[go: up one dir, main page]

CN106447676A - Image segmentation method based on rapid density clustering algorithm - Google Patents

Image segmentation method based on rapid density clustering algorithm Download PDF

Info

Publication number
CN106447676A
CN106447676A CN201610887803.2A CN201610887803A CN106447676A CN 106447676 A CN106447676 A CN 106447676A CN 201610887803 A CN201610887803 A CN 201610887803A CN 106447676 A CN106447676 A CN 106447676A
Authority
CN
China
Prior art keywords
image
pixel
value
distance
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610887803.2A
Other languages
Chinese (zh)
Other versions
CN106447676B (en
Inventor
陈晋音
郑海斌
保星彤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201610887803.2A priority Critical patent/CN106447676B/en
Publication of CN106447676A publication Critical patent/CN106447676A/en
Application granted granted Critical
Publication of CN106447676B publication Critical patent/CN106447676B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Image Analysis (AREA)

Abstract

一种基于快速密度聚类算法的图像分割方法,包括以下步骤:1)对于一幅待处理的自然图像,首先进行预处理和初始化,包括滤波降噪、灰度矫正、区域分块和尺度缩放等;2)接着对完成尺度变换的子图进行数据点间相似度距离的计算,得到像素点间的相关性;3)然后在各幅子图内进行并行的分割处理,包括基于密度聚类算法绘制决策图,基于决策图进行残差分析确定聚类中心和基于相似度距离比较将原尺度子图上的剩余点进行归类;4)然后将分割完成后的子图合并,进行二次重聚类得到原始尺寸大小的分割结果图。本发明提供一种能够自动确定分割类别数,实现分割准确率较高、对参数鲁棒的基于快速密度聚类算法的图像分割方法。

An image segmentation method based on a fast density clustering algorithm, comprising the following steps: 1) For a natural image to be processed, firstly perform preprocessing and initialization, including filter noise reduction, grayscale correction, region block and scale scaling etc.; 2) Then calculate the similarity distance between data points on the sub-images that have completed the scale transformation, and obtain the correlation between pixels; 3) Then perform parallel segmentation processing in each sub-image, including density-based clustering The algorithm draws a decision diagram, performs residual analysis based on the decision diagram to determine the cluster center and classifies the remaining points on the original scale subgraph based on the similarity distance comparison; Reclustering results in a segmentation map of the original size. The invention provides an image segmentation method based on a fast density clustering algorithm that can automatically determine the number of segmentation categories, achieve high segmentation accuracy, and is robust to parameters.

Description

一种基于快速密度聚类算法的图像分割方法A Method of Image Segmentation Based on Fast Density Clustering Algorithm

技术领域technical field

本发明属于图像处理技术领域,具体涉及一种图像分割方法。The invention belongs to the technical field of image processing, and in particular relates to an image segmentation method.

背景技术Background technique

图像分割是图像处理的关键技术之一,应用广泛,主要任务是将图像分成若干个特定的、具有独特性质的区域,区域内部具有强相似性,各区域间具有强差异性。同时,图像分割也是对图像进行数据分析理解的重要步骤,是由图像处理到图像分析的关键。现有的图像分割方法主要分以下几类:基于边界的分割方法、基于区域的分割方法以及基于特定理论的分割方法等。在图像分割完成后,提取出的目标可以用于图像语义识别、图像搜索等领域,所以图像分割结果的好坏将直接影响后续识别或搜索的准确性。Image segmentation is one of the key technologies of image processing, which is widely used. The main task is to divide the image into several specific and unique regions, which have strong similarities within the regions and strong differences between the regions. At the same time, image segmentation is also an important step in data analysis and understanding of images, and is the key from image processing to image analysis. The existing image segmentation methods are mainly divided into the following categories: boundary-based segmentation methods, region-based segmentation methods, and specific theory-based segmentation methods. After the image segmentation is completed, the extracted objects can be used in image semantic recognition, image search and other fields, so the quality of image segmentation results will directly affect the accuracy of subsequent recognition or search.

由于图像的多义性和复杂性,目前没有通用的分割理论能够普遍适用于各类图像的分割,现已提出的分割算法大都是针对具体问题的,因此仍然需要不断的探索新的分割算法和分割理论,这也是本文研究的目的所在。基于边界的分割方法是通过检测灰度级或者结构具有突变的地方进行分割边界的确定,包括常用的一阶微分算子有Roberts算子、Prewitt算子和Sobel算子,二阶微分算子有Laplace算子和Kirsh算子等。王军敏在《基于微分算子的边缘检测及其应用》中对Roberts算子、Prewitt算子、Sobel算子、Laplace算子、LOG算子的基本原理进行分析,并总结了各种算子的优缺点。Canny提出一种新的边缘检测方法,对受白噪声影响的阶跃型边缘最优,但是存在边界不连续的情况。苗加庆在《自适应字典改进Canny算子CT图像分割》中利用自适应字典学习算法对canny算子进行了改进。基于区域的分割方法包括并行区域分割技术和串行区域分割技术。最典型的并行区域分割技术是阈值分割法,其关键是确定分割阈值,因此又衍生出全局阈值、自适应阈值、最佳阈值等等。陈宁宁在《几种图像阈值分割算法的实现与比较》中对直方图阈值法、迭代法和大津法等常用的阈值确定法进行了综合比较,马英辉等人在《彩色图像分割方法综述》中将传统的灰度阈值法应用于彩色图像,利用彩色图像更多的色彩信息得到更好的分割效果。区域生长法和分裂合并法是两种典型的串行区域技术,需要进行生长准则和分裂合并准则的设计,其分割过程后续步骤的处理要根据历史步骤的结果进行判断而确定。随着各学科许多新理论和新方法的提出,出现了许多与一些特定理论、方法相结合的图像分割方法,包括基于遗传算法的图像分割、基于人工神经网络的图像分割、基于目标函数优化的图像分割、基于聚类分析的图像分割、基于MRF的图像分割、基于模糊集理论的图像分割等等。Due to the ambiguity and complexity of images, there is currently no general segmentation theory that can be generally applied to the segmentation of various images. Most of the segmentation algorithms that have been proposed are aimed at specific problems, so it is still necessary to continue to explore new segmentation algorithms and methods. Segmentation theory, which is also the purpose of this study. The boundary-based segmentation method is to determine the segmentation boundary by detecting the gray level or the place where the structure has a sudden change, including the commonly used first-order differential operators are Roberts operator, Prewitt operator and Sobel operator, and the second-order differential operator is Laplace operator and Kirsh operator etc. Wang Junmin analyzed the basic principles of Roberts operator, Prewitt operator, Sobel operator, Laplace operator, and LOG operator in "Edge Detection and Application Based on Differential Operators", and summarized the advantages of various operators. shortcoming. Canny proposes a new edge detection method, which is optimal for step-type edges affected by white noise, but there are boundary discontinuities. Miao Jiaqing used the adaptive dictionary learning algorithm to improve the canny operator in "Adaptive Dictionary Improves Canny Operator CT Image Segmentation". Region-based segmentation methods include parallel region segmentation techniques and serial region segmentation techniques. The most typical parallel region segmentation technique is the threshold segmentation method, the key of which is to determine the segmentation threshold, so the global threshold, adaptive threshold, optimal threshold and so on are derived. In "Implementation and Comparison of Several Image Threshold Segmentation Algorithms", Chen Ningning made a comprehensive comparison of commonly used threshold determination methods such as histogram threshold method, iterative method and Otsu method, and Ma Yinghui et al. The traditional gray-level threshold method is applied to color images, and more color information of color images is used to obtain better segmentation results. Region growing method and split-merge method are two typical serial region techniques, which need to design the growth criterion and split-merge criterion, and the processing of the subsequent steps of the split process should be determined according to the results of the historical steps. With the introduction of many new theories and methods in various disciplines, many image segmentation methods combined with some specific theories and methods have emerged, including image segmentation based on genetic algorithms, image segmentation based on artificial neural networks, and image segmentation based on objective function optimization. Image segmentation, image segmentation based on cluster analysis, image segmentation based on MRF, image segmentation based on fuzzy set theory, etc.

随着近年来各种新聚类方法的出现,衍生出了许多基于聚类算法的图像分割方法,相比于其他特定理论的分割方法,基于聚类分析的图像分割方法为图像分割提供了一个新的思路。同时,最近的研究表明,综合利用图像的颜色信息、像素点之间的位置信息、局部区域的纹理信息及像素点的上下文信息,能够极大的促进分割结果。基于聚类算法的图像分割方法又称为特征空间聚类法,将图像分割问题转换为聚类问题的关键是利用特征空间点表示图像空间中对应的像素点,根据它们在特征空间中的聚集结果对特征空间点进行分割,然后将它们映射到原来的图像空间,得到最终的分割结果。经典的聚类算法有FuzzyC-means、K-means、Ncut、SLIC、Mean-shift等。Alex等人提出了一种新颖的聚类中心刻画方法,为聚类算法的设计提供了一种新的思路,本文正是基于该聚类算法进行的图像分割,同时针对原聚类算法在处理大数据量时的高时间复杂度和高空间复杂度与图像数据量巨大的矛盾,提出了一系列的解决方案。With the emergence of various new clustering methods in recent years, many image segmentation methods based on clustering algorithms have been derived. Compared with other specific theoretical segmentation methods, image segmentation methods based on cluster analysis provide an image segmentation method. new ideas. At the same time, recent studies have shown that the comprehensive use of image color information, position information between pixels, texture information of local regions and context information of pixels can greatly improve the segmentation results. The image segmentation method based on the clustering algorithm is also called the feature space clustering method. The key to transforming the image segmentation problem into a clustering problem is to use the feature space points to represent the corresponding pixel points in the image space, according to their aggregation in the feature space As a result, the feature space points are segmented, and then they are mapped to the original image space to obtain the final segmentation result. Classic clustering algorithms include FuzzyC-means, K-means, Ncut, SLIC, Mean-shift, etc. Alex et al. proposed a novel clustering center characterization method, which provides a new idea for the design of clustering algorithms. A series of solutions are proposed for the contradiction between the high time complexity and high space complexity of large data volume and the huge amount of image data.

发明内容Contents of the invention

为了克服已有基于聚类算法的图像分割方法存在的聚类中心敏感、参数依赖性大、自适应性差、分割类簇数无法准确自动确定的不足,本发明提供了一种能够自动确定分割类别数、分割准确率较高、对参数鲁棒的基于快速密度聚类算法的图像分割方法。In order to overcome the shortcomings of the existing image segmentation methods based on clustering algorithms, which are sensitive to cluster centers, large parameter dependence, poor adaptability, and the number of segmented clusters cannot be accurately and automatically determined, the present invention provides a method that can automatically determine the segmentation category. An image segmentation method based on fast density clustering algorithm with high segmentation accuracy and robustness to parameters.

本发明解决其技术问题所采用的技术方案是:The technical solution adopted by the present invention to solve its technical problems is:

一种基于快速密度聚类算法的图像分割方法,:所述方法包括以下步骤:A kind of image segmentation method based on fast density clustering algorithm: described method comprises the following steps:

1)初始化,过程如下:1) Initialization, the process is as follows:

1.1)首先进行区域分块操作,对于一幅待处理的图像,包含有M行N列的像素点,经过预处理后,将图像分为2W1×2W2幅子图,得到的子图尺寸为其中Z[f]为前向取整函数;1.1) Firstly, the area division operation is performed. For an image to be processed, it contains pixels of M rows and N columns. After preprocessing, the image is divided into 2 W1 × 2 W2 sub-images, and the obtained sub-image size for Where Z[f] is the forward rounding function;

1.2)然后对图像进行尺度变换操作,将分块完成后的子图进行尺度缩放处理,即将尺寸为a*b的子图像变为a1*b1,其中a1=a/ksize且b1=b/ksize,ksize>1;在缩放过程中,因为每个像素点包含有三个像素值,所以采用弱采样的方法进行尺度变换,在将待处理图像包含的像素点个数减少的同时尽可能的保留原始图像的重要聚类信息;1.2) Then perform scale transformation operation on the image, and perform scaling processing on the sub-image after block division, that is, the sub-image with size a*b becomes a 1 *b 1 , where a 1 =a/k size and b 1 = b/k size , k size >1; in the scaling process, because each pixel contains three pixel values, the method of weak sampling is used for scale transformation, and the number of pixels contained in the image to be processed is reduced While retaining the important clustering information of the original image as much as possible;

2)基于像素值和位置信息的相似度距离计算,过程如下:2) Calculation of similarity distance based on pixel value and position information, the process is as follows:

2.1)对于一幅待处理的自然图像I,包含有M行N列像素点,令n=M*N,则像素数据集中每个像素点具有的特征信息包括RGB彩色空间下的三色通道分量值,即为R、G、B的三个像素值;以及在以图像左上角为坐标原点、水平线向右为Y轴、竖直线向下为X轴的二维平面直角坐标系下的坐标值(x,y);2.1) For a natural image I to be processed, which contains M rows and N columns of pixels, let n=M*N, then the pixel data set The feature information that each pixel has in includes the three-color channel component values in the RGB color space, that is, the three pixel values of R, G, and B; , the coordinate value (x, y) in the two-dimensional plane Cartesian coordinate system where the vertical line goes downward to the X axis;

2.2)设dp(p1,p2)为两像素点间的相似度距离,相似度距离计算公式如下:2.2) Let d p (p1, p2) be the similarity distance between two pixels, the similarity distance calculation formula is as follows:

dp(p1,p2)=θdp_rgb(p1,p2)+(1-θ)dp_xy(p1,p2) (3)d p (p1,p2)=θd p_rgb (p1,p2)+(1-θ)d p_xy (p1,p2) (3)

式(1)中,r1、g1、b1和r2、g2、b2分别代表像素点p1、p2在RGB彩色空间下的像素值,dp_rgb表示在该空间下的像素点间距离;式(2)中,x1、y1和x2、y2分别代表像素点p1、p2在直角坐标系中的坐标值,dp_xy表示在该坐标系中的像素点间距离,式(3)中,θ为权重因子,用以调节颜色距离和位置距离对相似度确定的贡献;In formula (1), r1, g1, b1 and r2, g2, b2 respectively represent pixel values of pixel points p1 and p2 in RGB color space, and d p_rgb represents the distance between pixels in this space; formula (2) Among them, x1, y1 and x2, y2 respectively represent the coordinate values of pixel points p1 and p2 in the Cartesian coordinate system, and d p_xy represents the distance between pixels in the coordinate system. In formula (3), θ is the weight factor, Used to adjust the contribution of color distance and position distance to similarity determination;

3)自动确定聚类中心的密度聚类,对子图进行操作,过程如下:3) Automatically determine the density clustering of the cluster center, and operate the subgraph, the process is as follows:

3.1)计算图像像素点间的相似度距离,已知像素点的相似度距离存在对偶性,即dp(p1,p2)=dp(p2,p1),且dp(p1,p1)=0,因此将相似度距离存储为对角线数据为零的上三角矩阵{Dpij};3.1) Calculating the similarity distance between image pixels, it is known that there is a duality in the similarity distance between pixels, that is, d p (p1, p2) = d p (p2, p1), and d p (p1, p1) = 0, so the similarity distance is stored as an upper triangular matrix {Dp ij } whose diagonal data is zero;

3.2)计算各个像素点的密度值,得到密度矩阵计算公式如下:3.2) Calculate the density value of each pixel point to obtain the density matrix Calculated as follows:

其中函数 which function

式(4)中,ρi表示像素点pi的密度值,图像的像素集相应的指标集为Is={1,2,...,M*N},dij=dp(pi,pj)表示两像素点间的相似度距离;In formula (4), ρ i represents the density value of pixel point p i , and the pixel set of the image The corresponding index set is I s ={1,2,...,M*N}, d ij =d p (pi,pj) represents the similarity distance between two pixels;

3.3)计算各个像素点的距离值,得到距离矩阵每个像素点pi的距离值定义为δi,首先查找比pi密度大的像素点,得到集合S'={pj},然后查找S'中与pi的距离最近的像素点pj',则得到δi=dp(pi,pj');3.3) Calculate the distance value of each pixel point to obtain the distance matrix The distance value of each pixel p i is defined as δ i , firstly find the pixel point with density higher than p i , get the set S'={p j }, and then find the pixel point p in S' with the closest distance to p i j ', then get δ i =d p (pi,pj');

3.4)根据步骤3.2)和步骤3.3)得到的绘制决策图,得到表示像素点密度与距离关系的离散函数δi=f(ρi);3.4) Obtained according to step 3.2) and step 3.3) and Draw a decision-making map to obtain a discrete function δ i = f(ρ i ) representing the relationship between pixel density and distance;

3.5)由ρ-δ关系图上的离散数据点进行一元线性拟合,得到拟合曲线yδ=kxρ+b0计算各个数据点的残差值εδi=yδii和ερi=xρii,绘制残差直方图εδi-h和ερi-h,分别用钟型曲线进行正态拟合,得到方差值σδ和σρ,利用λσ原则确定处在置信区间外的奇异点作为聚类中心,记为cδ和cρ3.5) Carry out unary linear fitting by the discrete data points on the ρ-δ relationship diagram to obtain the fitting curve y δ =kx ρ +b 0 and Calculate the residual value of each data point ε δi =y δii and ε ρi =x ρii , draw the residual histogram ε δi -h and ε ρi -h , and use the bell curve for normal fitting Combined to get the variance values σ δ and σ ρ , use the λσ principle to determine the singular point outside the confidence interval as the cluster center, denoted as c δ and c ρ ;

3.6)由决策图得到双变量的离散函数γ=fγ(ρ,δ),进行二元斜面的拟合,得到拟合平面为zγ=b1+b2ρ+b3δ,计算各个数据点的残差值εγi=yγi(ρ,δ)-γi(ρ,δ),绘制残差直方图εγi-h,同样利用钟型曲线进行正态拟合,得到方差值σγ,利用λσ原则确定处在置信区间外的奇异点作为聚类中心,记为cγ3.6) Obtain the bivariate discrete function γ=f γ (ρ,δ) from the decision diagram, and perform the fitting of the binary slope, and obtain the fitting plane as z γ =b 1 +b 2 ρ+b 3 δ, and calculate each The residual value of the data point ε γi = y γi (ρ,δ)-γ i (ρ,δ), draw the residual histogram ε γi -h, and also use the bell curve for normal fitting to obtain the variance value σ γ , use the λσ principle to determine the singular point outside the confidence interval as the cluster center, denoted as c γ ;

其中函数fγ是关于变量ρ和δ的二元函数,对应于三维空间中的坐标值是(ρ,δ,fγ),则定义双变量离散函数为:Among them, the function f γ is a binary function about the variables ρ and δ, corresponding to the coordinate value in the three-dimensional space is (ρ, δ, f γ ), then the bivariate discrete function is defined as:

式(5)中,取密度值和距离值的乘积的对数值作为函数值;加1是为了在密度为零,即没有点落在dc半径内时式子仍成立;表示对应于原图pi点及其四邻域共五个像素点的密度值累加和,增加密度分量对聚类中心判定的权重值;In formula (5), take the logarithmic value of the product of the density value and the distance value as the function value; add 1 so that the formula still holds true when the density is zero, that is, no point falls within the d c radius; Represents the cumulative sum of the density values corresponding to the original image p i point and its four neighbors, a total of five pixel points, and increases the weight value of the density component to determine the cluster center;

3.7)将由步骤3.5)和步骤3.6)所确定的聚类中心取并集,得到图像的最终聚类中心cδργ=cδ∪cρ∪cγ为包含η个元素的集合,然后依据最近邻原则,将剩余像素点进行归类,并用聚类中心点的像素值填充同质区域;3.7) Take the union of the cluster centers determined by step 3.5) and step 3.6) to obtain the final cluster center of the image c δργ = c δ ∪c ρ ∪c γ is a set containing n elements, and then according to the nearest neighbor In principle, classify the remaining pixels and fill the homogeneous area with the pixel values of the cluster center points;

3.8)对每幅子图重复步骤3.1)至3.7)的操作,然后将各幅子图合并,得到中间结果图;3.8) Repeat steps 3.1) to 3.7) for each sub-image, then merge the sub-images to obtain an intermediate result image;

4)二次重聚类,过程如下:4) Secondary re-clustering, the process is as follows:

4.1)将由步骤3.8)中得到的中间结果图缩放到需要的尺度,采用颜色距离dp_rgb(p1,p2)作为重聚类的相似度衡量指标,计算绘制ρ-δ关系图,得到离散函数δi=f(ρi);4.1) Scale the intermediate result map obtained in step 3.8) to the required scale, use the color distance d p_rgb (p1, p2) as the similarity measure of re-clustering, and calculate and Draw the ρ-δ relationship diagram to obtain the discrete function δ i =f(ρ i );

4.2)由步骤4.1)得到的δi=f(ρi)关系计算双变量离散函数γ=fγ(ρ,δ),进行二元斜面的拟合,计算各个数据点的残差值εγi=yγi(ρ,δ)-γi(ρ,δ),绘制残差直方图εγi-h,同样利用钟型曲线进行正态拟合,得到方差值σγ,利用λσ原则确定处在置信区间外的奇异点作为聚类中心,记为cγ4.2) Calculate the bivariate discrete function γ=f γ (ρ, δ) from the relationship of δ i = f(ρ i ) obtained in step 4.1), perform the fitting of the binary slope, and calculate the residual value ε γi of each data point =y γi (ρ,δ)-γ i (ρ,δ), draw the residual histogram ε γi -h, also use the bell curve for normal fitting, get the variance value σ γ , use the λσ principle to determine the The singular point outside the confidence interval is used as the cluster center, denoted as c γ ;

4.3)将由步骤4.2)得到的聚类中心cγ在空间域上进行尺度回放,得到原始尺寸的中间结果图的聚类中心,将剩余像素点依据最近邻原则进行归类,并用聚类中心的像素值填充同质区域。4.3) Scale playback the clustering center c γ obtained in step 4.2) in the spatial domain to obtain the clustering center of the intermediate result image of the original size, classify the remaining pixels according to the nearest neighbor principle, and use the clustering center’s Pixel values fill homogeneous areas.

进一步,所述步骤3.2)中,dc是一个正实数,用于刻画以像素点pi为圆心,dc为半径的圆周,而密度值ρi即为落在圆周内部的像素点个数;以颜色空间下各个通道像素值累加和最大处的像素点pmax与各个通道像素值累加和最小处的像素点pmin之间的相似度距离的2%作为dc值,计算公式如下:Further, in the step 3.2), d c is a positive real number, which is used to describe the circle with the pixel p i as the center and d c as the radius, and the density value ρ i is the number of pixels falling inside the circle ; Take 2% of the similarity distance between the pixel point p max at the maximum sum of the pixel value accumulation of each channel under the color space and the pixel point p min at the minimum sum of pixel value accumulation of each channel as the d c value, and the calculation formula is as follows:

式(6)中,表示若一幅图像中,有多个像素点在颜色空间下像素值累加和相等,都为最大或最小的情况下,则取平均,即 In formula (6), Indicates that if there are multiple pixels in an image, the cumulative sum of pixel values in the color space is equal to the maximum or minimum, then take the average, that is

再进一步,所述步骤3.7)中,最终得到的聚类中心cδργ是由三次回归分析得到的聚类中心cδ、cρ、cγ取并集得到的,在显示聚类分割的结果图时,使用过分割情况下得到的聚类中心的像素值填充该类簇区域。Further, in the step 3.7), the finally obtained cluster center c δργ is obtained by taking the union of the cluster centers c δ , c ρ , and c γ obtained from the cubic regression analysis, and the clustering segmentation results are displayed in the graph When , the pixel value of the cluster center obtained in the case of over-segmentation is used to fill the cluster area.

更进一步,所述步骤4.2)中,二次重聚类的聚类中心自动确定的判定依据不再使用cδ、cρ、cγ的并集,仅对γ值进行直方图分析。Furthermore, in the step 4.2), the judgment basis for the automatic determination of the cluster centers of the secondary re-clustering no longer uses the union of c δ , c ρ , and c γ , and only performs histogram analysis on the γ value.

本发明的技术构思为:基于快速密度聚类算法的图像分割方法,在对自然图像的分割中能够自动确定分割类别数,实现分割准确率较高、对参数鲁棒的图像分割。对于一幅包含M行N列像素点的待处理的自然图像,首先进行预处理,包括滤波去噪、灰度矫正等;然后将图像进行区域的分块,得到等尺寸的子图;为了保证算法的快速性,同时综合考虑时间复杂度和聚类信息的完整性,将每一幅子图进行等比例的缩放,得到尺度变换后的子图;然后对完成尺度变换的子图进行数据点间相似度距离的计算,得到像素点间的相关性;接着在各幅子图内进行并行的分割处理,包括基于密度聚类算法绘制决策图,基于决策图进行残差分析确定聚类中心和基于相似度距离比较将原尺度子图上的剩余点进行归类;然后将分割完成后的子图合并,进行重聚类得到原始尺寸大小的分割结果图。图像的融合包括对子图内分割线上的相邻区域融合和对子图分块边界线上的相邻区域融合,由此得到中间结果图。最后,将粗融合的中间结果进行二次重聚类,将不相邻的同质区域合并,得到最终的结果图。The technical idea of the present invention is: the image segmentation method based on the fast density clustering algorithm can automatically determine the number of segmentation categories in the segmentation of natural images, and realize image segmentation with high segmentation accuracy and robustness to parameters. For a natural image to be processed that contains M rows and N columns of pixels, firstly perform preprocessing, including filter denoising, grayscale correction, etc.; then divide the image into blocks to obtain equal-sized subimages; The rapidity of the algorithm, while comprehensively considering the time complexity and the integrity of the clustering information, each sub-graph is scaled in equal proportions to obtain the scale-transformed sub-graph; then the data points of the scale-transformed sub-graph are Calculate the similarity distance between pixels to obtain the correlation between pixels; then perform parallel segmentation processing in each sub-image, including drawing a decision graph based on the density clustering algorithm, and determine the cluster center and Based on the similarity distance comparison, the remaining points on the original scale sub-images are classified; then the sub-images after segmentation are merged and re-clustered to obtain the segmentation result image of the original size. The fusion of images includes fusion of adjacent areas on the division line in the sub-image and fusion of adjacent areas on the boundary line of the sub-image block, thereby obtaining an intermediate result image. Finally, the intermediate results of the rough fusion are re-clustered twice, and the non-adjacent homogeneous regions are merged to obtain the final result map.

本发明的有益效果主要表现在:能够自动确定图像的分割类别数,最终的分割结果准确率较高,降低了图像分割过程的参数敏感性问题。在真实图像上的实验结果表明,该算法具有良好的适用性和精度,能够有效的对图像进行自适应分割,并取得较好的分割效果。The beneficial effects of the present invention are mainly manifested in that the number of image segmentation categories can be automatically determined, the accuracy of the final segmentation result is high, and the problem of parameter sensitivity in the image segmentation process is reduced. Experimental results on real images show that the algorithm has good applicability and precision, can effectively segment images adaptively, and achieve better segmentation results.

附图说明Description of drawings

图1是对图像进行尺度缩放的流程图。Figure 1 is a flow chart of scaling an image.

图2是自然图像的数字存储模型示意图。Figure 2 is a schematic diagram of a digital storage model for natural images.

图3是依据ρ-δ关系对子图进行一元线性拟合查找聚类中心的流程图,得到聚类中心cδ和cρ,其中(a)是查找聚类中心cδ,(b)是查找聚类中心cρFigure 3 is a flow chart of finding the cluster centers by unary linear fitting of the subgraphs according to the ρ - δ relationship. Find the cluster centers c ρ .

图4是由γ=fγ(ρ,δ)函数进行二元斜面拟合查找聚类中心cγ的流程图。Fig. 4 is a flow chart of finding the cluster center c γ by binary slope fitting using the γ=f γ (ρ, δ) function.

图5是自动确定最终聚类中心的流程图。Fig. 5 is a flow chart of automatically determining the final cluster center.

图6是基于快速密度聚类算法的图像分割方法的流程图。Fig. 6 is a flowchart of an image segmentation method based on a fast density clustering algorithm.

具体实施方式detailed description

下面结合附图对本发明作进一步描述。The present invention will be further described below in conjunction with the accompanying drawings.

参照图1~图6,一种基于快速密度聚类算法的图像分割方法,包括以下步骤:With reference to Fig. 1~Fig. 6, a kind of image segmentation method based on fast density clustering algorithm comprises the following steps:

1)初始化,为了加快算法的处理速度,减少处理时间,本文主要通过区域分块和尺度变换共同作用来减小图像尺寸,同时又能够保留最主要的用于聚类中心查找的信息,过程如下:1) Initialization. In order to speed up the processing speed of the algorithm and reduce the processing time, this paper mainly reduces the size of the image through the combined effect of regional block and scale transformation, and at the same time can retain the most important information for cluster center search. The process is as follows :

1.1)首先进行区域分块操作,对于一幅待处理的图像,包含有M行N列的像素点,经过降噪滤波等预处理后,将图像分为2W1×2W2幅子图,得到的子图尺寸为其中Z[f]为前向取整函数;1.1) Firstly, the area division operation is carried out. For an image to be processed, which contains pixels in M rows and N columns, after preprocessing such as noise reduction filtering, the image is divided into 2 W1 × 2 W2 sub-images, and the obtained The size of the subplot is Where Z[f] is the forward rounding function;

1.2)为了进一步降低待处理图像包含的像素点个数,对分块完成后的子图进行尺度缩放处理,即将尺寸为a*b的子图像变为a1*b1,其中a1=a/ksize且b1=b/ksize,ksize>1。在缩放过程中,因为每个像素点包含有三个像素值,所以采用弱采样的方法进行尺度变换,在将待处理像素点个数减少的同时尽可能的保留原始图像的重要聚类信息。1.2) In order to further reduce the number of pixels contained in the image to be processed, the sub-image after the block is completed is scaled, that is, the sub-image with a size of a*b is changed to a 1 *b 1 , where a 1 =a /k size and b 1 =b/k size , k size >1. In the scaling process, because each pixel contains three pixel values, the method of weak sampling is used for scale transformation, and the important clustering information of the original image is preserved as much as possible while reducing the number of pixels to be processed.

具体的缩放算法流程如图1所示,其中imresize(I,[a1,b1])函数的功能是采用高斯模糊后再降采样的方法将图像I尺度变换为a1*b1。通过区域的分块和尺度的变换,能够将待处理的数据量减少到可接受范围内,从而加快处理速度。The specific scaling algorithm flow is shown in Figure 1, where the function of the imresize(I,[a1,b1]) function is to transform the scale of the image I into a1*b1 by using Gaussian blur and then downsampling. Through regional block and scale transformation, the amount of data to be processed can be reduced to an acceptable range, thereby speeding up the processing speed.

2)基于像素值和位置信息的相似度距离计算,过程如下:2) Calculation of similarity distance based on pixel value and position information, the process is as follows:

2.1)对于一幅待处理的自然图像I,包含有M行N列像素点,令n=M*N,则像素数据集中每个像素点具有的特征信息包括RGB彩色空间下的三色通道分量值,即为R(红色)、G(绿色)、B(蓝色)的三个像素值;以及在以图像左上角为坐标原点、水平线向右为Y轴、竖直线向下为X轴的二维平面直角坐标系下的坐标值(x,y)。则定义图像上每个像素点的表示形式为pi(ri,gi,bi,xi,yi),如图2所示为两个像素点在自然图像中的数字存储模型。2.1) For a natural image I to be processed, which contains M rows and N columns of pixels, let n=M*N, then the pixel data set The characteristic information that each pixel has in includes the three-color channel component values under the RGB color space, that is, the three pixel values of R (red), G (green), and B (blue); and in the upper left corner of the image is the coordinate value (x, y) in the two-dimensional plane Cartesian coordinate system where the origin of coordinates, the horizontal line to the right is the Y axis, and the vertical line is downward to the X axis. Then define the representation of each pixel on the image as p i (r i , g i , b i , xi , y i ), as shown in Figure 2, which is the digital storage model of two pixels in a natural image.

2.2)在进行相似度距离确定时,采用欧氏距离进行计算,p1、p2代表不同的两个像素点,则得到两个像素点间的颜色差异和位置差异可以用颜色距离和位置距离表示如下:2.2) When determining the similarity distance, Euclidean distance is used for calculation, p1 and p2 represent two different pixel points, then the color difference and position difference between two pixel points can be expressed as follows by color distance and position distance :

式(1)中r1、g1、b1和r2、g2、b2分别代表像素点p1、p2在RGB彩色空间下的像素值,dp_rgb表示在该空间下的像素点间距离;式(2)中x1、y1和x2、y2分别代表像素点p1、p2在直角坐标系中的坐标值,dp_xy表示在该坐标系中的像素点间距离。像素值和坐标值的量纲不同,因此式中对这两类信息进行了内部归一化,得到权重统一的优良结果。因为本文后续处理的图像的每个像素值都是以8位二进制存储的,因此在进行像素值归一化时使用28-1作为基准值。M、N代表了输入图像的尺寸为每行有N个像素点,每列有M个像素点。In the formula (1), r1, g1, b1 and r2, g2, b2 respectively represent the pixel values of the pixel points p1 and p2 in the RGB color space, and d p_rgb represents the distance between pixels in the space; in the formula (2) x1, y1 and x2, y2 respectively represent the coordinate values of pixel points p1 and p2 in the Cartesian coordinate system, and d p_xy represents the distance between pixels in the coordinate system. The dimensions of the pixel value and the coordinate value are different, so the two types of information are internally normalized in the formula, and an excellent result with unified weight is obtained. Because each pixel value of the image processed later in this paper is stored in 8-bit binary, 2 8 -1 is used as the reference value when normalizing the pixel value. M and N represent the size of the input image with N pixels per row and M pixels per column.

2.3)最后计算两像素点间的相似度距离dp(p1,p2),距离值越大说明差异越大,相似度越低,相似度距离的计算公式如下:2.3) Finally, calculate the similarity distance d p (p1,p2) between two pixels. The larger the distance value, the greater the difference and the lower the similarity. The formula for calculating the similarity distance is as follows:

dp(p1,p2)=θdp_rgb(p1,p2)+(1-θ)dp_xy(p1,p2) (3)d p (p1,p2)=θd p_rgb (p1,p2)+(1-θ)d p_xy (p1,p2) (3)

式(3)中,θ为权重因子,用以调节颜色距离和位置距离对相似度确定的贡献。In formula (3), θ is a weighting factor, which is used to adjust the contribution of color distance and position distance to similarity determination.

相似度距离不仅用于聚类分析,在确定聚类中心后,同样需要依据每个像素点到聚类中心的相似度距离确定其归属情况,将所有像素点归类完成后即得到分割结果。在相似度距离计算中加入了位置信息,在空间位置上相聚较远的像素点间的相互作用较弱,在图像数据集的数据量较少时,将会导致在分割区块边缘处不够光滑的问题,在视觉交互上不符合友好关系。为解决这个问题,将得到的分割结果图进行彩色空间的转换,由RGB转换为HSV彩色空间,然后对HSV模型下表征明亮程度的V通道信息进行中值滤波,然后重新将HSV转换为RGB模型进行输出,得到视觉友好的分割结果图。The similarity distance is not only used for cluster analysis. After the cluster center is determined, it is also necessary to determine its attribution according to the similarity distance from each pixel point to the cluster center. After all the pixel points are classified, the segmentation result is obtained. The location information is added to the calculation of the similarity distance, and the interaction between the pixels that are far away from each other in the spatial position is weak. In the image data set When the amount of data is small, it will lead to the problem that the edge of the segmentation block is not smooth enough, and it does not meet the friendly relationship in visual interaction. In order to solve this problem, the color space conversion of the obtained segmentation results is performed, from RGB to HSV color space, and then the median filter is performed on the V channel information representing the brightness under the HSV model, and then the HSV is converted to the RGB model again Output and get a visually friendly segmentation result map.

3)自动确定聚类中心的密度聚类,对子图进行操作,过程如下:3) Automatically determine the density clustering of the cluster center, and operate the subgraph, the process is as follows:

定义1设对于一幅包含n个像素点的图像I,对应两个一维数据矩阵,表示密度矩阵,表示距离矩阵,尺寸都是1行n列。密度矩阵或距离矩阵的第i列数据与原始图像中Mx行Nx列像素点的映射关系如下:Definition 1 Suppose that for an image I containing n pixels, it corresponds to two one-dimensional data matrices, represents the density matrix, Represents a distance matrix, the size of which is 1 row and n columns. The mapping relationship between the data in the i-th column of the density matrix or distance matrix and the pixels in Mx rows and Nx columns in the original image is as follows:

i=N(Mx-1)+Nx (7)i=N(Mx-1)+Nx (7)

3.1)计算图像像素点间的相似度距离,已知像素点的相似度距离存在对偶性,即dp(p1,p2)=dp(p2,p1),且dp(p1,p1)=0,因此将相似度距离存储为对角线数据为零的上三角矩阵{Dpij};3.1) Calculating the similarity distance between image pixels, it is known that there is a duality in the similarity distance between pixels, that is, d p (p1, p2) = d p (p2, p1), and d p (p1, p1) = 0, so the similarity distance is stored as an upper triangular matrix {Dp ij } whose diagonal data is zero;

3.2)计算各个像素点的密度值,得到密度矩阵计算公式如下:3.2) Calculate the density value of each pixel point to obtain the density matrix Calculated as follows:

其中函数 which function

式(4)中,ρi表示像素点pi的密度值,图像的像素集相应的指标集为Is={1,2,...,M*N},dij=dp(pi,pj)表示两像素点间的相似度距离;In formula (4), ρ i represents the density value of pixel point p i , and the pixel set of the image The corresponding index set is I s ={1,2,...,M*N}, d ij =d p (pi,pj) represents the similarity distance between two pixels;

为了减少运行时的空间复杂度,以增加一定的时间复杂度为代价,本发明采用一种改进的密度矩阵计算方法,具体的密度矩阵算法步骤如下:In order to reduce the space complexity during operation, at the cost of increasing a certain time complexity, the present invention adopts an improved density matrix calculation method, and the specific density matrix algorithm steps are as follows:

3.2.1)输入一幅包含M行N列像素点的数字图像I和查找半径dc,设置循环初始值,i1=j1=1,i2=j2=1,i=1,分配密度矩阵的存储空间,记为n=M*N,初始值置为0;3.2.1) Input a digital image I containing M rows and N columns of pixels and the search radius d c , set the initial value of the cycle, i1=j1=1, i2=j2=1, i=1, and allocate the storage of the density matrix space, recorded as n=M*N, the initial value is set to 0;

3.2.2)计算图像中像素点(i1,j1)与点(i2,j2)的相似度距离,记为dp(p(i1,j1),p(i2,j2)),若dp(p(i1,j1),p(i2,j2))>dc,则ρi=ρi+0,反之ρi=ρi+1;3.2.2) Calculate the similarity distance between pixel point (i1, j1) and point (i2, j2) in the image, which is recorded as d p (p (i1, j1) ,p (i2, j2) ), if d p ( p (i1,j1) ,p (i2,j2) )>d c , then ρ ii +0, otherwise ρ ii +1;

3.2.3)j2=j2+1,若j2≤N,则返回步骤3.2.2),反之令j2=1,执行步骤3.2.4);3.2.3) j2=j2+1, if j2≤N, return to step 3.2.2), otherwise set j2=1, execute step 3.2.4);

3.2.4)i2=i2+1,若i2≤M,则返回步骤3.2.2),反之令i2=1,执行步骤3.2.5);3.2.4) i2=i2+1, if i2≤M, then return to step 3.2.2), otherwise make i2=1, execute step 3.2.5);

3.2.5)j1=j1+1,i=i+1,若j1≤N,则返回步骤3.2.2),反之令j1=1,执行步骤3.2.6);3.2.5) j1=j1+1, i=i+1, if j1≤N, return to step 3.2.2), otherwise set j1=1, execute step 3.2.6);

3.2.6)i1=i1+1,若i1≤M,则返回步骤3.2.2),反之令i1=1,执行步骤3.2.7);3.2.6) i1=i1+1, if i1≤M, return to step 3.2.2), otherwise set i1=1, execute step 3.2.7);

3.2.7)输出最终得到的密度矩阵 3.2.7) Output the final density matrix

以上算法中不是事先存储好{Dpij}进而确定的,而是在计算每一个像素点的密度值时,都事先计算一遍该像素点与其他n-1个像素点的相似度距离,在完成该点的密度计算后,将存储相似度距离的空间释放,这样大大减少了运行时的内存消耗。In the above algorithm, {Dp ij } is not stored in advance and then determined Instead, when calculating the density value of each pixel point, the similarity distance between the pixel point and other n-1 pixel points is calculated in advance. After the density calculation of the point is completed, the similarity distance will be stored. Space release, which greatly reduces the memory consumption at runtime.

3.3)计算各个像素点的距离值,得到距离矩阵每个像素点pi的距离值定义为δi,首先查找比pi密度大的像素点,得到集合S'={pj},然后查找S'中与pi的距离最近的像素点pj',则得到δi=dp(pi,pj'),具体的距离矩阵算法如下:3.3) Calculate the distance value of each pixel point to obtain the distance matrix The distance value of each pixel p i is defined as δ i , firstly find the pixel point with density higher than p i , get the set S'={p j }, and then find the pixel point p in S' with the closest distance to p i j ', then get δ i =d p (pi,pj'), the specific distance matrix algorithm is as follows:

3.3.1)将步骤3.2)中的密度矩阵从大到小进行排序,得到有序的新密度矩阵同时根据定义1的映射关系计算得到索引数组保存新密度矩阵与原始图像各个像素点间位置的映射关系,设置循环初始值i1=j1=1,ind1=1;3.3.1) Sort the density matrix in step 3.2) from large to small to obtain an ordered new density matrix At the same time, the index array is calculated according to the mapping relationship of definition 1 save the new density matrix The mapping relationship with the position between each pixel point of the original image, set the initial value of the cycle i1=j1=1, ind1=1;

3.3.2)计算密度最大值ρ'1对应的像素点pρ'1与其余像素点的距离值,计算公式为δ_temp(1,ind)=dp(p(i1,j1),pρ'1);3.3.2) Calculate the distance between the pixel point p ρ'1 corresponding to the maximum density ρ'1 and the rest of the pixels, the calculation formula is δ_temp( 1 ,ind)=d p (p (i1,j1) ,p ρ' 1 );

3.3.3)j1=j1+1,ind1=ind1+1,若j1≤N,则返回步骤3.3.2),反之令j1=1,执行步骤3.3.4);3.3.3) j1=j1+1, ind1=ind1+1, if j1≤N, return to step 3.3.2), otherwise set j1=1, execute step 3.3.4);

3.3.4)i1=i1+1,若i1≤M,则返回步骤3.3.2),反之令i1=1,执行步骤3.3.5);3.3.4) i1=i1+1, if i1≤M, return to step 3.3.2), otherwise set i1=1, execute step 3.3.5);

3.3.5)查找δ_temp(1,ind)的最大值,作为密度最大的像素点的相似度距离值,即δ'1=MAX{δ_temp(1,i)|i∈(1,n)};3.3.5) Find the maximum value of δ_temp(1, ind) as the similarity distance value of the pixel with the highest density, that is, δ' 1 =MAX{δ_temp(1,i)|i∈(1,n)};

