[go: up one dir, main page]

CN106452170A - Surface acoustic wave rotary motor - Google Patents

Surface acoustic wave rotary motor Download PDF

Info

Publication number
CN106452170A
CN106452170A CN201611158685.8A CN201611158685A CN106452170A CN 106452170 A CN106452170 A CN 106452170A CN 201611158685 A CN201611158685 A CN 201611158685A CN 106452170 A CN106452170 A CN 106452170A
Authority
CN
China
Prior art keywords
acoustic wave
rotor
surface acoustic
wave device
piezoelectric substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611158685.8A
Other languages
Chinese (zh)
Inventor
刘国君
马祥
张炎炎
吴越
赵心
李新波
刘建芳
杨志刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201611158685.8A priority Critical patent/CN106452170A/en
Publication of CN106452170A publication Critical patent/CN106452170A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/12Constructional details

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

The invention relates to an ultrasonic rotary motor based on surface acoustic wave, mainly comprising a fixing shell, a surface acoustic wave device, push plates, an upper retaining plate and a rotor, wherein the surface acoustic wave device comprises two pairs of interdigital transducers and a piezoelectric substrate. The part of a rotor in contact with the piezoelectric substrate is positioned in an area between the two pairs of interdigital transducers, certain pressure is applied to the left and right push plates and the upper retaining plate, a high-frequency sinusoidal signal is applied to the specified interdigital transducer to excite the surface acoustic wave device to generate surface acoustic wave, and the rotor can be rotated clockwise and anticlockwise by the aid of frictional force between the rotor and the piezoelectric substrate. The ultrasonic rotary motor has the advantages of simple structure, small size, high drive precision, low control difficulty, low cost and the like.

Description

一种声表面波旋转马达A Surface Acoustic Wave Rotary Motor

技术领域technical field

本发明属于超声马达领域,具体涉及一种声表面波旋转马达。The invention belongs to the field of ultrasonic motors, in particular to a surface acoustic wave rotary motor.

背景技术Background technique

随着现代科技的快速发展,微型机械在社会生产中的作用越来越突显,因而作为微型机械系统的核心部件——微型马达受到了国内外研究学者广泛的关注。虽然传统的电磁马达具有转速快、功率高、能量利用率较高等优点,但其内部结构较为复杂,并且由于其驱动原理是利用转子磁铁与定子线圈间的电磁作用力驱动转子转动,容易受到外界电磁的干扰,此外传统电磁马达的尺寸较大,驱动精度较低。With the rapid development of modern science and technology, the role of micro-machines in social production is becoming more and more prominent. Therefore, as the core component of micro-mechanical systems, micro-motors have attracted extensive attention from domestic and foreign researchers. Although the traditional electromagnetic motor has the advantages of fast speed, high power, and high energy utilization rate, its internal structure is relatively complicated, and because its driving principle is to use the electromagnetic force between the rotor magnet and the stator coil to drive the rotor to rotate, it is easily affected by the outside world. Electromagnetic interference, in addition, the traditional electromagnetic motor has a large size and low driving precision.

由于传统电磁马达难以应用于微型机械系统,一种利用摩擦力驱动的压电超声马达进入了人们的视野,压电超声马达具有定位精度高,低速大转矩,无电磁干扰,尺寸小,无噪音等优点。Because traditional electromagnetic motors are difficult to apply to micro-mechanical systems, a piezoelectric ultrasonic motor driven by friction has entered people's field of vision. The piezoelectric ultrasonic motor has high positioning accuracy, low speed and high torque, no electromagnetic interference, small size, no Noise and other advantages.

20世纪90年代中期,日本学者Kurosawa等人提出了声表面波马达,其也属于压电超声马达的一种,但是与普通的压电超声马达相比,声表面波马达易于控制,尺寸更小,具有纳米级的定位精度,并且其采用高精度的表面微加工工艺制造技术,因此具有更高的可靠性和工作效率。但是目前国内外学者研究的声表面波马达大多是单一的直线型,对于旋转型声表面波马达的研究非常少。鉴于此,本发明提出一种声表面波旋转马达,利用声表面波使固体表面质点产生椭圆运动轨迹的特性,依靠转子与接触面间的摩擦力来驱动转子实现旋转运动。In the mid-1990s, Japanese scholars Kurosawa and others proposed the surface acoustic wave motor, which is also a kind of piezoelectric ultrasonic motor, but compared with ordinary piezoelectric ultrasonic motors, the surface acoustic wave motor is easy to control and smaller in size , with nanometer-level positioning accuracy, and it adopts high-precision surface micromachining manufacturing technology, so it has higher reliability and work efficiency. However, most of the surface acoustic wave motors studied by scholars at home and abroad are of a single linear type, and there are very few studies on the rotary surface acoustic wave motor. In view of this, the present invention proposes a surface acoustic wave rotary motor, which uses surface acoustic waves to make solid surface particles generate elliptical motion trajectories, and relies on the friction between the rotor and the contact surface to drive the rotor to achieve rotational motion.

发明内容Contents of the invention

本发明的目的在于提供一种声表面波旋转马达,以解决当前声表面波马达难以实现旋转运动的问题。The purpose of the present invention is to provide a surface acoustic wave rotary motor to solve the problem that the current surface acoustic wave motor is difficult to realize the rotary motion.

为了解决上述技术问题,本发明采用的技术方案是:In order to solve the problems of the technologies described above, the technical solution adopted in the present invention is:

所述的声表面波旋转马达由固定壳体(1)、四个声表面波器件(2)、两个推板(5)、上挡板(6)和转子(7)组成,声表面波器件(201)固定于固定壳体(1)内壁的下表面;声表面波器件(202)与推板(502)固定粘接,放置于固定壳体(1)内壁的右表面,推板(502)的圆台与固定壳体(1)的孔为间隙配合;声表面波器件(204)与推板(501)固定粘接,放置于固定壳体(1)内壁的左表面,推板(501)的圆台与固定壳体(1)的孔为间隙配合;转子(7)放置于固定壳体(1)内与各声表面波器件(2)相切接触;声表面波器件(203)与上挡板(6)固定粘接,放置于转子(7)的上方,并且声表面波器件(2)与转子(7)相切接触。The surface acoustic wave rotary motor is composed of a fixed housing (1), four surface acoustic wave devices (2), two push plates (5), an upper baffle (6) and a rotor (7). The device (201) is fixed on the lower surface of the inner wall of the fixed housing (1); the surface acoustic wave device (202) is fixedly bonded to the push plate (502), placed on the right surface of the inner wall of the fixed housing (1), and the push plate ( 502) and the hole of the fixed shell (1) are clearance fit; the surface acoustic wave device (204) is fixedly bonded to the push plate (501), placed on the left surface of the fixed shell (1) inner wall, and the push plate ( 501) and the hole of the fixed housing (1) are in clearance fit; the rotor (7) is placed in the fixed housing (1) and is in tangential contact with each surface acoustic wave device (2); the surface acoustic wave device (203) It is fixedly bonded to the upper baffle (6), placed above the rotor (7), and the surface acoustic wave device (2) is in tangential contact with the rotor (7).

所述的声表面波器件(2)包括两对叉指换能器(3)和压电基片(4),叉指换能器(3)采用MEMS微细加工工艺溅射在压电基片(4)表面。The surface acoustic wave device (2) includes two pairs of interdigital transducers (3) and piezoelectric substrates (4), and the interdigital transducers (3) are sputtered on the piezoelectric substrates using MEMS micromachining technology. (4) SURFACE.

所述的转子(7)与压电基片(4)的接触区域处于两对叉指换能器(3)之间,且压电基片(4)构成多边形包围转子(7),转子(7)与各压电基片(4)相切,且转子(7)与压电基片(4)的接触线为压电基片(4)的对称中心线,预压力的作用方向与压电基片(4)垂直且指向相切接触线,转子(7)与声表面波器件(2)的接触长度小于叉指换能器(3)的长度。The contact area between the rotor (7) and the piezoelectric substrate (4) is between two pairs of interdigital transducers (3), and the piezoelectric substrate (4) forms a polygon to surround the rotor (7), and the rotor ( 7) It is tangent to each piezoelectric substrate (4), and the contact line between the rotor (7) and the piezoelectric substrate (4) is the symmetrical center line of the piezoelectric substrate (4). The electric substrate (4) is vertical and points to the tangential contact line, and the contact length between the rotor (7) and the surface acoustic wave device (2) is shorter than the length of the interdigital transducer (3).

所述的声表面波旋转马达利用转子(7)与压电基片(4)间的摩擦力实现驱动,施加一定压力于左右推板(5)以及上挡板(6),对指定的叉指换能器(3)施加高频正弦信号,可实现转子(7)的顺时针旋转和逆时针旋转。The surface acoustic wave rotary motor is driven by the friction between the rotor (7) and the piezoelectric substrate (4), and a certain pressure is applied to the left and right push plates (5) and the upper baffle plate (6). The high-frequency sinusoidal signal applied by the finger transducer (3) can realize clockwise rotation and counterclockwise rotation of the rotor (7).

本发明的工作原理:Working principle of the present invention:

将叉指换能器与高频信号发生器及功率放大器的两极相连,对叉指换能器施加高频正弦信号,由于压电基片的逆压电效应,会在压电基片表面产生向周围传播的声表面波,由于声表面波具有使固体表面质点产生椭圆运动轨迹的特性,在压电基片表面放置转子,并对转子施加一定预压力,利用转子与压电基片的摩擦力,可以实现转子的移动,由于在转子的四周都有用于驱动的摩擦力,最终能够实现转子的转动。Connect the interdigital transducer with the high-frequency signal generator and the two poles of the power amplifier, and apply a high-frequency sinusoidal signal to the interdigital transducer. Due to the inverse piezoelectric effect of the piezoelectric substrate, a The surface acoustic wave propagating to the surrounding, because the surface acoustic wave has the characteristic of making the solid surface particle generate an elliptical motion track, the rotor is placed on the surface of the piezoelectric substrate, and a certain pre-pressure is applied to the rotor, and the friction between the rotor and the piezoelectric substrate is used The force can realize the movement of the rotor, and because there is friction force for driving around the rotor, the rotation of the rotor can be realized finally.

本发明具有的优势在于:声表面波的振幅在纳米级,转子的驱动精度也能达到纳米级,和普通的压电超声马达相比声表面波旋转马达有着更高的驱动精度,并且声表面波马达的结构更加简单,尺寸更加小,能够解决目前微型马达难以达到纳米级驱动精度的技术难题。The invention has the advantages that: the amplitude of the surface acoustic wave is at the nanometer level, and the driving precision of the rotor can also reach the nanometer level. Compared with the ordinary piezoelectric ultrasonic motor, the surface acoustic wave rotary motor has higher driving precision, and the surface acoustic wave The structure of the wave motor is simpler and the size is smaller, which can solve the technical problem that the current micro-motor is difficult to achieve nanometer-level driving precision.

附图说明Description of drawings

图1为本发明正面的等轴测视图。Figure 1 is an isometric view of the front of the invention.

图2为本发明的结构爆炸图。Figure 2 is an exploded view of the structure of the present invention.

图3为声表面波器件的等轴测视图。Figure 3 is an isometric view of a surface acoustic wave device.

图4为第二实施例示意图。Fig. 4 is a schematic diagram of the second embodiment.

图5为声表面波马达驱动原理图。Fig. 5 is a driving schematic diagram of a surface acoustic wave motor.

其中:固定壳体1 声表面波器件2(201,202,203,204)Including: fixed shell 1 surface acoustic wave device 2 (201,202,203,204)

叉指换能器3(301,302,303,304,305,306,307,308)Interdigital transducer 3 (301, 302, 303, 304, 305, 306, 307, 308)

压电基片4(401,402,403,404) 推板5(501,502) 上挡板6Piezoelectric substrate 4 (401,402,403,404) push plate 5 (501,502) upper baffle plate 6

转子7Rotor 7

具体实施方式detailed description

参照图1、图2、图3、图4、图5所示:Referring to Figure 1, Figure 2, Figure 3, Figure 4, and Figure 5:

本发明提出一种声表面波旋转马达,包括固定壳体(1)、四个声表面波器件(2)、两个推板(5)、上挡板(6)和转子(7),声表面波器件(201)采用粘接方式固定于固定壳体(1)内壁的下表面;声表面波器件(202)与推板(502)固定粘接,放置于固定壳体(1)内壁的右表面,推板(502)的圆台与固定壳体(1)的孔为间隙配合;声表面波器件(204)与推板(501)固定粘接,放置于固定壳体(1)内壁的左表面,推板(501)的圆台与固定壳体(1)的孔为间隙配合;转子(7)放置于固定壳体(1)内与各声表面波器件(2)相切接触;声表面波器件(203)与上挡板(6)固定粘接,放置于转子(7)的上方,并且声表面波器件(2)与转子(7)相切接触。声表面波器件(2)包括两对叉指换能器(3)和压电基片(4),叉指换能器(3)采用MEMS微细加工工艺溅射在压电基片(4)表面,叉指换能器(3)的材料可选取铝,压电基片(4)材料通常选取铌酸锂,转子(7)材料可选取铝。The invention proposes a surface acoustic wave rotary motor, which includes a fixed shell (1), four surface acoustic wave devices (2), two push plates (5), an upper baffle (6) and a rotor (7). The surface wave device (201) is fixed on the lower surface of the inner wall of the fixed housing (1) by bonding; the surface acoustic wave device (202) is fixedly bonded to the push plate (502), and placed on the inner wall of the fixed housing (1). On the right surface, the round platform of the push plate (502) is in clearance fit with the hole of the fixed shell (1); the surface acoustic wave device (204) is fixedly bonded to the push plate (501), and placed on the inner wall of the fixed shell (1). On the left surface, the round platform of the push plate (501) is in clearance fit with the hole of the fixed housing (1); the rotor (7) is placed in the fixed housing (1) and is in tangential contact with each surface acoustic wave device (2); The surface wave device (203) is fixedly bonded to the upper baffle (6), placed above the rotor (7), and the surface acoustic wave device (2) is in tangential contact with the rotor (7). The surface acoustic wave device (2) includes two pairs of interdigital transducers (3) and a piezoelectric substrate (4), and the interdigital transducers (3) are sputtered on the piezoelectric substrate (4) by MEMS micromachining technology. On the surface, the material of the interdigital transducer (3) can be selected from aluminum, the material of the piezoelectric substrate (4) is usually selected from lithium niobate, and the material of the rotor (7) can be selected from aluminum.

叉指换能器(3)的输入信号峰峰值电压为20V-50V,施加在左右推板(5)和上挡板(6)的预压力为10N-100N。The peak-to-peak voltage of the input signal of the interdigital transducer (3) is 20V-50V, and the pre-pressure applied to the left and right push plates (5) and the upper baffle plate (6) is 10N-100N.

实施例一:如图1所示,声表面波旋转马达的转子(7)与某一压电基片(4)的接触线和转子(7)轴线所构成的平面为转子(7)与声表面波器件(2)的对称平面,对左右推板(5)和上挡板(6)施加一定预压力,然后对叉指换能器(301,303,305,307)施加同一正弦信号,对叉指换能器(302,304,306,308)不施加信号,可以实现转子(7)的逆时针旋转;对叉指换能器(302,304,306,308)施加同一正弦信号,对叉指换能器(301,303,305,307)不施加信号,可以实现转子(7)的顺时针旋转,在不改变其他参数的条件下转子顺时针旋转速度与转子逆时针旋转速度相等。Embodiment one: as shown in Figure 1, the plane formed by the contact line between the rotor (7) of the surface acoustic wave rotary motor and a certain piezoelectric substrate (4) and the axis of the rotor (7) is the rotor (7) and the acoustic plane. On the symmetrical plane of the surface wave device (2), a certain preload is applied to the left and right push plates (5) and the upper baffle (6), and then the same sinusoidal signal is applied to the interdigital transducers (301, 303, 305, 307), and the same sinusoidal signal is applied to the interdigital transducers (302,304,306,308) do not apply signals, and the counterclockwise rotation of the rotor (7) can be realized; apply the same sinusoidal signal to the interdigital transducers (302,304,306,308), and do not apply signals to the interdigital transducers (301,303,305,307), and the rotor (7) can be realized ), the clockwise rotation speed of the rotor is equal to the counterclockwise rotation speed of the rotor without changing other parameters.

实施例二:如图4所示,声表面波旋转马达的转子(7)与任一压电基片(4)的接触线和转子(7)轴线所构成的平面都不为转子(7)与声表面波器件(2)的对称平面,对声表面波器件(202,203,204)施加一定预压力,然后对叉指换能器(301,303,305,307)施加同一正弦信号,对叉指换能器(302,304,306,308)不施加信号,可以实现转子(7)的逆时针旋转;对叉指换能器(302,304,306,308)施加同一正弦信号,对叉指换能器(301,303,305,307)不施加信号,可以实现转子(7)的顺时针旋转,在不改变其他参数的条件下转子顺时针旋转速度与转子逆时针旋转速度不相等。Embodiment 2: As shown in Figure 4, the plane formed by the contact line between the rotor (7) of the surface acoustic wave rotary motor and any piezoelectric substrate (4) and the axis of the rotor (7) is not the rotor (7) With the plane of symmetry of the surface acoustic wave device (2), a certain preload is applied to the surface acoustic wave device (202, 203, 204), and then the same sinusoidal signal is applied to the interdigital transducer (301, 303, 305, 307), and the interdigital transducer (302, 304, 306, 308) does not Applying a signal can realize counterclockwise rotation of the rotor (7); applying the same sinusoidal signal to the interdigital transducers (302, 304, 306, 308) and not applying a signal to the interdigital transducers (301, 303, 305, 307) can realize clockwise rotation of the rotor (7). Rotation, the clockwise rotation speed of the rotor is not equal to the counterclockwise rotation speed of the rotor under the condition of not changing other parameters.

Claims (5)

1.一种声表面波旋转马达,所述的声表面波旋转马达由固定壳体(1)、四个声表面波器件(2)、两个推板(5)、上挡板(6)和转子(7)组成,其中声表面波器件(2)包括两对叉指换能器(3)和压电基片(4);声表面波器件(201)固定于固定壳体(1)内壁的下表面;声表面波器件(202)与推板(502)固定粘接,放置于固定壳体(1)内壁的右表面,推板(502)的圆台与固定壳体(1)的孔为间隙配合;声表面波器件(204)与推板(501)固定粘接,放置于固定壳体(1)内壁的左表面,推板(501)的圆台与固定壳体(1)的孔为间隙配合;转子(7)放置于固定壳体(1)内与各声表面波器件(2)相切接触;声表面波器件(203)与上挡板(6)固定粘接,放置于转子(7)的上方,并且声表面波器件(2)与转子(7)相切接触,其特征在于:转子与压电基片的接触区域处于两对叉指换能器之间,且压电基片构成多边形包围转子。1. A surface acoustic wave rotary motor, said surface acoustic wave rotary motor consists of a fixed housing (1), four surface acoustic wave devices (2), two push plates (5), an upper baffle plate (6) and a rotor (7), wherein the surface acoustic wave device (2) includes two pairs of interdigital transducers (3) and a piezoelectric substrate (4); the surface acoustic wave device (201) is fixed on a fixed housing (1) The lower surface of the inner wall; the surface acoustic wave device (202) is fixedly bonded to the push plate (502), placed on the right surface of the inner wall of the fixed housing (1), and the round platform of the push plate (502) is connected to the fixed housing (1) The hole is a clearance fit; the surface acoustic wave device (204) is fixedly bonded to the push plate (501), placed on the left surface of the inner wall of the fixed housing (1), and the round platform of the push plate (501) and the fixed housing (1) The holes are clearance fit; the rotor (7) is placed in the fixed casing (1) and is in tangential contact with each surface acoustic wave device (2); the surface acoustic wave device (203) is fixedly bonded to the upper baffle (6), and placed above the rotor (7), and the surface acoustic wave device (2) is in tangential contact with the rotor (7), characterized in that: the contact area between the rotor and the piezoelectric substrate is between two pairs of interdigital transducers, and The piezoelectric substrate constitutes a polygon surrounding the rotor. 2.根据权利要求1所述的一种声表面波旋转马达,其特征在于:转子与各压电基片相切,预压力的作用方向与压电基片垂直且指向相切接触线。2 . A surface acoustic wave rotary motor according to claim 1 , wherein the rotor is tangent to each piezoelectric substrate, and the acting direction of the pre-pressure is perpendicular to the piezoelectric substrate and points to the tangential contact line. 3.根据权利要求1所述的一种声表面波旋转马达,其特征在于:通过给特定的叉指换能器施加高频正弦信号可以实现转子的顺时针旋转或逆时针旋转。3. A surface acoustic wave rotary motor according to claim 1, characterized in that clockwise or counterclockwise rotation of the rotor can be achieved by applying a high-frequency sinusoidal signal to a specific interdigital transducer. 4.根据权利要求1所述的一种声表面波旋转马达,其特征在于:转子与某一压电基片的接触线和转子轴线所构成的平面为转子与声表面波器件的对称平面时,转子的顺时针旋转的速度等于逆时针旋转的速度;转子与任一压电基片的接触线和转子轴线所构成的平面都不为转子与声表面波器件的对称平面时,转子的顺时针旋转的速度与逆时针旋转的速度不相等。4. A surface acoustic wave rotary motor according to claim 1, characterized in that: when the plane formed by the contact line between the rotor and a certain piezoelectric substrate and the axis of the rotor is the plane of symmetry between the rotor and the surface acoustic wave device , the speed of clockwise rotation of the rotor is equal to the speed of counterclockwise rotation; when the plane formed by the contact line between the rotor and any piezoelectric substrate and the axis of the rotor is not the symmetry plane of the rotor and the surface acoustic wave device, the clockwise rotation of the rotor The speed of clockwise rotation is not equal to the speed of counterclockwise rotation. 5.根据权利要求1所述的一种声表面波旋转马达,其特征在于:转子与声表面波器件的接触长度小于叉指换能器的指条长度。5. A surface acoustic wave rotating motor according to claim 1, characterized in that: the contact length between the rotor and the surface acoustic wave device is smaller than the length of the fingers of the interdigital transducer.
CN201611158685.8A 2016-12-15 2016-12-15 Surface acoustic wave rotary motor Pending CN106452170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611158685.8A CN106452170A (en) 2016-12-15 2016-12-15 Surface acoustic wave rotary motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611158685.8A CN106452170A (en) 2016-12-15 2016-12-15 Surface acoustic wave rotary motor

Publications (1)

Publication Number Publication Date
CN106452170A true CN106452170A (en) 2017-02-22

Family

ID=58216566

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611158685.8A Pending CN106452170A (en) 2016-12-15 2016-12-15 Surface acoustic wave rotary motor

Country Status (1)

Country Link
CN (1) CN106452170A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106877736A (en) * 2017-04-01 2017-06-20 吉林大学 A Stick-slip Inertial Rotary Actuator Based on Piezoelectric Fiber
CN108306545A (en) * 2018-01-10 2018-07-20 中国科学院合肥物质科学研究院 Square shape arranges the rotary piezo-electric motor and control methods of four piezoelectrics free end driving
CN108696180A (en) * 2017-03-31 2018-10-23 精工爱普生株式会社 Piexoelectric actuator, piezoelectric motor, robot and electronic component handling apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000102271A (en) * 1998-09-28 2000-04-07 Japan Science & Technology Corp Elastic surface wave actuator
JP2009159665A (en) * 2007-12-25 2009-07-16 Panasonic Electric Works Co Ltd Surface acoustic wave actuator
CN104870077A (en) * 2012-01-31 2015-08-26 宾夕法尼亚州立大学研究基金会 Microfluidic manipulation and particle sorting using tunable surface standing acoustic waves
CN206302353U (en) * 2016-12-15 2017-07-04 吉林大学 A Surface Acoustic Wave Rotary Motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000102271A (en) * 1998-09-28 2000-04-07 Japan Science & Technology Corp Elastic surface wave actuator
JP2009159665A (en) * 2007-12-25 2009-07-16 Panasonic Electric Works Co Ltd Surface acoustic wave actuator
CN104870077A (en) * 2012-01-31 2015-08-26 宾夕法尼亚州立大学研究基金会 Microfluidic manipulation and particle sorting using tunable surface standing acoustic waves
CN206302353U (en) * 2016-12-15 2017-07-04 吉林大学 A Surface Acoustic Wave Rotary Motor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TAKASHI SHIGEMATSU.ET AL: "Nano Meter Stepping Drive of Surface Acoustic Wave Motor", 《NANO TECHNOLOGY》 *
程利平 等: "声表面波驱动的转动马达研究", 《声学学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108696180A (en) * 2017-03-31 2018-10-23 精工爱普生株式会社 Piexoelectric actuator, piezoelectric motor, robot and electronic component handling apparatus
CN106877736A (en) * 2017-04-01 2017-06-20 吉林大学 A Stick-slip Inertial Rotary Actuator Based on Piezoelectric Fiber
CN108306545A (en) * 2018-01-10 2018-07-20 中国科学院合肥物质科学研究院 Square shape arranges the rotary piezo-electric motor and control methods of four piezoelectrics free end driving
CN108306545B (en) * 2018-01-10 2024-01-26 中国科学院合肥物质科学研究院 Rotary piezoelectric motor driven by free ends of four piezoelectric bodies arranged in shape of Chinese character 'kou' and control method

Similar Documents

Publication Publication Date Title
CN107742993B (en) Single-phase excitation type in-plane vibration ultrasonic motor and single-phase excitation method
CN106208804B (en) A high-speed rotating ultrasonic motor and the electrical excitation method of its stator
CN106452170A (en) Surface acoustic wave rotary motor
CN112737407A (en) Piezoelectric power generation system for capturing wave energy
CN206302353U (en) A Surface Acoustic Wave Rotary Motor
CN101072001B (en) Toothless Traveling Wave Rotary Ultrasonic Motor and Its Working Mode and Electric Excitation Method
CN106100440B (en) A high-speed rotating ultrasonic motor based on out-of-plane bending vibration mode
CN101626207A (en) Vibrator of beam type rotary ultrasonic motor using bending vibration modes
CN104883089B (en) Electrostatic force-driven miniature ultrasonic motor
CN103208943B (en) A kind of single stimulated rotation ultrasonic motor
CN108712103B (en) Impact type piezoelectric rotary motor
CN102055373B (en) Multi-rotor cylindrical high-torque ultrasonic motor
CN101656491B (en) In-plane modal circumferential traveling wave rotary type ultrasonic motor
CN102361412A (en) Patch type rectangular four-foot linear ultrasonic motor vibrator
CN110601596B (en) A Standing Wave Magnetic Repulsion Unidirectional Rotary Motor Based on Piezoelectric Ceramics
CN203596764U (en) Piezoelectric cantilever beam-type supersonic wave motor
CN112737411A (en) Piezoelectric power generation device
CN202586802U (en) Magnetic piezoelectric mixing action rotating driver
CN102751900B (en) Two-freedom supersonic motor
CN206195652U (en) Three -dimensional linear surface acoustic wave motor
CN101873080A (en) Traveling wave ultrasonic motor
CN104868782B (en) A kind of innovative travelling-wave type rotary ultrasonic motor
CN204633636U (en) A Micro Ultrasonic Motor Driven by Electrostatic Force
CN204271947U (en) A Single Excitation Rotary Ultrasonic Motor
CN110829887A (en) Standing wave double-sided magnetic repulsion rotating motor capable of bidirectional rotation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170222