CN106503616A - A kind of Mental imagery Method of EEG signals classification of the learning machine that transfinited based on layering - Google Patents
A kind of Mental imagery Method of EEG signals classification of the learning machine that transfinited based on layering Download PDFInfo
- Publication number
- CN106503616A CN106503616A CN201610836197.1A CN201610836197A CN106503616A CN 106503616 A CN106503616 A CN 106503616A CN 201610836197 A CN201610836197 A CN 201610836197A CN 106503616 A CN106503616 A CN 106503616A
- Authority
- CN
- China
- Prior art keywords
- classification
- sub
- signal
- signals
- hidden layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2218/00—Aspects of pattern recognition specially adapted for signal processing
- G06F2218/12—Classification; Matching
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2218/00—Aspects of pattern recognition specially adapted for signal processing
- G06F2218/08—Feature extraction
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
本发明公开了一种基于分层超限学习机的运动想象脑电信号分类方法属于模式识别和脑‑机接口领域。首先,对每一样本的原始信号进行加窗分段,得到S段子信号;然后,分别对该S段子信号进行主成分分析和线性判别分析,并将最终的S个K‑1维特征向量进行组合,得到S*(K‑1)维的特征;最后,将所有样本的特征送入分层超限学习机分类器中,得到最后的分类结果。传统的ELM算法是单隐层结构,在分析复杂信号方面有很大的局限性,本发明采取HELM进行分类识别,利用基于ELM的稀疏自编码将单隐层的ELM改造成深层网络结构,通过层次化的特征提取和分类,提取深层信息,提高了分类正确率,并且保持了ELM低耗时的优势。
The invention discloses a motor imagery EEG signal classification method based on a layered extreme learning machine, which belongs to the field of pattern recognition and brain-computer interface. First, the original signal of each sample is segmented by windowing to obtain S-segment sub-signals; then, principal component analysis and linear discriminant analysis are performed on the S-segment sub-signals, and the final S K-1-dimensional feature vectors are processed Combined to obtain S*(K-1)-dimensional features; finally, the features of all samples are sent to the hierarchical extreme learning machine classifier to obtain the final classification result. The traditional ELM algorithm is a single hidden layer structure, which has great limitations in analyzing complex signals. The present invention uses HELM for classification and recognition, and uses the sparse self-encoding based on ELM to transform the single hidden layer ELM into a deep network structure. Hierarchical feature extraction and classification extracts deep information, improves classification accuracy, and maintains the advantage of low time-consuming ELM.
Description
技术领域technical field
本发明属于模式识别和脑-机接口(Brain-Computer Interface,BCI)领域,涉及一种应用分层超限学习机对脑-机接口系统装置中运动想象脑电信号进行分类的方法。The invention belongs to the fields of pattern recognition and Brain-Computer Interface (Brain-Computer Interface, BCI), and relates to a method for classifying motor imagery EEG signals in a Brain-Computer Interface system device by using a layered extreme learning machine.
背景技术Background technique
当今社会,人口老龄会问题凸显,随着科技的不断进步,人工智能在医疗方面的研究不断深入,尤其脑-机接口技术的应用和发展对疾病的诊断治疗以及康复有着深远意义。脑-机接口技术为人脑和外部设备搭建起了沟通的桥梁,在获取人脑信息的同时允许人脑支配控制外部设备。运动想象脑电信号在脑-机接口领域应用较为广泛,通过分析人脑进行想象活动时的脑电信号,识别大脑状态,进而达到控制外部设备的目的,该技术能够给神经损伤的病人提供很大的帮助。In today's society, the problem of population aging is prominent. With the continuous advancement of science and technology, the research of artificial intelligence in medical treatment is deepening. In particular, the application and development of brain-computer interface technology has far-reaching significance for the diagnosis, treatment and rehabilitation of diseases. Brain-computer interface technology builds a communication bridge between the human brain and external devices, allowing the human brain to control external devices while obtaining information from the human brain. Motor imagery EEG signals are widely used in the field of brain-computer interface. By analyzing the EEG signals of the human brain during imaginative activities, the state of the brain can be identified, and then the purpose of controlling external devices can be achieved. big help.
