CN106526899A - Microwave photon filter based on cross-polarization modulation - Google Patents
Microwave photon filter based on cross-polarization modulation Download PDFInfo
- Publication number
- CN106526899A CN106526899A CN201610927612.4A CN201610927612A CN106526899A CN 106526899 A CN106526899 A CN 106526899A CN 201610927612 A CN201610927612 A CN 201610927612A CN 106526899 A CN106526899 A CN 106526899A
- Authority
- CN
- China
- Prior art keywords
- optical
- branch module
- signal
- module
- microwave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005388 cross polarization Methods 0.000 title claims abstract description 32
- 230000003287 optical effect Effects 0.000 claims description 106
- 230000010287 polarization Effects 0.000 claims description 32
- 239000013307 optical fiber Substances 0.000 claims description 24
- 238000001514 detection method Methods 0.000 claims description 16
- 230000005540 biological transmission Effects 0.000 claims description 6
- 230000003595 spectral effect Effects 0.000 claims description 6
- 239000000835 fiber Substances 0.000 claims description 5
- 230000005374 Kerr effect Effects 0.000 claims description 4
- 230000000694 effects Effects 0.000 claims description 3
- 230000002452 interceptive effect Effects 0.000 claims description 2
- 230000000717 retained effect Effects 0.000 claims description 2
- 230000010363 phase shift Effects 0.000 claims 1
- 230000008901 benefit Effects 0.000 abstract description 4
- 239000000969 carrier Substances 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 6
- 230000004044 response Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/011—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour in optical waveguides, not otherwise provided for in this subclass
- G02F1/0115—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour in optical waveguides, not otherwise provided for in this subclass in optical fibres
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/35—Non-linear optics
- G02F1/365—Non-linear optics in an optical waveguide structure
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Optical Communication System (AREA)
Abstract
Description
技术领域technical field
本发明涉及微波光子学领域,更具体地说是一种基于交叉偏振调制的微波光子滤波器。The invention relates to the field of microwave photonics, in particular to a microwave photon filter based on cross polarization modulation.
背景技术Background technique
微波光子滤波器具有低损耗、高带宽、抗电磁干扰等优点,同时又具备可调谐及可重构等灵活的操作特性,因而能取代传统的电滤波器,在光载无线、微波信号产生以及高频微波信号处理方面有巨大的优势。提高微波光子滤波器的调谐速度具有重大意义。然而微波光子滤波器的调谐速度往往受限于微波光子系统中电光调制器等器件的带宽,如何突破这一限制是一大难题。Microwave photonic filters have the advantages of low loss, high bandwidth, anti-electromagnetic interference, etc., and at the same time have flexible operating characteristics such as tunable and reconfigurable, so they can replace traditional electrical filters in radio-over-optical, microwave signal generation and There are huge advantages in high-frequency microwave signal processing. Improving the tuning speed of microwave photonic filters is of great significance. However, the tuning speed of microwave photonic filters is often limited by the bandwidth of devices such as electro-optic modulators in microwave photonic systems. How to break through this limitation is a big problem.
发明内容Contents of the invention
(一)要解决的技术问题(1) Technical problems to be solved
本发明所要解决的技术问题是微波光子滤波器的调谐速度受限于微波光子系统中电光调制器等器件的带宽问题。The technical problem to be solved by the invention is that the tuning speed of the microwave photonic filter is limited by the bandwidth of the electro-optical modulator and other devices in the microwave photonic system.
(二)技术方案(2) Technical solutions
为了达到上述目的,本发明采用如下技术方案:In order to achieve the above object, the present invention adopts following technical scheme:
一种基于交叉偏振调制的微波光子滤波器,包括输入模块、上支路模块、下支路模块和输出模块,其中:A microwave photonic filter based on cross polarization modulation, comprising an input module, an upper branch module, a lower branch module and an output module, wherein:
所述输入模块用于产生光信号并将光信号发送到上支路模块和下支路模块,所述光信号是将微波信号调制到光载波上产生的;The input module is used to generate an optical signal and send the optical signal to the upper branch module and the lower branch module, and the optical signal is generated by modulating a microwave signal onto an optical carrier;
所述上支路模块用于对所述光信号进行时间延迟后发送到输出模块;The upper branch module is used to time delay the optical signal and send it to the output module;
所述下支路模块用于产生脉冲信号并将其和所述光信号合束后进行交叉偏振调制得到的微波信号发送到输出模块;The lower branch module is used to generate a pulse signal and combine it with the optical signal to perform cross-polarization modulation and send the microwave signal to the output module;
所述输出模块用于将上支路模块产生的光信号和下支路模块产生的微波信号发生干涉并输出。The output module is used for interfering and outputting the optical signal generated by the upper branch module and the microwave signal generated by the lower branch module.
作为本发明的一种优选方式,所述输入模块包括第一激光源、微光源、强度调制器和第一光耦合器;As a preferred mode of the present invention, the input module includes a first laser source, a micro light source, an intensity modulator and a first optical coupler;
所述强度调制器将微波源输入的微波信号调制到第一激光源输入的光载波上,并将已调信号输出到第一光耦合器;所述的第一光耦合器将光信号发送到上支路模块和下支路模块。The intensity modulator modulates the microwave signal input by the microwave source to the optical carrier input by the first laser source, and outputs the modulated signal to the first optical coupler; the first optical coupler sends the optical signal to Upper branch module and lower branch module.
作为本发明的一种优选方式,所述上支路模块包括可调光延迟线和可调光衰减器;As a preferred mode of the present invention, the upper branch module includes an adjustable optical delay line and an adjustable optical attenuator;
所述可调光延迟线用于增加或减少光传输的距离,达到时间上延迟的目的;所述可调光衰减器用于控制激光的功率。The adjustable optical delay line is used to increase or decrease the distance of light transmission to achieve the purpose of time delay; the adjustable optical attenuator is used to control the power of the laser.
作为本发明的一种优选方式,所述可调光延迟线的延迟时间T满足:F=1/T,F是自由光谱范围。As a preferred mode of the present invention, the delay time T of the adjustable optical delay line satisfies: F=1/T, and F is a free spectral range.
作为本发明的一种优选方式,所述下支路模块包括脉冲激光源、第二光耦合器、第一偏振控制器、第二激光源、第二偏振控制器、第三光耦合器、高非线性光纤;As a preferred mode of the present invention, the lower branch module includes a pulsed laser source, a second optical coupler, a first polarization controller, a second laser source, a second polarization controller, a third optical coupler, a high nonlinear optical fiber;
所述第二光耦合器用于将第一光耦合器输出的光信号和脉冲激光源输出的激光脉冲合束,作为控制光诱导高非线性光纤产生克尔效应;The second optical coupler is used to combine the optical signal output by the first optical coupler and the laser pulse output by the pulsed laser source, as a control light to induce the Kerr effect in the highly nonlinear optical fiber;
所述第三光耦合器用于将第一偏振控制器输出的控制光和第二偏振控制器输出的探测光合束后输出到高非线性光纤;The third optical coupler is used to combine the control light output by the first polarization controller and the detection light output by the second polarization controller to output to the high nonlinear optical fiber;
所述下支路模块利用高非线性光纤中的交叉偏振调制效应对微波信号进行二进制相位编码;The lower branch module uses the cross-polarization modulation effect in the highly nonlinear optical fiber to perform binary phase encoding on the microwave signal;
所述第二激光源产生的探测光为线偏振光,其光的波长和上支路模块的不相同,调节第二偏振控制器控制探测光的偏振态,使其与高非线性光纤的慢轴成45度角,其在高非线性光纤的快轴和慢轴两个方向上产生非对称的相位调制;The detection light generated by the second laser source is linearly polarized light, and the wavelength of the light is different from that of the upper branch module. Adjust the second polarization controller to control the polarization state of the detection light so that it is different from that of the high nonlinear optical fiber. The axis is at an angle of 45 degrees, which produces asymmetric phase modulation in the two directions of the fast axis and the slow axis of the highly nonlinear fiber;
作为本发明的一种优选方式,所述下支路模块还包括第三偏振控制器;As a preferred mode of the present invention, the lower branch module further includes a third polarization controller;
所述第三偏振控制器,用于控制所述高非线性光纤输出激光的偏振态。The third polarization controller is used to control the polarization state of the laser output from the highly nonlinear fiber.
作为本发明的一种优选方式,所述下支路模块还包括起偏器;As a preferred mode of the present invention, the lower branch module further includes a polarizer;
所述起偏器的起偏方向与高非线性光纤的慢轴成45度角,高非线性光纤输出的偏振调制的探测光信号被投影到起偏器的起偏方向上,被转换为强度调制信号。The polarizing direction of the polarizer is at an angle of 45 degrees to the slow axis of the highly nonlinear fiber, and the polarization-modulated detection optical signal output by the highly nonlinear fiber is projected onto the polarizing direction of the polarizer and converted into an intensity-modulated Signal.
作为本发明的一种优选方式,所述下支路模块还包括光带通滤波器;As a preferred mode of the present invention, the lower branch module further includes an optical bandpass filter;
所述光带通滤波器的通带内是探测光,通带外是控制光,在高非线性光纤输出的激光中,被偏振调制的探测光信号被保留,而控制光被滤除。The detection light is inside the passband of the optical bandpass filter, and the control light is outside the passband. In the laser output by the highly nonlinear optical fiber, the polarization modulated detection light signal is retained, while the control light is filtered out.
作为本发明的一种优选方式,所述上支路模块的光信号和下支路模块的微波信号分别进行光域处理。As a preferred manner of the present invention, the optical signal of the upper branch module and the microwave signal of the lower branch module are respectively subjected to optical domain processing.
作为本发明的一种优选方式,所述输出模块包括第四光耦合器和光电探测器;As a preferred mode of the present invention, the output module includes a fourth optical coupler and a photodetector;
所述第四光耦合器把上支路模块的光信号和下支路模块的微波信号合束后输入到光电探测器;The fourth optical coupler combines the optical signal of the upper branch module and the microwave signal of the lower branch module and then inputs it to the photodetector;
所述光电探测器用于将合束得到的微波信号在光电探测器里发生干涉后输出。The photodetector is used for outputting the microwave signal obtained by combining beams after being interfered in the photodetector.
(三)有益效果(3) Beneficial effects
本发明的基于交叉偏振调制的微波光子滤波器,利用高非线性光纤的交叉偏振调制效应,替代电光调制器,其带宽远远超过电光调制器,突破了电光调制器的电子瓶颈,可对光信号进行超高速调制。利用这一优点,本发明可实现对微波光子滤波器中心波长的超高速调谐。The microwave photon filter based on cross-polarization modulation of the present invention uses the cross-polarization modulation effect of highly nonlinear optical fibers to replace the electro-optic modulator, and its bandwidth far exceeds that of the electro-optic modulator, breaking through the electronic bottleneck of the electro-optic modulator, and can The signal is modulated at very high speed. Utilizing this advantage, the invention can realize ultra-high-speed tuning of the central wavelength of the microwave photon filter.
附图说明Description of drawings
图1是本发明基于交叉偏振调制的微波光子滤波器的模块示意图。FIG. 1 is a block diagram of a microwave photonic filter based on cross-polarization modulation according to the present invention.
图2是本发明基于交叉偏振调制的微波光子滤波器的结构示意图。Fig. 2 is a schematic structural diagram of a microwave photonic filter based on cross-polarization modulation according to the present invention.
图3是本发明基于交叉偏振调制的微波光子滤波器中心波长调谐原理示意图。Fig. 3 is a schematic diagram of the central wavelength tuning principle of the microwave photonic filter based on cross-polarization modulation according to the present invention.
具体实施方式detailed description
本发明针对上述情况,提供了一种基于交叉偏振调制的微波光子滤波器,包括输入模块、上支路模块、下支路模块和输出模块,输入模块用于产生光信号并将光信号发送到上支路模块和下支路模块,所述光信号是将微波信号调制到光载波上产生的;上支路模块用于对所述光信号进行时间延迟后发送到输出模块;下支路模块用于产生脉冲信号并将其和所述光信号合束后进行交叉偏振调制得到的微波信号发送到输出模块;输出模块用于将上支路模块产生的光信号和下支路模块产生的微波信号发生干涉并输出。For the above situation, the present invention provides a microwave photonic filter based on cross polarization modulation, including an input module, an upper branch module, a lower branch module and an output module, the input module is used to generate an optical signal and send the optical signal to The upper branch module and the lower branch module, the optical signal is generated by modulating the microwave signal onto the optical carrier; the upper branch module is used to send the optical signal to the output module after time delay; the lower branch module Used to generate a pulse signal and combine it with the optical signal and send the microwave signal obtained by cross-polarization modulation to the output module; the output module is used to combine the optical signal generated by the upper branch module and the microwave generated by the lower branch module The signal interferes and is output.
本发明通过调节上支路模块的可调谐光延迟线可以改变微波光子滤波器的自由光谱范围,调节可调光衰减器可以调节上支路模块的激光功率。下支路模块利用高非线性光纤的交叉偏振调制对微波信号进行相位编码,从而能够解决微波光子滤波器调谐速度的问题。The invention can change the free spectral range of the microwave photon filter by adjusting the adjustable optical delay line of the upper branch module, and adjust the laser power of the upper branch module by adjusting the adjustable optical attenuator. The lower branch module uses the cross-polarization modulation of the highly nonlinear optical fiber to encode the phase of the microwave signal, which can solve the problem of the tuning speed of the microwave photonic filter.
下面结合附图与实施例对本发明作进一步的描述。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.
图1是本发明基于交叉偏振调制的微波光子滤波器的模块示意图。如图1所示,基于交叉偏振调制的微波光子滤波器是由四个模块构成,分别为输入模块、上支路模块、下支路模块和输出模块。输入模块产生光信号并将光信号发送到上支路模块和下支路模块,光信号是将微波信号调制到光载波上产生的。上支路模块对所述光信号进行时间延迟后发送到输出模块。下支路模块产生脉冲信号并将其和所述光信号合束后进行交叉偏振调制得到的微波信号发送到输出模块。输出模块将上支路模块产生的光信号和下支路模块产生的微波信号发生干涉并输出。FIG. 1 is a block diagram of a microwave photonic filter based on cross-polarization modulation according to the present invention. As shown in Figure 1, the microwave photonic filter based on cross-polarization modulation is composed of four modules, which are input module, upper branch module, lower branch module and output module. The input module generates an optical signal and sends the optical signal to the upper branch module and the lower branch module, and the optical signal is generated by modulating the microwave signal onto the optical carrier. The upper branch module delays the optical signal before sending it to the output module. The lower branch module generates the pulse signal and combines it with the optical signal to perform cross-polarization modulation and sends the microwave signal to the output module. The output module interferes and outputs the optical signal generated by the upper branch module and the microwave signal generated by the lower branch module.
图2是本发明基于交叉偏振调制的微波光子滤波器的结构示意图。如图2所示,所述输入模块包括第一激光源1、微波源2、强度调制器3和第一光耦合器4。Fig. 2 is a schematic structural diagram of a microwave photonic filter based on cross-polarization modulation according to the present invention. As shown in FIG. 2 , the input module includes a first laser source 1 , a microwave source 2 , an intensity modulator 3 and a first optical coupler 4 .
第一激光源1产生激光,并输出到强度调制器3的光输入端门;The first laser source 1 generates laser light and outputs it to the light input port gate of the intensity modulator 3;
微波源2产生微波信号,并输出到强度调制器3的射频输入端口;The microwave source 2 generates a microwave signal and outputs it to the radio frequency input port of the intensity modulator 3;
强度调制器3将微波源2输入的微波信号调制到第一激光源1输入的光载波上,并将已调信号输出到第一光耦合器4;The intensity modulator 3 modulates the microwave signal input by the microwave source 2 onto the optical carrier input by the first laser source 1, and outputs the modulated signal to the first optical coupler 4;
第一光耦合器4将强度调制器3输出的光信号发送到上支路模块和下支路模块。上支路模块输出到可调光延迟线6,下支路模块输出到第二光耦合器8。The first optical coupler 4 sends the optical signal output by the intensity modulator 3 to the upper branch module and the lower branch module. The output of the upper branch module is to the adjustable optical delay line 6 , and the output of the lower branch module is to the second optical coupler 8 .
所述上支路模块包括可调光延迟线6和可调光衰减器7;The upper branch module includes an adjustable optical delay line 6 and an adjustable optical attenuator 7;
可调光延迟线6用于增加或减少光传输的距离,以达到时间上延迟的目的;The adjustable optical delay line 6 is used to increase or decrease the distance of light transmission to achieve the purpose of time delay;
可调光衰减器7用于控制上支路模块的激光功率。The adjustable optical attenuator 7 is used to control the laser power of the upper branch module.
所述下支路模块包括脉冲激光源5、第二光耦合器8、第一偏振控制器9、第二激光源10、第二偏振控制器11、第三光耦合器12、高非线性光纤13、第三偏振控制器14、起偏器15和光带通滤波器16;The lower branch module includes a pulsed laser source 5, a second optical coupler 8, a first polarization controller 9, a second laser source 10, a second polarization controller 11, a third optical coupler 12, a highly nonlinear optical fiber 13. A third polarization controller 14, a polarizer 15 and an optical bandpass filter 16;
第二光耦合器8用于将第一光耦合器4输出的光信号和脉冲激光源5输出的激光脉冲合束,作为控制光诱导高非线性光纤13产生克尔效应;The second optical coupler 8 is used to combine the optical signal output by the first optical coupler 4 and the laser pulse output by the pulsed laser source 5, as a control light to induce the Kerr effect in the highly nonlinear optical fiber 13;
第一偏振控制器9控制第二光耦合器8输出的激光的偏振态,并将其输出到第三光耦合器12;The first polarization controller 9 controls the polarization state of the laser light output by the second optical coupler 8, and outputs it to the third optical coupler 12;
第二激光源10用于输出连续波探测光;The second laser source 10 is used to output continuous wave detection light;
第二偏振控制器11控制第二激光源10输出的探测光的偏振态;The second polarization controller 11 controls the polarization state of the probe light output by the second laser source 10;
第三光耦合器12将第一偏振控制器9输出的控制光和第二偏振控制器11输出的探测光合束并输出到高非线性光纤13;The third optical coupler 12 combines the control light output by the first polarization controller 9 and the detection light output by the second polarization controller 11 and outputs them to the highly nonlinear optical fiber 13;
高非线性光纤13用于在控制光的作用下产生克尔效应,以对探测光进行交叉偏振调制;The highly nonlinear optical fiber 13 is used to generate the Kerr effect under the action of the control light, so as to perform cross-polarization modulation on the detection light;
第三偏振控制器14控制高非线性光纤13输出的激光的偏振态;The third polarization controller 14 controls the polarization state of the laser output from the highly nonlinear optical fiber 13;
起偏器15,其起偏方向与高非线性光纤13的慢轴成45度角,将输入激光转换为线偏振光并输出到光带通滤波器16;A polarizer 15, whose polarization direction is at an angle of 45 degrees to the slow axis of the highly nonlinear optical fiber 13, converts the input laser light into linearly polarized light and outputs it to the optical bandpass filter 16;
光带通滤波器16用于滤除高非线性光纤13输出的激光中的控制光,保留探测光并输出到第四光耦合器17。The optical bandpass filter 16 is used to filter out the control light in the laser output from the highly nonlinear optical fiber 13 , retain the detection light and output it to the fourth optical coupler 17 .
所述输出模块包括第四光耦合器17和光电探测器18;The output module includes a fourth optical coupler 17 and a photodetector 18;
第四光耦合器17将上支路模块的光信号和下支路模块的微波信号合束后并输出到光电探测器18;The fourth optical coupler 17 combines the optical signal of the upper branch module and the microwave signal of the lower branch module and outputs it to the photodetector 18;
光电探测器18用于对输入信号进行光电转换,生成两个微波信号,两微波信号干涉后从光电探测器18的射频输出端门输出。The photodetector 18 is used for photoelectric conversion of the input signal to generate two microwave signals, which are output from the radio frequency output port of the photodetector 18 after interference.
图3是本发明基于交叉偏振调制的微波光子滤波器中心波长调谐原理示意图。图1中上支路模块和下支路模块的信号由于延时不同在输出模块中发生干涉,因此所述微波光子滤波器的传输响应为周期性的带通滤波器形状,其周期即为自由光谱范围F。调节图2中上支路模块的可调光延迟线6,自由光谱范围F发生改变(F=1/T);调节图2中上支路模块的可调光衰减器7,传输响应在带阻位置的深度发生改变。当激光脉冲从1跳变为0时,下支路的微波信号相位发生pi相移,所述微波光子滤波器的传输响应发生相应变化,中心波长发生如图3所示的波动,波动范围为自由光谱范围F的一半。Fig. 3 is a schematic diagram of the central wavelength tuning principle of the microwave photonic filter based on cross-polarization modulation according to the present invention. In Fig. 1, the signals of the upper branch module and the lower branch module interfere in the output module due to different delays, so the transmission response of the microwave photonic filter is a periodic bandpass filter shape, and its period is the free Spectral range F. Adjust the adjustable optical delay line 6 of the upper branch module in Figure 2, and the free spectral range F changes (F=1/T); adjust the adjustable optical attenuator 7 of the upper branch module in Figure 2, and the transmission response is within the band The depth of the resistance position changes. When the laser pulse jumps from 1 to 0, the phase of the microwave signal in the lower branch is shifted by pi, and the transmission response of the microwave photonic filter changes accordingly, and the central wavelength fluctuates as shown in Figure 3, and the fluctuation range is Half of the free spectral range F.
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention, and are not intended to limit the present invention. Within the spirit and principles of the present invention, any modifications, equivalent replacements, improvements, etc., shall be included in the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610927612.4A CN106526899B (en) | 2016-10-24 | 2016-10-24 | Microwave photon filter based on cross-polarization modulation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610927612.4A CN106526899B (en) | 2016-10-24 | 2016-10-24 | Microwave photon filter based on cross-polarization modulation |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106526899A true CN106526899A (en) | 2017-03-22 |
CN106526899B CN106526899B (en) | 2019-05-31 |
Family
ID=58291648
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610927612.4A Active CN106526899B (en) | 2016-10-24 | 2016-10-24 | Microwave photon filter based on cross-polarization modulation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106526899B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109193318A (en) * | 2018-11-12 | 2019-01-11 | 中国科学院半导体研究所 | Up/Down Conversion system based on mode-locked laser |
CN110521071A (en) * | 2017-03-24 | 2019-11-29 | 西默有限公司 | The control of pulsed light beam spectral signature |
CN110830122A (en) * | 2018-08-09 | 2020-02-21 | 中国科学院半导体研究所 | Radio frequency phase coding signal generation device and method based on microwave photon technology |
CN111816961A (en) * | 2020-08-04 | 2020-10-23 | 中国科学院半导体研究所 | Highly Stable Ultra-Narrow Single-Pass Band Microwave Photonic Filter |
CN115549801A (en) * | 2022-09-13 | 2022-12-30 | 清华大学深圳国际研究生院 | Photon filter device and photon filter system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4479258A (en) * | 1981-09-30 | 1984-10-23 | Nippon Electric Co., Ltd. | Cross-polarization crosstalk canceller |
CN103955028A (en) * | 2014-04-29 | 2014-07-30 | 中国科学院半导体研究所 | Broadband tunable single-passband microwave photon filter generating system |
CN103955078A (en) * | 2014-04-30 | 2014-07-30 | 中国科学院半导体研究所 | Cross-polarization modulation-based optically-controlled microwave phase modulator |
CN104483657A (en) * | 2014-12-17 | 2015-04-01 | 中国科学院半导体研究所 | Spatial directional angle measuring system based on all-optical cross polarization modulation |
-
2016
- 2016-10-24 CN CN201610927612.4A patent/CN106526899B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4479258A (en) * | 1981-09-30 | 1984-10-23 | Nippon Electric Co., Ltd. | Cross-polarization crosstalk canceller |
CN103955028A (en) * | 2014-04-29 | 2014-07-30 | 中国科学院半导体研究所 | Broadband tunable single-passband microwave photon filter generating system |
CN103955078A (en) * | 2014-04-30 | 2014-07-30 | 中国科学院半导体研究所 | Cross-polarization modulation-based optically-controlled microwave phase modulator |
CN104483657A (en) * | 2014-12-17 | 2015-04-01 | 中国科学院半导体研究所 | Spatial directional angle measuring system based on all-optical cross polarization modulation |
Non-Patent Citations (3)
Title |
---|
CHOONG KEUN OH等: "Photonic microwave notch filter using cross polarization modulation in highly nonlinear fiber and polarization-dependent optical delay in high birefringence fiber", 《OPTICS EXPRESS》 * |
YU YANF等: "Photonic Microwave Filter Semiconductor Optical Amplifier with Negative Coefficients Based on Cross Polarization Modulation in a", 《OPTICAL FIBER COMMUNICATION CONFERENCE AND EXPOSITION AND THE NATIONAL FIBER OPTIC ENGINEERS CONFERENCE》 * |
张先艳: "新型可调谐光电振荡器的研究与设计", 《中国优秀硕士学位论文全文数据库-信息科技辑》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110521071A (en) * | 2017-03-24 | 2019-11-29 | 西默有限公司 | The control of pulsed light beam spectral signature |
CN110830122A (en) * | 2018-08-09 | 2020-02-21 | 中国科学院半导体研究所 | Radio frequency phase coding signal generation device and method based on microwave photon technology |
CN110830122B (en) * | 2018-08-09 | 2021-02-23 | 中国科学院半导体研究所 | Radio frequency phase coding signal generation device and method based on microwave photon technology |
CN109193318A (en) * | 2018-11-12 | 2019-01-11 | 中国科学院半导体研究所 | Up/Down Conversion system based on mode-locked laser |
CN109193318B (en) * | 2018-11-12 | 2020-04-21 | 中国科学院半导体研究所 | Up-down conversion system based on mode-locked laser |
CN111816961A (en) * | 2020-08-04 | 2020-10-23 | 中国科学院半导体研究所 | Highly Stable Ultra-Narrow Single-Pass Band Microwave Photonic Filter |
CN111816961B (en) * | 2020-08-04 | 2021-08-27 | 中国科学院半导体研究所 | High-stability ultra-narrow single-passband microwave photonic filter |
CN115549801A (en) * | 2022-09-13 | 2022-12-30 | 清华大学深圳国际研究生院 | Photon filter device and photon filter system |
Also Published As
Publication number | Publication date |
---|---|
CN106526899B (en) | 2019-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106526899A (en) | Microwave photon filter based on cross-polarization modulation | |
CN103941429B (en) | The device of random waveform microwave signal is produced based on cross-polarization modulation | |
CN103955028A (en) | Broadband tunable single-passband microwave photon filter generating system | |
CN105676483B (en) | A kind of light polarization control device and method | |
CN107947866A (en) | Based on dual-polarization modulator carrier wave sideband optical SSB modulation method more adjustable than dynamic | |
CN103885268B (en) | The device of full light 4 frequency multiplication microwave is produced based on cross-polarization modulation and Sagnac ring | |
Li et al. | A tunable microwave photonic filter based on an all-optical differentiator | |
CN208079086U (en) | Quadruple optics triangle generator based on external modulation | |
JPH0537469A (en) | Optical clock extracting circuit | |
CN109193318B (en) | Up-down conversion system based on mode-locked laser | |
CN104181748B (en) | Microwave pulse signal generating device based on light-operated nonlinear annular mirror | |
CN104051935A (en) | A quadruple-frequency microwave signal generator based on an optoelectronic oscillator | |
CN103532632B (en) | Polarized orthogonal modulation tunable microwave pulse signal accurately generates method and device | |
CN103955078B (en) | Optical servo system phase converter based on cross-polarization modulation | |
CN103197439B (en) | A kind of microwave photon filter construction realizing complex coefficient | |
CN204886978U (en) | A No-filter Frequency Carrier Suppression Ratio Adjustable 36 Multiplier Signal Generator | |
CN110212989A (en) | RF hopping signal generating method and device based on circulating frequency shift | |
CN104483657A (en) | Spatial directional angle measuring system based on all-optical cross polarization modulation | |
CN106452592A (en) | Tunable single pass band microwave photonics Hilbert transform filter system | |
CN106374324A (en) | Tunable double-frequency optoelectronic oscillator system based on polarization modulator | |
Zhang et al. | A tunable microwave photonic filter with a complex coefficient based on polarization modulation | |
Liu et al. | Real-time temporal signal stitching using polarization-dependent optical wave mixing | |
CN104332819A (en) | Quadruplicated-frequency microwave signal generation system based on stimulated Brillouin scattering effect | |
CN106125348B (en) | A fast tunable and reconfigurable microwave photonic filter based on electro-optical Fa-Per cavity | |
CN104600547A (en) | Phase polarization dynamic modulation based wide-range tunable frequency multiplication type photoelectric oscillator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |