了厂商、型号等因素带来的数据差异性,方便了传感器的更换,降低了开发难度。To sum up, the present invention provides a grid equipment monitoring method and its system, through preset naming rules, so that each sensor has a corresponding unique identification code; at the same time, through top-down naming, ensure The uniqueness of each sensor identification code in each information island is reduced, and the complexity of the naming code is reduced; the unique identification code of the sensor and each application function of the sensor are clearly described by constructing an abstract data model corresponding to the sensor one by one; Utilize the abstract data model to upload parameter data, and the application system can manage the data of each sensor according to the abstract data model; improve the standard uniformity between the data of the power Internet of Things, and facilitate the unified management of the sensor data by the application system, And it is convenient to quickly, accurately, and efficiently judge faults based on the unified and standardized parameter data, and carry out early warning and alarm; at the same time, it eliminates the data differences caused by factors such as manufacturers and models, which facilitates the replacement of sensors and reduces development difficulty.
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等同变换,或直接或间接运用在相关的技术领域,均同理包括在本发明的专利保护范围内。The above is only an embodiment of the present invention, and does not limit the patent scope of the present invention. All equivalent transformations made by using the description of the present invention and the contents of the accompanying drawings, or directly or indirectly used in related technical fields, are all included in the same principle. Within the scope of patent protection of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610841001.8A CN106530114A (en) | 2016-09-22 | 2016-09-22 | Power grid equipment monitoring method and system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610841001.8A CN106530114A (en) | 2016-09-22 | 2016-09-22 | Power grid equipment monitoring method and system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106530114A true CN106530114A (en) | 2017-03-22 |
Family
ID=58343848
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610841001.8A Pending CN106530114A (en) | 2016-09-22 | 2016-09-22 | Power grid equipment monitoring method and system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106530114A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018233016A1 (en) * | 2017-06-21 | 2018-12-27 | 深圳市盛路物联通讯技术有限公司 | Edge routing node and reporting frequency adjusting method thereof |
CN110690699A (en) * | 2019-07-30 | 2020-01-14 | 国网浙江省电力有限公司嘉兴供电公司 | Transformer substation intelligent detection system based on ubiquitous power Internet of things |
CN111526177A (en) * | 2020-03-27 | 2020-08-11 | 华东师范大学 | Construction method of intelligent Internet of things system for smart city information-physical integration |
CN114036699A (en) * | 2021-10-19 | 2022-02-11 | 国网湖北省电力有限公司电力科学研究院 | A generalized non-power business modeling method for power Internet of things platform |
CN115214496A (en) * | 2022-07-26 | 2022-10-21 | 广州汽车集团股份有限公司 | Vehicle control system and method |
CN115687262A (en) * | 2022-10-18 | 2023-02-03 | 山东华科信息技术有限公司 | Distributed energy measuring point power data naming method and system |
CN115826518A (en) * | 2022-11-15 | 2023-03-21 | 华中科技大学 | Safety monitoring data identification lightweight system based on Internet of things |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101917067A (en) * | 2010-08-13 | 2010-12-15 | 华北电力大学(保定) | An integrated method of a power equipment condition monitoring device |
CN102361350A (en) * | 2011-10-13 | 2012-02-22 | 广东电网公司电力科学研究院 | Method for monitoring power grid equipment on line |
CN103296749A (en) * | 2012-02-24 | 2013-09-11 | 江苏省帕瓦电力技术有限公司 | Method and system for processing power grid state information based on wireless sensor network |
-
2016
- 2016-09-22 CN CN201610841001.8A patent/CN106530114A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101917067A (en) * | 2010-08-13 | 2010-12-15 | 华北电力大学(保定) | An integrated method of a power equipment condition monitoring device |
CN102361350A (en) * | 2011-10-13 | 2012-02-22 | 广东电网公司电力科学研究院 | Method for monitoring power grid equipment on line |
CN103296749A (en) * | 2012-02-24 | 2013-09-11 | 江苏省帕瓦电力技术有限公司 | Method and system for processing power grid state information based on wireless sensor network |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018233016A1 (en) * | 2017-06-21 | 2018-12-27 | 深圳市盛路物联通讯技术有限公司 | Edge routing node and reporting frequency adjusting method thereof |
CN110690699A (en) * | 2019-07-30 | 2020-01-14 | 国网浙江省电力有限公司嘉兴供电公司 | Transformer substation intelligent detection system based on ubiquitous power Internet of things |
CN111526177A (en) * | 2020-03-27 | 2020-08-11 | 华东师范大学 | Construction method of intelligent Internet of things system for smart city information-physical integration |
CN114036699A (en) * | 2021-10-19 | 2022-02-11 | 国网湖北省电力有限公司电力科学研究院 | A generalized non-power business modeling method for power Internet of things platform |
CN114036699B (en) * | 2021-10-19 | 2024-04-02 | 国网湖北省电力有限公司电力科学研究院 | A generalized non-power business modeling method for power Internet of Things platform |
CN115214496A (en) * | 2022-07-26 | 2022-10-21 | 广州汽车集团股份有限公司 | Vehicle control system and method |
CN115687262A (en) * | 2022-10-18 | 2023-02-03 | 山东华科信息技术有限公司 | Distributed energy measuring point power data naming method and system |
CN115826518A (en) * | 2022-11-15 | 2023-03-21 | 华中科技大学 | Safety monitoring data identification lightweight system based on Internet of things |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106530114A (en) | Power grid equipment monitoring method and system | |
CN102510127B (en) | Method for unifying models of on-line monitored first and secondary equipment of power grid | |
CN104135068B (en) | A kind of distribution terminal plug and play method based on IEC61850 standard | |
CN103199624B (en) | Smart converting station based on international electrotechnical commission (IEC) 61850 | |
CN105914890B (en) | A Substation Automation Control System | |
CN104993591B (en) | A kind of distribution system long-distance maintenance method based on IEC61850 standards | |
CN104852473B (en) | A kind of monitoring method based on transformer station's digital model | |
CN102521398A (en) | Modeling method for substation-dispatching center two-level distributed type power grid | |
CN106856508A (en) | The cloud monitoring method and cloud platform of data center | |
CN113722883B (en) | A method for locating faults in secondary circuits of intelligent substations | |
CN101465851B (en) | A Fault Information Substation and Its Modeling Method Based on IEC61850 | |
CN104580245B (en) | A kind of 104 packet parsing system of distribution terminal and its analytic method | |
CN105117532A (en) | Modeling method for intelligent substation secondary equipment interval information model | |
CN111654488B (en) | "Three-in-one" substation and sensing terminal information access method | |
WO2015149594A1 (en) | Iec61850-based communication simulation method for partial discharge on-line monitoring device | |
CN103559160A (en) | SG-CIM-standard-based construction method for semantic information interaction interface of intelligent power distribution system | |
WO2015149595A1 (en) | Iec61850-based communication simulation method for insulation on-line monitoring device | |
CN116628937B (en) | A method, device, equipment and medium for automatic integration and maintenance of power grid equipment model | |
WO2015149592A1 (en) | Iec61850-based communication simulation method for lightning arrester on-line monitoring device | |
CN105449668A (en) | Dynamic modeling method for intelligent electronic equipment for monitoring electric energy quality of intelligent transformer station | |
CN103825956B (en) | The implementation method of the remote control and regulation technology based on agency service | |
CN104463499A (en) | Power transmission and transformation equipment panoramic information modeling method based on CIM | |
CN102738897B (en) | Offline configuration resource information fusion method for intelligent substation | |
CN104268328A (en) | Real-time dada based electromagnetic closed loop conductive operation system | |
CN107239601A (en) | A kind of distribution terminal flexible configuration method based on configuration technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170322 |