CN106469980B - DC-DC converter - Google Patents
DC-DC converter Download PDFInfo
- Publication number
- CN106469980B CN106469980B CN201610538671.2A CN201610538671A CN106469980B CN 106469980 B CN106469980 B CN 106469980B CN 201610538671 A CN201610538671 A CN 201610538671A CN 106469980 B CN106469980 B CN 106469980B
- Authority
- CN
- China
- Prior art keywords
- switching element
- circuit
- short
- voltage
- capacitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/02—Conversion of DC power input into DC power output without intermediate conversion into AC
- H02M3/04—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
- H02M3/10—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种具有升压斩波电路的直流-直流转换装置,详细而言,涉及一种具备半导体开关元件发生短路故障时的保护功能的直流-直流转换装置。The present invention relates to a DC-DC converter with a boost chopper circuit, and in particular, to a DC-DC converter with a protection function when a semiconductor switching element has a short-circuit fault.
背景技术Background technique
图17示出专利文献1所记载的升压斩波电路。FIG. 17 shows the boost chopper circuit described in
图17中,IN1、IN2是连接有直流电源(未图示)的正负输入端子,OUT1、OUT2是正负输出端子,L1是电抗器,Q1、Q2是晶体管,D1、D2是二极管,C1、C2是电容器。另外,除电抗器L1外,负侧输入端子IN2与晶体管Q2的发射极之间有时也会插入其它电抗器。In Fig. 17, IN1 and IN2 are positive and negative input terminals to which a DC power supply (not shown) is connected, OUT1 and OUT2 are positive and negative output terminals, L1 is a reactor, Q1 and Q2 are transistors, D1 and D2 are diodes, and C1 , C2 is a capacitor. In addition to the reactor L1, other reactors may be inserted between the negative side input terminal IN2 and the emitter of the transistor Q2.
接着,对该现有技术的动作的概要进行说明。Next, an outline of the operation of the conventional technique will be described.
通过使晶体管Q1、Q2均导通,从而电流从直流电源沿输入端子IN1→电抗器L1→晶体管Q1、Q2→输入端子IN2的路径流通,将能量储存到电抗器L1中。接着,通过在导通晶体管Q1的状态下断开晶体管Q2,从而直流电源和电抗器L1的储存能量沿晶体管Q1→电容器C2→二极管D2→输入端子IN2的路径供应,对电容器C2充电。By turning on both the transistors Q1 and Q2, a current flows from the DC power source along a path from the input terminal IN1→reactor L1→transistors Q1, Q2→input terminal IN2, and energy is stored in the reactor L1. Next, by turning off the transistor Q2 while turning on the transistor Q1, the stored energy of the DC power supply and the reactor L1 is supplied along the path of the transistor Q1→capacitor C2→diode D2→input terminal IN2 to charge the capacitor C2.
接着,通过断开晶体管Q1并导通晶体管Q2,从而电流沿输入端子IN1→电抗器L1→二极管D1→电容器C1→晶体管Q2→输入端子IN2的路径流通,对电容器C1充电。若在该状态下断开晶体管Q2,则直流电源和电抗器L1的储存能量沿二极管D1→电容器C1→电容器C2→二极管D2的路径供应,对电容器C1、C2充电。Next, by turning off the transistor Q1 and turning on the transistor Q2, a current flows along the path of the input terminal IN1→reactor L1→diode D1→capacitor C1→transistor Q2→input terminal IN2, and the capacitor C1 is charged. When the transistor Q2 is turned off in this state, the stored energy of the DC power supply and the reactor L1 is supplied along the path of the diode D1→capacitor C1→capacitor C2→diode D2 to charge the capacitors C1 and C2.
通过反复进行上述动作,从而输出端子OUT1、OUT2间的电压升压到高于直流电源电压的电压。该升压斩波电路的输出电压可获得三个电平,分别是电容器C1的电压、电容器C2的电压、电容器C1、C2的电压和,因此也被称为三电平升压斩波电路。By repeating the above operation, the voltage between the output terminals OUT1 and OUT2 is boosted to a voltage higher than the DC power supply voltage. The output voltage of the boost chopper circuit can obtain three levels, which are the voltage of the capacitor C1, the voltage of the capacitor C2, and the voltage sum of the capacitors C1 and C2, so it is also called a three-level boost chopper circuit.
使用该升压斩波电路构成直流-直流转换装置时,虽然图中并未示出,但是通常会另行设置电路发生故障时断开直流电源的断路器、以及用于控制晶体管Q1、Q2和断路器的控制电路等。When a DC-DC converter is constructed using this boost chopper circuit, although not shown in the figure, a circuit breaker for disconnecting the DC power supply in the event of a circuit failure, and a circuit breaker for controlling the transistors Q1 and Q2 and the circuit breaker are usually provided separately. control circuit of the device, etc.
现有技术文献prior art literature
专利文献Patent Literature
专利文献1:日本专利特开2013-38921号公报(段落[0021]至[0028]、图1、图3等)Patent Document 1: Japanese Patent Laid-Open No. 2013-38921 (paragraphs [0021] to [0028], FIG. 1 , FIG. 3 , etc.)
发明内容SUMMARY OF THE INVENTION
要解决的技术问题technical problem to be solved
如图17所示的三电平升压斩波电路中,在晶体管Q1、Q2中的一个发生了短路故障时,原本应该使电容器C1、C2交替升压的电路结构会变成只使一个电容器升压的电路结构。因此,有时会导致一个电容器升压过剩,其电压超过额定值。In the three-level boost chopper circuit shown in Figure 17, when one of the transistors Q1 and Q2 is short-circuited, the circuit structure that should have alternately boosted the capacitors C1 and C2 will be changed to only one capacitor. Boost circuit structure. As a result, it sometimes results in an excess boost of a capacitor whose voltage exceeds its rated value.
直流-直流转换装置等电力转换装置中,若检测到发生了异常电压,则使全部半导体开关元件(以下也只称为开关元件)断开并停止电力转换动作。与此同时,通常利用断路器将输入电源与装置分离以进行保护。In a power conversion device such as a DC-DC converter, when an abnormal voltage is detected, all semiconductor switching elements (hereinafter also simply referred to as switching elements) are turned off to stop the power conversion operation. At the same time, circuit breakers are often used to isolate incoming power from the device for protection.
但是,在图17中晶体管Q1、Q2中的一个发生短路的故障模式中,即使使一个晶体管断开,另一个晶体管仍处于短路的状态。因此,利用断路器将装置从直流电源实际分离前的期间中,会残留由储存到电抗器L1中的能量对任意一个电容器充电的路径。这样,电容器电压会进一步上升。However, in the failure mode in which one of the transistors Q1 and Q2 is short-circuited in FIG. 17, even if one transistor is turned off, the other transistor is still in a short-circuited state. Therefore, in the period before the device is actually disconnected from the DC power supply by the circuit breaker, a path for charging any one of the capacitors with the energy stored in the reactor L1 remains. In this way, the capacitor voltage will further rise.
三电平升压斩波电路中,具有以下优点,即利用串联连接的2个电容器C1、C2分担输出电压,对一个电容器只施加输出电压的大约一半电压。因此,晶体管Q1、Q2等开关元件通常使用低耐压的元件。此外,电容器C1、C2通常也使用低耐压的产品。The three-level boost chopper circuit has the advantage that the output voltage is shared by the two capacitors C1 and C2 connected in series, and only about half of the output voltage is applied to one capacitor. Therefore, switching elements such as transistors Q1 and Q2 are generally used with low withstand voltage. In addition, capacitors C1 and C2 are generally also used with low withstand voltage.
然而,发生上述短路故障模式时,电容器电压的上升可能会导致低耐压的开关元件或低耐压的电容器被损坏。However, when the above-mentioned short-circuit failure mode occurs, the rise of the capacitor voltage may cause the low withstand voltage switching element or the low withstand voltage capacitor to be damaged.
因此,本发明的解决课题在于提供一种直流-直流电力转换装置,其抑制开关元件发生了短路故障时的电容器电压的上升,能够安全使用低耐压的开关元件或低耐压的电容器。Therefore, the problem to be solved by the present invention is to provide a DC-DC power conversion device which suppresses the increase in capacitor voltage when a switching element has a short-circuit fault, and which can safely use a switching element with a low withstand voltage or a capacitor with a low withstand voltage.
用于解决技术问题的技术方案Technical solutions for solving technical problems
为了解决上述课题,权利要求1所述的发明包括:开关元件串联电路,该开关元件串联电路中第一、第二开关元件串联连接并连接在直流电源的两端;电抗器,该电抗器连接在所述直流电源与所述开关元件串联电路之间;电容器串联电路,该电容器串联电路串联连接有第一、第二电容器;第一、第二二极管,该第一、第二二极管分别连接在所述开关元件串联电路的两端与所述电容器串联电路的两端之间;以及In order to solve the above-mentioned problems, the invention described in
控制电路,该控制电路对所述第一、第二开关元件进行导通/断开控制,a control circuit, the control circuit performs on/off control of the first and second switching elements,
所述第一、第二开关元件的连接点与所述第一、第二电容器的连接点连接,The connection points of the first and second switching elements are connected to the connection points of the first and second capacitors,
通过使所述第一、第二开关元件进行导通/断开的斩波动作,使所述直流电源的电压升压并从所述电容器串联电路的两端输出,所述直流-直流转换装置的特征在于,The DC-DC converter device boosts the voltage of the DC power supply and outputs it from both ends of the capacitor series circuit by performing a chopping operation of turning on/off the first and second switching elements. is characterized by,
所述控制电路在推断出所述第一、第二开关元件中的至少一个开关元件发生短路故障时,向另一个开关元件或两个开关元件发出导通指令。When it is concluded that at least one of the first and second switching elements has a short-circuit fault, the control circuit sends a turn-on instruction to the other switching element or both switching elements.
如权利要求2所述的发明是如权利要求1所述的直流-直流转换装置,其中,The invention according to
在所述直流电源与所述开关元件串联电路之间还包括断路器,A circuit breaker is further included between the DC power supply and the series circuit of the switching element,
所述控制电路向所述开关元件发出导通指令,并且向所述断路器发出分闸指令,所述断路器在所述开关元件导通后分闸。The control circuit sends a conduction command to the switching element and an opening command to the circuit breaker, and the circuit breaker opens after the switching element is turned on.
如权利要求3所述的发明是如权利要求1所述的直流-直流转换装置,其中,The invention according to
包括第一、第二电压检测器,该第一、第二电压检测器分别检测所述第一、第二电容器的电压,comprising first and second voltage detectors, the first and second voltage detectors respectively detect the voltages of the first and second capacitors,
所述控制电路在判定出对所述第一电容器施加了过电压时,推断所述第二开关元件发生短路故障,并且在判定出对所述第二电容器施加了过电压时,推断所述第一开关元件发生短路故障。The control circuit infers that the second switching element has a short-circuit failure when determining that an overvoltage is applied to the first capacitor, and infers that the second switching element has an overvoltage applied to the second capacitor. A switching element has a short circuit failure.
如权利要求4所述的发明是如权利要求1所述的直流-直流转换装置,其中,The invention according to
包括第一、第二电压检测器,该第一、第二电压检测器分别检测所述第一、第二电容器的电压,comprising first and second voltage detectors, the first and second voltage detectors respectively detect the voltages of the first and second capacitors,
所述控制电路在判定出所述第一电容器的电压高于所述第二电容器的电压且两电容器的电压值产生了规定值以上的偏差时,推断所述第二开关元件发生短路故障,并且在判定出所述第二电容器的电压高于所述第一电容器的电压且两电容器的电压值产生了规定值以上的偏差时,推断所述第一开关元件发生短路故障。When the control circuit determines that the voltage of the first capacitor is higher than the voltage of the second capacitor and the voltage values of the two capacitors deviate by a predetermined value or more, infer that the second switching element has a short-circuit failure, and When it is determined that the voltage of the second capacitor is higher than the voltage of the first capacitor and the voltage values of the two capacitors vary by a predetermined value or more, it is estimated that the first switching element has a short-circuit failure.
如权利要求5所述的发明是如权利要求1所述的直流-直流转换装置,其中,The invention according to
包括第一、第二电流检测器,该第一、第二电流检测器分别检测所述第一、第二开关元件的电流,comprising first and second current detectors, the first and second current detectors respectively detect the currents of the first and second switching elements,
所述控制电路在判定出所述第一开关元件中有过电流流通时,推断所述第一开关元件发生短路故障,并且在判定出所述第二开关元件中有过电流流通时,推断所述第二开关元件发生短路故障。The control circuit infers that a short-circuit failure has occurred in the first switching element when determining that an overcurrent is flowing in the first switching element, and infers that an overcurrent is flowing in the second switching element. The second switching element has a short-circuit fault.
如权利要求6所述的发明是如权利要求1所述的直流-直流转换装置,其中,The invention according to
包括第一、第二电压检测器,该第一、第二电压检测器分别检测所述第一、第二开关元件的电压,comprising first and second voltage detectors, the first and second voltage detectors respectively detect the voltages of the first and second switching elements,
所述控制电路在判定出向所述第一开关元件发出导通指令的期间中所述第一开关元件的两端电压为规定值以上或规定值以下时,推断所述第一开关元件发生短路故障,并且在判定出向所述第二开关元件发出导通指令的期间中所述第二开关元件的两端电压为规定值以上或规定值以下时,推断所述第二开关元件发生短路故障。The control circuit infers that a short-circuit failure has occurred in the first switching element when it is determined that the voltage across the first switching element is greater than or equal to a predetermined value or less than a predetermined value during a period in which an on command is issued to the first switching element and when it is determined that the voltage across the second switching element is greater than or equal to a predetermined value or less than a predetermined value during a period in which an on command is issued to the second switching element, it is estimated that the second switching element has a short-circuit failure.
如权利要求7所述的发明是如权利要求1所述的直流-直流转换装置,其中,The invention according to
包括第一、第二电压检测器,该第一、第二电压检测器分别检测所述第一、第二开关元件的电压,comprising first and second voltage detectors, the first and second voltage detectors respectively detect the voltages of the first and second switching elements,
所述控制电路在判定出向所述第一开关元件发出断开指令的期间中所述第一开关元件的两端电压为规定值以下时,推断所述第一开关元件发生短路故障,并且在判定出向所述第二开关元件发出断开指令的期间中所述第二开关元件的两端电压为规定值以下时,推断所述第二开关元件发生短路故障。When the control circuit determines that the voltage across the first switching element is equal to or less than a predetermined value during a period in which an off command is issued to the first switching element, it is estimated that a short-circuit failure has occurred in the first switching element, and the control circuit determines that the first switching element has a short-circuit failure. When the voltage across both ends of the second switching element is equal to or less than a predetermined value during a period in which an off command is issued to the second switching element, it is estimated that a short-circuit failure has occurred in the second switching element.
如权利要求8所述的发明是如权利要求1所述的直流-直流转换装置,其中,The invention according to
包括第一、第二电流检测器,该第一、第二电流检测器分别检测所述第一、第二二极管的电流,comprising first and second current detectors, the first and second current detectors respectively detect the currents of the first and second diodes,
所述控制电路在判定出所述第一二极管中有过电流流通时,推断所述第二开关元件发生短路故障,并且在判定出所述第二二极管中有过电流流通时,推断所述第一开关元件发生短路故障。When the control circuit determines that an overcurrent flows in the first diode, it infers that the second switching element has a short-circuit failure, and when it determines that an overcurrent flows in the second diode, It is inferred that the first switching element has a short-circuit failure.
如权利要求9所述的发明是如权利要求1所述的直流-直流转换装置,其中,The invention according to
包括第一、第二电压检测器,该第一、第二电压检测器分别检测所述第一、第二二极管的电压,comprising first and second voltage detectors, the first and second voltage detectors respectively detect the voltages of the first and second diodes,
所述控制电路在判定出向所述第一开关元件发出断开指令的期间中所述第一二极管的两端电压为规定值以上时,推断所述第二开关元件发生短路故障,并且在判定出向所述第二开关元件发出断开指令的期间中所述第二二极管的两端电压为规定值以上时,推断所述第一开关元件发生短路故障。When the control circuit determines that the voltage across the first diode is equal to or greater than a predetermined value during a period in which an off command is issued to the first switching element, it is estimated that a short-circuit failure has occurred in the second switching element, and When it is determined that the voltage across the second diode is equal to or greater than a predetermined value during the period in which the off command is issued to the second switching element, it is estimated that a short-circuit failure has occurred in the first switching element.
如权利要求10所述的发明是如权利要求1所述的直流-直流转换装置,其中,The invention according to
包括电流检测器,该电流检测器检测所述电抗器的电流,including a current detector that detects the current of the reactor,
所述控制电路在判定出所述电抗器中有过电流流通时,推断所述第一和第二开关元件中的至少一个发生短路故障。The control circuit infers that at least one of the first and second switching elements has a short-circuit failure when it is determined that an overcurrent flows in the reactor.
如权利要求11所述的发明是如权利要求1所述的直流-直流转换装置,其中,The invention according to
包括电压检测器,该电压检测器检测所述电抗器的电压,including a voltage detector that detects the voltage of the reactor,
所述控制电路在判定出所述电抗器的两端电压为规定值以上时,推断所述第一和第二开关元件中的至少一个发生短路故障。When the control circuit determines that the voltage across the reactor is equal to or greater than a predetermined value, it is estimated that at least one of the first and second switching elements has a short-circuit failure.
如权利要求12所述的发明是如权利要求1所述的直流-直流转换装置,其中,The invention according to
包括电流检测器,该电流检测器检测将所述第一、第二开关元件彼此间的连接点与所述第一、第二电容器彼此间的连接点进行连接的布线的电流,including a current detector that detects a current in a wiring that connects a connection point between the first and second switching elements and a connection point between the first and second capacitors,
所述控制电路在判定出所述布线中有过电流流通时,推断所述第一和第二开关元件中的至少一个发生短路故障。The control circuit infers that at least one of the first and second switching elements has a short-circuit failure when it is determined that an overcurrent flows in the wiring.
如权利要求13所述的发明是如权利要求1所述的直流-直流转换装置,其中,The invention according to
所述控制电路在判定出所述第一开关元件的控制电极始终短路或该控制电极的电位始终为高电平时,推断所述第一开关元件发生短路故障,并且在判定出所述第二开关元件的控制电极始终短路或该控制电极的电位始终为高电平时,推断所述第二开关元件发生短路故障。When determining that the control electrode of the first switching element is always short-circuited or the potential of the control electrode is always high, the control circuit infers that the first switching element has a short-circuit failure, and determines that the second switch is short-circuited. When the control electrode of the element is always short-circuited or the potential of the control electrode is always at a high level, it is inferred that the second switching element has a short-circuit fault.
如权利要求14所述的发明是如权利要求1所述的直流-直流转换装置,其中,The invention according to
所述控制电路在判定出所述第一开关元件的控制电极中流通的电流为过电流或始终流通时,推断所述第一开关元件发生短路故障,并且在判定出所述第二开关元件的控制电极中流通的电流为过电流或始终流通时,推断所述第二开关元件发生短路故障。When determining that the current flowing in the control electrode of the first switching element is an overcurrent or always flowing, the control circuit infers that a short-circuit failure has occurred in the first switching element, and determines that the second switching element has a short-circuit fault. When the current flowing in the control electrode is an overcurrent or always flows, it is presumed that the second switching element has a short-circuit failure.
如权利要求15所述的发明是如权利要求1所述的直流-直流转换装置,其中,The invention according to
包括第一、第二电流检测器,该一、第二电流检测器分别检测所述第一、第二电容器的电流,comprising first and second current detectors, the first and second current detectors respectively detect the currents of the first and second capacitors,
所述控制电路在判定出所述第一电容器中有过电流流通时,推断所述第二开关元件发生短路故障,并且在判定出所述第二电容器中有过电流流通时,推断所述第一开关元件发生短路故障。The control circuit infers that the second switching element has a short-circuit failure when determining that an overcurrent flows in the first capacitor, and infers that the second switching element has an overcurrent flowing in the second capacitor. A switching element has a short circuit failure.
如权利要求16所述的发明是如权利要求1所述的直流-直流转换装置,其中,The invention according to
所述控制电路在推断出所述第一或第二开关元件发生短路故障时,产生警报。The control circuit generates an alarm upon inferring a short circuit failure of the first or second switching element.
发明效果Invention effect
本发明中,在一个开关元件发生了短路故障时,能够在断路器分闸前,将另一个完好的开关元件固定在导通状态,消除在电容器中流通的电流路径。这样,能够抑制电容器电压持续上升,在使用低耐压的开关元件或低耐压的电容器时,也能够将该开关元件或电容器的损坏防患于未然。In the present invention, when a short-circuit fault occurs in one switching element, the other intact switching element can be fixed in a conducting state before the circuit breaker is opened, and the current path flowing in the capacitor can be eliminated. In this way, it is possible to suppress a continuous rise of the capacitor voltage, and even when a low withstand voltage switching element or a low withstand voltage capacitor is used, damage to the switching element or the capacitor can be prevented beforehand.
附图说明Description of drawings
图1是对本发明第一实施方式进行说明的图。FIG. 1 is a diagram illustrating a first embodiment of the present invention.
图2是本发明第一实施方式的第一模式的动作说明图。FIG. 2 is an operation explanatory diagram of the first mode of the first embodiment of the present invention.
图3是本发明第一实施方式的第二模式的动作说明图。3 is an explanatory diagram of the operation of the second mode of the first embodiment of the present invention.
图4是本发明第一实施方式的第三模式的动作说明图。FIG. 4 is an operation explanatory diagram of the third mode of the first embodiment of the present invention.
图5是本发明第一实施方式的第四模式的动作说明图。FIG. 5 is an operation explanatory diagram of the fourth mode of the first embodiment of the present invention.
图6是本发明第一实施方式的发生短路故障时的动作说明图。6 is an explanatory diagram of an operation when a short-circuit fault occurs according to the first embodiment of the present invention.
图7是对本发明第二实施方式进行说明的图。FIG. 7 is a diagram illustrating a second embodiment of the present invention.
图8是对本发明第三实施方式进行说明的图。FIG. 8 is a diagram illustrating a third embodiment of the present invention.
图9是对本发明第四实施方式进行说明的图。FIG. 9 is a diagram for explaining a fourth embodiment of the present invention.
图10是对本发明第五实施方式进行说明的图。FIG. 10 is a diagram illustrating a fifth embodiment of the present invention.
图11是对本发明第六实施方式进行说明的图。FIG. 11 is a diagram illustrating a sixth embodiment of the present invention.
图12是对本发明第七实施方式进行说明的图。FIG. 12 is a diagram illustrating a seventh embodiment of the present invention.
图13是对本发明第八实施方式进行说明的图。FIG. 13 is a diagram illustrating an eighth embodiment of the present invention.
图14是对本发明第九实施方式进行说明的图。FIG. 14 is a diagram illustrating a ninth embodiment of the present invention.
图15是对本发明第十实施方式进行说明的图。FIG. 15 is a diagram illustrating a tenth embodiment of the present invention.
图16是对本发明第十一实施方式进行说明的图。FIG. 16 is a diagram illustrating an eleventh embodiment of the present invention.
图17是专利文献1所记载的现有技术的电路图。FIG. 17 is a circuit diagram of the prior art described in
具体实施方式Detailed ways
下面根据附图对本发明第一实施方式进行说明。Hereinafter, a first embodiment of the present invention will be described with reference to the accompanying drawings.
图1是第一实施方式所述的直流-直流转换装置的结构图,相当于权利要求1至4。图1中,直流电源1的正极通过输入端子IN1连接到断路器2的一端,断路器2的另一端连接到电抗器3的一端。该电抗器3的另一端连接到开关元件5与二极管7的连接点。FIG. 1 is a block diagram of a DC-DC converter according to a first embodiment, and corresponds to
另一方面,直流电源1的负极通过输入端子IN2连接到电抗器4的一端,电抗器4的另一端连接到开关元件6与二极管9的连接点。On the other hand, the negative electrode of the
开关元件5、6串联连接,其串联连接点与二极管7的阴极之间连接有电容器8,上述串联连接点与二极管9的阳极之间连接有电容器10。即,电容器8、10也串联连接,该电容器串联电路的两端分别连接到正负输出端子OUT1、OUT2。The
进而,电容器8、10的各两端分别连接有电压检测器11、12,其输出信号(电压检测值)输入到控制电路20。控制电路20的结构如下:根据电容器8、10的电压检测值生成对开关元件5、6的导通/断开信号,并且生成对断路器2的开闭指令(分闸(断开)指令/接通指令)。Further,
上述结构中,开关元件5、6分别相当于权利要求的第一、第二开关元件,二极管7、9分别相当于第一、第二二极管,电容器8、10分别相当于第一、第二电容器,电压检测器11、12分别相当于第一、第二电压检测器。In the above structure, the
图1中,虽然开关元件5、6使用了IGBT,但是当然也可以使用功率晶体管或FET。尤其是可以采用使用SiC(碳化硅)、GaN(氮化镓)等宽带隙半导体的元件,期待通过使用这些元件从而能够以更高的效率构成小型三电平升压斩波电路。此外,电抗器3、4至少具备任意一个即可。In FIG. 1 , although IGBTs are used for the
另外,若从图1的电路中除去断路器2、电压检测器11、12、控制电路20等,则实质上构成了与图17的三电平升压斩波电路相同的电路。In addition, if the
下面参照图2至图6对该实施方式的动作进行说明。Next, the operation of this embodiment will be described with reference to FIGS. 2 to 6 .
图1的直流-直流转换装置利用控制电路20控制开关元件5、6的导通/断开,通过依次执行与现有技术的图17相同的动作模式(下述的第一至第四模式),从而使电容器8、10升压。The DC-DC converter of FIG. 1 controls on/off of the
(1)第一模式(图2)(1) The first mode (Fig. 2)
这是使开关元件5、6的双方导通的状态。该状态中,电流沿直流电源1→断路器2→电抗器3→开关元件5→开关元件6→电抗器4→直流电源1的路径流通,将能量储存到电抗器3、4中。This is a state in which both the
(2)第二模式(图3)(2) The second mode (Fig. 3)
这是使开关元件5继续导通,使开关元件6断开的状态。该状态中,电流沿直流电源1→断路器2→电抗器3→开关元件5→电容器10→二极管9→电抗器4→直流电源1的路径流通,利用储存到电抗器3、4中的能量对电容器10充电。This is a state in which the
(3)第三模式(图4)(3) The third mode (Fig. 4)
这是与第二模式相反,使开关元件5断开,使开关元件6导通的状态。该状态中,电流沿直流电源1→断路器2→电抗器3→二极管7→电容器8→开关元件6→电抗器4→直流电源1的路径流通,利用储存到电抗器3、4中的能量对电容器8充电。In contrast to the second mode, this is a state in which the
(4)第四模式(图5)(4) Fourth mode (Figure 5)
这是使开关元件5、6均断开的状态。该状态中,电流沿直流电源1→断路器2→电抗器3→二极管7→电容器8→电容器10→二极管9→电抗器4→直流电源1的路径流通,利用储存到直流电源1和电抗器3、4中的能量对电容器8、10充电。This is a state in which both the
如此,电容器8、10一边反复充电一边升压,根据开关元件5、6的导通/断开的比率以固定电压保持稳定。In this way, the
接着,对开关元件5、6中的任意一个(此处以开关元件6为例)发生了短路故障时的动作进行说明。Next, an operation when a short-circuit fault occurs in any one of the
若开关元件6发生短路故障,另一个开关元件5完好,则根据开关元件5的导通/断开,沿图6(a)、(b)所示的路径交替反复进行通流动作。When the switching
即,开关元件5处于导通状态的图6(a)中,电流沿直流电源1→断路器2→电抗器3→开关元件5→开关元件6(短路状态)→电抗器4→直流电源1的路径流通,将能量储存到电抗器3、4中。That is, in FIG. 6( a ) when the switching
此外,开关元件5处于断开状态的图6(b)中,利用电抗器3、4的储存能量和直流电源1的电力,电流沿直流电源1→断路器2→电抗器3→二极管7→电容器8→开关元件6(短路状态)→电抗器4→直流电源1的路径流通。In addition, in FIG. 6( b ) with the switching
若反复进行上述图6(a)、(b)的动作,则只进行对电容器8的升压斩波动作。因此,开关元件5、6完好时利用第一至第四模式的通常动作由两个电容器8、10分担的电抗器3、4的能量全部供应到一个电容器8。其结果是,电容器8的电压会上升到高于通常时的值。When the above-described operations of FIGS. 6( a ) and ( b ) are repeated, only the step-up chopper operation for the
电容器8的电压由电压检测器11检测,其电压检测值输入到控制电路20,因此控制电路20判定对电容器8施加了过电压。The voltage of the
此外,电容器8、10的电压由电压检测器11、12检测,这些电压检测值输入到控制电路20。控制电路20判定电容器8的电压高于电容器10的电压且两电容器的电压值产生了规定值以上的偏差。Further, the voltages of the
控制电路20判定出对电容器8施加了过电压时,或者判定出电容器8的电压高于电容器10的电压且电容器8、10的电压值产生了规定值以上的偏差时,推断开关元件6发生了短路故障。When the
在推断出开关元件6发生了短路故障时,控制电路20输出用于使断路器2分闸的信号作为保护动作。但是,断路器2实际分闸前存在些许延时,可能继续进行对电容器8的升压动作。因此,控制电路20在推断出开关元件6发生了短路故障的时间点,换言之在断路器2实际分闸前,使开关元件5导通。这样,在直流电源1从装置完全断开前的期间,装置的动作固定为图6(a)的模式,能够防止电容器8的电压持续上升。When it is estimated that the switching
另外,上述例子为开关元件6发生了短路故障时的例子,而在开关元件5发生了短路故障时,由于开关元件6反复进行导通、断开动作,从而电容器10成为过电压。此外,由于开关元件6反复进行导通、断开动作,从而电容器10的电压高于电容器8的电压且两电容器的电压值产生规定值以上的偏差。The above example is an example when the switching
因此,根据电压检测器11、12的电压检测值,控制电路20在断路器2实际分闸前使开关元件6导通,从而防止电容器10的电压持续上升。Therefore, based on the voltage detection values of the
控制电路20在推断出开关元件5或开关元件6的任意一个发生了短路故障时,也可以向开关元件5、6的双方发出导通栅极指令,此时也能够发挥相同的效果。The
根据第一实施方式,控制电路20在判定出向电容器8施加了过电压时,推断开关元件6发生了短路故障。同样,控制电路20在判定出向电容器10施加了过电压时,推断开关元件5发生了短路故障。According to the first embodiment, when the
此外,控制电路20在电容器8的电压高于电容器10的电压且两电容器8、10的电压值产生了规定值以上的偏差时,推断开关元件6发生了短路故障。同样,控制电路20在电容器10的电压高于电容器8的电压且两电容器8、10的电压值产生了规定值以上的偏差时,推断开关元件5发生了短路故障。In addition, the
因此,控制电路20在推断出发生上述短路故障时,优选为在进行使断路器2分闸的保护动作的同时,以适当方式发出警报,促使开展包括更换开关元件在内的保养检查作业。Therefore, when the
接着,根据图7对相当于权利要求5的本发明第二实施方式进行说明。Next, a second embodiment of the present invention corresponding to claim 5 will be described with reference to FIG. 7 .
该第二实施方式中,开关元件5、6分别串联有电流检测器13、14,由这些电流检测器13、14输出的电流检测值输入到控制电路20。控制电路20的结构如下:根据开关元件5、6的电流检测值生成对开关元件5、6的导通/断开信号,并且生成对断路器2的开闭指令。In the second embodiment,
此处,在开关元件5、6中的任意一个(此处以开关元件6为例)发生了短路故障时,反复进行使用图6(a)、(b)对第一实施方式进行了说明的通流动作。其结果是,向开关元件6流通的电流逐渐增大,有与通常动作时相比过大的电流、即过电流通流。Here, when a short-circuit failure occurs in any one of the
本实施方式中,在开关元件6中流通的电流由电流检测器13检测,该电流检测值输入到控制电路20,因此控制电路20判定开关元件6中有过电流通流。因此,控制电路20在判定出开关元件6中有过电流通流时,推断开关元件6发生了短路故障。In the present embodiment, the current flowing in the
推断出开关元件6发生短路故障的控制电路20通过在断路器2分闸前使开关元件5导通,从而防止电容器8的电压持续上升。The
上述例子为开关元件6发生了短路故障时的例子,而在开关元件5发生了短路故障时,由于开关元件6反复进行导通、断开动作,从而开关元件5中有过电流通流。The above example is an example when the switching
因此,根据电流检测器14的电流检测值,控制电路20在断路器2分闸前使开关元件6导通,从而防止电容器10的电压持续上升。Therefore, according to the current detection value of the
控制电路20在推断出开关元件5或开关元件6的任意一个发生了短路故障时,也可以向开关元件5、6的双方发出导通栅极指令,此时也能够发挥相同的效果。The
接着,根据图8对相当于权利要求6、7的本发明第三实施方式进行说明。Next, a third embodiment of the present invention corresponding to
该第三实施方式中,开关元件5、6的两端分别连接有电压检测器11、12,由这些电压检测器11、12输出的电压检测值输入到控制电路20。控制电路20的结构如下:根据开关元件5、6的电压检测值生成对开关元件5、6的导通/断开信号,并且生成对断路器2的开闭指令。In the third embodiment,
此处,在开关元件5、6中的任意一个(此处以开关元件6为例)发生了短路故障时,作为一个方式,开关元件6的两端电压与通常时的导通期间的电压相比有时会过小。这是因为在开关元件6的内部成为主电流路径的沟道短路后,其结果导致开关元件6的内部电阻与通常状态相比成为极低值的缘故。Here, when a short-circuit fault occurs in any one of the
此外,作为其他方式,开关元件6的两端电压与通常时的导通期间的电压相比有时会过大。这起因于开关元件6的栅极发生故障,开关元件6无法转移到断开状态。此时,由于反复进行使用图6(a)、(b)进行了说明的通流动作,因此向开关元件6流通的电流逐渐增大。其结果是,在向开关元件6发出的栅极指令为导通的期间,与通常动作的导通期间的通流时相比,元件电压过大。In addition, as another form, the voltage between both ends of the
此外,上述任意一种方式中,在向开关元件6发出的栅极指令为断开的期间,开关元件6均无法转移到正常的断开状态。因此,即使栅极指令为断开,开关元件6的两端电压与通常时的断开期间的电压相比也为过小的电压。In addition, in any of the above-described modes, the switching
因此,本实施方式中,控制电路20在检测出开关元件6的栅极指令为导通的期间开关元件6的两端电压与通常时的导通期间的电压相比过大或过小时,推断开关元件6发生了短路故障。Therefore, in the present embodiment, when the
或者,在检测出开关元件6的栅极指令为断开的期间开关元件6的两端电压与通常时的断开期间的电压相比过小时,推断开关元件6发生了短路故障。Alternatively, when the gate command of the
而且,推断出开关元件6发生短路故障的控制电路20通过在断路器2分闸前使开关元件5导通,从而防止电容器8的电压持续上升。Then, the
上述例子为开关元件6发生了短路故障时的例子,而在开关元件5发生了短路故障时,也进行同样的推断。而且,推断出开关元件5发生短路故障的控制电路20通过在断路器2分闸前使开关元件6导通,从而防止电容器10的电压持续上升。The above-mentioned example is an example when the switching
此外,控制电路20在推断出开关元件5或开关元件6的任意一个发生了短路故障时,也可以向开关元件5、6的双方发出导通栅极指令,此时也能够发挥相同的效果。In addition, the
接着,根据图9对相当于权利要求8的本发明第四实施方式进行说明。Next, a fourth embodiment of the present invention corresponding to claim 8 will be described with reference to FIG. 9 .
该第四实施方式中,二极管7、9分别串联有电流检测器13、14,由这些电流检测器13、14输出的电流检测值输入到控制电路20。控制电路20的结构如下:根据二极管7、9的电流检测值生成对开关元件5、6的导通/断开信号,并且生成对断路器2的开闭指令。In the fourth embodiment,
此处,对开关元件5、6中的任意一个(此处以开关元件6为例)发生了短路故障的情况进行说明。此时,反复进行作为第一实施方式使用图6(a)、(b)进行了说明的通流动作。其结果是,向二极管7流通的电流逐渐增大,有与通常动作时相比过大的电流、即过电流通流。Here, a case in which a short-circuit failure occurs in any one of the
本实施方式中,控制电路20根据二极管7的电流检测值判定二极管7中有过电流通流。In the present embodiment, the
控制电路20在判定出二极管7中有过电流通流时,推断开关元件6发生了短路故障。When the
推断出开关元件6发生短路故障的控制电路20通过在断路器2分闸前使开关元件5导通,从而防止电容器8的电压持续上升。The
在开关元件5发生了短路故障时,由于开关元件6反复进行导通、断开动作,从而二极管9中有过电流通流。控制电路20根据二极管9的电流检测值判定二极管9中有过电流通流。When a short-circuit failure occurs in the
控制电路20在判定出二极管9中有过电流通流时,推断开关元件5发生了短路故障。When the
推断出开关元件5发生短路故障的控制电路20通过在断路器2分闸前使开关元件6导通,从而防止电容器10的电压持续上升。The
另外,控制电路20在推断出开关元件5或开关元件6的任意一个发生了短路故障时,也可以向开关元件5、6的双方发出导通栅极指令,此时也能够发挥相同的效果。In addition, the
接着,根据图10对相当于权利要求9的本发明第五实施方式进行说明。Next, a fifth embodiment of the present invention corresponding to claim 9 will be described with reference to FIG. 10 .
该第五实施方式中,二极管7、9的两端分别连接有电压检测器11、12,由这些电压检测器11、12输出的电压检测值输入到控制电路20。控制电路20的结构如下:根据二极管7、9的电压检测值生成对开关元件5、6的导通/断开信号,并且生成对断路器2的开闭指令。In the fifth embodiment,
此处,对开关元件5、6中的任意一个(此处以开关元件6为例)发生了短路故障的情况进行说明。此时,反复进行使用图6(a)、(b)对第一实施方式进行了说明的通流动作。其结果是,向二极管7流通的电流逐渐增大,有与通常动作时相比过大的电流、即过电流通流。Here, a case in which a short-circuit failure occurs in any one of the
因此,二极管7的电压与通常动作的二极管导通期间(向开关元件5发出的栅极指令为断开的期间)的电压相比过大。此处,二极管7的电压依据正向电流-电压特性。Therefore, the voltage of the
本实施方式中,控制电路20在检测出开关元件5的栅极指令为断开的期间二极管7的两端电压与通常时的上述期间的电压相比过大时,判定二极管7中有过电流通流。In the present embodiment, the
控制电路20在判定出二极管7中有过电流通流时,推断开关元件6发生了短路故障。When the
推断出开关元件6发生短路故障的控制电路20通过在断路器2分闸前使开关元件5导通,从而防止电容器8的电压持续上升。The
在开关元件5发生了短路故障时,由于开关元件6反复进行导通、断开动作,从而二极管9中有过电流通流。于是,二极管9的电压与通常动作的二极管导通期间(向开关元件6发出的栅极指令为断开的期间)的电压相比过大。When a short-circuit failure occurs in the
控制电路20在判定出二极管9中有过电流通流时,推断开关元件6发生了短路故障。而且,控制电路20通过在断路器2分闸前使开关元件6导通,从而防止电容器10的电压持续上升。When the
此处,控制电路20在推断出开关元件5或开关元件6的任意一个发生了短路故障时,也可以向开关元件5、6的双方发出导通栅极指令,此时也能够发挥相同的效果。Here, the
接着,根据图11对相当于权利要求10的本发明第六实施方式进行说明。Next, a sixth embodiment of the present invention corresponding to claim 10 will be described with reference to FIG. 11 .
该第六实施方式中,电抗器3串联连接有电流检测器15,由该电流检测器15输出的电流检测值输入到控制电路20。另外,下面对电抗器3串联连接有电流检测器15的情况进行说明,但是也可以电抗器3、4的任意一个或两个连接有电流检测器,将其电流检测值输入到控制电路20。In the sixth embodiment, a
控制电路20的结构如下:根据电抗器3的电流检测值生成对开关元件5、6的导通/断开信号,并且生成对断路器2的开闭指令。The
此处,对开关元件5、6中的任意一个(此处以开关元件6为例)发生了短路故障的情况进行说明。此时,反复进行使用图6(a)、(b)对第一实施方式进行了说明的通流动作。其结果是,向电抗器3流通的电流逐渐增大,有与通常动作时相比过大的电流、即过电流通流。Here, a case in which a short-circuit failure occurs in any one of the
上述例子为开关元件6发生了短路故障时的例子,而在开关元件5发生了短路故障时,由于开关元件6反复进行导通、断开动作,从而电抗器3中仍有过电流通流。The above example is an example when the switching
控制电路20根据电抗器3的电流检测值判定电抗器3中有过电流通流。The
控制电路20在判定出电抗器3中有过电流通流时,推断开关元件5或6的任意一个发生了短路故障。When the
推断出开关元件5或6的任意一个发生了短路故障的控制电路20通过在断路器2分闸前向开关元件5、6的双方发出导通栅极指令,从而防止电容器8或10的电压持续上升。The
接着,根据图12对相当于权利要求11的本发明第七实施方式进行说明。Next, a seventh embodiment of the present invention corresponding to claim 11 will be described with reference to FIG. 12 .
该第七实施方式中,电抗器3并联连接有电压检测器16,由该电压检测器16输出的电压检测值输入到控制电路20。另外,下面对电抗器3并联连接有电压检测器16的情况进行说明,但是也可以电抗器3、4的任意一个或两个连接有电压检测器,将该电压检测值输入到控制电路20。In the seventh embodiment, a
控制电路20的结构如下:根据电抗器3的电压检测值生成对开关元件5、6的导通/断开信号,并且生成对断路器2的开闭指令。The
此处,对开关元件5、6中的任意一个(此处以开关元件6为例)发生了短路故障的情况进行说明。此时,反复进行使用图6(a)、(b)对第一实施方式进行了说明的通流动作。其结果是,向电抗器3流通的电流逐渐增大,有与通常动作时相比过大的电流通流。于是,与通常动作的通流时相比,电抗器3的两端电压过大。或者,在向开关元件5发出的栅极指令为导通且向开关元件6发出的栅极指令为断开的期间,原本应该由发生了故障的开关元件6承受的电压将由电抗器3承受。因此,电抗器3的两端电压与通常时的所述期间的值相比过大。Here, a case in which a short-circuit failure occurs in any one of the
在开关元件5发生了短路故障时,与上述相同,电抗器3的两端电压与通常动作时的电压相比也过大。When a short-circuit failure occurs in the
因此,控制电路20根据电抗器3的两端的电压检测值判定电抗器3中有过电流通流。Therefore, the
控制电路20在判定出电抗器3中有过电流通流时,推断开关元件5或6的任意一个发生了短路故障。When the
推断出开关元件5或6的任意一个发生了短路故障的控制电路20通过在断路器2分闸前向开关元件5、6的双方发出导通栅极指令,从而能够防止电容器8或10的电压持续上升。The
接着,根据图13对相当于权利要求12的本发明第八实施方式进行说明。Next, an eighth embodiment of the present invention corresponding to claim 12 will be described with reference to FIG. 13 .
该第八实施方式中,将开关元件5、6彼此间的连接点与电容器8、10彼此间的连接点连接的配线(以下称为中间配线)上连接有电流检测器17,由该电流检测器17输出的电流检测值输入到控制电路20。控制电路20的结构如下:根据中间配线的电流检测值生成对开关元件5、6的导通/断开信号,并且生成对断路器2的开闭指令。In the eighth embodiment, the
此处,对开关元件5、6中的任意一个(此处以开关元件6为例)发生了短路故障的情况进行说明。此时,反复进行使用图6(a)、(b)对第一实施方式进行了说明的通流动作。其结果是,向中间配线流通的电流逐渐增大,有与通常动作时相比过大的电流、即过电流通流。Here, a case in which a short-circuit failure occurs in any one of the
上述例子为开关元件6发生了短路故障时的例子,而在开关元件5发生了短路故障时,由于开关元件6反复进行导通、断开动作,从而中间配线中仍有过电流通流。The above example is an example when the switching
控制电路20根据电流检测器17的电流检测值判定中间配线中有过电流通流。The
而且,控制电路20在判定出中间配线中有过电流通流时,推断开关元件5或6的任意一个发生了短路故障。Then, when the
推断出开关元件5或6的任意一个发生了短路故障的控制电路20通过在断路器2分闸前向开关元件5、6的双方发出导通栅极指令,从而防止电容器8或10的电压持续上升。The
接着,根据图14对相当于权利要求13的本发明第九实施方式进行说明。Next, a ninth embodiment of the present invention corresponding to claim 13 will be described with reference to FIG. 14 .
本实施方式中,开关元件5、6的作为控制电极的栅极(双极型晶体管中作为控制电极的基区。以下以栅极为对象进行说明。)与发射极之间分别连接有电压检测器11、12,其电压检测值输入到控制电路20。另外,如果能够顺利检测出栅极电压,也可以将电压检测器11、12分别连接到开关元件5、6的栅极与集电极之间。In the present embodiment, voltage detectors are connected between the gates serving as control electrodes of the
控制电路20的结构如下:根据开关元件5、6的栅极的电压检测值生成对开关元件5、6的导通/断开信号,并且生成对断路器2的开闭指令。The
此处,对开关元件5、6中的任意一个(此处以开关元件6为例)的栅极始终短路或栅极电位始终为高电平的情况进行说明。此时,本实施方式中,控制电路20根据栅极的电压检测值判定开关元件6的栅极始终短路或栅极电位始终为高电平。Here, the case where the gate of any one of the
控制电路20在判定出开关元件6的栅极始终短路或栅极电位始终为高电平时,推断开关元件6发生了短路故障。When the
推断出开关元件6发生了短路故障的控制电路20通过在断路器2分闸前使开关元件5导通,从而防止电容器8的电压持续上升。The
另外,控制电路20在判定出开关元件5的栅极始终短路或栅极电位始终为高电平时,推断开关元件5发生了短路故障。In addition, when the
推断出开关元件5发生了短路故障的控制电路20通过根据栅极的电压检测值在断路器2分闸前使开关元件6导通,从而防止电容器10的电压持续上升。The
此外,控制电路20在推断出开关元件5或开关元件6的任意一个发生了短路故障时,也可以向开关元件5、6的双方发出导通栅极指令,此时也能够发挥相同的效果。In addition, the
接着,根据图15对相当于权利要求14的本发明第十实施方式进行说明。Next, a tenth embodiment of the present invention corresponding to claim 14 will be described with reference to FIG. 15 .
本实施方式中,开关元件5、6的作为控制电极的栅极(双极型晶体管中作为控制电极的基区。以下以栅极为对象进行说明。)分别连接有电流检测器13、14,其电流检测值输入到控制电路20。In the present embodiment,
控制电路20的结构如下:根据开关元件5、6的栅极的电流检测值生成对开关元件5、6的导通/断开信号,并且生成对断路器2的开闭指令。The
此处,对开关元件5、6中的任意一个(此处以开关元件6为例)的栅极电流为过电流或始终通流的情况进行说明。此时,本实施方式中,控制电路20根据栅极的电流检测值判定开关元件6的栅极电流为过电流或始终通流。Here, the case where the gate current of any one of the
控制电路20在判定出开关元件6的栅极电流为过电流或始终通流时,推断开关元件6发生了短路故障。When the
推断出开关元件6发生短路故障的控制电路20通过在断路器2分闸前使开关元件5导通,从而防止电容器8的电压持续上升。The
另外,控制电路20在判定出开关元件5的栅极电流为过电流或始终通流时,推断开关元件5发生了短路故障。In addition, when the
推断出开关元件5发生短路故障的控制电路20通过在断路器2分闸前使开关元件6导通,从而防止电容器10的电压持续上升。The
此外,控制电路20在推断出开关元件5或开关元件6的任意一个发生了短路故障时,也可以向开关元件5、6的双方发出导通栅极指令,此时也能够发挥相同的效果。In addition, the
接着,根据图16对相当于权利要求15的本发明第十一实施方式进行说明。Next, an eleventh embodiment of the present invention corresponding to claim 15 will be described with reference to FIG. 16 .
该第十一实施方式中,电容器8、10分别串联连接有电流检测器13、14,由这些电流检测器13、14输出的电流检测值输入到控制电路20。控制电路20的结构如下:根据电容器8、10的电流检测值生成对开关元件5、6的导通/断开信号,并且生成对断路器2的开闭指令。In the eleventh embodiment,
此处,对开关元件5、6中的任意一个(此处以开关元件6为例)发生了短路故障的情况进行说明。在开关元件6发生了短路故障时,电容器8中有与通常动作时相比过大的电流、即过电流通流。尤其是在稳态期间、即开关元件6进行开关经过过渡期间以后到开始下次开关以前的期间,有过电流流通。Here, a case in which a short-circuit failure occurs in any one of the
控制电路20根据由电流检测器13输出的电容器8的电流检测值判定电容器8中有过电流通流。控制电路20在判定出电容器8中有过电流通流时,推断开关元件6发生了短路故障。The
在推断出开关元件6发生了短路故障时,控制电路20通过在断路器2分闸前使开关元件5导通,从而防止电容器8的电压持续上升。When it is concluded that the switching
上述例子为开关元件6发生了短路故障时的例子,而在开关元件5发生了短路故障时,电容器10中有过电流通流。控制电路20在根据由电流检测器14输出的电容器10的电流检测值判定出电容器10中有过电流通流时,推断开关元件5发生了短路故障。The above-mentioned example is an example when the switching
推断出开关元件5发生短路故障的控制电路20通过在断路器2分闸前使开关元件6导通,从而能够防止电容器10的电压持续上升。The
控制电路20在推断出开关元件5或开关元件6的任意一个发生了短路故障时,也可以向开关元件5、6的双方发出导通栅极指令,此时也能够发挥相同的效果。The
另外,如第一实施方式中提及的那样,从由控制电路输出断路器的分闸指令到断路器实际分闸的延迟时间,与从输出对开关元件的导通栅极指令到开关元件实际导通的延迟时间相比,通常较长。因此,本发明的控制电路无论输出断路器的分闸指令的时机如何,均需要输出导通栅极指令,以使得在断路器实际分闸前规定的开关元件完成导通动作。In addition, as mentioned in the first embodiment, the delay time from the output of the opening command of the circuit breaker by the control circuit to the actual opening of the circuit breaker is different from the output of the on-gate command to the switching element to the actual opening of the switching element. The turn-on delay time is usually longer than that. Therefore, regardless of the timing of outputting the opening command of the circuit breaker, the control circuit of the present invention needs to output the conduction gate command, so that the predetermined switching element completes the conduction action before the actual opening of the circuit breaker.
即,本发明的基本思想是:在推断出开关元件发生短路故障时,在进行断路器分闸的保护动作之前,使规定的开关元件导通,从而抑制电容器的电压上升,防止低耐压的开关元件或低耐压的电容器损坏。That is, the basic idea of the present invention is to turn on a predetermined switching element before performing the protective action of opening the circuit breaker when it is estimated that a short-circuit fault has occurred in the switching element, thereby suppressing the voltage rise of the capacitor and preventing low withstand voltage. The switching element or the capacitor with low withstand voltage is damaged.
标号说明Label description
1:直流电源1: DC power supply
2:断路器2: circuit breaker
3、4:电抗器3, 4: Reactor
5、6:半导体开关元件5, 6: Semiconductor switching elements
7、9:二极管7, 9: Diode
8、10:电容器8, 10: Capacitors
11、12、16:电压检测器11, 12, 16: Voltage detector
13、14、15、17:电流检测器13, 14, 15, 17: Current detectors
20:控制电路20: Control circuit
IN1、IN2:输入端子IN1, IN2: input terminals
OUT1、OUT2:输出端子OUT1, OUT2: output terminals
Claims (16)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-161549 | 2015-08-19 | ||
JP2015161549 | 2015-08-19 | ||
JP2015-227299 | 2015-11-20 | ||
JP2015227299A JP6606993B2 (en) | 2015-08-19 | 2015-11-20 | DC-DC converter |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106469980A CN106469980A (en) | 2017-03-01 |
CN106469980B true CN106469980B (en) | 2020-06-23 |
Family
ID=58203746
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610538671.2A Active CN106469980B (en) | 2015-08-19 | 2016-07-11 | DC-DC converter |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6606993B2 (en) |
CN (1) | CN106469980B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107070215B (en) * | 2017-04-12 | 2023-05-16 | 特变电工西安电气科技有限公司 | Three-level boost common-ground system and control method thereof |
JP6956553B2 (en) * | 2017-07-21 | 2021-11-02 | 新電元工業株式会社 | Power supply and control method of power supply |
JP7000809B2 (en) | 2017-11-14 | 2022-01-19 | 富士電機株式会社 | Step-down chopper circuit |
KR101961350B1 (en) * | 2018-02-22 | 2019-07-17 | 주식회사 팩테크 | Step-up converter for railyway vehicle |
CN109917895B (en) * | 2019-03-13 | 2021-01-22 | 浪潮商用机器有限公司 | A control device and control method of a voltage regulation module VRM |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000166221A (en) * | 1998-11-26 | 2000-06-16 | Mitsubishi Electric Corp | Double chopper |
JP2008295228A (en) * | 2007-05-25 | 2008-12-04 | Toshiba Mitsubishi-Electric Industrial System Corp | Step-up chopper circuit, step-down chopper circuit, and dc-dc converter circuit using same |
JP2013038921A (en) * | 2011-08-08 | 2013-02-21 | Tabuchi Electric Co Ltd | Step-up chopper circuit, and power supply device including the same |
JP2014011897A (en) * | 2012-06-29 | 2014-01-20 | Honda Motor Co Ltd | Electric power conversion system in electric vehicle |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101630908B (en) * | 2008-07-17 | 2012-12-12 | 华硕电脑股份有限公司 | Power supply device and its overvoltage protection unit and method |
CN102237799B (en) * | 2011-07-12 | 2013-04-10 | 珠海泰坦新能源系统有限公司 | Three-level resonant converter clamped by resonant capacitor and transformer primary side |
JP6040582B2 (en) * | 2012-06-14 | 2016-12-07 | 富士電機株式会社 | Protection control method for multi-level power conversion circuit |
BR112016009188B1 (en) * | 2013-10-29 | 2021-05-18 | Mitsubishi Electric Corporation | dc power supply and refrigeration cycle devices |
WO2015079504A1 (en) * | 2013-11-26 | 2015-06-04 | 三菱電機株式会社 | Direct current power source device and refrigeration cycle application machine provided with same |
FR3015805B1 (en) * | 2013-12-20 | 2017-03-10 | Gen Electric | SWEET SWITCHING INTERLETING HOPPER |
CN106451428B (en) * | 2016-10-18 | 2019-07-23 | 国网浙江省电力公司电力科学研究院 | A kind of mixed type Research on Unified Power Quality Conditioner with short-circuit current-limiting function |
-
2015
- 2015-11-20 JP JP2015227299A patent/JP6606993B2/en active Active
-
2016
- 2016-07-11 CN CN201610538671.2A patent/CN106469980B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000166221A (en) * | 1998-11-26 | 2000-06-16 | Mitsubishi Electric Corp | Double chopper |
JP2008295228A (en) * | 2007-05-25 | 2008-12-04 | Toshiba Mitsubishi-Electric Industrial System Corp | Step-up chopper circuit, step-down chopper circuit, and dc-dc converter circuit using same |
JP2013038921A (en) * | 2011-08-08 | 2013-02-21 | Tabuchi Electric Co Ltd | Step-up chopper circuit, and power supply device including the same |
JP2014011897A (en) * | 2012-06-29 | 2014-01-20 | Honda Motor Co Ltd | Electric power conversion system in electric vehicle |
Also Published As
Publication number | Publication date |
---|---|
JP6606993B2 (en) | 2019-11-20 |
JP2017042028A (en) | 2017-02-23 |
CN106469980A (en) | 2017-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11139808B2 (en) | Semiconductor device and power conversion system | |
CN106469980B (en) | DC-DC converter | |
CN103516244B (en) | The Protection control system of multilevel power conversion circuit | |
JP4890247B2 (en) | Grid-connected inverter device | |
CN103944548B (en) | Gate driving circuit for transistor | |
US9450509B2 (en) | Power conversion apparatus | |
US11881764B2 (en) | Short-circuit protection systems and methods for flying capacitor based buck-boost converters | |
CN108604607B (en) | Protection circuit for a Photovoltaic (PV) module, method for operating the protection circuit and Photovoltaic (PV) system comprising such a protection circuit | |
US11139733B2 (en) | Modular multilevel converter sub-module having DC fault current blocking function and method of controlling the same | |
US9793825B2 (en) | Power conversion device with a voltage generation part that is configured to supply current to a sense diode and a sense resistor in select situations | |
US10355580B2 (en) | DC-DC converter with protection circuit limits | |
US10511166B2 (en) | Voltage converter having a reverse polarity protection diode | |
EP2747260B1 (en) | Method for operating an electrical power rectifier, and an electrical power rectifier | |
EP3089344A1 (en) | Power conversion device | |
US20190131867A1 (en) | Power converter | |
JP2018011467A (en) | Gate drive circuit for semiconductor switching element | |
US20190288515A1 (en) | Power conditioner | |
JPWO2015011941A1 (en) | Inverter device | |
CN109950878A (en) | A kind of self-recovery protection circuit and overvoltage protection method for DC/DC converter | |
CN105896940B (en) | Power inverter | |
CN108847835B (en) | Power device driving protection circuit and control method thereof | |
US9673692B2 (en) | Application of normally closed power semiconductor devices | |
JP6953885B2 (en) | Power supply and cutoff switch circuit | |
US9812966B2 (en) | Chopper circuit | |
US10243353B2 (en) | DC-DC converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |