CN106517081B - Magnetic encapsulation Micro-Robot and preparation method thereof - Google Patents
Magnetic encapsulation Micro-Robot and preparation method thereof Download PDFInfo
- Publication number
- CN106517081B CN106517081B CN201610973129.XA CN201610973129A CN106517081B CN 106517081 B CN106517081 B CN 106517081B CN 201610973129 A CN201610973129 A CN 201610973129A CN 106517081 B CN106517081 B CN 106517081B
- Authority
- CN
- China
- Prior art keywords
- layer structure
- minutes
- prefabricated layer
- bake
- photoresist
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B1/00—Devices without movable or flexible elements, e.g. microcapillary devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
- B81C1/00015—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
- B81C1/00023—Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
- B81C1/00103—Structures having a predefined profile, e.g. sloped or rounded grooves
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Computer Hardware Design (AREA)
- Micromachines (AREA)
- Prostheses (AREA)
- Hard Magnetic Materials (AREA)
Abstract
一种生物相容性封装的磁性微机器人的制备方法,包括:提供硅片,在硅片上制备Omnicoat牺牲层;在Omnicoat牺牲层上旋涂SU‑8光刻胶形成SU‑8基层;得到第一预制层结构;进行烘烤;进行图形化曝光;在65℃烘烤2分钟,然后在95℃烘烤2分钟;在SU‑8基层上涂覆磁性复合材料,进行烘烤;进行图形化曝光;在65℃烘烤2分钟,然后在95℃烘烤2分钟;进行显影操作,去离子水清洗,风干;涂覆SU‑8光刻胶;进行烘烤;图形化曝光;在65℃烘烤2分钟,然后在95℃烘烤2分钟;进行显影操作,去离子水清洗,风干;得到生物相容性封装的磁性微机器人。上述磁性封装微机器人生物相容性和耐化学性较好。
A preparation method of a biocompatible magnetic microrobot, comprising: providing a silicon wafer, preparing an Omnicoat sacrificial layer on the silicon wafer; spin-coating an SU‑8 photoresist on the Omnicoat sacrificial layer to form an SU‑8 base layer; obtaining First prefabricated layer structure; Baking; Patterned exposure; Baking at 65°C for 2 minutes, then baking at 95°C for 2 minutes; Coating magnetic composite material on the SU‑8 base layer, baking; Patterning exposure; bake at 65°C for 2 minutes, then bake at 95°C for 2 minutes; develop, rinse with deionized water, and air dry; coat SU‑8 photoresist; bake; pattern exposure; at 65 ℃ for 2 minutes, and then baked at 95 ℃ for 2 minutes; develop, wash with deionized water, and air-dry; obtain biocompatible magnetic microrobots. The above-mentioned magnetically encapsulated micro-robot has good biocompatibility and chemical resistance.
Description
技术领域technical field
本发明涉及微纳精密加工和特性微型机器人技术,特别涉及一种封装的磁性微机器人及其制备方法。The invention relates to micro-nano precision machining and characteristic micro-robot technology, in particular to a packaged magnetic micro-robot and a preparation method thereof.
背景技术Background technique
随着微观活性样本的操作要求越来越高,传统的微操作系统逐渐表现出其局限性,例如不可避免地对活体样本产生机械损伤、运动空间有限以及无法适用严格无污染的流体环境等。基于磁力控制的微型机器人凭借微小的尺寸和自由无约束的运动方式使其特别适合在狭小且封闭的环境中工作。同时,由于自身的生物兼容性和耐化学性,使其最大限度地降低了对活体样本的伤害。在人体内的定向检测和靶向载药、微流体通道中微粒的运输以及芯片实验室中微观物体的搬运、分类、装配方面具有很大的应用前景。As the operating requirements of microscopically active samples are getting higher and higher, traditional micro-manipulation systems gradually show their limitations, such as the inevitable mechanical damage to living samples, limited movement space, and the inability to apply to strictly non-polluting fluid environments. Micro-robots based on magnetic force control are particularly suitable for working in small and closed environments due to their small size and free and unconstrained movement. At the same time, due to its own biocompatibility and chemical resistance, it minimizes the damage to living samples. It has great application prospects in the directional detection and targeted drug loading in the human body, the transport of particles in microfluidic channels, and the handling, classification, and assembly of microscopic objects in lab-on-a-chip.
近十几年来,新的超精密加工技术和新型功能材料推动着微机电系统技术(MEMS)快速发展。微型机器人的出现对工业甚至对我们的日常生活产生广泛影响。磁力驱动还有可控性强、动力更大、作业范围广和无伤害性的优点,特别适用于生物医学领域尤其是活体介入应用等。例如核电站的管道探伤、生物医学的诊断治疗。目前制作磁性微机器人的主要包括以下几种:熔融沉积成型法、刻蚀法、激光切割法、集成光掩膜微塑型法、微型机械加工法、双光子聚合法等。In the past ten years, new ultra-precision processing technology and new functional materials have promoted the rapid development of micro-electromechanical system technology (MEMS). The emergence of micro-robots has a wide-ranging impact on industry and even on our daily lives. Magnetic drive also has the advantages of strong controllability, greater power, wide operating range and no harm, and is especially suitable for biomedical fields, especially in vivo interventional applications. Such as pipeline flaw detection in nuclear power plants, biomedical diagnosis and treatment. At present, the production of magnetic micro-robots mainly includes the following: fused deposition modeling, etching, laser cutting, integrated photomask micro-molding, micro-machining, two-photon polymerization, etc.
以上几种方法制得的微型机器人使得磁性材料都暴露在外部环境中,无法保证磁性机器人具有较好的生物兼容性和耐化学性。The micro-robots prepared by the above methods expose the magnetic materials to the external environment, which cannot guarantee that the magnetic robots have better biocompatibility and chemical resistance.
发明内容Contents of the invention
基于此,有必要提供一种生物相容性和耐化学性较好的磁性封装微机器人及其制备方法。Based on this, it is necessary to provide a magnetically encapsulated microrobot with better biocompatibility and chemical resistance and a preparation method thereof.
一种磁性封装微机器人的制备方法,包括:A method for preparing a magnetically encapsulated microrobot, comprising:
提供硅片,在所述硅片上制备Omnicoat牺牲层;Provide a silicon wafer on which an Omnicoat sacrificial layer is prepared;
在所述Omnicoat牺牲层上旋涂SU-8光刻胶形成SU-8基层;得到第一预制层结构;Spin coating SU-8 photoresist on the Omnicoat sacrificial layer to form a SU-8 base layer; obtain the first prefabricated layer structure;
将所述第一预制层结构在60-70℃烘烤1.5-3分钟,然后在90-100℃烘烤3-5分钟;Bake the first prefabricated layer structure at 60-70°C for 1.5-3 minutes, then bake at 90-100°C for 3-5 minutes;
采用掩模对准器,在紫外线光源照射下,对所述第一预制层结构进行图形化曝光20-35s;Using a mask aligner, subjecting the first prefabricated layer structure to patterned exposure for 20-35 seconds under the irradiation of an ultraviolet light source;
将所述第一预制层结构在60-70℃烘烤1.5-3分钟,然后在90-100℃烘烤3-5分钟;Bake the first prefabricated layer structure at 60-70°C for 1.5-3 minutes, then bake at 90-100°C for 3-5 minutes;
在所述SU-8基层上涂覆磁性复合材料,得到第二预制层结构;Coating a magnetic composite material on the SU-8 base layer to obtain a second prefabricated layer structure;
将所述第二预制层结构在60-70℃烘烤1.5-3分钟,然后在90-100℃烘烤3-5分钟;Bake the second prefabricated layer structure at 60-70°C for 1.5-3 minutes, then bake at 90-100°C for 3-5 minutes;
采用掩模对准器,在紫外线光源照射下,对所述第二预制层结构进行图形化曝光25-35s;Using a mask aligner, subjecting the second prefabricated layer structure to patterned exposure for 25-35 seconds under the irradiation of an ultraviolet light source;
将所述第二预制层结构在60-70℃烘烤1.5-3分钟,然后在90-100℃烘烤3-5分钟;Bake the second prefabricated layer structure at 60-70°C for 1.5-3 minutes, then bake at 90-100°C for 3-5 minutes;
对所述第二预制层结构进行显影操作;performing a developing operation on the second prefabricated layer structure;
在所述第二预制层结构的外表面涂覆SU-8光刻胶,得到第三预制层结构;Coating SU-8 photoresist on the outer surface of the second prefabricated layer structure to obtain a third prefabricated layer structure;
将所述第三预制层结构进行在60-70℃烘烤1.5-3分钟,然后在90-100℃烘烤3-5分钟;Bake the third prefabricated layer structure at 60-70°C for 1.5-3 minutes, and then bake at 90-100°C for 3-5 minutes;
采用掩模对准器,在紫外线光源照射下,对所述第三预制层结构进行图形化曝光25-35s;Using a mask aligner, subjecting the third prefabricated layer structure to patterned exposure for 25-35 seconds under the irradiation of an ultraviolet light source;
将所述第三预制层结构在60-70℃烘烤1.5-3分钟,然后在90-100℃烘烤3-5分钟;对所述第三预制层结构进行显影操作,得到磁性封装微机器人。Baking the third prefabricated layer structure at 60-70°C for 1.5-3 minutes, then baking at 90-100°C for 3-5 minutes; performing a developing operation on the third prefabricated layer structure to obtain a magnetically encapsulated microrobot .
在其中一个实施例中,所述磁性复合材料由汝铁硼磁粉和SU-8光刻胶组成。In one of the embodiments, the magnetic composite material is composed of RuFeB magnetic powder and SU-8 photoresist.
在其中一个实施例中,所述磁性复合材料由质量分数为60%汝铁硼磁粉和质量分数为40%的SU-8光刻胶组成。In one embodiment, the magnetic composite material is composed of 60% RuFeB magnetic powder and 40% SU-8 photoresist.
在其中一个实施例中,所述汝铁硼磁粉的平均直径为2微米。In one embodiment, the average diameter of the RuFeB magnetic powder is 2 microns.
在其中一个实施例中,所述在所述Omnicoat牺牲层上旋涂SU-8光刻胶为:先以旋涂速度为400-600rpm旋涂3-8s,再以旋涂速度为1800-2000rpm旋涂30s。In one of the embodiments, the spin-coating of SU-8 photoresist on the Omnicoat sacrificial layer is as follows: first spin coating at 400-600rpm for 3-8s, and then at 1800-2000rpm Spin coating for 30s.
在其中一个实施例中,所述磁性复合材料的制备方法为:在微量离心管中混合质量分数为60%汝铁硼磁粉与质量分数为40%的SU-8光刻胶。In one embodiment, the preparation method of the magnetic composite material is as follows: mixing 60% RuFeB magnetic powder and 40% SU-8 photoresist in a microcentrifuge tube.
在其中一个实施例中,在所述SU-8基层上涂覆磁性复合材料之前,将所述磁性复合材料在3000r/min的条件下涡旋30分钟,实现所述汝铁硼磁粉在SU-8光刻胶中的均匀分布。In one of the embodiments, before the magnetic composite material is coated on the SU-8 base layer, the magnetic composite material is vortexed for 30 minutes under the condition of 3000r/min, so that the RuFeB magnetic powder is coated on the SU-8 base layer. 8 Uniform distribution in photoresist.
在其中一个实施例中,所述对所述第二预制层结构进行图形化曝光的曝光能量为130mJ/cm2。In one embodiment, the exposure energy for the patterned exposure of the second prefabricated layer structure is 130 mJ/cm 2 .
在其中一个实施例中,所述对所述第二预制层结构进行显影操作为:将所述第二预制层结构置于SU-8光刻胶显影剂中浸泡,除去未交联的SU-8光刻胶,再用去离子水清洗后风干。In one of the embodiments, the developing operation of the second prefabricated layer structure is: soaking the second prefabricated layer structure in SU-8 photoresist developer to remove uncrosslinked SU-8 8 photoresist, then rinse with deionized water and air dry.
所述对所述第三预制层结构进行显影操作为:将所述第三预制层结构置于SU-8光刻胶显影剂中浸泡,除去未交联的SU-8光刻胶,再用去离子水清洗后风干。The developing operation of the third prefabricated layer structure is as follows: immerse the third prefabricated layer structure in SU-8 photoresist developer, remove the uncrosslinked SU-8 photoresist, and then use Rinse with deionized water and air dry.
一种磁性封装微机器人,所述磁性封装微机器人为采用上述制备方法获得的所述磁性封装微机器人。A magnetically encapsulated microrobot, the magnetically encapsulated microrobot is the magnetically encapsulated microrobot obtained by the above preparation method.
上述磁性封装微机器人及其制备方法中,由于磁性粒子完全封装在惰性的SU-8层里,使得该微型机器人具有生物兼容性和耐化学性。使用简单的多层光刻,可一次性实现批量生产,提高了时间和成本效益。In the above magnetic encapsulated micro-robot and its preparation method, since the magnetic particles are completely encapsulated in the inert SU-8 layer, the micro-robot has biocompatibility and chemical resistance. Using simple multi-layer photolithography, mass production can be achieved in one pass, improving time and cost efficiency.
附图说明Description of drawings
图1为一实施方式的磁性封装微机器人的制备方法示意图;及1 is a schematic diagram of a method for preparing a magnetically encapsulated microrobot according to an embodiment; and
图2为一实施方式的磁性封装微机器人的部分结构光学显微图。FIG. 2 is an optical micrograph of a partial structure of a magnetically encapsulated microrobot in an embodiment.
具体实施方式Detailed ways
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。In order to facilitate the understanding of the present invention, the present invention will be described more fully below with reference to the associated drawings. Preferred embodiments of the invention are shown in the accompanying drawings. The above are only preferred embodiments of the present invention, and are not intended to limit the patent scope of the present invention. Any equivalent structure or equivalent process conversion made by using the description of the present invention and the contents of the accompanying drawings, or directly or indirectly used in other related technical fields , are all included in the scope of patent protection of the present invention in the same way.
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the technical field of the invention. The terminology used herein in the description of the present invention is only for the purpose of describing specific embodiments, and is not intended to limit the present invention. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items.
请参阅图1,一实施方式的磁性封装微机器人的制备方法,包括:Please refer to Fig. 1, the preparation method of the magnetic encapsulation micro-robot of one embodiment, comprising:
S101、提供硅片,在硅片上制备Omnicoat牺牲层。S101, providing a silicon wafer, and preparing an Omnicoat sacrificial layer on the silicon wafer.
在一实施方式中,如图1中a所示,在硅片上以2000rpm/s旋涂涂覆Omnicoat牺牲层,得到10-15纳米厚的Omnicoat牺牲层。In one embodiment, as shown in a in FIG. 1 , an Omnicoat sacrificial layer is spin-coated on a silicon wafer at 2000 rpm/s to obtain a 10-15 nanometer thick Omnicoat sacrificial layer.
S102、在Omnicoat牺牲层上旋涂SU-8光刻胶形成SU-8基层;得到第一预制层结构。S102. Spin-coat SU-8 photoresist on the Omnicoat sacrificial layer to form a SU-8 base layer; obtain the first prefabricated layer structure.
在一实施方式中,如图1中a所示,在Omnicoat牺牲层上旋涂SU-8光刻胶,得到15微米厚的SU-8光刻胶层。In one embodiment, as shown in a in FIG. 1 , SU-8 photoresist is spin-coated on the Omnicoat sacrificial layer to obtain a 15 micron thick SU-8 photoresist layer.
在一实施方式中,在Omnicoat牺牲层上旋涂SU-8光刻胶为:先以旋涂速度为400-600rpm旋涂3-8s,再以旋涂速度为1800-2200rpm旋涂30s。In one embodiment, the method of spin-coating the SU-8 photoresist on the Omnicoat sacrificial layer is as follows: first spin-coating at a spin-coating speed of 400-600rpm for 3-8s, and then spin-coating at a spin-coating speed of 1800-2200rpm for 30s.
S103、将第一预制层结构在60-70℃烘烤1.5-3分钟,然后在90-100℃烘烤3-5分钟。S103. Bake the first prefabricated layer structure at 60-70°C for 1.5-3 minutes, and then bake at 90-100°C for 3-5 minutes.
S104、采用掩模对准器,在4.33mW/cm2紫外线光源照射下,对第一预制层结构进行图形化曝光20-35s。S104. Using a mask aligner, under the irradiation of a 4.33mW/cm 2 ultraviolet light source, pattern-expose the first prefabricated layer structure for 20-35s.
在一实施方式中,图形化曝光的曝光能量为130mJ/cm2。In one embodiment, the exposure energy of the patterned exposure is 130 mJ/cm 2 .
S105、将第一预制层结构在60-70℃烘烤1.5-3分钟,然后在90-100℃烘烤3-5分钟。S105. Baking the first prefabricated layer structure at 60-70° C. for 1.5-3 minutes, and then baking at 90-100° C. for 3-5 minutes.
如图1中b所示,图形化曝光后形成交联的和未交联的SU-8光刻胶区域。As shown in b in Fig. 1, cross-linked and uncross-linked SU-8 photoresist regions were formed after the patterned exposure.
S106、在SU-8基层上涂覆磁性复合材料,得到第二预制层结构。S106, coating the magnetic composite material on the SU-8 base layer to obtain a second prefabricated layer structure.
在一实施方式中,如图1中的c所示,在SU-8基层上涂覆20微米厚的磁性复合材料,得到第二预制层结构。In one embodiment, as shown in c in FIG. 1 , a 20-micron-thick magnetic composite material is coated on the SU-8 base layer to obtain a second prefabricated layer structure.
在一实施方式中,所述磁性复合材料由汝铁硼磁粉和SU-8光刻胶组成。在一实施方式中,磁性复合材料由质量分数为60%汝铁硼磁粉和质量分数为40%的SU-8光刻胶组成。In one embodiment, the magnetic composite material is composed of RuFeB magnetic powder and SU-8 photoresist. In one embodiment, the magnetic composite material is composed of RuFeB magnetic powder with a mass fraction of 60% and SU-8 photoresist with a mass fraction of 40%.
在一实施方式中,汝铁硼磁粉的平均直径为2微米。In one embodiment, the average diameter of the RuFeB magnetic powder is 2 microns.
在一实施方式中,磁性复合材料的制备方法为:采用微量离心管中混合将质量分数为60%汝铁硼磁粉和质量分数为40%的SU-8光刻胶进行混合。In one embodiment, the preparation method of the magnetic composite material is as follows: using a microcentrifuge tube to mix the RuFeB magnetic powder with a mass fraction of 60% and SU-8 photoresist with a mass fraction of 40%.
在一实施方式中,为避免磁性微粒沉淀和获得均匀的离散度复合材料,在使用之前将磁性复合材料在3000r/min的条件下涡旋30分钟。上述方法可以避免磁性复合材料沉淀,从而可以获得均匀离散度的磁性复合材料。In one embodiment, in order to avoid the precipitation of magnetic particles and obtain a uniform dispersion composite material, the magnetic composite material was vortexed for 30 minutes under the condition of 3000 r/min before use. The above method can avoid the precipitation of the magnetic composite material, so that the magnetic composite material with uniform dispersion can be obtained.
S107、将第二预制层结构在60-70℃烘烤1.5-3分钟,然后在90-100℃烘烤3-5分钟。S107. Baking the second prefabricated layer structure at 60-70° C. for 1.5-3 minutes, and then baking at 90-100° C. for 3-5 minutes.
S108、采用掩模对准器,在4.33mW/cm2紫外线光源照射下,对第二预制层结构进行图形化曝光25-35s。S108. Using a mask aligner, under the irradiation of a 4.33mW/cm 2 ultraviolet light source, pattern-expose the second prefabricated layer structure for 25-35s.
在一实施方式中,图形化曝光的曝光能量为130mJ/cm2。In one embodiment, the exposure energy of the patterned exposure is 130 mJ/cm 2 .
S109、将第二预制层结构在60-70℃烘烤1.5-3分钟,然后在90-100℃烘烤3-5分钟。S109. Baking the second prefabricated layer structure at 60-70° C. for 1.5-3 minutes, and then baking at 90-100° C. for 3-5 minutes.
在一实施方式中,如图1中d所示,图形化曝光后形成固化磁性复合材料区域和未固化磁性复合材料区域。In one embodiment, as shown in d in FIG. 1 , a cured magnetic composite material region and an uncured magnetic composite material region are formed after patterned exposure.
S110、对第二预制层结构进行显影操作。S110, performing a developing operation on the second prefabricated layer structure.
在一实施方式中,对第二预制层结构进行显影操作为:将第二预制层结构置于SU-8光刻胶显影剂中浸泡,除去未交联的SU-8光刻胶,再用去离子水清洗后风干。In one embodiment, the developing operation of the second prefabricated layer structure is as follows: soak the second prefabricated layer structure in SU-8 photoresist developer, remove the uncrosslinked SU-8 photoresist, and then use Rinse with deionized water and air dry.
在一实施方式中,如图1中e所示,除去未交联的SU-8光刻胶将固化的磁性复合材料显影出来。In one embodiment, as shown in e in FIG. 1 , the uncrosslinked SU-8 photoresist is removed to develop the cured magnetic composite material.
S111、在第二预制层结构的外表面涂覆SU-8光刻胶,得到第三预制层结构。S111. Coating SU-8 photoresist on the outer surface of the second prefabricated layer structure to obtain a third prefabricated layer structure.
在一实施方式中,如图1中f所示,在第二预制层结构的外表面涂覆15微米厚的SU-8光刻胶,得到第三预制层结构。In one embodiment, as shown by f in FIG. 1 , a 15 micron thick SU-8 photoresist is coated on the outer surface of the second prefabricated layer structure to obtain a third prefabricated layer structure.
S112、对所述第一预制层结构在60-70℃烘烤1.5-3分钟,然后在90-100℃烘烤3-5分钟。S112. Bake the first prefabricated layer structure at 60-70° C. for 1.5-3 minutes, and then bake at 90-100° C. for 3-5 minutes.
在一实施方式中,将第三预制层结构在60-70℃烘烤1.5-3分钟,然后在90-100℃烘烤3-5分钟。In one embodiment, the third prefabricated layer structure is baked at 60-70° C. for 1.5-3 minutes, and then baked at 90-100° C. for 3-5 minutes.
S113、采用掩模对准器,在4.33mW/cm2紫外线光源照射下,对第三预制层结构进行图形化曝光25-35s。S113. Using a mask aligner, under the irradiation of a 4.33mW/cm 2 ultraviolet light source, pattern-expose the third prefabricated layer structure for 25-35s.
在一实施方式中,图形化曝光的曝光能量为130mJ/cm2。In one embodiment, the exposure energy of the patterned exposure is 130 mJ/cm 2 .
S114、将第三预制层结构在60-70℃烘烤1.5-3分钟,然后在90-100℃烘烤3-5分钟。S114. Baking the third prefabricated layer structure at 60-70° C. for 1.5-3 minutes, and then baking at 90-100° C. for 3-5 minutes.
S115、对第三预制层结构进行显影操作,得到磁性封装微机器人。S115 , performing a development operation on the third prefabricated layer structure to obtain a magnetically encapsulated microrobot.
在一实施方式中,如图1中g所示,对第三预制层结构进行显影操作为:将第三预制层结构置于SU-8光刻胶显影剂中浸泡,除去未交联的SU-8光刻胶,再用去离子水清洗后风干。In one embodiment, as shown in g in FIG. 1 , the developing operation for the third prefabricated layer structure is as follows: soak the third prefabricated layer structure in SU-8 photoresist developer to remove uncrosslinked SU -8 photoresist, then rinse with deionized water and air dry.
上述磁性封装微机器人及其制备方法中,由于磁性粒子完全封装在惰性的SU-8层里,使得该微型机器人具有生物兼容性和耐化学性。使用简单的多层光刻,可一次性实现批量生产,提高了时间和成本效益。此外,通过控制金属与聚合物基的比例,可以自定义材料的属性。使得这些磁微型机器人能在各种各样的复杂环境中作业。In the above magnetic encapsulated micro-robot and its preparation method, since the magnetic particles are completely encapsulated in the inert SU-8 layer, the micro-robot has biocompatibility and chemical resistance. Using simple multi-layer photolithography, mass production can be achieved in one pass, improving time and cost efficiency. Furthermore, by controlling the ratio of metal to polymer base, the properties of the material can be customized. These magnetic micro-robots can work in a variety of complex environments.
请参阅图2,在一实施方式中,一种磁性封装微机器人,磁性封装微机器人为根据上述方法的制备方法获得的磁性封装微机器人。Please refer to FIG. 2 . In one embodiment, a magnetically encapsulated microrobot is a magnetically encapsulated microrobot obtained according to the preparation method described above.
如图2所示,a-d表示高分辨率的大型磁芯SU-8几何特征,e表示Janus粒子表现出磁性粒子密度的可控异质性,f表示高分辨率的不同内外部形状的SU-8微结构。g表示c中的微型机器人的轮廓数据。尽管经过多次涂覆和图形化步骤,通过与纯的SU-8图形化比较,这些复合结构表现出类似的干净、垂直的侧壁几何特征。运用白光扫描干涉法(Zygo Newview5000轮廓扫描仪)得到顶面的表面粗糙度是1μm。As shown in Fig. 2, a–d represent high-resolution large magnetic core SU-8 geometric features, e represent Janus particles exhibiting controllable heterogeneity of magnetic particle density, and f represent high-resolution SU-8 with different internal and external shapes. 8 microstructures. g represents the contour data of the microrobot in c. Despite multiple coating and patterning steps, these composite structures exhibit similar clean, vertical sidewall geometries when compared to pure SU-8 patterning. The surface roughness of the top surface obtained by using white light scanning interferometry (Zygo Newview5000 profile scanner) is 1 μm.
上述磁性封装微机器人是由三层感光材料制备而成的。外部两表层是SU-8光刻胶,内部核心层是汝铁硼磁粉与SU-8光刻胶的磁性复合材料。通过先后的涂覆和图形化纯的SU-8和SU-8/NdFeB层而制备。这种“三明治”的结构使得磁性粒子完全封装在SU-8层里面。使得该磁性微机器人具有生物兼容性和耐化学性。The magnetically encapsulated micro-robot is prepared from three layers of photosensitive materials. The outer two surface layers are SU-8 photoresist, and the inner core layer is a magnetic composite material of RuFeB magnetic powder and SU-8 photoresist. Prepared by sequential coating and patterning of pure SU-8 and SU-8/NdFeB layers. This "sandwich" structure makes the magnetic particles completely encapsulated in the SU-8 layer. The magnetic microrobot has biocompatibility and chemical resistance.
以上实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above examples only express several implementations of the present invention, and the description thereof is relatively specific and detailed, but should not be construed as limiting the patent scope of the present invention. It should be pointed out that those skilled in the art can make several modifications and improvements without departing from the concept of the present invention, and these all belong to the protection scope of the present invention. Therefore, the protection scope of the patent for the present invention should be based on the appended claims.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610973129.XA CN106517081B (en) | 2016-10-28 | 2016-10-28 | Magnetic encapsulation Micro-Robot and preparation method thereof |
PCT/CN2016/107684 WO2018076432A1 (en) | 2016-10-28 | 2016-11-29 | Biocompatible encapsulated magnetic robot and preparation method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610973129.XA CN106517081B (en) | 2016-10-28 | 2016-10-28 | Magnetic encapsulation Micro-Robot and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106517081A CN106517081A (en) | 2017-03-22 |
CN106517081B true CN106517081B (en) | 2018-03-09 |
Family
ID=58349617
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610973129.XA Active CN106517081B (en) | 2016-10-28 | 2016-10-28 | Magnetic encapsulation Micro-Robot and preparation method thereof |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106517081B (en) |
WO (1) | WO2018076432A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107986230B (en) * | 2017-12-07 | 2020-04-07 | 天津大学 | Preparation method of patterned bionic magnetic micro-nano robot |
EP3729020B1 (en) * | 2017-12-19 | 2024-09-18 | The University of British Columbia | Layered structure and method for fabricating same |
CN111621747B (en) * | 2019-02-28 | 2022-06-14 | 湖南早晨纳米机器人有限公司 | Preparation method of nano drug-loaded robot |
CN115196585B (en) * | 2022-06-01 | 2025-03-04 | 南方科技大学 | A magnetically controlled micro-nano robot and its manufacturing method and use |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0461611A (en) * | 1990-06-28 | 1992-02-27 | Yamaha Corp | Production of thin-film magnetic head |
JP2000235706A (en) * | 1999-02-12 | 2000-08-29 | Matsushita Electric Ind Co Ltd | Pattern forming method for magnetoresistance element |
US6346183B1 (en) * | 2000-08-03 | 2002-02-12 | International Business Machines Corporation | Use of thin carbon films as a bottom anti-reflective coating in manufacturing magnetic heads |
CN1695159A (en) * | 2002-09-10 | 2005-11-09 | 英根亚控股有限公司 | Security device and system |
CN102723839A (en) * | 2012-05-28 | 2012-10-10 | 北京大学 | Electromagnetic energy harvester with flexible substrate and method for preparing electromagnetic energy harvester |
CN105881492A (en) * | 2016-06-01 | 2016-08-24 | 苏州大学 | Magnetic force micro robot with multiple cilia, and manufacturing method and control system of magnetic force micro robot |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008188754A (en) * | 2006-12-30 | 2008-08-21 | Rohm & Haas Electronic Materials Llc | Three dimensional microstructures and their formation method |
CN101200281A (en) * | 2007-12-06 | 2008-06-18 | 上海交通大学 | Realization Method of Microstructure on Pyrolytic Graphite Substrate |
JP5473235B2 (en) * | 2008-02-27 | 2014-04-16 | 京セラ株式会社 | MICROSTRUCTURE DEVICE AND METHOD FOR MANUFACTURING MICROSTRUCTURE DEVICE |
CN101279713B (en) * | 2008-03-31 | 2011-09-14 | 清华大学 | Manufacturing method for floating type micro-silicon electrostatic gyro/accelerometer sensitive structure |
CN101554987B (en) * | 2009-04-30 | 2011-04-20 | 华中科技大学 | Wafer-grade vacuum encapsulation process for micro-electro-mechanical system |
US8637943B1 (en) * | 2010-01-04 | 2014-01-28 | MCube Inc. | Multi-axis integrated MEMS devices with CMOS circuits and method therefor |
JP2011244425A (en) * | 2010-04-23 | 2011-12-01 | Canon Inc | Electromechanical transducer and its manufacturing method |
-
2016
- 2016-10-28 CN CN201610973129.XA patent/CN106517081B/en active Active
- 2016-11-29 WO PCT/CN2016/107684 patent/WO2018076432A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0461611A (en) * | 1990-06-28 | 1992-02-27 | Yamaha Corp | Production of thin-film magnetic head |
JP2000235706A (en) * | 1999-02-12 | 2000-08-29 | Matsushita Electric Ind Co Ltd | Pattern forming method for magnetoresistance element |
US6346183B1 (en) * | 2000-08-03 | 2002-02-12 | International Business Machines Corporation | Use of thin carbon films as a bottom anti-reflective coating in manufacturing magnetic heads |
CN1695159A (en) * | 2002-09-10 | 2005-11-09 | 英根亚控股有限公司 | Security device and system |
CN102723839A (en) * | 2012-05-28 | 2012-10-10 | 北京大学 | Electromagnetic energy harvester with flexible substrate and method for preparing electromagnetic energy harvester |
CN105881492A (en) * | 2016-06-01 | 2016-08-24 | 苏州大学 | Magnetic force micro robot with multiple cilia, and manufacturing method and control system of magnetic force micro robot |
Also Published As
Publication number | Publication date |
---|---|
WO2018076432A1 (en) | 2018-05-03 |
CN106517081A (en) | 2017-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106517081B (en) | Magnetic encapsulation Micro-Robot and preparation method thereof | |
Liu et al. | Creating three-dimensional magnetic functional microdevices via molding-integrated direct laser writing | |
Yang et al. | Magnetically responsive elastomer–silicon hybrid surfaces for fluid and light manipulation | |
CN102243435B (en) | Method for preparing micro-nanometer fluid system through compound developing of positive and negative photoresists | |
CN105334553B (en) | Magnetic control fabricating method of microlens array based on PDMS magnetic nano-particle laminated films | |
CN102923639B (en) | Precise molding method of biomimetic micro-channel system based on plant veins | |
KR20090028246A (en) | Nanostructures of block copolymers formed on the surface pattern of a shape that does not coincide with the nanostructures of the block copolymers and a method of manufacturing the same | |
CN104345358B (en) | Stripping-mounting method is utilized to make the method for metal micro-nano structure at fiber end face | |
Bhingardive et al. | Soft thermal nanoimprint lithography using a nanocomposite mold | |
WO2007026605A1 (en) | Method of forming fine pattern | |
CN110902647B (en) | A method for fabricating nanochannels with graded sizes | |
US20190051863A1 (en) | Fabrication of multilayer nanograting structures | |
CN105480939A (en) | Preparation method of three-dimensional structure with liquid full super-hydrophobic function | |
JP2019533898A (en) | Imprint substrate | |
CN109455665A (en) | A kind of meso-scale structural mechanics assembled formation method of non-lithographic | |
CN106365112A (en) | Method for manufacturing curved surface micron column based on reconfigurable flexible die | |
Milionis et al. | Combination of lithography and coating methods for surface wetting control | |
Yamanishi et al. | Fabrication and application of 3-D magnetically driven microtools | |
EP2736066B1 (en) | Method for manufacturing a superhydrophobic film sheet | |
Cheng et al. | Dry release of polymer structures with anti-sticking layer | |
TWI679098B (en) | Method for the production of an optical glass element | |
CN106292182B (en) | Photomask integrates micro- model method | |
CN106944752A (en) | Method and the application of light power assembling are carried out to magnetic nano-particle using femtosecond laser | |
KR20150122891A (en) | A preparation method of micro-nano composite pattern using extraction of nano particles and a preparation method of light guide plate using the same method | |
Li | Fabrication of magnetic two-dimensional and three-dimensional microstructures for microfluidics and microrobotics applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |