CN106471724A - 具有冗余的电路拓扑的变流器 - Google Patents
具有冗余的电路拓扑的变流器 Download PDFInfo
- Publication number
- CN106471724A CN106471724A CN201580036737.1A CN201580036737A CN106471724A CN 106471724 A CN106471724 A CN 106471724A CN 201580036737 A CN201580036737 A CN 201580036737A CN 106471724 A CN106471724 A CN 106471724A
- Authority
- CN
- China
- Prior art keywords
- circuit
- voltage
- converter
- short
- inverter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 claims description 73
- 239000003990 capacitor Substances 0.000 claims description 19
- 238000009499 grossing Methods 0.000 claims description 18
- 230000000903 blocking effect Effects 0.000 claims description 4
- 238000012806 monitoring device Methods 0.000 claims description 3
- 238000013461 design Methods 0.000 abstract description 11
- 238000004804 winding Methods 0.000 description 6
- 238000002485 combustion reaction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000005611 electricity Effects 0.000 description 4
- 239000000758 substrate Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M5/00—Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases
- H02M5/40—Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into DC
- H02M5/42—Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into DC by static converters
- H02M5/44—Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into DC by static converters using discharge tubes or semiconductor devices to convert the intermediate DC into AC
- H02M5/453—Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into DC by static converters using discharge tubes or semiconductor devices to convert the intermediate DC into AC using devices of a triode or transistor type requiring continuous application of a control signal
- H02M5/458—Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into DC by static converters using discharge tubes or semiconductor devices to convert the intermediate DC into AC using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D47/00—Equipment not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D27/00—Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
- B64D27/02—Aircraft characterised by the type or position of power plants
- B64D27/24—Aircraft characterised by the type or position of power plants using steam or spring force
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D27/00—Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
- B64D27/02—Aircraft characterised by the type or position of power plants
- B64D27/30—Aircraft characterised by electric power plants
- B64D27/33—Hybrid electric aircraft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D35/00—Transmitting power from power plants to propellers or rotors; Arrangements of transmissions
- B64D35/02—Transmitting power from power plants to propellers or rotors; Arrangements of transmissions specially adapted for specific power plants
- B64D35/021—Transmitting power from power plants to propellers or rotors; Arrangements of transmissions specially adapted for specific power plants for electric power plants
- B64D35/022—Transmitting power from power plants to propellers or rotors; Arrangements of transmissions specially adapted for specific power plants for electric power plants of hybrid-electric type
- B64D35/024—Transmitting power from power plants to propellers or rotors; Arrangements of transmissions specially adapted for specific power plants for electric power plants of hybrid-electric type of series type
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K19/00—Synchronous motors or generators
- H02K19/16—Synchronous generators
- H02K19/34—Generators with two or more outputs
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/02—Conversion of AC power input into DC power output without possibility of reversal
- H02M7/04—Conversion of AC power input into DC power output without possibility of reversal by static converters
- H02M7/12—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/21—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/217—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M7/25—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only arranged for operation in series, e.g. for multiplication of voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/42—Conversion of DC power input into AC power output without possibility of reversal
- H02M7/44—Conversion of DC power input into AC power output without possibility of reversal by static converters
- H02M7/48—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/5387—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D2221/00—Electric power distribution systems onboard aircraft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D27/00—Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
- B64D27/02—Aircraft characterised by the type or position of power plants
- B64D27/026—Aircraft characterised by the type or position of power plants comprising different types of power plants, e.g. combination of a piston engine and a gas-turbine
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D27/00—Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
- B64D27/02—Aircraft characterised by the type or position of power plants
- B64D27/30—Aircraft characterised by electric power plants
- B64D27/32—Aircraft characterised by electric power plants within, or attached to, fuselages
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0067—Converter structures employing plural converter units, other than for parallel operation of the units on a single load
- H02M1/0074—Plural converter units whose inputs are connected in series
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
- H02M1/325—Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/02—Conversion of DC power input into DC power output without intermediate conversion into AC
- H02M3/04—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
- H02M3/10—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
- H02M3/1588—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Aviation & Aerospace Engineering (AREA)
- Mechanical Engineering (AREA)
- Inverter Devices (AREA)
- Rectifiers (AREA)
Abstract
本发明涉及一种用于飞机的变流器,具有:用于提供在正线(15)和负线(16)之间的直流电压(18)的中间电路(3);至少两个与中间电路(3)连接的整流器(7),其用于从输入交流电压产生直流电压(18);以及至少两个与中间电路(3)连接的逆变器(19),其用于从直流电压(18)产生输出交流电压。对于飞机来说变流器应该紧凑地设计。为此,整流器(7)的直流电压接口(11)被连接成第一串联电路(14),并且逆变器(19)的直流电压接口(11)被连接成第二串联电路(21)。中间电路(3)的正线(15)和负线(16)在输入侧通过第一串联电路(14)并且在输出侧通过第二串联电路(21)彼此连接。直流电压接口(11)中的至少一个具有用于将接口触点(12)短路的短路电路(S1,9),直流电压接口(11)通过该接口触点连接到相应的串联电路(14,21)中。
Description
技术领域
本发明涉及一种用于飞机的变流器。该变流器具有中间电路,通过该中间电路将多个整流器与多个逆变器耦合连接。具有根据本发明的变流器的飞机也属于本发明。
背景技术
在电驱动的飞机中的变流器需要冗余设计。冗余可以通过由多个逆变器和有源的整流器构成的并联电路产生。但是,在并联电路中,功率流必须通过接触器控制。因为在故障的情况中,有故障的组件通过该接触器从驱动系统中断开。然而,接触器由于高的待接通电流而在其构造形式上是非常大的。接触器的重量对于在飞机中的应用来说是不利的。
发明内容
本发明的目的在于,为飞机提供一种冗余的变流器,其具有紧凑的构造形式。
该目的通过独立权利要求的内容实现。本发明的有利的改进方案通过从属权利要求的特征给出。
本发明包括飞机变流器,也就是用于飞机的变流器。该变流器具有用于提供在正线和负线之间的直流电压的中间电路。至少两个整流器在输入侧与中间电路连接,其设计用于从输入交流电压产生直流电压。输入交流电压能够由多相的、例如三相供电系统接收,例如发电机。整流器可以是无源整流器或者有源整流器。至少两个逆变器在输出侧与中间电路连接,其设计用于从直流电压产生输出交流电压。逆变器的输出交流电压能够形成多相电压系统,尤其是三相电压系统。
现在为了能够紧凑地设计变流器,根据本发明提出,整流器的直流电压接口被连接成第一串联电路。整流器的直流电压接口是其直流电压输出端。此外,逆变器的直流电压接口被连接成第二串联电路。逆变器的直流电压接口是其直流电压输入端。整流器和逆变器因此并非彼此并联地分别与中间电路连接,而是以串联电路连接。中间电路的正线和负线在输入侧通过第一串联电路、也就是通过整流器彼此连接,并且在输出侧通过第二串联电路、也就是通过逆变器彼此连接。直流电压接口中的至少一个具有用于将直流电压接口的接口触点短路的短路电路。通过该接口触点,直流电压接口连接到相应的串联电路中。通过闭合短路电路,接口触点被短路。换句话说,相应的整流器或者逆变器随后在串联电路中是无作用的。通过断开短路电路,穿过串联电路流动的电流被引导通过整流器或者逆变器。
通过本发明给出的优点是,为了将整流器或者逆变器与中间电路接通或者断开,替代接触器而仅仅需要简单的短路电路,该接触器必须能够接通多相交流电压线路和直流电压线路,如其在整流器和逆变器的并联电路的情况中那样。
属于本发明的还有改进方案,通过其特征给出附加的优点。
根据一个改进方案,在至少一个直流电压接口的情况中,该直流电压接口能够在逆变器或者整流器中被提供,短路电路通过与直流电压接口的接口触点连接的半导体开关S1形成。在本发明的范围中,半导体开关通常被理解为尤其是IGBT(绝缘栅双极型晶体管)或者MOSET(金属氧化物半导体场效应晶体管)。通过该改进方案获得的优点是,需要唯一的半导体开关,以便将整流器或者逆变器从串联电路中退耦。
另一个改进方案提出,在这些逆变器中的至少一个逆变器的情况中,短路电路通过半桥形成,该半桥也设置用于产生输出交流电压。也就是说不使用单独的半导体开关。半桥连接在直流电压接口的接口触点之间,并且同样能够用于将接口触点短路。在此还附加地提出,逆变器的交流电压输出端同样设置用于短路,通过该交流电压输出端能够将输出交流电压传输给电用户。为此而提出,在交流电压输出端上附加地分别提供半导体开关,其用于在闭合的短路电路的情况中阻断电流。换句话说,在半桥的情况中,在半桥的半导体开关之间的接触点通过另外的半导体开关与连接的用户耦合连接。由此获得的优点是,在闭合的短路电路的情况中,当半桥因此完全接通处于导电状态中并且由此短路接口触点时,不会有电流流到电用户中。由此例如避免的是,电用户还与逆变器电连接。
一个改进方案使用通过短路电路进行的、对逆变器或者整流器进行有针对性的或者能控制的接通和断开。在有故障的半桥的情况中,对应的整流器或者逆变器在变流器的运行中与中间电路退耦。在该改进方案中,整流器中的至少一个和/或逆变器中的至少一个分别具有多个半桥,其分别具有至少两个半导体开关。监控装置设计用于,在半桥中探测持续地接通在导电状态中的、也就是保持导电状态的、有故障的半导体开关。在半导体开关中,这可以是阻挡层损毁的情况。这可以被称为击穿(Durchlegieren)。监控装置此外设计用于,将如下的直流电压接口的短路装置短路,通过该直流接口将该有故障的半导体开关连接到串联电路中。然后,从中间电路中不会有电流通过该有故障的半导体开关例如流到连接的电用户中。
为了检测有故障的半导体开关,例如可以使用驱动电路,其在现有技术中也被称为门驱动器。借助于该驱动电路能够检测通过半导体电路下降的电压。如果该电压的电压值小于预定的阈值,尽管开关信号应该将半导体开关切换到锁止状态,仍认为半导体开关不受监控地或者不受控制地持续地保持在导电状态中。对此替换的是,通过没有故障的半导体开关的开关电压同样能够识别持续导通的半导体开关,因为产生的短路电流导致电压上升。
根据一个改进方案,在中间电路中,正线和负线通过电池连接。在此,电池意味着蓄电池,其能够接收和输出电能并且能够缓冲存储电能。该改进方案具有的优点是,在没有转换机构、例如接触器的情况下,一个电池和相同的电池能够由所有的逆变器和所有的整流器使用,以便存储能量。
整流器和/或逆变器优选分别具有各自的平滑电容器。由此,将中间单路的电压分配到整流器或者逆变器上,并且形成局部的中间电路。
一个改进方案阻止的是,在直流电压接口短路时,在整流器的或者逆变器的内部中例如平滑电容器或者半桥同样也被短路。该改进方案提出,直流电压接口中的至少一个具有退耦电路。退耦电路可以通过半导体S2来提供。该退耦电路设计用于,至少单向地阻断在直流电压接口与整流器的或者变流器的半桥之间的电流。在具有二极管的半导体开关中,该阻断是单向的。退耦电路也能够设计用于,至少单向地阻断在平滑电容器和直流接口之间的电流。
一个改进方案充分利用的是,在整流器或者逆变器的情况中,直流电压接口不仅能够具有短路电路而且能够具有退耦电路。在该改进方案中,控制装置设计用于,通过交替地接通退耦电路和短路电路来引起具有直流电压接口的相应的整流器的或者逆变器的升压运行或者降压运行。由此能够以有利的方式将由整理器提供的分电压与在中间电路中的直流电压匹配。通过平滑电容器下降的电压完全能够不取决于中间电路的直流电压地进行调节。
一种飞机也属于本发明。该飞机尤其是固定翼飞机。该飞机是电驱动的飞机,也就是电动飞机。该飞机具有电驱动模式,用于驱动飞机的螺旋桨。驱动马达通过变流器与发电机耦合连接。该变流器表示根据本发明的变流器的设计方案。发电机例如能够通过内燃机、也就是汽油发动机或者柴油发动机或者涡轮机来驱动。对于飞机设计成旋翼机的情况,飞机的转子代表螺旋桨。通过根据本发明的飞机获得的优点是,为了提供冗余的变流器,不需要通过接触器进行变流器的整流器的和逆变器的高耗费的连接。飞机由此能够特别轻地和紧凑地进行设计。
一个改进方案提出,发电机具有至少两个独立的多相线圈装置、例如至少两个独立的三相线圈装置。多相线圈装置中的每一个在此与变流器的另外的整流器连接。在该改进方案中,多相线圈装置布置在同一发电机中,也就是布置在发电机的同一定子中。每个线圈装置在此设计用于,在多个交流电压线路中提供或者产生用于相应的整流器的相应的输入交流电压。该改进方案具有的优点是,飞机也在发电机侧冗余地进行设计,而为此无需多个发电机。
一个改进方案相应地提出,驱动马达具有至少两个独立的多相线圈装置,并且多相线圈装置中的每一个与变流器的另外的逆变器连接。换句话说,驱动马达的定子具有多个独立的多相线圈装置、例如三相线圈装置。该改进方案给出的优点是,利用仅仅唯一的驱动马达就能为螺旋桨提供冗余的驱动。
如果发电机的或者驱动马达的线圈装置有故障,那么相应的整流器或逆变器就能够通过激活用于该整流器或者逆变器的、变流器的短路电路与变流器退耦。
附图说明
接下来描述本发明的实施例。为此示出:
图1是根据本发明的变流器的一个设计方案的示意图;
图2是根据本发明的变流器的一个设计方案的短路电路的示意图;
图3是根据本发明的变流器的另一个设计方案的示意图;
图4是具有无源整流器的、根据本发明的变流器的另一个设计方案的示意图;
图5是根据本发明的飞机的一个设计方案的示意图。
具体实施方式
接下来阐述的实施例是本发明的优选的设计方案。在这些实施例中,设计方案的描述的组件相应地表示本发明的彼此独立地考虑的特征,这些特征也相应地彼此独立地进一步形成本发明,并进而也单独地或者另外作为组合地视为本发明的组成部分。此外,描述的设计方案也能够通过另外的、已经描述的本发明的特征进行补充。
在附图中,功能相同的部件分别具有相同的参考标号。
图1示出了变流器1,具有整流器装置2、中间电路3和逆变器装置4。通过变流器1能够将发电机5和电驱动马达6彼此耦合连接或者电线连接。在图1中示出的装置例如能够在电驱动的飞机中提供。通过驱动马达6能够驱动飞机的螺旋桨。发电机5例如能够通过(未示出的)内燃机驱动。
变流器1的整流器装置2在图1示出的实例中具有两个整流器7,它们能够具有相同的构造方式。每个整流器7能够通过交流电压线路8与发电机5的发电机线圈系统G1,G2电耦合。发电机线圈系统G1,G2是两个彼此绝缘的绕组系统,用于相应地产生多相交流电流、例如三相交流电流。发电机线圈系统G1,G2相应地表现为多相线圈装置。两个发电机绕组系统G1,G2也能通过两个不同的发电机来提供。
每个整流器7能够以已知的方式具有半桥9,以利用相应的半桥9将通过交流电压线路8接收的输入交流电压以已知的方式转换成分电压10。分电压10是直流电压。分电压10能够在直流电压接口11处产生或者提供给接口触点12。在图1中,整流器7设计为有源整流器。有源整流器7的半桥9具有半导体开关13,出于清晰的原因在图1中仅仅其中的一些配有参考标号。每个整流器7此外能够具有平滑电容器C,中间电路3的分电压通过该平滑电容器下降。
在整流器装置2中,直流电压接口11被连接成串联电路14。通过该串联电路14,中间电路3的正线15和负线16彼此连接。
在每个整流器7中提供半导体开关S1,通过该半导体开关,相应的整流器7能够取决于控制信号地连接到串联电路14中,或者能够在串联电路14中无作用地连接。为此,接口触点12通过半导体开关S1进行连接。
半导体开关S1表现为直流电压接口11的短路电路。通过半导体开关S1的闭合,直流电压接口11的接口触点12被短路。由此,整流器7在串联电路14中是无作用的。通过断开半导体开关S1,能够在接口触点12之间提供分电压10。
直流电压接口11此外能够具有半导体开关S2,其表现为退耦电路。半导体开关S2将接口触点12之一与半桥9连接。此外,通过半导体开关S2,平滑电容器C与接口触点12之一连接。通过断开半导体开关S2,在半桥9和接口触点12之间的电流被阻断,或者在存在二极管的情况中被单向地阻断。在平滑电容器C和接口触点12之间的电流被完全阻断。通过闭合半导体开关S2,半桥与连接触点12连接。其相应地适用于平滑电容器C。
半导体开关13和半导体开关S1,S2能够分别设计成IGBT或者MOSFET。半导体开关S1,S2尤其必须不是接触器。半导体开关13,S1,S2能够提供作为半导体模块或者缩写为子模块17,因此例如布置在共同的半导体基板上。
通过串联电路14,这些分电压10被合计为直流电源18,其在中间电路3中提供在正线15和负线16之间。正线15和负线16能分别例如通过金属线或者汇流排提供。为了存储电能,中间电路3可以具有蓄电池B、例如带有电单元的化学蓄电池。电池B不必执行直流电压18的电压平滑,因为整流器7具有自身的平滑电容器C。在中间电路3中此外能够提供扼流圈L、例如电线圈。
驱动马达6同样能够具有两个彼此分离的马达线圈系统M1,M2。马达线圈系统M1,M2分别表现为多相线圈装置。马达线圈系统M1,M2也能够在不同的驱动马达中被提供。
逆变器装置4在图1中示出的实例中具有两个逆变器19,其中的每一个分别通过交流电压线路20与马达线圈系统M1,M2中的另一个连接。逆变器19能够与整流器7构造相同。逆变器19可以作为脉冲逆变器运行。其为此具有带有半导体开关13的半桥9。出于清晰性的原因,仅仅为逆变器9的半导体开关13中的几个配备参考标号。每个逆变器19可以具有平滑电容器C。
逆变器19通过相应的直流电压接口11与中间电路13连接,其中,直流电压接口11的接口触点12被连接成串联电路21。在逆变器19的接口触点12之间,直流电压18的分电压24相应地下降。
逆变器19的直流电压接口11能够分别具有半导体开关S1,通过其形成用于接口触点12的短路电路。此外能够提供半导体开关S2,通过其提供退耦电路,经由该退耦电路,通过半导体开关S2的闭合能够产生在接口触点12和半桥13和/或平滑电容器C之间的电流。为此,接口触点12和半桥13和/或平滑电容器C通过半导体开关S2进行连接。
平滑电容器C相应地表示局部的中间电路电容器。
变流器1可以具有控制装置22,通过该控制装置能够切换半导体开关13,S1,S2,从而使它们在电导通状态和电截止状态中变换。逆变器19的半导体开关13,S1,S2能够相应地在逆变器19中通过子模块23提供,其例如能够形成在共同的半导体基板的基底上。控制装置22例如可以形成在微处理器或者微控制器的基底上。控制装置22可以至少部分地分布在半桥9上。例如,其可以包括半桥9的半导体开关13的驱动电路。
通过串联电路14,整流器7被串联连接。通过有源整流器7,平滑电容器C被充电。平滑电容器C的分电压10能够通过发电机线圈系统G1,G2的发电机绕组和有源整流器7的相应的节拍进行调节。通过开关S1,S2,整流器7能够与电池并联连接。由此,电池能够被充电。在此给出以下开关组合:
在每个逆变器7中,通过断开S1和闭合S2,相应的发电机线圈系统G1或者G2与电池B连接。通过闭合S1并且断开S2,相应的发电机绕组系统G1,G2与电池B隔离。在整流器7中的分电压10能够在总和上大于电池B的电池电压。在非降压运行的情况中,然而其在总和上必须至少对应于电池电压。如果应该有两个整流器7运行,那么两个整流器的分电源10优选为同样大。
在逆变器19中还给出基于逆变器19的直流电压接口11的半导体开关S1,S2的多种开关可能性。马达线圈系统M1,M2分别通过逆变器19之一进行驱动。每个逆变器19在此表示脉冲逆变器。通过半导体开关S1,S2,能够将逆变器19与电池B连接或者与之隔离。电池电压对应于直流电压18。
在逆变器19中的救助电容器(Rettungskondensator)C的分电压24在总和上能够大于电池电压。然而其在总和上必须至少对应于电池电压,当在运行中没有设置升压调节器时。
如果应该有两个逆变器19运行,那么两个逆变器的相应的分电压24优选为同样大。
利用描述的开关可能性给出变流器的以下运行方式,其例如能够通过控制装置22设定。
在一个运行方式中,仅仅一个整流器7和仅仅一个逆变器19可以运行。另外的整流器7和逆变器19通过半导体开关S1的闭合而与电流回路隔离。这给出了在变流器1中的冷冗余。这就是说,在有故障的情况中开关S1被断开并且S2被闭合,由此对直到此时还没有被供电的救助电容器C进行充电。换句话说,其余的整流器或者逆变器被连接到串联电路14,21中。
在另外的运行方式中,所有的整流器7和所有的逆变器19通过断开的半导体开关S1和闭合的半导体开关S2连接到电流回路中,也就是说连接到相应的串联电路14,21中(热冗余)。
在冷冗余和热冗余之间,多于两个整流器/逆变器的中间形式也是可行的。
在另外的运行方式中,所有的整流器7和所有的逆变器9都运行,其中执行半导体开关S1,S2的节拍。所有的整流器和逆变器通过相应断开的半导体开关S1和闭合的半导体开关S2、以S1和S2的交替的节拍在电流回路中切换成升压运行或者降压运行。各个整流器7优选在其半桥9中错开节拍地运行,以便降低在扼流圈L中的电流波纹。
在整流器7的或者逆变器19的一个有故障的情况中,例如能够通过控制装置执行以下方法。在整流器或者逆变器有故障的情况中,其半导体开关S1能够闭合,由此将有故障的电路部分与供电电流回路、也就是中间电路3隔离。此外,在有故障的逆变器9的情况中,在平滑电感器C放电之后,半桥9的半导体开关13能够断开。该供电电流回路在其方法中对于另外的整流器和逆变器来说是中断的。
替代半导体开关S1,半导体开关S2与逆变器19的半桥9一同也能够在输入侧将该逆变器短路,也就是说将接口触点12短路。因此,闭合的半桥9表现为该逆变器的短路电路。
另外的开关部件可以提供在故障情况中的附加保护。图2为此示出了用于该问题的解决方案,即基于在IGBT旁并联连接的二极管(在图2中未示出),在IGBT持续短路时将马达线圈系统的直接连接的绕组短路。由此在驱动马达中产生损失。这同样适用于发电机。在图2中仅仅示出了用于逆变器19的解决方案。类似地,这也能够在整流器7中实现。
如果不期望通过半导体开关13之一进行持续的短路,那么马达线圈系统M1就能够通过每个逆变器或者整流器的附加的半导体开关S3、通过电流上接通过零点(Nulldurchgang)与逆变器19或者有源整流器7隔离。附加的半导体开关S3在变流器1的运行中被闭合(称为“正常运行”)。半导体开关S3用于在半桥9之一有故障的情况中阻止短路的绕组,当半导体开关13之一持续地处于导电状态时。
通过变流器1总体上获得用于模块化的高频变流器的电路拓扑,以便满足在电驱动的飞机中的冗余要求。可以使用结构相同的子模块17,23,以便将发电机和马达连接至电池B。在图1中示出的是,如何能在没有接触器的情况下提供双倍冗余。
图3为此示出的是,该拓扑结构如何能够以任意数量的子模块进行扩展,其中,整流器装置2和逆变器装置4总共具有N个整流器7以及N个逆变器19。N在此是大于1的整数。
图4示出的是,如何能够通过改变变流器1将整流器7精简为相应的无源整流器,其中,替代半导体开关13地在半桥9中提供二极管25。出于清晰性的原因,在图4中仅仅为几个二极管25配置参考标号。半桥9自身在此相应地表现为用于桥接相应的发电机线圈系统G1,G2,GN的短路电路。如在图2中所示出的那样,发电机线圈系统G1,G2,GN在此能够相应地通过开关S3与二极管整流器连接。
图5示出了如何能够示例性地在飞机26中提供变流器1。图4示出了一种固定翼飞机26,其中,螺旋桨27能够通过驱动马达6驱动。螺旋桨27经由轴28借助驱动马达6旋转。驱动马达6在该实例中是电机,其在电机运行模式中运行。用于驱动螺旋桨27的能量能够通过内燃机29获得,其中,其例如能够是汽油发动机或者柴油发动机或者涡轮机。内燃机29能够通过轴30驱动发电机5。电机可以在发电机运行模式中提供作为发电机。轴30的转速在此并不取决于轴28的转速。为此,由发电机5产生的交流电压以所述的方式通过变流器1转换成交流电压,其能够通过交流电压相导体9输入到驱动马达6中。逆变器7的开关频率在此通过控制装置22取决于螺旋桨27的额定转速地进行设定。额定转速在此例如可以通过飞行员借助于(未示出的)操作部件进行设定或者预定。
总体上,该实例示出了如何能够通过本发明在没有接触器的情况下提供用于电动飞机变流器的冗余的电路拓扑结构。
Claims (12)
1.一种用于飞机的变流器(1),所述变流器具有:
-用于提供在正线(15)和负线(16)之间的直流电压(18)的中间电路(3);
-至少两个与所述中间电路(3)连接的整流器(7),所述整流器用于从输入交流电压产生所述直流电压(18);
-至少两个与所述中间电路(3)连接的逆变器(19),所述逆变器用于从所述直流电压(18)产生输出交流电压,
其特征在于,
所述整流器(7)的直流电压接口(11)被连接成第一串联电路(14),
并且所述逆变器(19)的直流电压接口(11)被连接成第二串联电路(21),并且所述中间电路(3)的所述正线(15)和所述负线(16)在输入侧通过所述第一串联电路(14)并且在输出侧通过所述第二串联电路(21)彼此连接,并且所述直流电压接口(11)中的至少一个具有用于将接口触点(12)短路的短路电路(S1,9),所述直流电压接口(11)通过所述接口触点连接到相应的所述串联电路(14,21)中。
2.根据权利要求1所述的变流器(1),其中,在至少一个所述直流电压接口(11)的情况中,所述短路电路(S1)通过与相应的所述接口触点(12)连接的半导体开关(S1)形成。
3.根据前述权利要求中任一项所述的变流器(1),其中,在所述逆变器(19)中的至少一个逆变器的情况中,所述短路电路(9)通过具有半导体开关(13)的半桥(9)形成,所述半桥与所述接口触点(12)连接并且设置用于产生所述输出交流电压中的一个,其中,所述逆变器(19)的交流电压输出端(20)附加地分别具有用于在闭合的所述短路电路(9)的情况中阻断电流的半导体开关(S3)。
4.根据前述权利要求中任一项所述的变流器(1),其中,每个半导体开关(13,S1,S2,S3)分别由IGBT或者MOSFET形成。
5.根据前述权利要求中任一项所述的变流器(1),其中,所述整流器(7)中的至少一个和/或所述逆变器(19)中的至少一个分别具有带有半导体开关(13)的半桥(9),并且监控装置(22)设计用于,在所述半桥(9)中探测持续地保持导电状态的、有故障的半导体开关(13),并且激活如下的直流电压接口(11)的短路装置(S1,9),所述有故障的半导体开关(13)通过该直流电压接口连接到所述串联电路(14,21)中的一个中。
6.根据前述权利要求中任一项所述的变流器(1),其中,在所述中间电路(3)中,所述正线(15)和所述负线(16)通过电池(B)连接。
7.根据前述权利要求中任一项所述的变流器(1),其中,所述整流器(7)和/或所述逆变器(19)分别具有各自的平滑电容器(C)。
8.根据前述权利要求中任一项所述的变流器(1),其中,所述直流电压接口(11)中的至少一个具有退耦电路(S2),所述退耦电路为了阻断电流而连接在所述直流电压接口(11)的所述接口触点(12)中的一个与相应的所述整流器(7)的或所述逆变器(19)的半桥(9)之间。
9.根据权利要求8所述的变流器(1),其中,控制装置(22)设计用于,在不仅具有短路电路(S1)而且还具有退耦电路(S2)的直流电压接口(11)的情况中,通过交替地接通所述退耦电路(S2)和所述短路电路(S1)来引起升压运行或者降压运行。
10.一种飞机(26),尤其是固定翼飞机,具有用于驱动所述飞机(26)的螺旋桨(27)的电驱动马达(6),其中,所述驱动马达(6)通过根据前述权利要求中任一项所述的变流器(1)与发电机(5)耦合连接。
11.根据权利要求10所述的飞机(26),其中,所述发电机(5)具有至少两个独立的多相线圈装置(G1,G2),并且所述多相线圈装置(G1,G2)中的每一个与所述变流器(1)的另外的整流器(7)连接。
12.根据权利要求10或11所述的飞机(26),其中,所述驱动马达(6)具有至少两个独立的多相线圈装置(M1,M2),并且所述多相线圈装置(M1,M2)中的每一个与所述变流器(1)的另外的逆变器(19)连接。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102014213307.6 | 2014-07-09 | ||
DE102014213307 | 2014-07-09 | ||
DE102015207117.0A DE102015207117A1 (de) | 2014-07-09 | 2015-04-20 | Umrichter mit redundanter Schaltungstopologie |
DE102015207117.0 | 2015-04-20 | ||
PCT/EP2015/061932 WO2016005101A1 (de) | 2014-07-09 | 2015-05-29 | Umrichter mit redundanter schaltungstopologie |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106471724A true CN106471724A (zh) | 2017-03-01 |
CN106471724B CN106471724B (zh) | 2019-04-05 |
Family
ID=54867121
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201580036737.1A Active CN106471724B (zh) | 2014-07-09 | 2015-05-29 | 具有冗余的电路拓扑的变流器 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10287030B2 (zh) |
EP (1) | EP3143686A1 (zh) |
CN (1) | CN106471724B (zh) |
BR (1) | BR112017000294A2 (zh) |
CA (1) | CA2954461A1 (zh) |
DE (1) | DE102015207117A1 (zh) |
WO (1) | WO2016005101A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111758304A (zh) * | 2018-01-26 | 2020-10-09 | 劳斯莱斯德国有限两合公司 | 变流器的模块化的组件和具有这种组件的飞行器 |
CN113169670A (zh) * | 2018-12-07 | 2021-07-23 | 西门子股份公司 | 测量分流器 |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015206627A1 (de) * | 2014-07-09 | 2016-01-28 | Siemens Aktiengesellschaft | Selbstsichernder Umrichter |
US10093250B2 (en) * | 2014-10-16 | 2018-10-09 | The Boeing Company | Aircraft supplemental electrical power systems and methods |
DE102015207187B4 (de) * | 2015-04-21 | 2016-11-17 | Siemens Aktiengesellschaft | Umrichter mit Kurzschlussunterbrechung in einer Halbbrücke |
US10093428B2 (en) * | 2016-08-22 | 2018-10-09 | General Electric Company | Electric propulsion system |
US10703496B2 (en) * | 2017-04-21 | 2020-07-07 | General Electric Company | Propulsion system for an aircraft |
WO2018221043A1 (ja) * | 2017-05-31 | 2018-12-06 | パナソニックIpマネジメント株式会社 | 診断装置 |
US10199977B1 (en) * | 2017-10-13 | 2019-02-05 | Garrett Transportation I Inc. | Electrical systems having interleaved DC interconnects |
DE102017220941A1 (de) | 2017-11-23 | 2019-05-23 | Siemens Aktiengesellschaft | Elektrische Maschine mit erhöhter Betriebssicherheit |
DE102018206336A1 (de) | 2018-04-25 | 2019-10-31 | Bayerische Motoren Werke Aktiengesellschaft | Vorrichtung zum Absichern einer elektrischen Maschine |
DE102018216485A1 (de) * | 2018-09-26 | 2020-03-26 | Siemens Aktiengesellschaft | PV-Einrichtung mit verbesserter Gesamteffizienz |
DE102018216607A1 (de) * | 2018-09-27 | 2020-04-02 | Siemens Aktiengesellschaft | PV-Einrichtung mit reduzierter Alterung |
DE102019206872A1 (de) * | 2019-05-13 | 2020-11-19 | Rolls-Royce Deutschland Ltd & Co Kg | Minimalistischer Stromrichter und Fahrzeug mit einem Stromrichter |
GB2589633B (en) | 2019-12-06 | 2022-01-05 | Rolls Royce Plc | Electrical systems |
GB2589634B (en) * | 2019-12-06 | 2024-05-29 | Rolls Royce Plc | Electrical systems |
US11128251B1 (en) * | 2020-04-29 | 2021-09-21 | The Boeing Company | Fault-tolerant power system architecture for aircraft electric propulsion |
EP3955443A1 (de) * | 2020-08-12 | 2022-02-16 | Siemens Aktiengesellschaft | Fehlertoleranter betrieb eines stromrichters |
WO2022192698A1 (en) | 2021-03-12 | 2022-09-15 | Essex Industries, Inc., | Rocker switch |
EP4309200A1 (en) | 2021-03-15 | 2024-01-24 | Essex Industries, Inc. | Five-position switch |
FR3125656A1 (fr) * | 2021-07-26 | 2023-01-27 | Safran Electrical & Power | Système propulsif électrique d’aéronef |
US11670942B2 (en) | 2021-09-23 | 2023-06-06 | General Electric Company | Electrically driven distributed propulsion system |
US20240178741A1 (en) * | 2022-11-30 | 2024-05-30 | Infineon Technologies Austria Ag | Power converter having a solid-state transformer and a half bridge converter stage for each isolated dc output of the solid-state transformer |
DE102023208670A1 (de) | 2023-09-07 | 2025-03-13 | Volkswagen Aktiengesellschaft | Energietransfervorrichtung |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101102085A (zh) * | 2006-07-08 | 2008-01-09 | 塞米克朗电子有限及两合公司 | 用于高压直流电压连接的变流电路装置 |
US20080284249A1 (en) * | 2006-12-08 | 2008-11-20 | General Electric Company | Direct current power transmission and distribution system |
EP2608383A1 (de) * | 2011-12-19 | 2013-06-26 | Siemens Aktiengesellschaft | Stromrichterschaltung |
EP2608397A1 (de) * | 2011-12-19 | 2013-06-26 | Siemens Aktiengesellschaft | Modularer Hochfrequenz-Umrichter für Antriebe |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4927329A (en) * | 1988-10-21 | 1990-05-22 | General Electric Company | Aircraft engine unducted fan blade pitch control system |
US5023537A (en) * | 1989-08-23 | 1991-06-11 | Sundstrand Corporation | Low frequency feeder fault protection |
JPH1042567A (ja) * | 1996-07-25 | 1998-02-13 | Sanyo Denki Co Ltd | 周波数変換装置 |
US6894418B2 (en) | 2002-07-30 | 2005-05-17 | Comprehensive Power, Inc. | Nested stator coils for permanent magnet machines |
US20070230226A1 (en) * | 2003-11-25 | 2007-10-04 | Jih-Sheng Lai | Multilevel intelligent universal auto-transformer |
EP1974454A4 (en) | 2006-01-18 | 2017-03-01 | ABB Technology Ltd | A transmission system and a method for control thereof |
US8002216B2 (en) * | 2007-06-15 | 2011-08-23 | Darwin Kent Decker | Solar powered wing vehicle using flywheels for energy storage |
CN102308461B (zh) * | 2009-02-06 | 2015-03-11 | Abb研究有限公司 | 具有ac和dc功率能力的混合配电变压器 |
EP2226923B1 (en) | 2009-03-03 | 2015-06-10 | GE Energy Power Conversion Technology Limited | Coils |
US9362839B2 (en) * | 2011-02-09 | 2016-06-07 | Rockwell Automation Technologies, Inc. | Power converter with common mode voltage reduction |
US8820677B2 (en) * | 2011-06-18 | 2014-09-02 | Jason A. Houdek | Aircraft power systems and methods |
US8379417B2 (en) * | 2011-07-06 | 2013-02-19 | Rockwell Automation Technologies, Inc. | Power converter and integrated DC choke therefor |
US9143029B2 (en) * | 2011-12-15 | 2015-09-22 | General Electric Company | System and method for power distribution |
DE102012219243A1 (de) | 2012-10-22 | 2014-04-24 | Conti Temic Microelectronic Gmbh | Verfahren und Schaltungseinheit zum Ermitteln von Fehlerzuständen einer Halbbrückenschaltung |
-
2015
- 2015-04-20 DE DE102015207117.0A patent/DE102015207117A1/de not_active Withdrawn
- 2015-05-29 US US15/324,540 patent/US10287030B2/en active Active
- 2015-05-29 CA CA2954461A patent/CA2954461A1/en not_active Abandoned
- 2015-05-29 BR BR112017000294A patent/BR112017000294A2/pt not_active IP Right Cessation
- 2015-05-29 CN CN201580036737.1A patent/CN106471724B/zh active Active
- 2015-05-29 WO PCT/EP2015/061932 patent/WO2016005101A1/de active Application Filing
- 2015-05-29 EP EP15726583.6A patent/EP3143686A1/de not_active Ceased
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101102085A (zh) * | 2006-07-08 | 2008-01-09 | 塞米克朗电子有限及两合公司 | 用于高压直流电压连接的变流电路装置 |
US20080284249A1 (en) * | 2006-12-08 | 2008-11-20 | General Electric Company | Direct current power transmission and distribution system |
EP2608383A1 (de) * | 2011-12-19 | 2013-06-26 | Siemens Aktiengesellschaft | Stromrichterschaltung |
EP2608397A1 (de) * | 2011-12-19 | 2013-06-26 | Siemens Aktiengesellschaft | Modularer Hochfrequenz-Umrichter für Antriebe |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111758304A (zh) * | 2018-01-26 | 2020-10-09 | 劳斯莱斯德国有限两合公司 | 变流器的模块化的组件和具有这种组件的飞行器 |
US11539305B2 (en) | 2018-01-26 | 2022-12-27 | Rolls-Royce Deutschland Ltd & Co Kg | Modular arrangement of a converter and aircraft having a modular arrangement |
CN113169670A (zh) * | 2018-12-07 | 2021-07-23 | 西门子股份公司 | 测量分流器 |
Also Published As
Publication number | Publication date |
---|---|
US20170197730A1 (en) | 2017-07-13 |
CA2954461A1 (en) | 2016-01-14 |
WO2016005101A1 (de) | 2016-01-14 |
EP3143686A1 (de) | 2017-03-22 |
CN106471724B (zh) | 2019-04-05 |
DE102015207117A1 (de) | 2016-01-14 |
BR112017000294A2 (pt) | 2017-10-31 |
US10287030B2 (en) | 2019-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106471724A (zh) | 具有冗余的电路拓扑的变流器 | |
US11799392B2 (en) | Low-volt decoupling from a modular energy store converter system | |
US9787213B2 (en) | Power cell bypass method and apparatus for multilevel inverter | |
US8816625B2 (en) | Integrated regenerative AC drive with solid state precharging | |
EP2814161B1 (en) | Power stage precharging and dynamic braking apparatus for multilevel inverter | |
JP5754597B2 (ja) | 航空機エンジンを始動させるための電気システム | |
US7026783B2 (en) | Drive system | |
EP2367280B1 (en) | Electrical machine with integrated current source inverter | |
US9197088B2 (en) | Module for converting voltage between a high-voltage electrical network of an aircraft and an energy storage element | |
JP7121512B2 (ja) | 電力コンバータ及び電力システム | |
CN105322607B (zh) | 用于提供电压的、具有串联的组变流器的装置和驱动布置 | |
EP2737605A2 (en) | Dual boost converter for ups system | |
CN106797173A (zh) | 具有冗余的开关熔融保险装置组合的变流器和用于在开关失效情况下选择性地触发保险装置的方法 | |
CN105324924A (zh) | 机械旁路开关装置、变换器臂和功率变换器 | |
CN104205558A (zh) | 具有冷却元件的蓄能装置和用于冷却蓄能单元的方法 | |
CN107046273A (zh) | 电力系统 | |
US20220311354A1 (en) | Intelligent discharge control for modular multilevel converter | |
US9793850B2 (en) | Systems for charging an energy store, and method for operating the charging systems | |
EP3627645A1 (en) | Converter | |
US9843075B2 (en) | Internal energy supply of energy storage modules for an energy storage device, and energy storage device with such an internal energy supply | |
US20120229068A1 (en) | Inverter | |
Cordeiro et al. | Detection and diagnosis solutions for fault-tolerant VSI | |
US20130320888A1 (en) | System comprising an electrically excited machine | |
CN104081609A (zh) | 用于电力供应单元的dc供电单元 | |
US11012021B2 (en) | Inverter device and control circuit therefor, and motor driving system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20200915 Address after: Blankenfeld Marlow, Germany Patentee after: Rolls-Royce Deutschland Ltd & Co KG Address before: Munich, Germany Patentee before: SIEMENS AG |