3.3.6)设置循环初始值i1=2,i2=1;3.3.6) Set the loop initial value i1=2, i2=1;

3.3.7)计算剩余像素点到密度比该点大的像素点的距离值,计算公式为δ_temp(1,i2)=dp(pρ'i1,pρ'i2);3.3.7) Calculate the remaining pixels The distance value to the pixel point whose density is larger than this point, the calculation formula is δ_temp(1,i2)=d p (p ρ'i1 ,p ρ'i2 );

3.3.8)i2=i2+1,若i2≤i1-1,则返回步骤3.3.7),反之取其最小值作为相似度距离值,即δ'i1=MIN{δ_temp(1,i)|i∈(1,i2)},执行步骤3.3.9);3.3.8) i2=i2+1, if i2≤i1-1, return to step 3.3.7), otherwise take the minimum value as the similarity distance value, that is, δ' i1 =MIN{δ_temp(1,i)| i∈(1,i2)}, execute step 3.3.9);

3.3.9)i1=i1+1,若i1≤M*N,则返回步骤3.3.7),反之执行步骤3.3.10);3.3.9) i1=i1+1, if i1≤M*N, return to step 3.3.7), otherwise execute step 3.3.10);

3.3.10)由索引映射到与原始密度矩阵位置对应的距离存储单元输出距离矩阵 3.3.10) indexed by Will Maps to the original density matrix The distance storage unit corresponding to the position output distance matrix

3.4)根据步骤3.2)和步骤3.3)得到的绘制决策图,得到表示像素点密度与距离关系的离散函数δi=f(ρi);3.4) Obtained according to step 3.2) and step 3.3) and Draw a decision-making map to obtain a discrete function δ i = f(ρ i ) representing the relationship between pixel density and distance;

3.5)由ρ-δ关系图上的离散数据点进行一元线性拟合,得到拟合曲线yδ=kxρ+b0计算各个数据点的残差值εδi=yδii和ερi=xρii,绘制残差直方图εδi-h和ερi-h,分别用钟型曲线进行正态拟合,得到方差值σδ和σρ,利用λσ原则确定处在置信区间外的奇异点作为聚类中心,记为cδ和cρ,算法流程图如图3所示;3.5) Carry out unary linear fitting by the discrete data points on the ρ-δ relationship diagram to obtain the fitting curve y δ =kx ρ +b 0 and Calculate the residual value of each data point ε δi =y δii and ε ρi =x ρii , draw the residual histogram ε δi -h and ε ρi -h , and use the bell curve for normal fitting Combined to get the variance values σ δ and σ ρ , use the λσ principle to determine the singular point outside the confidence interval as the cluster center, denoted as c δ and c ρ , the algorithm flow chart is shown in Figure 3;

定义2设函数fγ是关于变量ρ和δ的二元函数,对应于三维空间中的坐标值是(ρ,δ,fγ),则定义双变量离散函数为:Definition 2 Let the function f γ be a binary function about the variables ρ and δ, corresponding to the coordinate value in the three-dimensional space is (ρ, δ, f γ ), then the bivariate discrete function is defined as:

式(5)中,取密度值和距离值的乘积的对数值作为函数值;加1是为了在密度为零,即没有点落在dc半径内时式子仍成立,并没有实际物理意义;图像的像素点间存在上下文信息,同样对应的密度阵中也包含上下文信息,因此表示对应于原图pi点及其四邻域共五个像素点的密度值累加和,增加密度分量对聚类中心判定的权重值。In the formula (5), the logarithm of the product of the density value and the distance value is taken as the function value; adding 1 is to make the formula still hold when the density is zero, that is, when no point falls within the d c radius, and has no actual physical meaning ;There is context information between the pixels of the image, and the corresponding density matrix also contains context information, so Indicates the cumulative sum of the density values corresponding to the original image point p i and its four neighbors, a total of five pixel points, and increases the weight value of the density component to determine the cluster center.

3.6)由定义2中的双变量的离散函数γ=fγ(ρ,δ),进行二元斜面的拟合,得到拟合平面为zγ=b1+b2ρ+b3δ,计算各个数据点的残差值εγi=yγi(ρ,δ)-γi(ρ,δ),绘制残差直方图εγi-h,同样利用钟型曲线进行正态拟合,得到方差值σγ,利用λσ原则确定处在置信区间外的奇异点作为聚类中心,记为cγ,算法流程图如图4所示;3.6) According to the bivariate discrete function γ=f γ (ρ, δ) in definition 2, the fitting of the binary inclined plane is carried out, and the fitting plane is obtained as z γ =b 1 +b 2 ρ+b 3 δ, and the calculation The residual value of each data point ε γi = y γi (ρ,δ)-γ i (ρ,δ), draw the residual histogram ε γi -h, and also use the bell curve for normal fitting to obtain the variance value σ γ , using the λσ principle to determine the singular point outside the confidence interval as the cluster center, denoted as c γ , the algorithm flow chart is shown in Figure 4;

3.7)将由步骤3.5)和步骤3.6)所确定的聚类中心取并集,得到图像的最终聚类中心cδργ=cδ∪cρ∪cγ为包含η个元素的集合,然后依据最近邻原则,将剩余像素点进行归类,算法流程图如图5所示;3.7) Take the union of the cluster centers determined by step 3.5) and step 3.6) to obtain the final cluster center of the image c δργ = c δ ∪c ρ ∪c γ is a set containing n elements, and then according to the nearest neighbor In principle, the remaining pixels are classified, and the algorithm flow chart is shown in Figure 5;

最终得到的聚类中心cδργ是由三次回归分析得到的聚类中心cδ、cρ、cγ取并集得到的,这样极易造成过分割,即最后会将图像分割成许多小区域。虽然这样得到的分割结果在区域内的相似度很高,即内部具有强相互作用,但是区域间的差异性却不高,这不是我们所希望的聚类结果。这就需要在后续步骤中进行融合处理,将相似度高的不同区域重新合并在一起。为了方便融合处理,在显示聚类分割的结果图时,使用过分割情况下得到的聚类中心的像素值填充该类簇区域,同时能够拥有更加友好的视觉效果。The final clustering center c δργ is obtained by taking the union of the clustering centers c δ , c ρ , and c γ obtained from the cubic regression analysis, which is very easy to cause over-segmentation, that is, the image will be divided into many small areas in the end. Although the segmentation result obtained in this way has a high similarity within the region, that is, there is a strong internal interaction, but the difference between regions is not high, which is not the clustering result we hoped for. This requires fusion processing in subsequent steps to re-merge different regions with high similarity. In order to facilitate fusion processing, when displaying the result map of cluster segmentation, the pixel value of the cluster center obtained in the case of over-segmentation is used to fill the cluster area, and at the same time, it can have a more friendly visual effect.

3.8)对每幅子图都重复步骤3.1)至3.7)的操作,得到每幅子图的一次分割结果图,然后将各幅子图的分割结果图进行合并,得到中间结果图。3.8) Repeat steps 3.1) to 3.7) for each sub-image to obtain a segmentation result image of each sub-image, and then merge the segmentation result images of each sub-image to obtain an intermediate result image.

4)二次重聚类,过程如下:4) Secondary re-clustering, the process is as follows:

4.1)将步骤3.8)得到的中间结果图依据图1的尺度缩放方法缩放到需要的尺度,采用dp_rgb(p1,p2)作为相似度衡量指标,依据密度矩阵算法和距离矩阵算法计算绘制ρ-δ关系图,得到离散函数δi=f(ρi);4.1) Scale the intermediate result graph obtained in step 3.8) to the required scale according to the scaling method in Figure 1, use d p_rgb (p1, p2) as the similarity measure index, and calculate according to the density matrix algorithm and the distance matrix algorithm and Draw the ρ-δ relationship diagram to obtain the discrete function δ i =f(ρ i );

因为在一次聚类后的中间结果图中,原始图像包含的细节信息已经完全被覆盖,所以在二次重聚类时信息完整性与算法复杂度的矛盾不再如此尖锐,也就不需要再进行区域的分块了,只需将图像缩放到需要的尺度即可。在二次重聚类时,所采用的相似度衡量指标是dp_rgb(p1,p2),因为dp(p1,p2)在加入表征位置信息的坐标值后,空间域上远距离的像素点间的相互作用力就变弱了,而二次重聚类的目的就是将非相邻的同质区域进行合并,所以仅使用颜色距离dp_rgb(p1,p2);Because in the intermediate result map after the first clustering, the detailed information contained in the original image has been completely covered, so the contradiction between information integrity and algorithm complexity is no longer so sharp in the second re-clustering, and there is no need to re-cluster After the area is divided into blocks, just scale the image to the required scale. In the second re-clustering, the similarity measure used is d p_rgb (p1, p2), because after d p (p1, p2) adds the coordinate value representing the position information, the distant pixel points in the spatial domain The interaction force between becomes weaker, and the purpose of secondary re-clustering is to merge non-adjacent homogeneous regions, so only the color distance d p_rgb (p1,p2) is used;

4.2)由步骤4.1)得到的δi=f(ρi)关系计算双变量的离散函数γ=fγ(ρ,δ),进行二元斜面的拟合,计算各个数据点的残差值εγi=yγi(ρ,δ)-γi(ρ,δ),绘制残差直方图εγi-h,利用钟型曲线进行正态拟合,得到方差值σγ,利用λσ原则确定处在置信区间外的奇异点作为聚类中心,记为cγ4.2) Calculate the bivariate discrete function γ=f γ (ρ, δ) from the relationship of δ i = f(ρ i ) obtained in step 4.1), perform the fitting of the binary slope, and calculate the residual value ε of each data point γi = y γi (ρ,δ)-γ i (ρ,δ), draw the residual histogram ε γi -h, use the bell curve for normal fitting, get the variance value σ γ , use the λσ principle to determine the The singular point outside the confidence interval is used as the cluster center, denoted as c γ ;

4.3)将步骤4.2)中聚类中心的位置在空间域上进行尺度回放,得到中间结果图在原始尺寸下的聚类中心,将剩余像素点进行归类,用聚类中心的像素值填充同质区域。二次重聚类算法如下:4.3) Play back the position of the cluster center in step 4.2) in the spatial domain to obtain the cluster center in the original size of the intermediate result map, classify the remaining pixels, and fill the same space with the pixel value of the cluster center. quality area. The secondary re-clustering algorithm is as follows:

4.3.1)输入包含M行N列像素点的中间结果图I_temp和搜索半径dc4.3.1) Input the intermediate result image I_temp and the search radius d c including M rows and N columns of pixels;

4.3.2)将I_temp依据尺度缩放规则进行尺度缩放,得到I_temp';4.3.2) Scale I_temp according to the scaling rules to obtain I_temp';

4.3.3)首先依据密度矩阵算法计算I_temp'的密度矩阵,依据距离矩阵算法计算I_temp'的距离矩阵,然后依据定义2计算γ值,进行直方图分析自动确定奇异点作为聚类中心,最后将聚类中心的位置进行尺度回放,得到原始尺度下的聚类中心位置,此时的计算都取dp_rgb(p1,p2)作为相似度衡量指标;4.3.3) First calculate the density matrix of I_temp' according to the density matrix algorithm, calculate the distance matrix of I_temp' according to the distance matrix algorithm, then calculate the γ value according to Definition 2, and perform histogram analysis to automatically determine the singular point as the cluster center, and finally set The position of the cluster center is scaled back to obtain the position of the cluster center under the original scale. At this time, d p_rgb (p1, p2) is used as the similarity measure index for the calculation;

4.3.4)依据距离最近原则,即相似度最大原则进行归类,将I_temp的其余像素点归入距离自己最近的类簇中,得到二次重聚类结果,并输出最终结果图I_result。4.3.4) Classify according to the principle of the closest distance, that is, the principle of maximum similarity, classify the rest of the pixels of I_temp into the clusters closest to itself, obtain the result of secondary re-clustering, and output the final result map I_result.

Claims (4)

1.一种基于快速密度聚类算法的图像分割方法,其特征在于:所述方法包括以下步骤:1. a kind of image segmentation method based on fast density clustering algorithm, it is characterized in that: described method comprises the following steps: 1)初始化,过程如下:1) Initialization, the process is as follows: 1.1)首先进行区域分块操作,对于一幅待处理的图像,包含有M行N列的像素点,经过预处理后,将图像分为2W1×2W2幅子图,得到的子图尺寸为其中Z[f]为前向取整函数;1.1) Firstly, the area division operation is performed. For an image to be processed, it contains pixels of M rows and N columns. After preprocessing, the image is divided into 2 W1 × 2 W2 sub-images, and the obtained sub-image size for Where Z[f] is the forward rounding function; 1.2)然后对图像进行尺度变换操作,将分块完成后的子图进行尺度缩放处理,即将尺寸为a*b的子图像变为a1*b1,其中a1=a/ksize且b1=b/ksize,ksize>1;在缩放过程中,因为每个像素点包含有三个像素值,所以采用弱采样的方法进行尺度变换,在将待处理图像包含的像素点个数减少的同时尽可能的保留原始图像的重要聚类信息;1.2) Then perform scale transformation operation on the image, and perform scaling processing on the sub-image after block division, that is, the sub-image with size a*b becomes a 1 *b 1 , where a 1 =a/k size and b 1 = b/k size , k size >1; in the scaling process, because each pixel contains three pixel values, the method of weak sampling is used for scale transformation, and the number of pixels contained in the image to be processed is reduced While retaining the important clustering information of the original image as much as possible; 2)基于像素值和位置信息的相似度距离计算,过程如下:2) Calculation of similarity distance based on pixel value and position information, the process is as follows: 2.1)对于一幅待处理的自然图像I,包含有M行N列像素点,令n=M*N,则像素数据集中每个像素点具有的特征信息包括RGB彩色空间下的三色通道分量值,即为R、G、B的三个像素值;以及在以图像左上角为坐标原点、水平线向右为Y轴、竖直线向下为X轴的二维平面直角坐标系下的坐标值(x,y);2.1) For a natural image I to be processed, which contains M rows and N columns of pixels, let n=M*N, then the pixel data set The feature information that each pixel has in includes the three-color channel component values in the RGB color space, that is, the three pixel values of R, G, and B; , the coordinate value (x, y) in the two-dimensional plane Cartesian coordinate system where the vertical line goes downward to the X axis; 2.2)设dp(p1,p2)为两像素点间的相似度距离,相似度距离计算公式如下:2.2) Let d p (p1, p2) be the similarity distance between two pixels, the similarity distance calculation formula is as follows: dd pp __ rr gg bb (( pp 11 ,, pp 22 )) == (( rr 11 -- rr 22 255255 )) 22 ++ (( gg 11 -- gg 22 255255 )) 22 ++ (( bb 11 -- bb 22 255255 )) 22 (( 11 )) dd pp __ xx ythe y (( pp 11 ,, pp 22 )) == (( xx 11 -- xx 22 Mm )) 22 ++ (( ythe y 11 -- ythe y 22 NN )) 22 (( 22 )) dp(p1,p2)=θdp_rgb(p1,p2)+(1-θ)dp_xy(p1,p2) (3)d p (p1,p2)=θd p_rgb (p1,p2)+(1-θ)d p_xy (p1,p2) (3) 式(1)中,r1、g1、b1和r2、g2、b2分别代表像素点p1、p2在RGB彩色空间下的像素值,dp_rgb表示在该空间下的像素点间距离;式(2)中,x1、y1和x2、y2分别代表像素点p1、p2在直角坐标系中的坐标值,dp_xy表示在该坐标系中的像素点间距离;式(3)中,θ为权重因子,用以调节颜色距离和位置距离对相似度确定的贡献;In formula (1), r1, g1, b1 and r2, g2, b2 respectively represent pixel values of pixel points p1 and p2 in RGB color space, and d p_rgb represents the distance between pixels in this space; formula (2) Among them, x1, y1 and x2, y2 respectively represent the coordinate values of pixel points p1 and p2 in the Cartesian coordinate system, d p_xy represents the distance between pixels in the coordinate system; in formula (3), θ is the weight factor, Used to adjust the contribution of color distance and position distance to similarity determination; 3)自动确定聚类中心的密度聚类,对子图进行操作,过程如下:3) Automatically determine the density clustering of the cluster center, and operate the subgraph, the process is as follows: 3.1)计算图像像素点间的相似度距离,已知像素点的相似度距离存在对偶性,即dp(p1,p2)=dp(p2,p1),且dp(p1,p1)=0,因此将相似度距离存储为对角线数据为零的上三角矩阵{Dpij};3.1) Calculating the similarity distance between image pixels, it is known that there is a duality in the similarity distance between pixels, that is, d p (p1, p2) = d p (p2, p1), and d p (p1, p1) = 0, so the similarity distance is stored as an upper triangular matrix {Dp ij } whose diagonal data is zero; 3.2)计算各个像素点的密度值,得到密度矩阵计算公式如下:3.2) Calculate the density value of each pixel point to obtain the density matrix Calculated as follows: 其中函数 which function 式(4)中,ρi表示像素点pi的密度值,图像的像素集相应的指标集为Is={1,2,...,M*N},dij=dp(pi,pj)表示两像素点间的相似度距离;In formula (4), ρ i represents the density value of pixel point p i , and the pixel set of the image The corresponding index set is I s ={1,2,...,M*N}, d ij =d p (pi,pj) represents the similarity distance between two pixels; 3.3)计算各个像素点的距离值,得到距离矩阵每个像素点pi的距离值定义为δi,首先查找比pi密度大的像素点,得到集合S'={pj},然后查找S'中与pi的距离最近的像素点pj',则得到δi=dp(pi,pj');3.3) Calculate the distance value of each pixel point to obtain the distance matrix The distance value of each pixel p i is defined as δ i , firstly find the pixel point with density higher than p i , get the set S'={p j }, and then find the pixel point p in S' with the closest distance to p i j ', then get δ i =d p (pi,pj'); 3.4)根据步骤3.2)和步骤3.3)得到的绘制决策图,得到表示像素点密度与距离关系的离散函数δi=f(ρi);3.4) Obtained according to step 3.2) and step 3.3) and Draw a decision-making map to obtain a discrete function δ i = f(ρ i ) representing the relationship between pixel density and distance; 3.5)由ρ-δ关系图上的离散数据点进行一元线性拟合,得到拟合曲线yδ=kxρ+b0计算各个数据点的残差值εδi=yδii和ερi=xρii,绘制残差直方图εδi-h和ερi-h,分别用钟型曲线进行正态拟合,得到方差值σδ和σρ,利用λσ原则确定处在置信区间外的奇异点作为聚类中心,记为cδ和cρ3.5) Carry out unary linear fitting by the discrete data points on the ρ-δ relationship diagram to obtain the fitting curve y δ =kx ρ +b 0 and Calculate the residual value of each data point ε δi =y δii and ε ρi =x ρii , draw the residual histogram ε δi -h and ε ρi -h , and use the bell curve for normal fitting Combined to get the variance values σ δ and σ ρ , use the λσ principle to determine the singular point outside the confidence interval as the cluster center, denoted as c δ and c ρ ; 3.6)由决策图得到双变量的离散函数γ=fγ(ρ,δ),进行二元斜面的拟合,得到拟合平面为zγ=b1+b2ρ+b3δ,计算各个数据点的残差值εγi=yγi(ρ,δ)-γi(ρ,δ),绘制残差直方图εγi-h,同样利用钟型曲线进行正态拟合,得到方差值σγ,利用λσ原则确定处在置信区间外的奇异点作为聚类中心,记为cγ3.6) Obtain the bivariate discrete function γ=f γ (ρ,δ) from the decision diagram, and perform the fitting of the binary slope, and obtain the fitting plane as z γ =b 1 +b 2 ρ+b 3 δ, and calculate each The residual value of the data point ε γi = y γi (ρ,δ)-γ i (ρ,δ), draw the residual histogram ε γi -h, and also use the bell curve for normal fitting to obtain the variance value σ γ , use the λσ principle to determine the singular point outside the confidence interval as the cluster center, denoted as c γ ; 其中函数fγ是关于变量ρ和δ的二元函数,对应于三维空间中的坐标值是(ρ,δ,fγ),则定义双变量离散函数为:Among them, the function f γ is a binary function about the variables ρ and δ, corresponding to the coordinate value in the three-dimensional space is (ρ, δ, f γ ), then the bivariate discrete function is defined as: γγ ii || ii ∈∈ (( 11 ,, nno )) == ff γγ ii (( ρρ ii ,, δδ ii )) == ll oo gg (( (( ΣΣ pp oo sthe s == 11 55 ρρ ii __ pp oo sthe s )) ×× δδ ii ++ 11 )) -- -- -- (( 55 )) 式(5)中,取密度值和距离值的乘积的对数值作为函数值;加1是为了在密度为零,即没有点落在dc半径内时式子仍成立;表示对应于原图pi点及其四邻域共五个像素点的密度值累加和,增加密度分量对聚类中心判定的权重值;In formula (5), take the logarithmic value of the product of the density value and the distance value as the function value; add 1 so that the formula still holds true when the density is zero, that is, no point falls within the d c radius; Represents the cumulative sum of the density values corresponding to the original image p i point and its four neighbors, a total of five pixel points, and increases the weight value of the density component to determine the cluster center; 3.7)将由步骤3.5)和步骤3.6)所确定的聚类中心取并集,得到图像的最终聚类中心cδργ=cδ∪cρ∪cγ为包含η个元素的集合,然后依据最近邻原则,将剩余像素点进行归类,并用聚类中心点的像素值填充同质区域;3.7) Take the union of the cluster centers determined by step 3.5) and step 3.6) to obtain the final cluster center of the image c δργ = c δ ∪c ρ ∪c γ is a set containing n elements, and then according to the nearest neighbor In principle, classify the remaining pixels and fill the homogeneous area with the pixel values of the cluster center points; 3.8)对每幅子图重复步骤3.1)至3.7)的操作,然后将各幅子图合并,得到中间结果图;3.8) Repeat steps 3.1) to 3.7) for each sub-image, then merge the sub-images to obtain an intermediate result image; 4)二次重聚类,过程如下:4) Secondary re-clustering, the process is as follows: 4.1)将由步骤3.8)中得到的中间结果图缩放到需要的尺度,采用颜色距离dp_rgb(p1,p2)作为重聚类的相似度衡量指标,计算绘制ρ-δ关系图,得到离散函数δi=f(ρi);4.1) Scale the intermediate result map obtained in step 3.8) to the required scale, use the color distance d p_rgb (p1, p2) as the similarity measure of re-clustering, and calculate and Draw the ρ-δ relationship diagram to obtain the discrete function δ i =f(ρ i ); 4.2)由步骤4.1)得到的δi=f(ρi)关系计算双变量离散函数γ=fγ(ρ,δ),进行二元斜面的拟合,计算各个数据点的残差值εγi=yγi(ρ,δ)-γi(ρ,δ),绘制残差直方图εγi-h,同样利用钟型曲线进行正态拟合,得到方差值σγ,利用λσ原则确定处在置信区间外的奇异点作为聚类中心,记为cγ4.2) Calculate the bivariate discrete function γ=f γ (ρ, δ) from the relationship of δ i = f(ρ i ) obtained in step 4.1), perform the fitting of the binary slope, and calculate the residual value ε γi of each data point =y γi (ρ,δ)-γ i (ρ,δ), draw the residual histogram ε γi -h, also use the bell curve for normal fitting, get the variance value σ γ , use the λσ principle to determine the The singular point outside the confidence interval is used as the cluster center, denoted as c γ ; 4.3)将由步骤4.2)得到的聚类中心cγ在空间域上进行尺度回放,得到原始尺寸的中间结果图的聚类中心,将剩余像素点依据最近邻原则进行归类,并用聚类中心的像素值填充同质区域。4.3) Scale playback the clustering center c γ obtained in step 4.2) in the spatial domain to obtain the clustering center of the intermediate result image of the original size, classify the remaining pixels according to the nearest neighbor principle, and use the clustering center’s Pixel values fill homogeneous areas. 2.如权利要求1所述的基于快速密度聚类算法的图像分割方法,其特征在于:所述步骤3.2)中,dc是一个正实数,用于刻画以像素点pi为圆心,dc为半径的圆周,而密度值ρi即为落在圆周内部的像素点个数;以颜色空间下各个通道像素值累加和最大处的像素点pmax与各个通道像素值累加和最小处的像素点pmin之间的相似度距离的2%作为dc值,计算公式如下:2. the image segmentation method based on fast density clustering algorithm as claimed in claim 1, is characterized in that: in described step 3.2), d c is a positive real number, is used to describe taking pixel point p as the center of circle, d c is the circumference of the radius, and the density value ρ i is the number of pixels falling inside the circumference; the pixel p max at the maximum sum of the pixel values of each channel in the color space and the pixel value at the minimum sum of the pixel values of each channel 2% of the similarity distance between pixel points p min is taken as the d c value, and the calculation formula is as follows: dd cc == 0.020.02 ** dd pp (( pp ‾‾ mm aa xx ,, pp ‾‾ minmin )) -- -- -- (( 66 )) 式(6)中,表示若一幅图像中,有多个像素点在颜色空间下像素值累加和相等,都为最大或最小的情况下,则取平均,即 In formula (6), Indicates that if there are multiple pixels in an image, the cumulative sum of pixel values in the color space is equal to the maximum or minimum, then take the average, that is 3.如权利要求1或2所述的基于快速密度聚类算法的图像分割方法,其特征在于:所述步骤3.7)中,最终得到的聚类中心cδργ是由三次回归分析得到的聚类中心cδ、cρ、cγ取并集得到的,在显示聚类分割的结果图时,使用过分割情况下得到的聚类中心的像素值填充该类簇区域。3. the image segmentation method based on fast density clustering algorithm as claimed in claim 1 or 2, is characterized in that: in described step 3.7), the clustering center c δργ that finally obtains is the cluster that obtains by cubic regression analysis Centers c δ , c ρ , and c γ are obtained by taking the union. When displaying the result map of cluster segmentation, use the pixel value of the cluster center obtained in the case of over-segmentation to fill the cluster area. 4.如权利要求1或2所述的基于快速密度聚类算法的图像分割方法,其特征在于:所述步骤4.2)中,二次重聚类的聚类中心自动确定的判定依据不再使用cδ、cρ、cγ的并集,仅仅对γ值进行直方图分析。4. the image segmentation method based on fast density clustering algorithm as claimed in claim 1 or 2, is characterized in that: in described step 4.2), the judgment basis that the cluster center of secondary re-clustering determines automatically no longer uses The union of c δ , c ρ , and c γ only performs histogram analysis on the γ value.
CN201610887803.2A 2016-10-12 2016-10-12 An Image Segmentation Method Based on Fast Density Clustering Algorithm Active CN106447676B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610887803.2A CN106447676B (en) 2016-10-12 2016-10-12 An Image Segmentation Method Based on Fast Density Clustering Algorithm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610887803.2A CN106447676B (en) 2016-10-12 2016-10-12 An Image Segmentation Method Based on Fast Density Clustering Algorithm

Publications (2)

Publication Number Publication Date
CN106447676A true CN106447676A (en) 2017-02-22
CN106447676B CN106447676B (en) 2019-01-22

Family

ID=58173418

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610887803.2A Active CN106447676B (en) 2016-10-12 2016-10-12 An Image Segmentation Method Based on Fast Density Clustering Algorithm

Country Status (1)

Country Link
CN (1) CN106447676B (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108109150A (en) * 2017-12-15 2018-06-01 上海兴芯微电子科技有限公司 Image partition method, terminal
CN108229471A (en) * 2017-12-27 2018-06-29 南京晓庄学院 A kind of row structure analysis method of line Handwritten text
CN108595585A (en) * 2018-04-18 2018-09-28 平安科技(深圳)有限公司 Sample data sorting technique, model training method, electronic equipment and storage medium
CN108986122A (en) * 2018-08-01 2018-12-11 重庆大学 Indoor parking guidance map intelligent reconstruction method
CN109145964A (en) * 2018-08-01 2019-01-04 武汉大学 A kind of method and system for realizing color of image cluster
CN109410236A (en) * 2018-06-12 2019-03-01 佛山市顺德区中山大学研究院 The method and system that fluorescent staining image reflective spot is identified and redefined
CN109426458A (en) * 2017-09-04 2019-03-05 阿里巴巴集团控股有限公司 A kind of Method of printing and device of relational graph
CN109959885A (en) * 2017-12-26 2019-07-02 深圳先进技术研究院 An imaging method based on binary decision tree and its device and storage medium
CN110070547A (en) * 2019-04-18 2019-07-30 北京市商汤科技开发有限公司 Image processing method and device, electronic equipment and storage medium
CN110096607A (en) * 2019-04-17 2019-08-06 广州思德医疗科技有限公司 A kind of acquisition methods and device of label picture
CN110263804A (en) * 2019-05-06 2019-09-20 杭州电子科技大学 A kind of medical image dividing method based on safe semi-supervised clustering
CN110348521A (en) * 2019-07-12 2019-10-18 创新奇智(重庆)科技有限公司 Image procossing clustering method and its system, electronic equipment
CN110751228A (en) * 2019-10-28 2020-02-04 西京学院 Crop pathological change leaf detection method based on improved k-means algorithm
CN110751654A (en) * 2019-08-30 2020-02-04 稿定(厦门)科技有限公司 Image matting method, medium, equipment and device
TWI728791B (en) * 2019-12-30 2021-05-21 中國商深圳市商湯科技有限公司 Image semantic segmentation method, device and storage medium thereof
CN113256645A (en) * 2021-04-12 2021-08-13 中国计量大学 Color image segmentation method based on improved density clustering
CN113496492A (en) * 2020-04-02 2021-10-12 阿里巴巴集团控股有限公司 Multi-scale image segmentation method and device
CN114998903A (en) * 2022-05-24 2022-09-02 北京百度网讯科技有限公司 Text occlusion area detection method and device, electronic equipment and storage medium
CN116090163A (en) * 2022-11-14 2023-05-09 深圳大学 A method of color selection for mosaic tiles and related equipment
CN116385435A (en) * 2023-06-02 2023-07-04 济宁市健达医疗器械科技有限公司 Pharmaceutical capsule counting method based on image segmentation
CN117522864A (en) * 2024-01-02 2024-02-06 山东旭美尚诺装饰材料有限公司 European pine plate surface flaw detection method based on machine vision
CN119399215A (en) * 2024-10-25 2025-02-07 景德镇陶瓷大学 Color card image segmentation method based on peak detection and DBSCAN clustering

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101976348A (en) * 2010-10-21 2011-02-16 中国科学院深圳先进技术研究院 Image clustering method and system
CN103150731A (en) * 2013-03-07 2013-06-12 南京航空航天大学 Fuzzy clustering image segmenting method
CN103456017A (en) * 2013-09-08 2013-12-18 西安电子科技大学 Image segmentation method of semi-supervised weight kernel fuzzy clustering based on seed set
CN104504266A (en) * 2014-12-24 2015-04-08 中国科学院深圳先进技术研究院 Graph partitioning method based on shortest path and density clustering
CN105931236A (en) * 2016-04-19 2016-09-07 武汉大学 Fuzzy C-means clustering initial clustering center automatic selection method facing image segmentation
CN105930862A (en) * 2016-04-13 2016-09-07 江南大学 Density peak clustering algorithm based on density adaptive distance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101976348A (en) * 2010-10-21 2011-02-16 中国科学院深圳先进技术研究院 Image clustering method and system
CN103150731A (en) * 2013-03-07 2013-06-12 南京航空航天大学 Fuzzy clustering image segmenting method
CN103456017A (en) * 2013-09-08 2013-12-18 西安电子科技大学 Image segmentation method of semi-supervised weight kernel fuzzy clustering based on seed set
CN104504266A (en) * 2014-12-24 2015-04-08 中国科学院深圳先进技术研究院 Graph partitioning method based on shortest path and density clustering
CN105930862A (en) * 2016-04-13 2016-09-07 江南大学 Density peak clustering algorithm based on density adaptive distance
CN105931236A (en) * 2016-04-19 2016-09-07 武汉大学 Fuzzy C-means clustering initial clustering center automatic selection method facing image segmentation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUJIE LI ET AL: "Color Image Segmentation Using Fast Density-Based Clustering Method", 《SPRINGER-VERLAG BERLIN HEIDELBERG》 *

