[go: up one dir, main page]

CN106485209A - Non-stationary electromagnetic interference signal mode identification method based on EEMD feature extraction and PNN - Google Patents

Non-stationary electromagnetic interference signal mode identification method based on EEMD feature extraction and PNN Download PDF

Info

Publication number
CN106485209A
CN106485209A CN201610846687.XA CN201610846687A CN106485209A CN 106485209 A CN106485209 A CN 106485209A CN 201610846687 A CN201610846687 A CN 201610846687A CN 106485209 A CN106485209 A CN 106485209A
Authority
CN
China
Prior art keywords
imf
layer
pnn
training sample
eemd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610846687.XA
Other languages
Chinese (zh)
Other versions
CN106485209B (en
Inventor
李红裔
赵迪
苏东林
宁博明
赵连坤
黄子晏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201610846687.XA priority Critical patent/CN106485209B/en
Publication of CN106485209A publication Critical patent/CN106485209A/en
Application granted granted Critical
Publication of CN106485209B publication Critical patent/CN106485209B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/12Classification; Matching
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Complex Calculations (AREA)

Abstract

本发明公开了基于EEMD特征提取和PNN的非平稳电磁干扰信号模式识别方法,属于电磁信号识别与分析研究领域;具体步骤为:首先,利用频谱仪分别测量不同类电磁设备的电磁干扰信号,并划分为训练样本和测试样本;然后,对所有训练样本进行层次EEMD分解,得到每个训练样本每层的固有模态函数IMF;接着,分别计算每个训练样本所有层IMF的能量分布和峭度,作为该训练样本的特征向量;并将特征向量和电磁设备的类别标签,进行训练得到PNN分类器;最后,利用PNN分类器,识别不同测试样本的频谱数据所属的类型;优点在于:利用EEMD方法对信号提取特征,具有更好的自适应性;将峭度和IMF能量分布作为特征向量,有效区分不同类型的电磁干扰信号。

The invention discloses a non-stationary electromagnetic interference signal pattern recognition method based on EEMD feature extraction and PNN, which belongs to the field of electromagnetic signal identification and analysis research; the specific steps are: first, use a spectrum analyzer to measure electromagnetic interference signals of different types of electromagnetic equipment respectively, and Divided into training samples and test samples; then, perform hierarchical EEMD decomposition on all training samples to obtain the intrinsic mode function IMF of each layer of each training sample; then, calculate the energy distribution and kurtosis of all layers of IMF for each training sample , as the feature vector of the training sample; and the feature vector and the category label of the electromagnetic device are trained to obtain a PNN classifier; finally, the PNN classifier is used to identify the type of spectrum data of different test samples; the advantage is: using EEMD The method has better adaptability to signal extraction features; kurtosis and IMF energy distribution are used as feature vectors to effectively distinguish different types of electromagnetic interference signals.

Description

基于EEMD特征提取和PNN的非平稳电磁干扰信号模式识别 方法Pattern Recognition of Non-stationary Electromagnetic Interference Signal Based on EEMD Feature Extraction and PNN method

技术领域technical field

本发明属于电磁信号识别与分析研究领域,涉及基于EEMD(全局经验模态分解)特征提取和PNN(概率神经网络)的非平稳电磁干扰信号模式识别方法。The invention belongs to the field of electromagnetic signal identification and analysis research, and relates to a non-stationary electromagnetic interference signal pattern recognition method based on EEMD (global empirical mode decomposition) feature extraction and PNN (probability neural network).

背景技术Background technique

随着电子信息技术的发展,日益增多的电子设备造成的电磁干扰问题,严重影响电子设备的正常运作。为了解决电磁干扰问题,电磁兼容设计应运而生。实际环境下电子设备中的电磁干扰源发出的电磁信号,往往具有很高的非线性性、非高斯性和非稳定性,导致识别它们非常困难,给电磁兼容设计造成了极大的困难。With the development of electronic information technology, the electromagnetic interference caused by an increasing number of electronic equipment seriously affects the normal operation of electronic equipment. In order to solve the problem of electromagnetic interference, electromagnetic compatibility design came into being. In the actual environment, the electromagnetic signals emitted by the electromagnetic interference sources in electronic equipment often have high nonlinearity, non-Gaussianity and instability, which makes it very difficult to identify them and brings great difficulties to the electromagnetic compatibility design.

模式识别(Pattern Recognition),是通过计算机用数学方法来研究模式的自动处理和判读的过程。这里将实际中的电磁干扰信号与相应的环境统称为“模式”。模式识别是人类的一项基本智能。随着20世纪40年代计算机的出现以及50年代人工智能的兴起,人们希望能用计算机来代替或扩展人类的模式识别能力。模式识别在20世纪60年代初迅速发展并成为一门新学科,其基本过程是将客观环境中的模式进行特征提取转化为数学模型,再利用计算机完成分类和识别工作Pattern Recognition (Pattern Recognition) is the process of automatic processing and interpretation of patterns studied by computers using mathematical methods. Here, the actual electromagnetic interference signal and the corresponding environment are collectively referred to as "mode". Pattern recognition is a basic intelligence of human beings. With the advent of computers in the 1940s and the rise of artificial intelligence in the 1950s, it was hoped that computers could replace or extend human pattern recognition. Pattern recognition developed rapidly in the early 1960s and became a new discipline. Its basic process is to extract features from patterns in the objective environment and transform them into mathematical models, and then use computers to complete classification and recognition.