脑-机接口技术可分为五个部分,分别是:信号提取、信号预处理、特征提取、特征分类以及接口控制。脑电信号分类识别是其中的关键技术之一,主要包括特征提取和特征分类。脑电信号因其高维度、随机性、不平稳性等复杂特性,给分类识别提出很大挑战,因此寻找有效的特征提取和分类方法是提高脑电信号识别准确率的关键。同时,脑-机接口的实际应用对设备响应的时效性提出了要求。因此,分类准确率和时间消耗都是评价脑电信号分类识别系统的重要指标。Brain-computer interface technology can be divided into five parts, namely: signal extraction, signal preprocessing, feature extraction, feature classification, and interface control. EEG signal classification and recognition is one of the key technologies, mainly including feature extraction and feature classification. EEG signals pose great challenges to classification and recognition due to their complex characteristics such as high dimensionality, randomness, and instability. Therefore, finding effective feature extraction and classification methods is the key to improving the accuracy of EEG signal recognition. At the same time, the practical application of brain-computer interface puts forward requirements on the timeliness of equipment response. Therefore, classification accuracy and time consumption are important indicators for evaluating the classification and recognition system of EEG signals.
Huang提出的基于单隐层前馈神经网络(Single-hidden Layer Feed forwardNeural Network,SLFN)的超限学习机(Extreme Learning Machine,ELM)方法,其训练速度与BP神经网络以及支持向量机(SVM)相比有明显提升。在此基础上,引入基于ELM的稀疏自编码进行多层次的特征提取,并通过ELM对最后的高层特征进行分类,该结构即为分层超限学习机(Hierarchical Extreme Learning Machine,HELM)。HELM在保持ELM训练速度快的优势的基础上,将其扩展为深层结构,增加了处理复杂信号的能力,提升了分类性能。The Extreme Learning Machine (ELM) method based on Single-hidden Layer Feedforward Neural Network (SLFN) proposed by Huang, its training speed is comparable to that of BP neural network and support vector machine (SVM) Significantly improved compared to . On this basis, the sparse autoencoder based on ELM is introduced for multi-level feature extraction, and the final high-level features are classified by ELM. This structure is called Hierarchical Extreme Learning Machine (HELM). On the basis of maintaining the advantages of fast ELM training speed, HELM expands it into a deep structure, increases the ability to process complex signals, and improves classification performance.
发明内容Contents of the invention
针对上述问题,本发明采用一种基于HELM的分类方法对运动想象任务的脑电信号进行分类,提高其分类的准确率和分类速度。In view of the above problems, the present invention adopts a classification method based on HELM to classify the EEG signals of the motor imagery task, so as to improve the classification accuracy and classification speed.
实现本发明方法的主要思路是:首先,对每一样本的原始信号进行加窗分段,得到S段子信号;然后,分别对该S段子信号进行主成分分析和线性判别分析,并将最终的S个K-1维特征向量进行组合,得到S*(K-1)维的特征;最后,将所有样本的特征送入分层超限学习机分类器中,得到最后的分类结果。The main train of thought of realizing the method of the present invention is: at first, carry out windowing segmentation to the original signal of each sample, obtain S-segment sub-signal; Then, carry out principal component analysis and linear discriminant analysis to this S-segment sub-signal respectively, and final S K-1 dimensional feature vectors are combined to obtain S*(K-1) dimensional features; finally, the features of all samples are sent to the hierarchical ELM classifier to obtain the final classification result.
基于分层超限学习机的运动想象脑电信号分类方法,包括以下步骤:The motor imagery EEG signal classification method based on layered extreme learning machine comprises the following steps:
步骤一,采用固定的滑动时间窗将原始运动想象脑电信号分为S段子信号。S的取值取决于滑动时间窗的长度与原始脑电信号的长度。Step 1, using a fixed sliding time window to divide the original motor imagery EEG signal into S-segment sub-signals. The value of S depends on the length of the sliding time window and the length of the original EEG signal.
步骤二,对步骤一所得到的每一段子信号通过主成分分析(Principal ComponentAnalysis,PCA)方法进行降维,降低信号中冗余信息,即用主成分表示特征相近的信号,最终得到降维后的特征向量。In step 2, the principal component analysis (PCA) method is used to reduce the dimensionality of each sub-signal obtained in step 1 to reduce redundant information in the signal, that is, to use principal components to represent signals with similar characteristics, and finally obtain the reduced dimension eigenvectors of .
步骤三,将步骤二中得到的特征向量通过线性判别分析(Liner DiscriminateAnalysis,LDA)方法进行二次降维,对于K个类别的脑电数据,得到K-1维的特征向量。对于二分类问题,得到的是一个一维的特征向量。In step 3, the feature vector obtained in step 2 is subjected to secondary dimensionality reduction through a linear discriminant analysis (Liner Discriminate Analysis, LDA) method, and K-1 dimensional feature vectors are obtained for K categories of EEG data. For binary classification problems, a one-dimensional feature vector is obtained.
步骤四,对每个子信号均按步骤二和步骤三进行处理,对于S段子信号,所以最终会得到S个K-1维的特征向量,将S个K-1维的特征向量进行组合,得到最终为S*(K-1)维的特征。Step 4, each sub-signal is processed according to step 2 and step 3. For S segment sub-signals, S K-1-dimensional feature vectors will be obtained in the end, and S K-1-dimensional feature vectors are combined to obtain The final feature is S*(K-1) dimension.
步骤五,将步骤四所得到的S*(K-1)维特征送入HELM分类器,得到最终分类结果。Step five, send the S*(K-1) dimensional features obtained in step four to the HELM classifier to obtain the final classification result.
与现有技术相比,本发明的方法具有以下优点:Compared with the prior art, the method of the present invention has the following advantages:
传统的ELM算法是单隐层结构,在分析复杂信号方面有很大的局限性,本发明采取HELM进行分类识别,利用基于ELM的稀疏自编码将单隐层的ELM改造成深层网络结构,通过层次化的特征提取和分类,提取深层信息,提高了分类正确率,并且保持了ELM低耗时的优势。The traditional ELM algorithm is a single hidden layer structure, which has great limitations in analyzing complex signals. The present invention uses HELM for classification and recognition, and uses the sparse self-encoding based on ELM to transform the single hidden layer ELM into a deep network structure. Hierarchical feature extraction and classification extracts deep information, improves classification accuracy, and maintains the advantage of low time-consuming ELM.
附图说明Description of drawings
图1是本发明所涉及方法的主流程图;Fig. 1 is the main flowchart of the method involved in the present invention;
图2是本发明所涉及的HELM分类方法示意图。Fig. 2 is a schematic diagram of the HELM classification method involved in the present invention.
具体实施方式detailed description
下面结合附图和具体实施方式对本发明做进一步的说明。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments.
假设有训练数据集TrainData和一组测试数据集TestData,TrainData的样本量为N,维度为D;TestData的样本量为M,维度同样为D。其中TrainData与TestData中样本属于K个类别的。Suppose there is a training data set TrainData and a set of test data sets TestData, the sample size of TrainData is N, and the dimension is D; the sample size of TestData is M, and the dimension is also D. Among them, the samples in TrainData and TestData belong to K categories.
基于分层超限学习机的运动想象脑电信号分类方法,流程图如图1所示。The flow chart of the motor imagery EEG signal classification method based on hierarchical extreme learning machine is shown in Figure 1.
步骤一,通过固定时间窗划分的方式把TrainData和TestData均分成S段脑电子信号。TrainDatai代表训练数据集中第i段子信号,每段子信号的维度为Di(i=1,2,…,S)。TestDatai代表测试数据集中第i段子信号,每段子信号的维度为Di(i=1,2,…,S)。因为采用的固定时间窗,窗口大小是固定的,所以D1=D2=…=Di。Step 1: Divide the TrainData and TestData into S-segment EEG signals by means of fixed time window division. TrainData i represents the i-th sub-signal in the training data set, and the dimension of each sub-signal is D i (i=1,2,...,S). TestData i represents the i-th sub-signal in the test data set, and the dimension of each sub-signal is D i (i=1,2,...,S). Because the fixed time window is adopted, the size of the window is fixed, so D 1 =D 2 =...=D i .
固定的滑动时间窗分为两种:一种是无叠加时间窗,每一段子信号之间没有重叠部分,即另一种是有叠加的时间窗,每两段相邻的子信号之间是有部分重叠的,即 There are two types of fixed sliding time windows: one is non-overlapping time windows, and there is no overlap between each sub-signal, namely The other is a superimposed time window, and there is a partial overlap between every two adjacent sub-signals, that is
步骤二,对步骤一所得到的每一段子信号TrainDatai和TestDatai通过主成分分析方法进行降维。将特征值从大到小进行排序后,再根据累计贡献率,只保留前m个最大特征值对应的特征向量组合MPCA作为投影空间向量,MPCA=[Φ1,Φ2,...,Φm],Φ1,Φ2,...,Φm分别为通过主成分分析方法进行降维后得到的最大特征值所对应的特征向量。将TrainDatai和TestDatai同时投影到MPCA上,得到PCA降维后的训练数据Traini和测试数据Testi:Step 2: Perform dimensionality reduction on each segment of the sub-signals TrainData i and TestData i obtained in Step 1 by principal component analysis. After sorting the eigenvalues from large to small, according to the cumulative contribution rate, only retain the eigenvector combination M PCA corresponding to the first m largest eigenvalues as the projection space vector, M PCA = [Φ 1 ,Φ 2 ,... ,Φ m ], Φ 1 ,Φ 2 ,...,Φ m are respectively the eigenvectors corresponding to the largest eigenvalues obtained after dimensionality reduction by principal component analysis. Simultaneously project TrainData i and TestData i onto M PCA to obtain training data Train i and test data Test i after PCA dimensionality reduction:
Traini=TrainDatai·MPCA Train i =TrainData i M PCA
Testi=TestDatai·MPCA Test i =TestData i M PCA
步骤三,将步骤二中得到的特征向量通过LDA方法进行二次降维,具体方法如下:In step 3, the feature vector obtained in step 2 is subjected to secondary dimensionality reduction by the LDA method, and the specific method is as follows:
(1)根据LDA准则,利用Traini中不同类别样本的类间离散度矩阵以及同一类别样本的类内离散度矩阵计算出LDA的投影空间向量w*。(1) According to the LDA criterion, the projected space vector w * of LDA is calculated by using the inter-class scatter matrix of different classes of samples in Train i and the intra-class scatter matrix of samples of the same class.
(2)把Traini与Testi投影到w*上,得到第i段脑电子信号的特征:(2) Project Train i and Test i onto w * to obtain the characteristics of the i-th segment of the EEG signal:
Trainfeaturei=Traini·w* Trainfeature i =Train i ·w *
Testfeaturei=Testi·w* Testfeature i =Test i ·w *
步骤四,计算出所有的Trainfeaturei与Testfeaturei,并进行组合,得到最终的特征TrainFeature与TestFeature:Step 4, calculate all Trainfeature i and Testfeature i and combine them to get the final features TrainFeature and TestFeature:
TrainFeature={TrainFeature1,TrainFeature2,…,Trainfeaturex}TrainFeature = { TrainFeature1 , TrainFeature2 , ..., TrainFeature x }
TestFeature={TestFeature1,TestFeature2,…,TestFeaturex}TestFeature = { TestFeature1 , TestFeature2 , ..., TestFeature x }
整个特征提取的流程如图1所示。The entire feature extraction process is shown in Figure 1.
步骤五,用步骤四所得到的特征TrainFeature训练HELM分类器模型,将TestFeature送入训练好的模型进行分类,得出最终分类结果。流程图如图2所示,具体方法如下:Step 5, use the feature TrainFeature obtained in step 4 to train the HELM classifier model, send TestFeature to the trained model for classification, and obtain the final classification result. The flow chart is shown in Figure 2, and the specific method is as follows:
(1)给定隐层个数K、隐层节点个数L={L1,L2,…,LK}和激励函数g(x)。随机产生输入权值ai和偏置值bi。xi代表输入的第i个训练样本,ti对应第i个训练样本的标签,Hi是第i个隐层的输出矩阵,Ai为第i个稀疏自编码器的隐层输出矩阵。因为送入分类器是已经提取好的特征,故在本发明中,xi实际上代表TrainFeaturei。(1) The number of hidden layers K, the number of hidden layer nodes L={L 1 , L 2 ,...,L K } and the activation function g(x) are given. Randomly generate input weight a i and bias value b i . x i represents the i-th training sample input, t i corresponds to the label of the i-th training sample, H i is the output matrix of the i-th hidden layer, and A i is the hidden layer output matrix of the i-th sparse autoencoder. Because the extracted features are sent to the classifier, so in the present invention, xi actually represents TrainFeature i .
(2)逐层计算基于ELM的稀疏自编码器的隐层权值βi,i={1,2,…,K-1,K},其中H0=X,具体计算步骤如下:(2) Calculate the hidden layer weight β i of the sparse autoencoder based on ELM layer by layer, i={1, 2, ..., K-1, K}, where H 0 =X, the specific calculation steps are as follows:
a)计算稀疏自编码器的隐层输出Ai:a) Calculate the hidden layer output A i of the sparse autoencoder:
Ai=g(ai·Hi-1+bi)A i =g(a i ·H i-1 +b i )
g(·)为选定的激励函数g(x)。g(·) is the selected activation function g(x).
b)计算李普希茨常数Li:b) Calculation of the Lipschitz constant L i :
Li=λmax(Ai T·Ai)L i =λ max (A i T ·A i )
λmax为最大特征值。λ max is the largest eigenvalue.
c)迭代计算隐层权值βi,其中迭代次数j=1:50,初始时间点t1=1,βi的特定值初始为y1=βi0,计算过程如下:c) Iteratively calculate the hidden layer weight β i , where the number of iterations j=1:50, the initial time point t 1 =1, and the specific value of β i is initially y 1 =β i0 , the calculation process is as follows:
βj={‖cj‖,0}max*sign(cj)β j ={‖c j ‖,0} max *sign(c j )
βi=βj β i = β j
d)计算隐层输出矩阵Hi:d) Calculate the hidden layer output matrix H i :
(3)计算分类部分的隐层输出矩阵HK+1。(3) Calculate the hidden layer output matrix H K+1 of the classification part.
(4)求分类部分的最优权β:(4) Find the optimal weight β of the classification part:
根据神经网络的目标输出T=HK+1β。如果HK+1是列满秩的,通过最小二乘法得到最佳权值,其解为:According to the target output of the neural network T=H K+1 β. If H K+1 is full rank, the optimal weight is obtained by the least square method, and the solution is:
是HK+1的广义逆矩阵,如果HK+1是非列满秩的,则使用奇异值分解求解HK+1的广义逆矩阵来计算最优权β。 is the generalized inverse matrix of H K+ 1 , if H K+1 is non-full rank, then use singular value decomposition to solve the generalized inverse matrix of H K+1 To calculate the optimal weight β.
(5)将TestFeature送入该模型,逐层进行计算,得到一组M维的预测标签,将预测标签与真实标签进行比较求出分类正确率。(5) Send TestFeature into the model and calculate layer by layer to obtain a set of M-dimensional prediction labels, and compare the prediction labels with the real labels to obtain the classification accuracy.
本实施例选择BCI2003Ia标准数据集,该数据集是两类运动想象脑电数据,分类结果的正确率最高为94.54%。本发明实施例的正确率比研究该数据的其他学者采用的方法的正确率都要高。并且同样特征的情况下,分类效果优于SVM的92.15%和ELM平均结果89.04%。与同样是深度网络结构的多层超限学习机相比,分类结果提高0.34%,耗时缩短一半左右。该发明同样适用于多分类问题,可将其先转化为两类分类,继续使用本发明所使用的方法。In this embodiment, the BCI2003Ia standard data set is selected, which is two types of motor imagery EEG data, and the correct rate of classification results is up to 94.54%. The correct rate of the embodiment of the present invention is higher than that of the methods adopted by other scholars studying the data. And in the case of the same characteristics, the classification effect is better than 92.15% of SVM and 89.04% of the average result of ELM. Compared with the multi-layer extreme learning machine with the same deep network structure, the classification result is increased by 0.34%, and the time-consuming is shortened by about half. This invention is also applicable to multi-classification problems, which can be converted into two classifications first, and continue to use the method used in the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610836197.1A CN106503616A (en) | 2016-09-20 | 2016-09-20 | A kind of Mental imagery Method of EEG signals classification of the learning machine that transfinited based on layering |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610836197.1A CN106503616A (en) | 2016-09-20 | 2016-09-20 | A kind of Mental imagery Method of EEG signals classification of the learning machine that transfinited based on layering |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106503616A true CN106503616A (en) | 2017-03-15 |
Family
ID=58290308
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610836197.1A Pending CN106503616A (en) | 2016-09-20 | 2016-09-20 | A kind of Mental imagery Method of EEG signals classification of the learning machine that transfinited based on layering |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106503616A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107169462A (en) * | 2017-05-19 | 2017-09-15 | 山东建筑大学 | A kind of two sorting techniques of the EEG signals tagsort based on step analysis |
CN107334481A (en) * | 2017-05-15 | 2017-11-10 | 清华大学 | One kind drives divert one's attention detection method and system |
CN107451651A (en) * | 2017-07-28 | 2017-12-08 | 杭州电子科技大学 | A kind of driving fatigue detection method of the H ELM based on particle group optimizing |
CN108523907A (en) * | 2018-01-22 | 2018-09-14 | 上海交通大学 | The fatigue state recognition method and system of sparse autoencoder network are shunk based on depth |
CN109063639A (en) * | 2018-07-30 | 2018-12-21 | 浙江大学 | A kind of method of real-time prediction Brain behavior |
CN109977810A (en) * | 2019-03-12 | 2019-07-05 | 北京工业大学 | Brain electricity classification method based on HELM and combination PTSNE and LDA Fusion Features |
CN111222578A (en) * | 2020-01-09 | 2020-06-02 | 哈尔滨工业大学 | An online processing method for motor imagery EEG signals |
CN113326736A (en) * | 2021-04-30 | 2021-08-31 | 北京工业大学 | Bionic group-based intelligent IWOA-ELM electroencephalogram classification method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103413050A (en) * | 2013-08-20 | 2013-11-27 | 北京工业大学 | Motor imagery electroencephalogram voting strategy sorting method based on extreme learning machines |
CN104361345A (en) * | 2014-10-10 | 2015-02-18 | 北京工业大学 | Electroencephalogram signal classification method based on constrained extreme learning machine |
-
2016
- 2016-09-20 CN CN201610836197.1A patent/CN106503616A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103413050A (en) * | 2013-08-20 | 2013-11-27 | 北京工业大学 | Motor imagery electroencephalogram voting strategy sorting method based on extreme learning machines |
CN104361345A (en) * | 2014-10-10 | 2015-02-18 | 北京工业大学 | Electroencephalogram signal classification method based on constrained extreme learning machine |
Non-Patent Citations (2)
Title |
---|
JIEXIONG TANG 等: "Extreme Learning Machine for Multilayer Perceptron", 《IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS》 * |
续艳慧: "超限学习机方法在脑电信号特征提取与分类中的应用研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107334481A (en) * | 2017-05-15 | 2017-11-10 | 清华大学 | One kind drives divert one's attention detection method and system |
CN107169462A (en) * | 2017-05-19 | 2017-09-15 | 山东建筑大学 | A kind of two sorting techniques of the EEG signals tagsort based on step analysis |
CN107451651A (en) * | 2017-07-28 | 2017-12-08 | 杭州电子科技大学 | A kind of driving fatigue detection method of the H ELM based on particle group optimizing |
CN108523907A (en) * | 2018-01-22 | 2018-09-14 | 上海交通大学 | The fatigue state recognition method and system of sparse autoencoder network are shunk based on depth |
CN109063639A (en) * | 2018-07-30 | 2018-12-21 | 浙江大学 | A kind of method of real-time prediction Brain behavior |
CN109977810A (en) * | 2019-03-12 | 2019-07-05 | 北京工业大学 | Brain electricity classification method based on HELM and combination PTSNE and LDA Fusion Features |
CN109977810B (en) * | 2019-03-12 | 2021-03-02 | 北京工业大学 | Electroencephalogram classification method based on HELM and combined PTSNE and LDA feature fusion |
CN111222578A (en) * | 2020-01-09 | 2020-06-02 | 哈尔滨工业大学 | An online processing method for motor imagery EEG signals |
CN113326736A (en) * | 2021-04-30 | 2021-08-31 | 北京工业大学 | Bionic group-based intelligent IWOA-ELM electroencephalogram classification method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106503616A (en) | A kind of Mental imagery Method of EEG signals classification of the learning machine that transfinited based on layering | |
CN103413050B (en) | Mental imagery EEG signals temporal voting strategy sorting technique based on very fast learning machine | |
CN104361345A (en) | Electroencephalogram signal classification method based on constrained extreme learning machine | |
CN106485205A (en) | Transfinited the Mental imagery Method of EEG signals classification of learning machine based on multilamellar | |
CN104966105A (en) | Robust machine error retrieving method and system | |
CN114176607B (en) | Electroencephalogram signal classification method based on vision transducer | |
Alhussan et al. | Facial Expression Recognition Model Depending on Optimized Support Vector Machine. | |
CN103336960A (en) | Human face identification method based on manifold learning | |
CN107133640A (en) | Image classification method based on topography's block description and Fei Sheer vectors | |
CN103577841A (en) | Human body behavior identification method adopting non-supervision multiple-view feature selection | |
CN104268507A (en) | Manual alphabet identification method based on RGB-D image | |
Golovko et al. | A new technique for restricted Boltzmann machine learning | |
CN107292225A (en) | A kind of face identification method | |
CN108288048A (en) | Based on the facial emotions identification feature selection method for improving brainstorming optimization algorithm | |
Qiang et al. | Deep variational autoencoder for modeling functional brain networks and adhd identification | |
Tan et al. | L1-norm latent SVM for compact features in object detection | |
CN106056141A (en) | Target recognition and angle coarse estimation algorithm using space sparse coding | |
Gaidhane et al. | Emotion recognition using eigenvalues and Levenberg–Marquardt algorithm-based classifier | |
CN115273236A (en) | A Multimodal Human Gait Emotion Recognition Method | |
Maiti et al. | Skin cancer classification through quantized color features and generative adversarial network | |
Bhattacharya | A survey on: facial expression recognition using various deep learning techniques | |
Su et al. | Nesterov accelerated gradient descent-based convolution neural network with dropout for facial expression recognition | |
Peng | Research on emotion recognition based on deep learning for mental health | |
Yu et al. | Fully learnable hyperdimensional computing framework with ultratiny accelerator for edge-side applications | |
CN102609733B (en) | Fast face recognition method in application environment of massive face database |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170315 |