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109426458A (en) * 2017-09-04 2019-03-05 阿里巴巴集团控股有限公司 A kind of Method of printing and device of relational graph
US11010113B2 (en) 2017-09-04 2021-05-18 Alibaba Group Holding Limited Method and apparatus for printing relational graph
CN109426458B (en) * 2017-09-04 2022-05-17 阿里巴巴集团控股有限公司 Method and device for printing relation graph
WO2019042276A1 (en) * 2017-09-04 2019-03-07 阿里巴巴集团控股有限公司 Method and device for printing relational graph
CN108109150B (en) * 2017-12-15 2021-02-05 上海兴芯微电子科技有限公司 Image segmentation method and terminal
CN108109150A (en) * 2017-12-15 2018-06-01 上海兴芯微电子科技有限公司 Image partition method, terminal
CN109959885A (en) * 2017-12-26 2019-07-02 深圳先进技术研究院 An imaging method based on binary decision tree and its device and storage medium
CN109959885B (en) * 2017-12-26 2021-04-30 深圳先进技术研究院 Imaging method based on binary decision tree, device and storage medium thereof
CN108229471B (en) * 2017-12-27 2023-10-27 南京晓庄学院 A method for line structure analysis of offline handwritten text
CN108229471A (en) * 2017-12-27 2018-06-29 南京晓庄学院 A kind of row structure analysis method of line Handwritten text
CN108595585A (en) * 2018-04-18 2018-09-28 平安科技(深圳)有限公司 Sample data sorting technique, model training method, electronic equipment and storage medium
CN109410236A (en) * 2018-06-12 2019-03-01 佛山市顺德区中山大学研究院 The method and system that fluorescent staining image reflective spot is identified and redefined
CN109410236B (en) * 2018-06-12 2021-11-30 佛山市顺德区中山大学研究院 Method and system for identifying and redefining reflecting points of fluorescence staining images
CN109145964A (en) * 2018-08-01 2019-01-04 武汉大学 A kind of method and system for realizing color of image cluster
CN108986122A (en) * 2018-08-01 2018-12-11 重庆大学 Indoor parking guidance map intelligent reconstruction method
CN109145964B (en) * 2018-08-01 2020-09-08 武汉大学 A method and system for realizing image color clustering
CN108986122B (en) * 2018-08-01 2021-03-02 重庆大学 Intelligent reconstruction method for indoor parking guide map
CN110096607A (en) * 2019-04-17 2019-08-06 广州思德医疗科技有限公司 A kind of acquisition methods and device of label picture
CN110070547A (en) * 2019-04-18 2019-07-30 北京市商汤科技开发有限公司 Image processing method and device, electronic equipment and storage medium
CN110263804A (en) * 2019-05-06 2019-09-20 杭州电子科技大学 A kind of medical image dividing method based on safe semi-supervised clustering
CN110263804B (en) * 2019-05-06 2021-08-03 杭州电子科技大学 A medical image segmentation method based on secure semi-supervised clustering
CN110348521A (en) * 2019-07-12 2019-10-18 创新奇智(重庆)科技有限公司 Image procossing clustering method and its system, electronic equipment
CN110751654A (en) * 2019-08-30 2020-02-04 稿定(厦门)科技有限公司 Image matting method, medium, equipment and device
CN110751228A (en) * 2019-10-28 2020-02-04 西京学院 Crop pathological change leaf detection method based on improved k-means algorithm
TWI728791B (en) * 2019-12-30 2021-05-21 中國商深圳市商湯科技有限公司 Image semantic segmentation method, device and storage medium thereof
CN113496492A (en) * 2020-04-02 2021-10-12 阿里巴巴集团控股有限公司 Multi-scale image segmentation method and device
CN113496492B (en) * 2020-04-02 2025-02-25 阿里巴巴集团控股有限公司 Multi-scale image segmentation method and device
CN113256645A (en) * 2021-04-12 2021-08-13 中国计量大学 Color image segmentation method based on improved density clustering
CN113256645B (en) * 2021-04-12 2023-07-28 中国计量大学 Color image segmentation method based on improved density clustering
CN114998903A (en) * 2022-05-24 2022-09-02 北京百度网讯科技有限公司 Text occlusion area detection method and device, electronic equipment and storage medium
CN116090163A (en) * 2022-11-14 2023-05-09 深圳大学 A method of color selection for mosaic tiles and related equipment
CN116090163B (en) * 2022-11-14 2023-09-22 深圳大学 Mosaic tile color selection method and related equipment
CN116385435B (en) * 2023-06-02 2023-09-26 济宁市健达医疗器械科技有限公司 Pharmaceutical capsule counting method based on image segmentation
CN116385435A (en) * 2023-06-02 2023-07-04 济宁市健达医疗器械科技有限公司 Pharmaceutical capsule counting method based on image segmentation
CN117522864A (en) * 2024-01-02 2024-02-06 山东旭美尚诺装饰材料有限公司 European pine plate surface flaw detection method based on machine vision
CN117522864B (en) * 2024-01-02 2024-03-19 山东旭美尚诺装饰材料有限公司 European pine plate surface flaw detection method based on machine vision
CN119399215A (en) * 2024-10-25 2025-02-07 景德镇陶瓷大学 Color card image segmentation method based on peak detection and DBSCAN clustering
CN119399215B (en) * 2024-10-25 2025-06-10 景德镇陶瓷大学 Segmentation method for cluster color card image based on peak detection and DBSCAN

Also Published As

Publication number Publication date
CN106447676B (en) 2019-01-22

Similar Documents

Publication Publication Date Title
CN106447676A (en) Image segmentation method based on rapid density clustering algorithm
CN109522908B (en) Image Saliency Detection Method Based on Region Label Fusion
CN113435460B (en) A recognition method for bright crystal granular limestone images
CN110428432B (en) Deep neural network algorithm for automatically segmenting colon gland image
CN113592894B (en) Image segmentation method based on boundary box and co-occurrence feature prediction
CN115861135A (en) Image enhancement and identification method applied to box panoramic detection
WO2018107939A1 (en) Edge completeness-based optimal identification method for image segmentation
CN102005034A (en) Remote sensing image segmentation method based on region clustering
CN108829711B (en) Image retrieval method based on multi-feature fusion
CN111986126B (en) Multi-target detection method based on improved VGG16 network
CN103839269A (en) Image segmentation method based on quaternion and fuzzy C-means clustering
CN109409438B (en) Remote sensing image classification method based on IFCM clustering and variational inference
CN111199245A (en) Rape pest identification method
CN107977660A (en) Region of interest area detecting method based on background priori and foreground node
CN107305691A (en) Foreground segmentation method and device based on images match
CN109766823A (en) A high-resolution remote sensing ship detection method based on deep convolutional neural network
CN111242026A (en) Remote sensing image target detection method based on spatial hierarchy perception module and metric learning
CN112749673A (en) Method and device for intelligently extracting stock of oil storage tank based on remote sensing image
CN108961301A (en) It is a kind of based on the unsupervised Chaetoceros image partition method classified pixel-by-pixel
CN113592893A (en) Image foreground segmentation method combining determined main body and refined edge
CN109840498B (en) A real-time pedestrian detection method, neural network and target detection layer
CN110969164A (en) Low-illumination imaging license plate recognition method and device based on deep learning end-to-end
CN115019163A (en) Identification method of urban elements based on multi-source big data
CN107123102A (en) A kind of adherent cell growth degrees of fusion automatic analysis method
CN106815851B (en) A kind of grid circle oil level indicator automatic reading method of view-based access control model measurement

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
OL01 Intention to license declared
OL01 Intention to license declared
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170222

Assignee: Shandong Byte Information Technology Co.,Ltd.

Assignor: JIANG University OF TECHNOLOGY

Contract record no.: X2024980036754

Denomination of invention: An image segmentation method based on fast density clustering algorithm

Granted publication date: 20190122

License type: Open License

Record date: 20241222

Application publication date: 20170222

Assignee: Kaitian Axe (Linyi) Information Technology Co.,Ltd.

Assignor: JIANG University OF TECHNOLOGY

Contract record no.: X2024980036508

Denomination of invention: An image segmentation method based on fast density clustering algorithm

Granted publication date: 20190122

License type: Open License

Record date: 20241220

Application publication date: 20170222

Assignee: Linyi Taihao Crafts Co.,Ltd.

Assignor: JIANG University OF TECHNOLOGY

Contract record no.: X2024980035918

Denomination of invention: An image segmentation method based on fast density clustering algorithm

Granted publication date: 20190122

License type: Open License

Record date: 20241219

Application publication date: 20170222

Assignee: Linyi CITIC Information Technology Co.,Ltd.

Assignor: JIANG University OF TECHNOLOGY

Contract record no.: X2024980035672

Denomination of invention: An image segmentation method based on fast density clustering algorithm

Granted publication date: 20190122

License type: Open License

Record date: 20241218

Application publication date: 20170222

Assignee: Shandong Qianchen Network Technology Co.,Ltd.

Assignor: JIANG University OF TECHNOLOGY

Contract record no.: X2024980035649

Denomination of invention: An image segmentation method based on fast density clustering algorithm

Granted publication date: 20190122

License type: Open License

Record date: 20241218

Application publication date: 20170222

Assignee: Tancheng hongbaoyuan Machinery Co.,Ltd.

Assignor: JIANG University OF TECHNOLOGY

Contract record no.: X2024980036756

Denomination of invention: An image segmentation method based on fast density clustering algorithm

Granted publication date: 20190122

License type: Open License

Record date: 20241222

Application publication date: 20170222

Assignee: SHANDONG XUANJIN MACHINERY Co.,Ltd.

Assignor: JIANG University OF TECHNOLOGY

Contract record no.: X2024980036755

Denomination of invention: An image segmentation method based on fast density clustering algorithm

Granted publication date: 20190122

License type: Open License

Record date: 20241222

EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170222

Assignee: SHANDONG KAIJIA ENERGY SAVING BUILDING MATERIAL ENGINEERING Co.,Ltd.

Assignor: JIANG University OF TECHNOLOGY

Contract record no.: X2024980038367

Denomination of invention: An image segmentation method based on fast density clustering algorithm

Granted publication date: 20190122

License type: Open License

Record date: 20241225

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170222

Assignee: Zhejiang Sende Electric Motor Co.,Ltd.

Assignor: JIANG University OF TECHNOLOGY

Contract record no.: X2025980008106

Denomination of invention: An image segmentation method based on fast density clustering algorithm

Granted publication date: 20190122

License type: Open License

Record date: 20250507

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170222

Assignee: Hangzhou Guoke Qingchuang Technology Development Co.,Ltd.

Assignor: JIANG University OF TECHNOLOGY

Contract record no.: X2025980008718

Denomination of invention: An image segmentation method based on fast density clustering algorithm

Granted publication date: 20190122

License type: Open License

Record date: 20250515

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170222

Assignee: Hangzhou Yingyuanzhong Technology Co.,Ltd.

Assignor: JIANG University OF TECHNOLOGY

Contract record no.: X2025980010376

Denomination of invention: An image segmentation method based on fast density clustering algorithm

Granted publication date: 20190122

License type: Open License

Record date: 20250612

EE01 Entry into force of recordation of patent licensing contract