CN106486485A - Memory element and manufacturing method thereof - Google Patents
Memory element and manufacturing method thereof Download PDFInfo
- Publication number
- CN106486485A CN106486485A CN201510543155.4A CN201510543155A CN106486485A CN 106486485 A CN106486485 A CN 106486485A CN 201510543155 A CN201510543155 A CN 201510543155A CN 106486485 A CN106486485 A CN 106486485A
- Authority
- CN
- China
- Prior art keywords
- admixture
- dielectric layer
- grid
- dopant
- memory component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- 239000000758 substrate Substances 0.000 claims abstract description 27
- 239000002245 particle Substances 0.000 claims abstract description 23
- 239000007789 gas Substances 0.000 claims description 55
- 238000000034 method Methods 0.000 claims description 22
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 16
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 14
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 10
- 229910052710 silicon Inorganic materials 0.000 claims description 10
- 239000010703 silicon Substances 0.000 claims description 10
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 8
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 5
- 229910052785 arsenic Inorganic materials 0.000 claims description 5
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims description 5
- 229910052796 boron Inorganic materials 0.000 claims description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims description 5
- 239000011574 phosphorus Substances 0.000 claims description 5
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 3
- 229910021529 ammonia Inorganic materials 0.000 claims description 3
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 claims description 3
- 238000000151 deposition Methods 0.000 claims 2
- 229910000070 arsenic hydride Inorganic materials 0.000 claims 1
- 239000002019 doping agent Substances 0.000 abstract description 63
- 230000005641 tunneling Effects 0.000 abstract description 17
- 239000003989 dielectric material Substances 0.000 description 15
- 238000005137 deposition process Methods 0.000 description 14
- 229920005591 polysilicon Polymers 0.000 description 14
- 239000004065 semiconductor Substances 0.000 description 9
- 230000008569 process Effects 0.000 description 7
- 239000005977 Ethylene Substances 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 239000004020 conductor Substances 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 125000004429 atom Chemical group 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 3
- 229910000077 silane Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- ZOCHARZZJNPSEU-UHFFFAOYSA-N diboron Chemical compound B#B ZOCHARZZJNPSEU-UHFFFAOYSA-N 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
Landscapes
- Semiconductor Memories (AREA)
- Non-Volatile Memory (AREA)
Abstract
Description
技术领域technical field
本发明是有关于一种半导体元件及其制造方法,且特别是有关于一种存储器元件及其制造方法。The present invention relates to a semiconductor element and its manufacturing method, and in particular to a memory element and its manufacturing method.
背景技术Background technique
数字相机、手机相机与MP3等电子产品在这几年来的成长十分迅速,使得消费者对储存媒体的需求也急速增加。由于闪存(Flash Memory)具有数据非易失性、省电、体积小与无机械结构等的特性,因此最适合做为这类可携式且由电池供电的电子产品的储存媒体。Electronic products such as digital cameras, cell phone cameras, and MP3 players have grown rapidly in recent years, making consumers' demand for storage media also increase rapidly. Because flash memory (Flash Memory) has the characteristics of data non-volatility, power saving, small size and no mechanical structure, it is most suitable as a storage medium for such portable and battery-powered electronic products.
然而在集成电路持续追求高积集度以及尺寸缩小化的趋势下,闪存的每一个存储单元所占的面积却因而必须缩减,元件的线宽同样随之缩小。如此一来,浮置栅极与控制栅极之间的栅极耦合率(gate coupling ratio)也会跟着下降。栅极耦合率的降低不但会让编程的阈值电压(thresholdvoltage;Vt)的分布变广,并且会降低记忆窗口(memory window),存储器元件的可靠度(诸如数据保存及耐久性)也会随之降低。However, under the continuous pursuit of high integration density and size reduction of integrated circuits, the area occupied by each memory cell of the flash memory must be reduced, and the line width of the device must also be reduced accordingly. In this way, the gate coupling ratio between the floating gate and the control gate will also decrease accordingly. The reduction of the gate coupling ratio will not only widen the distribution of the programming threshold voltage (threshold voltage; Vt), but also reduce the memory window (memory window), and the reliability of the memory element (such as data retention and durability) will also follow. reduce.
发明内容Contents of the invention
本发明提供一种存储器元件及其制造方法,其中存储器元件可形成为具有改良的数据保存及耐久性的可靠度。The present invention provides a memory element and method of manufacturing the same, wherein the memory element can be formed with improved reliability of data retention and endurance.
本发明提供一种存储元件,包括基底、控制栅级、浮置栅极、隧穿介电层、栅间介电层以及源极区与漏极区。隧穿介电层位于基底上。浮置栅极包括位于隧穿介电层上的第一部分及其上的第二部分,其中第一部分含有第一掺质与第二掺质;第二部分含有第一掺质。第一部分的粒径小于第二部分的粒径,且第一部分的平均粒径介于至栅间介电层位于浮置栅极上。控制栅极位于栅间介电层上。源极区与漏极区位于浮置栅极的两侧的基底中。The invention provides a storage element, which includes a substrate, a control gate, a floating gate, a tunnel dielectric layer, an inter-gate dielectric layer, and a source region and a drain region. The tunneling dielectric layer is on the substrate. The floating gate includes a first part on the tunnel dielectric layer and a second part on it, wherein the first part contains the first dopant and the second dopant; the second part contains the first dopant. The particle size of the first part is smaller than the particle size of the second part, and the average particle size of the first part is between to An inter-gate dielectric layer is on the floating gate. The control gate is on the inter-gate dielectric layer. The source region and the drain region are located in the substrate on both sides of the floating gate.
依照本发明实施例所述的存储器元件,其中所述第一部分与所述第二部分的材料包括掺杂多晶硅,所述第一部分内第一掺质的浓度低于所述第二部分内第一掺质的浓度。In the memory element according to the embodiment of the present invention, the materials of the first part and the second part include doped polysilicon, and the concentration of the first dopant in the first part is lower than that of the first dopant in the second part. Dopant concentration.
依照本发明实施例所述的存储器元件,其中所述第一掺质包括砷、磷或硼;所述第二掺质包括碳、氮、氧或其组合。In the memory element according to an embodiment of the present invention, the first dopant includes arsenic, phosphorus or boron; the second dopant includes carbon, nitrogen, oxygen or a combination thereof.
本发明提供一种存储元件,包括基底、控制栅级、浮置栅极、隧穿介电层、栅间介电层以及源极区与漏极区。隧穿介电层位于基底上。浮置栅极包括位于隧穿介电层上第一部分及其上的第二部分,其中第一部分含有第一掺质与第二掺质;第二部分含有第一掺质。第一部分的导电度小于第二部分的导电度。栅间介电层位于浮置栅极上。控制栅极位于栅间介电层上。源极区与漏极区位于浮置栅极的两侧的基底中。The invention provides a storage element, which includes a substrate, a control gate, a floating gate, a tunnel dielectric layer, an inter-gate dielectric layer, and a source region and a drain region. The tunneling dielectric layer is on the substrate. The floating gate includes a first part on the tunnel dielectric layer and a second part on it, wherein the first part contains the first dopant and the second dopant; the second part contains the first dopant. The conductivity of the first portion is less than the conductivity of the second portion. An inter-gate dielectric layer is on the floating gate. The control gate is on the inter-gate dielectric layer. The source region and the drain region are located in the substrate on both sides of the floating gate.
依照本发明实施例所述的存储器元件,其中所述第一部分与所述第二部分的材料包括掺杂多晶硅,所述第一部分内第一掺质的浓度低于所述第二部分内第一掺质的浓度。In the memory element according to the embodiment of the present invention, the materials of the first part and the second part include doped polysilicon, and the concentration of the first dopant in the first part is lower than that of the first dopant in the second part. Dopant concentration.
依照本发明实施例所述的存储器元件,其中所述第一掺质包括砷、磷或硼;所述第二掺质包括碳、氮、氧或其组合。In the memory element according to an embodiment of the present invention, the first dopant includes arsenic, phosphorus or boron; the second dopant includes carbon, nitrogen, oxygen or a combination thereof.
依照本发明实施例所述的存储器元件,其中所述第一部分的平均粒径介于至 According to the memory element described in the embodiment of the present invention, wherein the average particle diameter of the first part is between to
本发明提供一种存储元件的制造方法,包括于基底上形成隧穿介电层。接着,进行第一沉积工艺,且在所述第一沉积工艺期间通入第一混合气体,以于所述隧穿介电材料层上形成第一部分,其中所述第一混合气体包括硅源、第一掺杂气体以及第二掺杂气体。然后,进行第二沉积工艺,且在所述第二沉积工艺期间通入第二混合气体,以于所述第一部分上形成第二部分,其中所述第二混合气体包括所述气体以及所述第一掺杂气体。之后,于所述第二部分上形成栅间介电层。再者,于所述栅间介电层上形成控制栅极。其后,于所述浮置栅极的侧壁的所述基底中形成源极区与漏极区,其中通过所述第一掺杂气体来决定所述第一部分以及第二部分的导电型,以及通过所述第二掺杂气体来控制所述第一部分的粒径大小。The invention provides a manufacturing method of a storage element, which includes forming a tunnel dielectric layer on a substrate. Next, a first deposition process is performed, and a first mixed gas is introduced during the first deposition process to form a first portion on the tunnel dielectric material layer, wherein the first mixed gas includes a silicon source, The first doping gas and the second doping gas. Then, a second deposition process is performed, and a second mixed gas is introduced during the second deposition process to form a second part on the first part, wherein the second mixed gas includes the gas and the the first dopant gas. Afterwards, an inter-gate dielectric layer is formed on the second portion. Furthermore, a control gate is formed on the inter-gate dielectric layer. Thereafter, forming a source region and a drain region in the base of the sidewall of the floating gate, wherein the conductivity types of the first portion and the second portion are determined by the first dopant gas, And the particle size of the first part is controlled by the second dopant gas.
依照本发明实施例所述的存储器元件的制造方法,所述第一掺杂气体包括砷化氢、磷化氢或二硼烷;所述第二掺杂气体包括乙烯、氨气、臭氧或其组合。According to the manufacturing method of the memory element described in the embodiment of the present invention, the first dopant gas includes arsine, phosphine or diborane; the second dopant gas includes ethylene, ammonia, ozone, or combination.
依照本发明实施例所述的存储器元件的制造方法,其中所述第一部分经由所述第一掺杂气体掺杂的第一掺质的浓度低于所述第二部分经由所述第一掺杂气体掺杂的所述第一掺质的浓度。According to the method for manufacturing a memory element according to an embodiment of the present invention, the concentration of the first dopant doped by the first doping gas in the first part is lower than that in the second part by the first doping gas. The concentration of the first dopant for gas doping.
基于上述,本发明在形成浮置栅极的过程中,由于先通入含有可阻止硅原子扩散的掺质的掺杂气体,因此可在隧穿介电层上先沉积出一层粒径较小且导电度较低的掺杂层,此有助于存储器元件达成较窄的阈值电压分布曲线,进而改良存储器元件的可靠度。因此,本发明的存储器元件对于数据储存与耐久度具有较高的可靠度。Based on the above, in the process of forming the floating gate in the present invention, because the dopant gas containing the dopant that can prevent the diffusion of silicon atoms is first introduced, a layer with a smaller particle size can be deposited on the tunneling dielectric layer. A small doped layer with low conductivity helps the memory device to achieve a narrower threshold voltage distribution curve, thereby improving the reliability of the memory device. Therefore, the memory device of the present invention has high reliability for data storage and endurance.
为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合所附图式作详细说明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail together with the accompanying drawings.
附图说明Description of drawings
图1A至图1C为依照本发明的实施例所绘示的存储器元件制作流程剖面图。1A to 1C are cross-sectional views of a manufacturing process of a memory device according to an embodiment of the present invention.
图2为存储器元件的编程的阈值电压分布图。FIG. 2 is a graph of programmed threshold voltage distributions of memory elements.
【符号说明】【Symbol Description】
100:基底100: base
102、102a:隧穿介电材料层102, 102a: tunneling dielectric material layer
102b:隧穿介电层102b: tunneling dielectric layer
103:条状叠层结构103: strip laminated structure
104、104a:第一掺杂层104, 104a: first doped layer
104b:第一部分104b: Part I
105:浮置栅极105: floating gate
106、106a:第二掺杂层106, 106a: second doped layer
106b:第二部分106b: Part II
108:栅间介电材料层108: inter-gate dielectric material layer
108a:栅间介电层108a: inter-gate dielectric layer
110:导体材料层110: conductor material layer
110a:控制栅极110a: Control grid
112:栅极结构112: Gate structure
114:源极区与漏极区114: source region and drain region
具体实施方式detailed description
图1A至图1C为依照本发明的实施例所绘示的存储器元件制作流程剖面图。1A to 1C are cross-sectional views of a manufacturing process of a memory device according to an embodiment of the present invention.
首先,请参照图1A,提供基底100,基底100例如为半导体基底、半导体化合物基底或是绝缘层上有半导体基底(Semiconductor Over Insulator,SO1)。半导体例如是IVA族的原子,例如硅或锗。半导体化合物例如是IVA族的原子所形成的半导体化合物,例如是碳化硅或是硅化锗,或是IIIA族原子与VA族原子所形成的半导体化合物,例如是砷化镓。First, referring to FIG. 1A , a substrate 100 is provided. The substrate 100 is, for example, a semiconductor substrate, a semiconductor compound substrate, or a semiconductor over insulator substrate (Semiconductor Over Insulator, SO1). Semiconductors are, for example, atoms of group IVA, such as silicon or germanium. The semiconductor compound is, for example, a semiconductor compound formed of atoms of group IVA, such as silicon carbide or germanium silicide, or a semiconductor compound formed of atoms of group IIIA and group VA, such as gallium arsenide.
接着,于基底100上形成隧穿介电材料层102。隧穿介电材料层102的材料例如是氧化硅、氮氧化硅或介电常数高于4的介电材料。隧穿介电材料层102的形成方法包括进行化学气相沉积法、原位蒸汽生成法(in-situsteam generation,ISSG)、低压自由基氧化法或炉管氧化法等。Next, a tunneling dielectric material layer 102 is formed on the substrate 100 . The material of the tunneling dielectric material layer 102 is, for example, silicon oxide, silicon oxynitride or a dielectric material with a dielectric constant higher than 4. Referring to FIG. The method for forming the tunneling dielectric material layer 102 includes chemical vapor deposition, in-situ steam generation (ISSG), low-pressure free radical oxidation, or furnace tube oxidation.
然后,进行第一沉积工艺,以于隧穿介电材料层102上形成第一掺杂层104。第一掺杂层104的材料例如是掺杂多晶硅。第一沉积工艺例如是以低压化学气相沉积法来进行,其操作压力例如是介于50Torr至200Torr之间,且工艺温度例如是介于摄氏450度至650度之间。第一掺杂层104的厚度例如是至 Then, a first deposition process is performed to form a first doped layer 104 on the tunneling dielectric material layer 102 . The material of the first doped layer 104 is, for example, doped polysilicon. The first deposition process is, for example, performed by a low-pressure chemical vapor deposition method. The operating pressure is, for example, between 50 Torr and 200 Torr, and the process temperature is, for example, between 450 degrees Celsius and 650 degrees Celsius. The thickness of the first doped layer 104 is, for example, to
在本实施例中,在第一沉积工艺期间通入第一混合气体。第一混合气体包括硅源、第一掺杂气体以及第二掺杂气体,且所形成的第一掺杂层104含有第一掺杂气体所提供的第一掺质与第二掺杂气体所提供的第二掺质。硅源例如是硅甲烷(SiH4)、硅乙烷(Si2H6)或其组合。第一掺杂气体例如是磷化氢(PH3)、砷化氢(AsH3)或二硼烷(B2H6)。在本实施例中,可通过第一掺杂气体来决定第一掺杂层104的导电型,举例来说,当欲形成N型的第一掺杂层104时,所通入的第一掺杂气体为PH3或AsH3;当欲形成P型的第一掺杂层104时,所通入的第一掺杂气体则为B2H6。第二掺杂气体例如是乙烯(C2H4)、氨气(NH3)、臭氧(O3)或其组合。第一掺质例如是磷、砷或硼。第二掺质例如是碳、氮、氧或其组合。第二掺杂气体所提供的第二掺质(例如碳、氮、氧或其组合)会在第一沉积工艺期间阻止硅原子的扩散,进而减少晶界(grain boundary)的扩张,因此所形成第一掺杂层104的粒径会较小。也就是说,可通过调整通入第二掺杂气体的流量来控制第一掺杂层104的粒径大小。第一掺杂层104的平均粒径例如是介于至在一示范实施例中,第一混合气体为SiH4、PH3与C2H4的混合气体,其中SiH4流量范围为100sccm至250sccm;PH3流量范围为10sccm至200sccm;C2H4流量范围为1sccm至10sccm。In this embodiment, the first mixed gas is introduced during the first deposition process. The first mixed gas includes a silicon source, a first dopant gas and a second dopant gas, and the formed first doped layer 104 contains the first dopant provided by the first dopant gas and the second dopant provided by the second dopant gas. The second dopant provided. The silicon source is, for example, silane (SiH 4 ), silethane (Si 2 H 6 ) or a combination thereof. The first doping gas is, for example, phosphine (PH 3 ), arsine (AsH 3 ) or diborane (B 2 H 6 ). In this embodiment, the conductivity type of the first doped layer 104 can be determined by the first doping gas. For example, when the N-type first doped layer 104 is to be formed, the first doped gas The impurity gas is PH 3 or AsH 3 ; when the P-type first doped layer 104 is to be formed, the first doped gas injected is B 2 H 6 . The second dopant gas is, for example, ethylene (C 2 H 4 ), ammonia (NH 3 ), ozone (O 3 ) or a combination thereof. The first dopant is, for example, phosphorous, arsenic or boron. The second dopant is, for example, carbon, nitrogen, oxygen or a combination thereof. The second dopant (such as carbon, nitrogen, oxygen, or a combination thereof) provided by the second dopant gas will prevent the diffusion of silicon atoms during the first deposition process, thereby reducing the expansion of the grain boundary (grain boundary), so the formed The particle size of the first doped layer 104 will be smaller. That is to say, the particle size of the first doped layer 104 can be controlled by adjusting the flow rate of the second doped gas. The average grain size of the first doped layer 104 is, for example, between to In an exemplary embodiment, the first mixed gas is a mixed gas of SiH4, PH 3 and C 2 H 4 , wherein the SiH 4 flow range is 100 sccm to 250 sccm; the PH 3 flow range is 10 sccm to 200 sccm; the C 2 H 4 flow range 1 sccm to 10 sccm.
之后,请继续参照图1A,进行第二沉积工艺,以于第一掺杂层104上形成第二掺杂层106。在一实施例中,第二掺杂层106的材料可以与第一掺杂层104的材料相同,例如是掺杂多晶硅。第二掺杂层106中也可以同样具有第一掺质。但是第二掺杂层106中第一掺质的浓度大于第一掺杂层104中第一掺质的浓度。第一掺杂层104中第一掺质的浓度与第二掺杂层106中第一掺质的浓度的比例介于1∶6至1∶2。在一示范实施例中,第一掺杂层104中第一掺质的浓度与第二掺杂层106中第一掺质的浓度的比例约为1∶3。在一实施例中,第二掺杂层106中不具有第二掺质。在另一实施例中,第二掺杂层106中也可以具有第二掺质,但是第二掺杂层106中第二掺质的浓度小于第一掺杂层104中第二掺质的浓度。在其他实施例中,亦可以在隧穿介电材料层102上形成渐进型掺杂层(未绘示)以取代第一掺杂层104与第二掺杂层106。渐进型掺杂层的第一掺质的浓度由渐进型掺杂层的顶部往基底100方向减少,而渐进型掺杂层的第二掺质的浓度由渐进型掺杂层的顶部往基底100方向增加。Afterwards, please continue to refer to FIG. 1A , a second deposition process is performed to form a second doped layer 106 on the first doped layer 104 . In an embodiment, the material of the second doped layer 106 may be the same as that of the first doped layer 104 , such as doped polysilicon. The second doped layer 106 may also contain the first dopant. However, the concentration of the first dopant in the second doped layer 106 is greater than the concentration of the first dopant in the first doped layer 104 . The ratio of the concentration of the first dopant in the first doped layer 104 to the concentration of the first dopant in the second doped layer 106 ranges from 1:6 to 1:2. In an exemplary embodiment, the ratio of the concentration of the first dopant in the first doped layer 104 to the concentration of the first dopant in the second doped layer 106 is about 1:3. In one embodiment, there is no second dopant in the second doped layer 106 . In another embodiment, there may also be a second dopant in the second doped layer 106, but the concentration of the second dopant in the second doped layer 106 is smaller than the concentration of the second dopant in the first doped layer 104 . In other embodiments, a progressively doped layer (not shown) may also be formed on the tunneling dielectric material layer 102 to replace the first doped layer 104 and the second doped layer 106 . The concentration of the first dopant in the progressively doped layer decreases from the top of the progressively doped layer toward the base 100, while the concentration of the second dopant in the progressively doped layer decreases from the top of the progressively doped layer toward the base 100. direction increases.
第二沉积工艺例如是以低压化学气相沉积法来进行。在第二沉积工艺期间通入第二混合气体。第二混合气体包括硅源以及上述第一掺杂气体。第二沉积工艺的操作压力例如是介于50Torr至200Torr之间,且工艺温度例如是介于摄氏450度至650度之间。第二掺杂层106的厚度例如是介于至 The second deposition process is, for example, performed by low pressure chemical vapor deposition. The second mixed gas is fed during the second deposition process. The second mixed gas includes silicon source and the above-mentioned first dopant gas. The operating pressure of the second deposition process is, for example, between 50 Torr and 200 Torr, and the process temperature is, for example, between 450 degrees Celsius and 650 degrees Celsius. The thickness of the second doped layer 106 is, for example, between to
由于在形成第二掺杂层106期间不含有或仅含有极少可以阻止硅扩散的第二掺质,且第二掺杂层106中第一掺质的浓度高于第一掺杂层104中第一掺质的浓度,因此所形成的第二掺杂层106的粒径会大于第一掺杂层104的粒径。在一实施例中,第一掺杂层104的平均粒径介于至第二掺杂层106的平均粒径例如是介于至此外,由于第一掺杂层104的粒径小于第二掺杂层106的粒径,第一掺杂层104中第一掺质的浓度低于第二掺杂层106中第一掺质的浓度,因此第一掺杂层104的导电度小于第二掺杂层106的导电度。Since the second doped layer 106 does not contain or only contains very little second dopant that can prevent silicon diffusion, and the concentration of the first dopant in the second doped layer 106 is higher than that in the first doped layer 104 The concentration of the first dopant, therefore, the particle size of the formed second doped layer 106 will be larger than the particle size of the first doped layer 104 . In one embodiment, the average grain size of the first doped layer 104 is between to The average grain size of the second doped layer 106 is, for example, between to In addition, since the particle diameter of the first doped layer 104 is smaller than that of the second doped layer 106, the concentration of the first dopant in the first doped layer 104 is lower than that of the first dopant in the second doped layer 106. concentration, so the conductivity of the first doped layer 104 is smaller than that of the second doped layer 106 .
接着,请参照图1A与图1B,利用光刻与刻蚀工艺将隧穿介电材料层102、第一掺杂层104与第二掺杂层106图案化,以于基底100上形成多个条状叠层结构103。各条状叠层结构103由下往上包括隧穿介电材料层102a、第一掺杂层104a与第二掺杂层106a。条状叠层结构103例如是沿着第一方向D1延伸。Next, referring to FIG. 1A and FIG. 1B , the tunneling dielectric material layer 102 , the first doped layer 104 and the second doped layer 106 are patterned by photolithography and etching processes to form a plurality of doped layers on the substrate 100. Strip laminated structure 103 . Each striped stack structure 103 includes a tunneling dielectric material layer 102a, a first doped layer 104a, and a second doped layer 106a from bottom to top. The strip-shaped stacked structure 103 extends along the first direction D1, for example.
然后,于基底100上依序形成栅间介电材料层108及导体材料层110。在本实施例中,栅间介电材料层108例如是由氧化层/氮化层/氧化层(Oxide/Nitride/Oxide;ONO)所构成的复合层,但本发明不限于此。复合层可为三层或更多层。形成栅间介电材料层108的方法包括进行化学气相沉积法或热氧化法等。导体材料层110的材料例如是掺杂多晶硅。形成导体材料层110的方法包括进行化学气相沉积法。Then, an inter-gate dielectric material layer 108 and a conductive material layer 110 are sequentially formed on the substrate 100 . In this embodiment, the inter-gate dielectric material layer 108 is, for example, a composite layer composed of oxide/nitride/oxide (ONO), but the invention is not limited thereto. Composite layers can be three or more layers. The method for forming the inter-gate dielectric material layer 108 includes chemical vapor deposition or thermal oxidation. The material of the conductive material layer 110 is, for example, doped polysilicon. A method of forming the conductive material layer 110 includes performing a chemical vapor deposition method.
再者,请参照图1C,利用光刻与刻蚀工艺将导体材料层110、栅间介电材料层108与条状叠层结构103图案化,以于基底100上形成栅极结构112。栅极结构112由下往上包括隧穿介电层102b、浮置栅极105、栅间介电层108a以及控制栅极110a。浮置栅极105包括第一部分104b与第二部分106b。控制栅极110a与栅间介电层108a均沿着第二方向D2延伸。第二方向D2与第一方向D1不同,例如是彼此垂直。Furthermore, referring to FIG. 1C , the conductive material layer 110 , the inter-gate dielectric material layer 108 and the strip-shaped stacked structure 103 are patterned by photolithography and etching processes to form the gate structure 112 on the substrate 100 . The gate structure 112 includes a tunneling dielectric layer 102b, a floating gate 105, an inter-gate dielectric layer 108a, and a control gate 110a from bottom to top. The floating gate 105 includes a first portion 104b and a second portion 106b. Both the control gate 110a and the inter-gate dielectric layer 108a extend along the second direction D2. The second direction D2 is different from the first direction D1, such as being perpendicular to each other.
接着,以栅极结构112做为注入罩幕,进行离子注入工艺,以于栅极结构112的两侧的基底100中形成源极区与漏极区114。在一实施例中,基底100具有第一导电型,源极区与漏极区114具有第二导电型。第一导电型例如是P型;第二导电型例如是N型,反之亦然。至此,完成本发明的存储器元件的制作。Next, an ion implantation process is performed by using the gate structure 112 as an implantation mask to form a source region and a drain region 114 in the substrate 100 on both sides of the gate structure 112 . In one embodiment, the substrate 100 has a first conductivity type, and the source region and the drain region 114 have a second conductivity type. The first conductivity type is, for example, P type; the second conductivity type is, for example, N type, and vice versa. So far, the fabrication of the memory element of the present invention is completed.
以下,列举本发明的实例来更具体地对本发明进行说明。然而,在不脱离本发明的精神,可适当地对以下的实例中所示的材料、使用方法等进行变更。因此,本发明的范围不应以以下所示的具体例来限定解释。Hereinafter, examples of the present invention will be given to describe the present invention more specifically. However, materials, usage methods, and the like shown in the following examples may be appropriately changed without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be limited and interpreted by the specific examples shown below.
实例1Example 1
在实例1中,使用低压化学气相沉积法进行沉积工艺,以在硅基板上形成掺杂多晶硅层。在沉积工艺期间通入包括硅甲烷、磷化氢以及乙烯的混合气体,其中乙烯的流量为4sccm。In Example 1, a deposition process was performed using a low pressure chemical vapor deposition method to form a doped polysilicon layer on a silicon substrate. During the deposition process, a mixed gas including silane, phosphine and ethylene was fed, wherein the flow rate of ethylene was 4 sccm.
实例2Example 2
使用与实例1类似的方法来形成掺杂多晶硅层,其差别只在于乙烯的流量为7sccm。A doped polysilicon layer was formed using a method similar to that of Example 1, the only difference being that the flow rate of ethylene was 7 sccm.
实例3Example 3
使用与实例1类似的方法来形成掺杂多晶硅层,其差别只在于乙烯的流量为10sccm。A doped polysilicon layer was formed using a method similar to that of Example 1, the only difference being that the flow rate of ethylene was 10 sccm.
比较例comparative example
使用与实例1类似的方法来形成掺杂多晶硅层,其差别只在于所通入的混合气体仅包括硅甲烷与磷化氢。The doped polysilicon layer was formed using a method similar to that of Example 1, the only difference being that the mixed gas introduced only included silane and phosphine.
表1是实例1-3及比较例所形成的掺杂多晶硅层的粒径大小的结果。Table 1 shows the results of the grain sizes of the doped polysilicon layers formed in Examples 1-3 and Comparative Examples.
表1Table 1
由表1的结果可知,在相同的磷浓度及有通入C2H4气体的情况下,随着通入C2H4气体的流量增加,所形成的掺杂多晶硅层的粒径愈小。这是由于在形成掺杂多晶硅层期间,C2H4气体所提供的掺质(即碳原子)会阻止硅原子的扩散,进而减少晶界的扩张,因此形成较小粒径的掺杂多晶硅层。由上述结果也可知,可通过调整C2H4气体的流量来控制掺杂多晶硅层的粒径大小。From the results in Table 1, it can be seen that under the same phosphorus concentration and the presence of C 2 H 4 gas, as the flow rate of C 2 H 4 gas increases, the particle size of the formed doped polysilicon layer becomes smaller . This is because during the formation of the doped polysilicon layer, the dopant (that is, carbon atoms) provided by the C 2 H 4 gas will prevent the diffusion of silicon atoms, thereby reducing the expansion of the grain boundaries, thus forming doped polysilicon with a smaller particle size Floor. It can also be seen from the above results that the particle size of the doped polysilicon layer can be controlled by adjusting the flow rate of the C 2 H 4 gas.
图2为存储器元件的编程的阈值电压分布图。第一存储器元件具有本发明的由第一部分与第二部分所构成的浮置栅极,而第二存储器元件具有仅经第一掺质掺杂的浮置栅极。由图2可看出,由于本发明的第一存储器元件的浮置栅极的第一部分的粒径较小,因此可达成较窄的编程的阈值电压分布曲线,进而改良存储器元件的可靠度。FIG. 2 is a graph of programmed threshold voltage distributions of memory elements. The first memory element has the floating gate composed of the first part and the second part of the present invention, and the second memory element has the floating gate only doped with the first dopant. It can be seen from FIG. 2 that since the particle size of the first portion of the floating gate of the first memory element of the present invention is smaller, a narrower programming threshold voltage distribution curve can be achieved, thereby improving the reliability of the memory element.
综上所述,本发明是在形成浮置栅极的过程中,先通入含有可阻止硅原子扩散的掺质的掺杂气体,以在隧穿介电层上先沉积出一层粒径较小的掺杂层,之后再形成粒径较大的掺杂层。粒径较小的掺杂层有助于达成较窄的编程的阈值电压分布曲线,进而改良存储器元件的可靠度。To sum up, in the process of forming the floating gate, the present invention first introduces a dopant gas containing a dopant that can prevent the diffusion of silicon atoms, so as to deposit a layer of particle size on the tunneling dielectric layer. A smaller doped layer, followed by a doped layer with a larger particle size. The doped layer with a smaller particle size helps to achieve a narrower programming threshold voltage distribution curve, thereby improving the reliability of the memory device.
虽然本发明已以实施例揭露如上,然其并非用以限定本发明,任何所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作些许的更动与润饰,故本发明的保护范围当视随附的权利要求范围所界定的为准。Although the present invention has been disclosed as above with the embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention should be defined by the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510543155.4A CN106486485A (en) | 2015-08-31 | 2015-08-31 | Memory element and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510543155.4A CN106486485A (en) | 2015-08-31 | 2015-08-31 | Memory element and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106486485A true CN106486485A (en) | 2017-03-08 |
Family
ID=58234937
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510543155.4A Pending CN106486485A (en) | 2015-08-31 | 2015-08-31 | Memory element and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106486485A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109494224A (en) * | 2017-09-08 | 2019-03-19 | 华邦电子股份有限公司 | Nonvolatile memory device and its manufacturing method |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5229631A (en) * | 1990-08-15 | 1993-07-20 | Intel Corporation | Erase performance improvement via dual floating gate processing |
CN1536650A (en) * | 2003-02-06 | 2004-10-13 | ���ǵ�����ʽ���� | Method for manufacturing semiconductor integrated circuit and semiconductor integrated circuit manufactured thereby |
CN1630036A (en) * | 2003-12-17 | 2005-06-22 | 旺宏电子股份有限公司 | Semiconductor element and method of manufacturing polysilicon layer formed therein |
US20050184327A1 (en) * | 2004-02-19 | 2005-08-25 | Yoshio Ozawa | Stacked gate semiconductor memory and manufacturing method for the same |
US20050212036A1 (en) * | 2004-03-26 | 2005-09-29 | Masayuki Tanaka | Semiconductor memory device and method of manufacturing the same |
CN101047192A (en) * | 2006-03-31 | 2007-10-03 | 株式会社半导体能源研究所 | Nonvolatile semiconductor memory device |
KR20090003746A (en) * | 2007-07-03 | 2009-01-12 | 주식회사 하이닉스반도체 | Nonvolatile Memory Device and Manufacturing Method Thereof |
US20110001181A1 (en) * | 2009-07-06 | 2011-01-06 | Byoungsun Ju | Nonvolatile Memory Devices |
-
2015
- 2015-08-31 CN CN201510543155.4A patent/CN106486485A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5229631A (en) * | 1990-08-15 | 1993-07-20 | Intel Corporation | Erase performance improvement via dual floating gate processing |
CN1536650A (en) * | 2003-02-06 | 2004-10-13 | ���ǵ�����ʽ���� | Method for manufacturing semiconductor integrated circuit and semiconductor integrated circuit manufactured thereby |
CN1630036A (en) * | 2003-12-17 | 2005-06-22 | 旺宏电子股份有限公司 | Semiconductor element and method of manufacturing polysilicon layer formed therein |
US20050184327A1 (en) * | 2004-02-19 | 2005-08-25 | Yoshio Ozawa | Stacked gate semiconductor memory and manufacturing method for the same |
US20050212036A1 (en) * | 2004-03-26 | 2005-09-29 | Masayuki Tanaka | Semiconductor memory device and method of manufacturing the same |
CN101047192A (en) * | 2006-03-31 | 2007-10-03 | 株式会社半导体能源研究所 | Nonvolatile semiconductor memory device |
KR20090003746A (en) * | 2007-07-03 | 2009-01-12 | 주식회사 하이닉스반도체 | Nonvolatile Memory Device and Manufacturing Method Thereof |
US20110001181A1 (en) * | 2009-07-06 | 2011-01-06 | Byoungsun Ju | Nonvolatile Memory Devices |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109494224A (en) * | 2017-09-08 | 2019-03-19 | 华邦电子股份有限公司 | Nonvolatile memory device and its manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11063059B2 (en) | Semiconductor structures including dielectric materials having differing removal rates | |
JP6669581B2 (en) | Memory device having a multilayer channel and a charge trapping layer | |
TWI653746B (en) | Composite substrate for three-dimensional memory components | |
TWI455251B (en) | Single-wafer process for fabricating a nonvolatile charge trap memory device | |
US8318608B2 (en) | Method of fabricating a nonvolatile charge trap memory device | |
US7749919B2 (en) | Semiconductor device and method for manufacturing the same | |
US7115949B2 (en) | Method of forming a semiconductor device in a semiconductor layer and structure thereof | |
US20220278214A1 (en) | Semiconductor devices with liners and related methods | |
KR101176900B1 (en) | Method for manufacturing of semiconductor device | |
CN109585453A (en) | Memory transistor with multiple charge storage layers | |
US11705499B2 (en) | Semiconductor device with inverter and method for fabricating the same | |
CN106486485A (en) | Memory element and manufacturing method thereof | |
TWI582963B (en) | Memory device and method for fabricating the same | |
CN102693905B (en) | The formation method of flash cell and floating boom thereof | |
US20200126784A1 (en) | Low dielectric constant oxide and low resistance op stack for 3d nand application | |
US20170069762A1 (en) | Memory device and method for fabricating the same | |
JP2009016688A (en) | Method of manufacturing semiconductor device | |
US20250194092A1 (en) | Semiconductor device and method for fabricating the same | |
TW202525071A (en) | Semiconductor device and method for fabricating the same | |
CN116489995A (en) | Manufacturing method of floating gate of flash memory | |
CN111341652A (en) | A semiconductor device and method of forming the same | |
KR20090042416A (en) | Semiconductor memory device and formation method thereof | |
US20140030860A1 (en) | Manufacturing method of tunnel oxide of nor flash memory | |
US20080073692A1 (en) | Semiconductor chip and method of forming the same | |
CN106298890A (en) | Three-dimensional semiconductor element and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20170308 |