人工神经网络(Artificial Neural Network,ANN),是20世纪80年代以来人工智能领域兴起的研究热点。它模仿人脑神经元网络的连接方式,建立起简单的计算机神经元网络模型。人工神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接的信号的加权值,称之为权重,这相当于神经网络的记忆。网络的输出则取决于网络的连接方式、权重值和激励函数。网络自身通常都是对自然界某种算法、函数或逻辑的近似表达。Artificial Neural Network (ANN) is a research hotspot in the field of artificial intelligence since the 1980s. It imitates the connection mode of human brain neuron network, and establishes a simple computer neuron network model. Artificial neural network is a computing model, which is composed of a large number of nodes (or called neurons) connected to each other. Each node represents a specific output function called an activation function. The connection between each two nodes represents a weighted value for the signal passing through the connection, called weight, which is equivalent to the memory of the neural network. The output of the network depends on the way the network is connected, the weight values and the activation function. The network itself is usually an approximate expression of some algorithm, function or logic in nature.

概率神经网络(Probabilistic Neural Networks,PNN)由D.F.Specht在1990年提出,是一类特殊的基于统计原理的前馈网络模型,通常被用来实现聚类功能。其主要策略是利用贝叶斯决策规则,在多维输入空间内分离决策空间,使得错误分类的期望风险最小。Probabilistic Neural Networks (PNN) was proposed by D.F.Specht in 1990. It is a special kind of feedforward network model based on statistical principles, which is usually used to implement clustering functions. Its main strategy is to use Bayesian decision rules to separate the decision space within the multidimensional input space such that the expected risk of misclassification is minimized.

PNN的主要优点有以下三点:(1)训练速度快;(2)在足够训练样本下,总可以保证获得贝叶斯准则下的最优解;(3)只考虑样本空间的概率特性,允许增加训练样本而无须重新进行长时间的训练。The main advantages of PNN are the following three points: (1) fast training speed; (2) with enough training samples, the optimal solution under Bayesian criterion can always be guaranteed; (3) only considering the probability characteristics of the sample space, Allows to increase training samples without retraining for a long time.

PNN结合了径向基神经网络与经典的概率密度估计原理的优点,相比其他前馈神经网络,在实现聚类任务时有着显著的优越性能。PNN combines the advantages of radial basis neural network and classic probability density estimation principle. Compared with other feedforward neural networks, it has significantly superior performance in clustering tasks.

发明内容Contents of the invention

本发明针对实际的电磁干扰信号频谱范围大、数据点多,直接对数据进行分析计算很困难,提出了一种基于EEMD特征提取和PNN的非平稳电磁干扰信号模式识别方法。In view of the fact that the actual electromagnetic interference signal has a large spectrum range and many data points, and it is difficult to directly analyze and calculate the data, the invention proposes a non-stationary electromagnetic interference signal pattern recognition method based on EEMD feature extraction and PNN.

具体步骤如下:Specific steps are as follows:

步骤一、利用频谱仪分别测量实际电磁设备,获取不同类设备的电磁干扰信号,并将频谱数据划分为训练样本和测试样本;Step 1. Use the spectrum analyzer to measure the actual electromagnetic equipment respectively, obtain the electromagnetic interference signals of different types of equipment, and divide the spectrum data into training samples and test samples;

步骤二、针对所有训练样本,分别进行层次EEMD分解,得到每个训练样本每层的固有模态函数IMF;Step 2. For all training samples, perform hierarchical EEMD decomposition respectively to obtain the intrinsic mode function IMF of each layer of each training sample;

具体步骤如下:Specific steps are as follows:

步骤201、针对频谱数据中的某个训练样本X,初始化EEMD的数目,构造不同幅值的高斯白噪声;Step 201, for a certain training sample X in the spectrum data, initialize the number of EEMD, and construct Gaussian white noise with different amplitudes;

训练样本X长度为n,X=[x1,x2,...,xj,...xn];EEMD的数目为M;不同幅值的高斯白噪声为M组,第m组幅值的高斯白噪声Nm=[n1 (m),n2 (m),...nj (m),...nn (m)];m=1,2,...M;The length of the training sample X is n, X=[x 1 ,x 2 ,...,x j ,...x n ]; the number of EEMD is M; Gaussian white noise with different amplitudes is M groups, the mth group Amplitude Gaussian white noise N m =[n 1 (m) ,n 2 (m) ,...n j (m) ,...n n (m) ]; m=1,2,... M;

步骤202、在训练样本X上依次添加给定幅值的高斯白噪声,得到M个干扰信号;Step 202, sequentially adding Gaussian white noise with a given amplitude to the training sample X to obtain M interference signals;

第m个被高斯白噪声干扰的信号为:Xm=X-NmThe mth signal interfered by Gaussian white noise is: X m =XN m ;

M个干扰信号集合为:[X1,X2,...Xm,...XM];M interference signal sets are: [X 1 ,X 2 ,...X m ,...X M ];

步骤203、将每个干扰信号利用EMD方法,分别分解为I层固有模态函数IMF,得到M×I个固有模态函数。Step 203, using the EMD method, decompose each interference signal into I-layer intrinsic mode functions IMF to obtain M×I intrinsic mode functions.

M×I个固有模态函数集合表示如下:The set of M×I intrinsic mode functions is expressed as follows:

ci,m表示第m个干扰信号Xm分解的第i层固有模态函数;i=1,2,3,...I;m=1,2,3,...M;c i,m represent the intrinsic mode function of the i-th layer decomposed by the m-th interference signal X m ; i=1,2,3,...I; m=1,2,3,...M;

步骤204、针对每层固有模态函数IMF,分别计算该层M个固有模态函数的平均值作为该层最终的IMF值,得到训练样本X的每层固有模态函数IMF;Step 204, for the intrinsic mode function IMF of each layer, respectively calculate the average value of the M intrinsic mode functions of the layer as the final IMF value of the layer, and obtain the intrinsic mode function IMF of each layer of the training sample X;

训练样本X的第i层固有模态函数IMFi值为该层所有IMF的平均值,公式如下:The intrinsic mode function IMF i of the i-th layer of the training sample X is the average value of all IMFs in this layer, and the formula is as follows:

步骤205、对所有训练样本重复上述步骤,得到每个训练样本每层的固有模态函数IMF。Step 205. Repeat the above steps for all training samples to obtain the intrinsic mode function IMF of each layer of each training sample.

步骤三、针对每个训练样本,分别计算所有层IMF的能量分布和峭度,作为该训练样本的特征向量;Step 3, for each training sample, calculate the energy distribution and kurtosis of all layers of IMF respectively, as the feature vector of the training sample;

首先、计算所有层IMF的能量分布和熵;First, calculate the energy distribution and entropy of all layers of IMF;

所有层IMF的能量分布特征为I层能量分布的熵 The energy distribution of all layer IMFs is characterized by Entropy of energy distribution in layer I

Pi为第i层IMF的能量: 为训练样本X的第i层IMF的元素集合中的一个元素,第i层IMF的元素集合表示为:P为训练样本X的总能量: P i is the energy of the i-th layer IMF: is an element in the element set of the i-th layer IMF of the training sample X, and the element set of the i-th layer IMF is expressed as: P is the total energy of the training sample X:

然后、计算该训练样本所有层IMF中每层IMF的峭度。Then, calculate the kurtosis of each layer IMF in all layers IMFs of the training sample.

第i层IMF峭度K(IMFi)定义为:The i-th layer IMF kurtosis K(IMF i ) is defined as:

为第i层IMF元素集合IMFi中所有点的平均值:n为第i层IMF信号的长度,与训练样本的长度相同; is the average value of all points in the i-th layer IMF element set IMF i : n is the length of the i-th layer IMF signal, which is the same as the length of the training sample;

σ为相应的标准差: σ is the corresponding standard deviation:

训练样本X最终的特征向量为: The final feature vector of the training sample X is:

步骤四、将所有训练样本的特征向量和电磁设备的类别标签,输入未训练的PNN进行训练得到PNN分类器;Step 4, input the feature vectors of all training samples and the category labels of the electromagnetic equipment into the untrained PNN for training to obtain a PNN classifier;

PNN分类器用来识别未知电磁扰信号。The PNN classifier is used to identify unknown EMI signals.

步骤五、对于每个测试样本,输入PNN分类器,识别频谱数据所属的类型;Step 5, for each test sample, input the PNN classifier to identify the type of spectrum data;

本发明的优点在于:The advantages of the present invention are:

1)、基于EEMD特征提取和PNN的非平稳电磁干扰信号模式识别方法,在信号的特征提取过程中,利用EEMD方法对信号进行分解相比小波分解、傅里叶分析等具有更好的自适应性。1), based on EEMD feature extraction and PNN non-stationary electromagnetic interference signal pattern recognition method, in the process of signal feature extraction, using EEMD method to decompose the signal has better self-adaptation than wavelet decomposition, Fourier analysis, etc. sex.

2)、基于EEMD特征提取和PNN的非平稳电磁干扰信号模式识别方法,将峭度和IMF能量分布作为特征向量可以反应数据的不确定性和分布不稳定性等,这些统计特性可以有效地区分不同类型的电磁干扰信号。2), based on EEMD feature extraction and PNN non-stationary electromagnetic interference signal pattern recognition method, using kurtosis and IMF energy distribution as feature vectors can reflect data uncertainty and distribution instability, etc. These statistical characteristics can effectively distinguish Different types of EMI signals.

3)、基于EEMD特征提取和PNN的非平稳电磁干扰信号模式识别方法,建立PNN对电磁干扰信号进行模式识别实现了高度自动化和集成化;而且在实际应用中,随着训练样本的不断扩充,PNN的识别准确率将会不断增加。3), based on the EEMD feature extraction and PNN non-stationary electromagnetic interference signal pattern recognition method, the establishment of PNN for electromagnetic interference signal pattern recognition has achieved a high degree of automation and integration; and in practical applications, with the continuous expansion of training samples, The recognition accuracy of PNN will continue to increase.

附图说明Description of drawings

图1为本发明基于EEMD特征提取和PNN的非平稳电磁干扰信号模式识别方法流程图;Fig. 1 is the flow chart of the non-stationary electromagnetic interference signal pattern recognition method based on EEMD feature extraction and PNN of the present invention;

图2为本发明对训练样本进行层次EEMD分解得到固有模态函数IMF方法流程图。Fig. 2 is a flow chart of the method for obtaining the intrinsic mode function IMF by performing hierarchical EEMD decomposition on training samples according to the present invention.

具体实施方式detailed description

下面将结合附图对本发明作进一步的详细说明。The present invention will be further described in detail below in conjunction with the accompanying drawings.

本发明提供了一种针对实际环境中的非平稳电磁干扰信号的模式识别系统,具体是基于EEMD特征提取和PNN的非平稳电磁干扰信号的模式识别系统,首先需要利用EEMD技术提取信号的数学特征以代表原信号,然后概率神经网络将会被引入完成对特征向量的模式识别工作。The present invention provides a pattern recognition system for non-stationary electromagnetic interference signals in the actual environment, specifically a pattern recognition system for non-stationary electromagnetic interference signals based on EEMD feature extraction and PNN. First, it is necessary to use EEMD technology to extract the mathematical features of the signal To represent the original signal, then the probabilistic neural network will be introduced to complete the pattern recognition work on the feature vector.

具体来讲,分为两个主要过程:训练过程和识别过程。在训练过程中,电磁干扰信号训练样本通过EEMD被转化为相应的特征向量,并输入PNN网络进行训练,使其具有对非平稳电磁干扰信号的识别能力;在识别过程中,未知的电磁干扰信号通过同样的特征提取技术被转化为特征向量,然后被输入训练过程得到的成熟的PNN网络进行识别。Specifically, it is divided into two main processes: training process and recognition process. In the training process, the electromagnetic interference signal training samples are converted into corresponding feature vectors through EEMD, and input into the PNN network for training, so that it has the ability to identify non-stationary electromagnetic interference signals; in the identification process, unknown electromagnetic interference signals Through the same feature extraction technology, it is converted into a feature vector, and then input into the mature PNN network obtained in the training process for recognition.

如图1所示,具体步骤如下:As shown in Figure 1, the specific steps are as follows:

步骤一、利用频谱仪分别测量实际电磁设备,通过测试获取不同类设备的电磁干扰信号,并将对应的频谱数据划分为训练样本和测试样本;Step 1. Use the spectrum analyzer to measure the actual electromagnetic equipment respectively, obtain the electromagnetic interference signals of different types of equipment through testing, and divide the corresponding spectrum data into training samples and test samples;

步骤二、针对所有训练样本,分别进行层次EEMD分解,得到每个训练样本每层的固有模态函数IMF;Step 2. For all training samples, perform hierarchical EEMD decomposition respectively to obtain the intrinsic mode function IMF of each layer of each training sample;

利用EEMD分解所有电磁干扰信号训练样本得到相应的IMF,所有训练样本的固有模特函数数量相同;Use EEMD to decompose all electromagnetic interference signal training samples to obtain the corresponding IMF, and the number of intrinsic model functions of all training samples is the same;

如图2所示,具体步骤如下:As shown in Figure 2, the specific steps are as follows:

步骤201、针对频谱数据中的某个训练样本X,初始化EEMD的数目,构造不同幅值的高斯白噪声;Step 201, for a certain training sample X in the spectrum data, initialize the number of EEMD, and construct Gaussian white noise with different amplitudes;

训练样本X=[x1,x2,...,xj,...xn],长度为n;EEMD的数目为M,不同幅值的高斯白噪声为M组,表示为N=[N1,N2,...Nm,...NM];The training sample X=[x 1 ,x 2 ,...,x j ,...x n ], the length is n; the number of EEMD is M, and Gaussian white noise with different amplitudes is M groups, expressed as N= [N 1 ,N 2 ,...N m ,...N M ];

Nm=[n1 (m),n2 (m),...nj (m),...nn (m)]为第m组幅值的高斯白噪声;m=1,2,...MN m =[n 1 (m) ,n 2 (m) ,...n j (m) ,...n n (m) ] is Gaussian white noise with the amplitude of the mth group; m=1,2 ,...M

步骤202、在训练样本X上依次添加给定幅值的高斯白噪声,得到M个干扰信号;Step 202, sequentially adding Gaussian white noise with a given amplitude to the training sample X to obtain M interference signals;

第m个被高斯白噪声干扰的信号为:The mth signal interfered by Gaussian white noise is:

所有的M个干扰信号集合为:[X1,X2,...Xm,...XM]All sets of M interference signals are: [X 1 ,X 2 ,...X m ,...X M ]

步骤203、将每个干扰信号利用EMD方法,分别分解为I层固有模态函数IMF,得到M×I个IMF。Step 203, using the EMD method to decompose each interference signal into I-layer intrinsic mode functions IMFs to obtain M×I IMFs.

M×I个固有模态函数集合表示如下:The set of M×I intrinsic mode functions is expressed as follows:

集合中的每列表示每个干扰信号分解的I层IMF,每行表示相同层的所有干扰信号分解的IMF;ci,m表示第m个干扰信号Xm分解的第i层固有模态函数;i=1,2,3,...I;m=1,2,3,...M;Each column in the set represents the I-layer IMF decomposed by each interfering signal, and each row represents the IMF decomposed by all interfering signals of the same layer; c i,m represents the i-th layer intrinsic mode function decomposed by the m-th interfering signal X m ;i=1,2,3,...I; m=1,2,3,...M;

步骤204、针对每层固有模态函数IMF,分别计算该层M个IMF的平均值作为该层最终IMF值,得到训练样本X的每层固有模态函数IMF;Step 204, for the intrinsic mode function IMF of each layer, respectively calculate the average value of the M IMFs of the layer as the final IMF value of the layer, and obtain the intrinsic mode function IMF of each layer of the training sample X;

训练样本X的第i层固有模态函数IMFi值为该层所有IMF的平均值,公式如下:The intrinsic mode function IMF i of the i-th layer of the training sample X is the average value of all IMFs in this layer, and the formula is as follows:

步骤205、对所有训练样本重复上述步骤,得到每个训练样本每层的固有模态函数IMF。Step 205. Repeat the above steps for all training samples to obtain the intrinsic mode function IMF of each layer of each training sample.

步骤三、针对每个训练样本,分别计算所有层IMF的能量分布和峭度,作为该训练样本的特征向量;Step 3, for each training sample, calculate the energy distribution and kurtosis of all layers of IMF respectively, as the feature vector of the training sample;

首先、计算所有层IMF的能量分布和熵;First, calculate the energy distribution and entropy of all layers of IMF;

所有层IMF的能量分布特征为将能量分布看做是一种概率分布,并计算I层能量分布的熵 The energy distribution of all layer IMFs is characterized by Consider the energy distribution as a probability distribution, and calculate the entropy of the energy distribution of the I layer

训练样本X的总能量为Pi为第i层IMF的能量: 为训练样本X的第i层IMF的元素集合中的一个元素,第i层IMF的元素集合表示为:P1+P2+...Pi+...+PI=P。The total energy of the training sample X is P i is the energy of the i-th layer IMF: is an element in the element set of the i-th layer IMF of the training sample X, and the element set of the i-th layer IMF is expressed as: P 1 +P 2 +...P i +...+P I =P.

然后、计算该训练样本所有I层IMF中每层IMF的峭度。Then, calculate the kurtosis of each layer IMF in all I-layer IMFs of the training sample.

第i层IMF峭度K(IMFi)的定义为:The i-th layer IMF kurtosis K(IMF i ) is defined as:

为第i层IMF元素集合IMFi中所有点的平均值: is the average value of all points in the i-th layer IMF element set IMF i :

n为第i层IMF信号的长度,与训练样本的长度相同;n is the length of the i-th layer IMF signal, which is the same as the length of the training sample;

σ为相应的标准差: σ is the corresponding standard deviation:

最后、训练样本X最终的特征向量为:Finally, the final feature vector of the training sample X is:

步骤四、将所有训练样本的特征向量和电磁设备的类别标签,输入未训练的PNN进行训练得到PNN分类器;Step 4, input the feature vectors of all training samples and the category labels of the electromagnetic equipment into the untrained PNN for training to obtain a PNN classifier;

PNN分类器可用来识别未知电磁扰信号。PNN classifiers can be used to identify unknown EMI signals.

步骤五、对于每个测试样本,输入PNN分类器,识别频谱数据所属的类型;Step 5, for each test sample, input the PNN classifier to identify the type of spectrum data;

具体步骤如下:Specific steps are as follows:

步骤501、针对某个测试样本,进行层次EEMD分解,得到每层的固有模态函数IMF;Step 501, performing hierarchical EEMD decomposition on a certain test sample to obtain the intrinsic mode function IMF of each layer;

获取测试样本:通过测试电磁设备获取电磁干扰信号测试样本;并重复步骤二进行层次EEMD分解,得到固有模态函数IMF;Obtain test samples: Obtain electromagnetic interference signal test samples by testing electromagnetic equipment; and repeat step 2 for hierarchical EEMD decomposition to obtain the intrinsic mode function IMF;

步骤502、分别计算每层IMF的能量分布和峭度,作为该测试样本的特征向量;Step 502, respectively calculate the energy distribution and kurtosis of each layer of IMF, as the feature vector of the test sample;

EEMD特征提取:对测试样本重复步骤三,得到该测试样本的特征向量。EEMD feature extraction: Repeat step 3 for the test sample to obtain the feature vector of the test sample.

步骤503、将测试样本的特征向量输入PNN分类器进行匹配,得到该电磁干扰信号所属类型。Step 503: Input the feature vector of the test sample into the PNN classifier for matching to obtain the type of the electromagnetic interference signal.

PNN识别:将得到的测试样本的特征向量输入PNN分类器进行识别,输出其所属类别的结果。PNN identification: Input the feature vector of the obtained test sample into the PNN classifier for identification, and output the result of its category.

实施例:Example:

第一步:通过测试获取电磁干扰信号频谱数据;Step 1: Obtain electromagnetic interference signal spectrum data through testing;

利用频谱仪分别测量实际电磁环境中的4种设备,每类设备获得8个电磁干扰信号频谱数据,其中每类数据中7个作为训练样本,1个作为测试样本。实测电磁干扰信号的频谱数据的设备名称如表1所示。The spectrum analyzer is used to measure 4 kinds of equipment in the actual electromagnetic environment, and 8 electromagnetic interference signal spectrum data are obtained for each type of equipment, of which 7 of each type of data are used as training samples, and 1 is used as a test sample. The device names of the spectrum data of the measured electromagnetic interference signal are shown in Table 1.

表1Table 1

第二步:对所有28个训练样本进行6层EEMD分解,获得28组固有模态函数,每组包含6个固有模态函数。Step 2: Perform 6-layer EEMD decomposition on all 28 training samples to obtain 28 groups of intrinsic mode functions, each group containing 6 intrinsic mode functions.

第三步:分别计算每组固有模态函数的能量分布和峭度。Step 3: Calculate the energy distribution and kurtosis of each group of intrinsic mode functions separately.

每类训练样本选取一个信号,计算各组固有模态函数IMF的能量分布,结果如表2所示;Select a signal for each type of training sample, and calculate the energy distribution of each group of intrinsic mode functions IMF, the results are shown in Table 2;

表2Table 2

计算各组固有模态函数IMF的峭度,结果如表3所示;Calculate the kurtosis of each group of intrinsic mode functions IMF, and the results are shown in Table 3;

表3table 3

训练样本来源Source of training samples K1 K 1 K2 K 2 K3 K 3 K4 K 4 K5 K 5 K6 K 6 笔记本notebook 1.95231.9523 2.35612.3561 2.78022.7802 2.89452.8945 2.98012.9801 1.35121.3512 电吹风hair dryer 1.86461.8646 2.63462.6346 2.91322.9132 3.16453.1645 3.65433.6543 2.04652.0465 未发动汽车unstarted car 1.91231.9123 2.71942.7194 3.24523.2452 3.65433.6543 3.98123.9812 2.16322.1632 发动中汽车starting car 1.75291.7529 2.14522.1452 2.35672.3567 2.62362.6236 2.72362.7236 1.22511.2251

第四步:将以上得到的所有特征向量和相应的类别指标(标签)输入PNN进行训练。各类电磁干扰信号训练样本的标签如表4所示。Step 4: Input all the feature vectors and corresponding category indicators (labels) obtained above into PNN for training. The labels of various EMI signal training samples are shown in Table 4.

表4Table 4

训练样本来源Source of training samples 标签Label 笔记本notebook 11 电吹风hair dryer 22 未发动汽车unstarted car 33 发动中汽车starting car 44

第五步:计算电磁干扰信号4组测试样本的特征向量,并输入PNN进行识别。Step 5: Calculate the eigenvectors of the 4 groups of test samples of the electromagnetic interference signal, and input them into the PNN for identification.

测试样本的分类识别结果输出如表5所示。The output of the classification and recognition results of the test samples is shown in Table 5.

表5table 5

测试样本来源Source of test samples 分类结果classification result 笔记本notebook 11 电吹风hair dryer 22 未发动汽车unstarted car 33 发动中汽车starting car 44

通过对表5的结果分析可见,训练后的PNN分类器可以将测试样本正确地分到其所属的类别,从而可以有效地完成模式识别任务。Through the analysis of the results in Table 5, it can be seen that the trained PNN classifier can correctly classify the test samples into their categories, so that the pattern recognition task can be effectively completed.

因此,本发明提出的模式识别系统,通过读取训练样本数据,对训练样本的进行EEMD特征提取,再将得到的特征向量输入PNN进行训练,得到可以用来识别新的电磁干扰信号的PNN分类器,通对于新的未知类型的电磁干扰信号,对其进行相同的特征提取并输入PNN分类器进行识别,便可得知其所属类型。综合了特征提取、概率统计和人工智能方面的知识,能够有效地对电磁干扰信号频谱数据进行分类识别,具有重要意义。Therefore, the pattern recognition system that the present invention proposes, by reading the training sample data, carries out EEMD feature extraction to the training sample, then inputs the characteristic vector obtained into PNN to train, obtains the PNN classification that can be used to identify the new electromagnetic interference signal For a new unknown type of electromagnetic interference signal, the same feature extraction is performed on it and input into the PNN classifier for identification, and its type can be known. Combining the knowledge of feature extraction, probability statistics and artificial intelligence, it is of great significance to be able to effectively classify and identify the spectrum data of electromagnetic interference signals.

Claims (3)

1.一种基于EEMD特征提取和PNN的非平稳电磁干扰信号模式识别方法,其特征在于,具体步骤如下:1. a non-stationary electromagnetic interference signal pattern recognition method based on EEMD feature extraction and PNN, is characterized in that, concrete steps are as follows: 步骤一、利用频谱仪分别测量实际电磁设备,获取不同类设备的电磁干扰信号,并将频谱数据划分为训练样本和测试样本;Step 1. Use the spectrum analyzer to measure the actual electromagnetic equipment respectively, obtain the electromagnetic interference signals of different types of equipment, and divide the spectrum data into training samples and test samples; 步骤二、针对所有训练样本,分别进行层次EEMD分解,得到每个训练样本每层的固有模态函数IMF;Step 2. For all training samples, perform hierarchical EEMD decomposition respectively to obtain the intrinsic mode function IMF of each layer of each training sample; 具体步骤为:The specific steps are: 步骤201、针对频谱数据中的某个训练样本X,初始化EEMD的数目,构造不同幅值的高斯白噪声;Step 201, for a certain training sample X in the spectrum data, initialize the number of EEMD, and construct Gaussian white noise with different amplitudes; 训练样本X长度为n,X=[x1,x2,...,xj,...xn];EEMD的数目为M;不同幅值的高斯白噪声为M组,第m组幅值的高斯白噪声Nm=[n1 (m),n2 (m),...nj (m),...nn (m)];m=1,2,...M;The length of the training sample X is n, X=[x 1 ,x 2 ,...,x j ,...x n ]; the number of EEMD is M; Gaussian white noise with different amplitudes is M groups, the mth group Amplitude Gaussian white noise N m =[n 1 (m) ,n 2 (m) ,...n j (m) ,...n n (m) ]; m=1,2,... M; 步骤202、在训练样本X上依次添加给定幅值的高斯白噪声,得到M个干扰信号;Step 202, sequentially adding Gaussian white noise with a given amplitude to the training sample X to obtain M interference signals; 第m个被高斯白噪声干扰的信号为:Xm=X-NmThe mth signal interfered by Gaussian white noise is: X m =XN m ; M个干扰信号集合为:[X1,X2,...Xm,...XM];M interference signal sets are: [X 1 ,X 2 ,...X m ,...X M ]; 步骤203、将每个干扰信号利用EMD方法,分解为I层固有模态函数IMF,共得到M×I个固有模态函数;Step 203, using the EMD method to decompose each interference signal into I-layer intrinsic mode functions IMF, and obtain M×I intrinsic mode functions in total; M×I个固有模态函数集合表示如下:The set of M×I intrinsic mode functions is expressed as follows: cc 11 ,, 11 cc 11 ,, 22 ...... cc 11 ,, mm ...... cc 11 ,, Mm cc 22 ,, 11 cc 22 ,, 22 ...... cc 22 ,, mm ...... cc 22 ,, Mm ...... cc ii ,, 11 cc ii ,, 22 ...... cc ii ,, mm ...... cc ii ,, Mm ...... cc II ,, 11 cc II ,, 22 ...... cc II ,, mm ...... cc II ,, Mm ci,m表示第m个干扰信号Xm分解的第i层固有模态函数;i=1,2,3,...I;m=1,2,3,...M;c i,m represent the intrinsic mode function of the i-th layer decomposed by the m-th interference signal X m ; i=1,2,3,...I; m=1,2,3,...M; 步骤204、针对每层固有模态函数IMF,分别计算该层M个固有模态函数的平均值作为该层最终的IMF值,得到训练样本X的每层固有模态函数IMF;Step 204, for the intrinsic mode function IMF of each layer, respectively calculate the average value of the M intrinsic mode functions of the layer as the final IMF value of the layer, and obtain the intrinsic mode function IMF of each layer of the training sample X; 训练样本X的第i层固有模态函数IMFi值为该层所有IMF的平均值,公式如下:The intrinsic mode function IMF i of the i-th layer of the training sample X is the average value of all IMFs in this layer, and the formula is as follows: IMFIMF ii == cc ii ‾‾ == 11 Mm ΣΣ mm == 11 Mm cc ii ,, mm 步骤205、对所有训练样本重复上述步骤,得到每个训练样本每层的固有模态函数IMF。Step 205. Repeat the above steps for all training samples to obtain the intrinsic mode function IMF of each layer of each training sample. 步骤三、针对每个训练样本,分别计算所有层IMF的能量分布和峭度,作为该训练样本的特征向量;Step 3, for each training sample, calculate the energy distribution and kurtosis of all layers of IMF respectively, as the feature vector of the training sample; 步骤四、将所有训练样本的特征向量和电磁设备的类别标签,输入未训练的PNN进行训练得到PNN分类器;Step 4, input the feature vectors of all training samples and the category labels of the electromagnetic equipment into the untrained PNN for training to obtain a PNN classifier; 步骤五、对于每个测试样本,输入PNN分类器,识别频谱数据所属的类型。Step 5. For each test sample, input the PNN classifier to identify the type of the spectrum data. 2.如权利要求1所述的一种基于EEMD特征提取和PNN的非平稳电磁干扰信号模式识别方法,其特征在于,所述的步骤三具体为:2. a kind of non-stationary electromagnetic interference signal pattern recognition method based on EEMD feature extraction and PNN as claimed in claim 1, is characterized in that, described step 3 is specifically: 首先、计算所有层IMF的能量分布和熵;First, calculate the energy distribution and entropy of all layers of IMF; 所有层IMF的能量分布特征为I层能量分布的熵 The energy distribution of all layer IMFs is characterized by Entropy of energy distribution in layer I Pi为第i层IMF的能量: 为训练样本X的第i层IMF的元素集合中的一个元素,第i层IMF的元素集合表示为:P为训练样本X的总能量: P i is the energy of the i-th layer IMF: is an element in the element set of the i-th layer IMF of the training sample X, and the element set of the i-th layer IMF is expressed as: P is the total energy of the training sample X: 然后、计算该训练样本所有层IMF中每层IMF的峭度;Then, calculate the kurtosis of each layer of IMF in all layers of IMF of the training sample; 第i层IMF峭度K(IMFi)定义为:The i-th layer IMF kurtosis K(IMF i ) is defined as: KK (( IMFIMF ii )) == 11 nno ΣΣ jj == 11 nno (( ythe y jj (( ii )) -- ythe y ‾‾ (( ii )) σσ )) 44 为第i层IMF元素集合IMFi中所有点的平均值:n为第i层IMF信号的长度,与训练样本的长度相同; is the average value of all points in the i-th layer IMF element set IMF i : n is the length of the i-th layer IMF signal, which is the same as the length of the training sample; σ为相应的标准差: σ is the corresponding standard deviation: 训练样本X最终的特征向量为: The final feature vector of the training sample X is: 3.如权利要求1所述的一种基于EEMD特征提取和PNN的非平稳电磁干扰信号模式识别方法,其特征在于,所述的步骤五具体为:3. a kind of non-stationary electromagnetic interference signal pattern recognition method based on EEMD feature extraction and PNN as claimed in claim 1, is characterized in that, described step 5 is specifically: 步骤501、针对某个测试样本,进行层次EEMD分解,得到每层的固有模态函数IMF;Step 501, performing hierarchical EEMD decomposition for a certain test sample to obtain the intrinsic mode function IMF of each layer; 获取测试样本:通过测试电磁设备获取电磁干扰信号测试样本;并重复进行层次EEMD分解,得到固有模态函数IMF;Obtain test samples: Obtain electromagnetic interference signal test samples by testing electromagnetic equipment; and repeat the hierarchical EEMD decomposition to obtain the intrinsic mode function IMF; 步骤502、分别计算每层IMF的能量分布和峭度,作为该测试样本的特征向量;Step 502, respectively calculate the energy distribution and kurtosis of each layer of IMF, as the feature vector of the test sample; 步骤503、将测试样本的特征向量输入PNN分类器进行匹配,得到该电磁干扰信号所属类型;Step 503, input the feature vector of the test sample into the PNN classifier for matching, and obtain the type of the electromagnetic interference signal; PNN识别:将得到的测试样本的特征向量输入PNN分类器进行识别,输出其所属类别的结果。PNN identification: Input the feature vector of the obtained test sample into the PNN classifier for identification, and output the result of its category.
CN201610846687.XA 2016-09-23 2016-09-23 Pattern Recognition Method of Non-stationary Electromagnetic Interference Signal Based on EEMD Feature Extraction and PNN Active CN106485209B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610846687.XA CN106485209B (en) 2016-09-23 2016-09-23 Pattern Recognition Method of Non-stationary Electromagnetic Interference Signal Based on EEMD Feature Extraction and PNN

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610846687.XA CN106485209B (en) 2016-09-23 2016-09-23 Pattern Recognition Method of Non-stationary Electromagnetic Interference Signal Based on EEMD Feature Extraction and PNN

Publications (2)

Publication Number Publication Date
CN106485209A true CN106485209A (en) 2017-03-08
CN106485209B CN106485209B (en) 2019-10-25

Family

ID=58267405

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610846687.XA Active CN106485209B (en) 2016-09-23 2016-09-23 Pattern Recognition Method of Non-stationary Electromagnetic Interference Signal Based on EEMD Feature Extraction and PNN

Country Status (1)

Country Link
CN (1) CN106485209B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108135003A (en) * 2017-12-25 2018-06-08 广东海格怡创科技有限公司 The construction method and system of interference type identification model
CN108197545A (en) * 2017-12-25 2018-06-22 广东海格怡创科技有限公司 The recognition methods of interference type and system
CN110208211A (en) * 2019-07-03 2019-09-06 南京林业大学 A kind of near infrared spectrum noise-reduction method for Detecting Pesticide
CN110244148A (en) * 2019-07-01 2019-09-17 华南理工大学 A new energy vehicle dynamic working condition EMI test method based on FFT and point frequency scanning
CN110674725A (en) * 2019-09-20 2020-01-10 电子科技大学 Device Signal Type Recognition Method Based on Multidimensional Feature Vector Combination of Detection Signals
WO2020068084A1 (en) 2018-09-27 2020-04-02 Maruti Gupta Hyde Feature detection in collaborative radio networks
CN111709445A (en) * 2020-05-14 2020-09-25 北京航空航天大学 A spectral feature-based identification method for electromagnetic emission elements
CN112418309A (en) * 2020-11-20 2021-02-26 中国舰船研究设计中心 Electromagnetic compatibility management and control method prediction method based on machine learning
CN114839466A (en) * 2022-05-24 2022-08-02 温岭市天泰电气有限公司 EMC electromagnetic compatibility test system for water pump and test method thereof
CN118604501A (en) * 2024-07-31 2024-09-06 成都华太航空科技股份有限公司 Signal testing device and method for aircraft high-definition display

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
WEN-CHUAN WANG等: "Improving forecasting accuracy of medium and long-term runof using artificial neural network based on EEMD decomposition", 《ENVIRONMENTAL RESEARCH》 *
全学海等: "基于EMD和概率神经网络的说话人识别", 《桂林电子科技大学学报》 *
刘翠玲等: "水平井中油水两相流型流态的识别模型", 《计算机仿真》 *
张梅军等: "《EEMD方法及其在机械故障诊断中的应用》", 31 October 2015 *
王建国等: "基于峭度与IMF能量融合特征和LS-SVM的此轮故障诊断研究", 《中国测试》 *
王海涛等: "基于EEMD能量熵和谱峭度理论的滚动轴承自适应故障分析", 《电脑知识与技术》 *
许雷: "高频地波超视距雷达频率检测算法研究", 《中国优秀硕士学位论文全文数据库-信息科技辑》 *
马鲁等: "基于EMD-K-HT的风电机组滚动轴承故障特征提取方法研究", 《电力学报》 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108197545A (en) * 2017-12-25 2018-06-22 广东海格怡创科技有限公司 The recognition methods of interference type and system
CN108135003A (en) * 2017-12-25 2018-06-08 广东海格怡创科技有限公司 The construction method and system of interference type identification model
WO2020068084A1 (en) 2018-09-27 2020-04-02 Maruti Gupta Hyde Feature detection in collaborative radio networks
US12047167B2 (en) 2018-09-27 2024-07-23 Intel Corporation Feature detection in collaborative radio networks
EP3857956A4 (en) * 2018-09-27 2022-06-22 INTEL Corporation FEATURE DETECTION IN COLLABORATIVE RADIO NETWORKS
CN110244148B (en) * 2019-07-01 2021-04-16 华南理工大学 A new energy vehicle dynamic condition EMI test method based on FFT and point frequency scan
CN110244148A (en) * 2019-07-01 2019-09-17 华南理工大学 A new energy vehicle dynamic working condition EMI test method based on FFT and point frequency scanning
CN110208211A (en) * 2019-07-03 2019-09-06 南京林业大学 A kind of near infrared spectrum noise-reduction method for Detecting Pesticide
CN110674725A (en) * 2019-09-20 2020-01-10 电子科技大学 Device Signal Type Recognition Method Based on Multidimensional Feature Vector Combination of Detection Signals
CN110674725B (en) * 2019-09-20 2022-06-03 电子科技大学 Device Signal Type Recognition Method Based on Multidimensional Feature Vector Combination of Detection Signals
CN111709445A (en) * 2020-05-14 2020-09-25 北京航空航天大学 A spectral feature-based identification method for electromagnetic emission elements
CN112418309B (en) * 2020-11-20 2022-06-03 中国舰船研究设计中心 Electromagnetic compatibility management and control method prediction method based on machine learning
CN112418309A (en) * 2020-11-20 2021-02-26 中国舰船研究设计中心 Electromagnetic compatibility management and control method prediction method based on machine learning
CN114839466A (en) * 2022-05-24 2022-08-02 温岭市天泰电气有限公司 EMC electromagnetic compatibility test system for water pump and test method thereof
CN114839466B (en) * 2022-05-24 2023-02-28 温岭市天泰电气有限公司 EMC electromagnetic compatibility test system for water pump and test method thereof
CN118604501A (en) * 2024-07-31 2024-09-06 成都华太航空科技股份有限公司 Signal testing device and method for aircraft high-definition display

Also Published As

Publication number Publication date
CN106485209B (en) 2019-10-25

Similar Documents

Publication Publication Date Title
CN106485209B (en) Pattern Recognition Method of Non-stationary Electromagnetic Interference Signal Based on EEMD Feature Extraction and PNN
US11287470B2 (en) Vector-valued regularized kernel function approximation based fault diagnosis method for analog circuit
Qiu et al. A piecewise method for bearing remaining useful life estimation using temporal convolutional networks
Arbin et al. Comparative analysis between k-means and k-medoids for statistical clustering
CN105841961A (en) Bearing fault diagnosis method based on Morlet wavelet transformation and convolutional neural network
CN206504869U (en) A rolling bearing fault diagnosis device
CN104502103A (en) Bearing fault diagnosis method based on fuzzy support vector machine
Kong et al. Radar emitter identification based on deep convolutional neural network
CN110503025B (en) Analog circuit early fault diagnosis method based on semi-supervised cooperative training
CN106250848A (en) A kind of single class Acoustic Object recognition methods merged based on multi-model
CN108229659A (en) Piano singly-bound voice recognition method based on deep learning
CN111709299A (en) An underwater acoustic target recognition method based on weighted support vector machine
CN110414587A (en) Deep Convolutional Neural Network Training Method and System Based on Progressive Learning
CN107478418A (en) A kind of rotating machinery fault characteristic automatic extraction method
CN111046896B (en) Sorting method for frequency hopping signal radio stations
CN113447759A (en) Multi-classification RVM power grid fault discrimination method and system
Shim et al. Learning from single-defect wafer maps to classify mixed-defect wafer maps
Zhang et al. Temporal Transformer Networks for Acoustic Scene Classification.
Lu et al. Prior knowledge embedding convolutional autoencoder: A single-source domain generalized fault diagnosis framework under small samples
Xiao et al. Health assessment for piston pump using LSTM neural network
CN113112039A (en) Active power distribution system initial fault identification method based on time-frequency memory recurrent neural network
Ganesan et al. A deep learning approach to fault detection in a satellite power system using Gramian angular field
CN117132808B (en) Multi-load identification method and system based on wavelet mixed convolution
CN109782156B (en) Analog circuit fault diagnosis method based on artificial immune diagnosis network
CN103745232B (en) Band migration-based hyperspectral image clustering method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant