[go: up one dir, main page]

CN106443758A - Anticoincidence based positron annihilation detecting method and system - Google Patents

Anticoincidence based positron annihilation detecting method and system Download PDF

Info

Publication number
CN106443758A
CN106443758A CN201610808448.5A CN201610808448A CN106443758A CN 106443758 A CN106443758 A CN 106443758A CN 201610808448 A CN201610808448 A CN 201610808448A CN 106443758 A CN106443758 A CN 106443758A
Authority
CN
China
Prior art keywords
signal
gamma photon
positron
positron annihilation
scintillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610808448.5A
Other languages
Chinese (zh)
Inventor
王宝义
况鹏
曹兴忠
张鹏
靳硕学
李崇
魏龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of High Energy Physics of CAS
Original Assignee
Institute of High Energy Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of High Energy Physics of CAS filed Critical Institute of High Energy Physics of CAS
Priority to CN201610808448.5A priority Critical patent/CN106443758A/en
Publication of CN106443758A publication Critical patent/CN106443758A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/36Measuring spectral distribution of X-rays or of nuclear radiation spectrometry
    • G01T1/362Measuring spectral distribution of X-rays or of nuclear radiation spectrometry with scintillation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Measurement Of Radiation (AREA)

Abstract

本申请公开一种基于反符合的用于探测正电子湮没的方法及系统。该方法包括:利用放射源产生正电子,所述正电子包括进入样品的第一正电子和进入闪烁片的第二正电子;获取正电子湮没产生的伽马光子信号,所述伽马光子信号包括所述第一正电子湮没产生的第一伽马光子信号以及所述第二正电子湮没产生的第二伽马光子信号;获取所述第二正电子通过所述闪烁片时所述闪烁片产生的第一信号;根据所述第一信号,从所述伽马光子信号中去除所述第二伽马光子信号。该方法能够去除无效的伽马光子信号。

The present application discloses a method and system for detecting positron annihilation based on anti-coincidence. The method comprises: using a radioactive source to generate positrons, the positrons including first positrons entering the sample and second positrons entering the scintillator; acquiring gamma photon signals generated by the annihilation of the positrons, the gamma photon signals Including the first gamma photon signal generated by the first positron annihilation and the second gamma photon signal generated by the second positron annihilation; acquiring the scintillation sheet when the second positron passes through the scintillation sheet A first signal is generated; according to the first signal, the second gamma photon signal is removed from the gamma photon signal. This method is able to remove invalid gamma photon signals.

Description

基于反符合的用于探测正电子湮没的方法及系统Method and system for detecting positron annihilation based on anticoincidence

技术领域technical field

本发明涉及核谱学和核探测技术领域,具体而言,涉及一种基于反符合的用于探测正电子湮没的方法及系统。The invention relates to the technical field of nuclear spectroscopy and nuclear detection, in particular to a method and system for detecting positron annihilation based on anticoincidence.

背景技术Background technique

放射源发出的正电子射入待测样品中,经热化扩散后与待测样品中的电子发生湮没,发射出伽马光子,伽马光子的产生时间及其携带的动量和能量信息,分别对应着正电子在材料中的寿命,与之湮没的电子动量和能量分布信息,这些信息可以反映出待测样品材料的微观结构。The positrons emitted by the radioactive source are injected into the sample to be tested, and after thermal diffusion, they annihilate with the electrons in the sample to be tested, and emit gamma photons. The generation time of the gamma photons and the momentum and energy information they carry are respectively Corresponding to the lifetime of the positron in the material, the momentum and energy distribution information of the annihilated electron can reflect the microstructure of the sample material to be tested.

如图1所示的常规测量方法中,采用两片相同的样品紧密夹住放射源进行正电子的测量。图1是根据现有技术示出的一种“三明治”结构正电子湮没测量系统原理框图。如图1所示,一种“三明治”结构正电子湮没测量系统100包括:放射源103、开始信号探测器105、停止信号探测器107、第一恒比定时器109、延时器111、第二恒比定时器113、时间幅度转换器115以及多道分析器117。其中图上还示出了待测样品101。In the conventional measurement method shown in Figure 1, two identical samples are used to tightly clamp the radioactive source for positron measurement. Fig. 1 is a schematic block diagram of a "sandwich" structure positron annihilation measurement system according to the prior art. As shown in Figure 1, a "sandwich" structure positron annihilation measurement system 100 includes: a radiation source 103, a start signal detector 105, a stop signal detector 107, a first constant ratio timer 109, a delayer 111, a first Two constant-ratio timers 113 , a time-to-amplitude converter 115 and a multi-channel analyzer 117 . The sample to be tested 101 is also shown in the figure.

“三明治”结构正电子湮没测量系统工作原理为:通常情况下放射源为22Na,放射源发出的正电子同时伴随有1.28MeV特征伽马光子产生,在正电子寿命谱测量中,选择该特征伽马光子作为正电子湮没的起始信号。正电子在材料中湮没后大部分发出2个能量范围在0.511MeV左右的伽马光子,两个光子呈大概180度角方向发射,选择该伽马光子作为正电子湮没的终止信号,起始信号和终止信号的时间差即为正电子的寿命,通过大量事件的统计形成正电子寿命谱。同时,利用同样的测试系统,也可对0.511MeV伽马光子进行能谱测量得到多普勒展宽谱,对0.511MeV伽马光子对的发射角分布测量统计得到动量角关联谱。The working principle of the "sandwich" structure positron annihilation measurement system is: usually the radioactive source is 22 Na, and the positrons emitted by the radioactive source are accompanied by the generation of 1.28MeV characteristic gamma photons. In the positron lifetime spectrum measurement, this feature is selected Gamma photons serve as the initiation signal for positron annihilation. After the positron is annihilated in the material, most of them emit two gamma photons with an energy range of about 0.511MeV, and the two photons are emitted at an angle of about 180 degrees. The gamma photon is selected as the termination signal and the start signal of the positron annihilation The time difference between the positron and the termination signal is the lifetime of the positron, and the positron lifetime spectrum is formed through the statistics of a large number of events. At the same time, using the same test system, the Doppler broadening spectrum can also be obtained by measuring the energy spectrum of 0.511MeV gamma photons, and the momentum angle correlation spectrum can be obtained by measuring the emission angle distribution of 0.511MeV gamma photon pairs.

在“三明治”结构正电子湮没测量系统中,正电子由放射源103产生,放射源103夹在两片相同的样品101之间,并置于开始信号探测器105与停止信号探测器107这两个探测器中间。开始信号探测器105、停止信号探测器107由BaF2晶体(或塑料闪烁体)、光电倍增管组成。第一恒比定时器109与第二恒比定时器113可以对所探测的光子进行能量选择,也可以在探测到光子时产生定时信号。第二恒比定时器113连接延时器111,延时器111将第二恒比定时器113接收到的信号进行延迟。时间幅度转换器115将第一恒比定时器109传送过来的信号与延时器111传送过来的信号之间的时间间隔转换为一个高度与之成正比的脉冲信号,此脉冲信号输入多道分析器117,进而得到正电子的寿命谱。In the "sandwich" structure positron annihilation measurement system, the positrons are generated by the radioactive source 103, which is sandwiched between two identical samples 101, and placed at the start signal detector 105 and the stop signal detector 107. between the detectors. The start signal detector 105 and the stop signal detector 107 are composed of BaF2 crystal (or plastic scintillator) and photomultiplier tube. The first constant ratio timer 109 and the second constant ratio timer 113 can select the energy of the detected photons, and can also generate a timing signal when a photon is detected. The second constant ratio timer 113 is connected to the delayer 111 , and the delayer 111 delays the signal received by the second constant ratio timer 113 . The time-amplitude converter 115 converts the time interval between the signal transmitted by the first constant ratio timer 109 and the signal transmitted by the delayer 111 into a pulse signal whose height is directly proportional to it, and this pulse signal is input into multi-channel analysis device 117, and then obtain the lifetime spectrum of the positron.

如图1所示的常规方法由于结构受限,无法实现现场材料检测和液态样品测量,对样品所处环境改变受限,应用范围受到限制。Due to the limited structure, the conventional method shown in Figure 1 cannot realize on-site material detection and liquid sample measurement, and the change of the sample environment is limited, so the application range is limited.

有鉴于此,β+-γ符合正电子湮没方法被研制出来,如图2所示。β+-γ符合正电子湮没方法,利用塑料闪烁体直接检测正电子的产生时刻,通过检测正电子穿过闪烁体的时刻与湮没对放出的伽马射线时刻的时间差,测得正电子的湮没寿命。In view of this, the β+-γ coincident positron annihilation method was developed, as shown in Figure 2. β+-γ conforms to the positron annihilation method. The plastic scintillator is used to directly detect the generation moment of the positron, and the annihilation of the positron is measured by detecting the time difference between the moment when the positron passes through the scintillator and the moment when the annihilation pair emits gamma rays. life.

图2是根据现有技术示出的一种“β+-γ”符合正电子湮没测量系统原理框图。如图2所示,一种“β+-γ”符合正电子湮没测量系统200包括:放射源203、闪烁片205、开始信号探测器207、停止信号探测器209、第一定时器211、第二定时器213、光电倍增管215、第三定时器217、时间幅度转换器219、符合电路221以及多道分析器223。其中图上还示出了待测样品201。Fig. 2 is a schematic block diagram of a "β+-γ" consistent positron annihilation measurement system according to the prior art. As shown in Figure 2, a "β+-γ" coincident positron annihilation measurement system 200 includes: a radiation source 203, a scintillation sheet 205, a start signal detector 207, a stop signal detector 209, a first timer 211, a second A second timer 213 , a photomultiplier tube 215 , a third timer 217 , a time-to-amplitude converter 219 , a coincidence circuit 221 and a multi-channel analyzer 223 . The sample to be tested 201 is also shown in the figure.

β+-γ符合正电子湮没测量系统工作原理为:利用塑料闪烁体直接检测正电子的产生时刻,通过检测正电子穿过闪烁体的时刻与湮没对放出0.511MeV伽马射线时刻的时间差,测得正电子的湮没寿命。β+-γ正电子寿命测量以β+直接穿过闪烁片产生的脉冲信号作为时间起始信号,为了保证正电子有足够能量穿透闪烁片在样品上湮没,因而选用正电子能量高(1.89MeV),半衰期较长(276d)的68Ge作为测量用放射源。在探头外面装有厚约2cm的Pb屏蔽以起到准直和阻挡光导中湮没伽马射线对停止探头以及符合探头的影响。The working principle of the β + -γ accord with the positron annihilation measurement system is: use the plastic scintillator to directly detect the generation moment of the positron, and measure the The annihilation lifetime of the positron is obtained. The β + -γ positron lifetime measurement uses the pulse signal generated by β + directly passing through the scintillator as the time start signal. In order to ensure that the positron has enough energy to penetrate the scintillator and annihilate on the sample, a high positron energy (1.89 MeV), 68 Ge with a longer half-life (276d) was used as the radioactive source for measurement. A Pb shield with a thickness of about 2 cm is installed outside the probe to collimate and block the influence of annihilation gamma rays in the light guide on the stop probe and coincident probe.

在β+-γ符合正电子湮没测量系统中,正电子由放射源203产生,放射源203处于闪烁片205与光电倍增管215之间,放射源203、闪烁片205以及光电倍增管215作为一个整体,置于开始信号探测器207与停止信号探测器209这两个探测器中间。第一定时器211与第二定时器213可以对所探测的光子进行能量选择,也可以在探测到光子时产生定时信号。第三定时器217对所探测的经过光电倍增管的信号进行能量选择,也可以在探测到经过光电倍增管的信号时产生定时信号。In the β + -γ coincident positron annihilation measurement system, the positrons are generated by the radioactive source 203, and the radioactive source 203 is located between the scintillator 205 and the photomultiplier tube 215, and the radioactive source 203, the scintillator 205 and the photomultiplier tube 215 act as one As a whole, it is placed between the start signal detector 207 and the stop signal detector 209 . The first timer 211 and the second timer 213 can select the energy of the detected photons, and can also generate a timing signal when a photon is detected. The third timer 217 performs energy selection on the detected signal passing through the photomultiplier tube, and can also generate a timing signal when detecting the signal passing through the photomultiplier tube.

第一定时器211与第二定时器213将处理后的信号传送给符合电路221进行符合处理。经过符合处理之后的信号与第三定时器217处理之后的信号一起传送给时间幅度转换器219。时间幅度转换器219将快符合电路221传送过来的信号与第三定时器217传送过来的信号之间的时间间隔转换为一个高度与之成正比的脉冲信号。此脉冲信号输入多道分析器223,进而得到正电子的寿命谱。The first timer 211 and the second timer 213 transmit the processed signal to the coincidence circuit 221 for coincidence processing. The signal processed by the coincidence process and the signal processed by the third timer 217 are sent to the time-to-amplitude converter 219 . The time-to-amplitude converter 219 converts the time interval between the signal sent by the fast coincidence circuit 221 and the signal sent by the third timer 217 into a pulse signal whose height is directly proportional to it. The pulse signal is input into the multi-channel analyzer 223 to obtain the lifetime spectrum of the positron.

如图2所示的正电子湮没测量方法能实现样品和放射源的非接触测量。但是,首先,由于闪烁片会吸收正电子,闪烁片越厚,正电子沉积能量越多,信号强度越高,但是能够穿过闪烁片的正电子数目越少,另外正电子穿透铝箔和空气过程中也有正电子湮没损失,样品与放射源距离越远,在样品上湮没的正电子数越少,并且要求正电子能量高,限制了源的选择;其次,使用铅屏蔽准直器吸收不在样品中湮没的正电子,以及湮没产生的伽马射线,会减少有效正电子数;最后,通过两个氟化钡探测器符合的方式选通有效伽马射线,探测效率和符合比例在很大程度上限制了计数效率,以上三个因素导致符合测量方法牺牲了正电子的计数效率,使得β+-γ符合正电子湮没测量谱仪的计数效率低。The positron annihilation measurement method shown in Figure 2 can realize the non-contact measurement of samples and radioactive sources. But, first, because the scintillator absorbs positrons, the thicker the scintillator, the more energy deposited by the positrons, the higher the signal strength, but the fewer the number of positrons that can pass through the scintillator, and the positrons penetrate aluminum foil and air There is also positron annihilation loss in the process. The farther the sample is from the radioactive source, the fewer the number of positrons annihilated on the sample, and the high energy of the positrons is required, which limits the selection of the source; secondly, the use of lead shielding collimator does not absorb The annihilated positrons in the sample, as well as the gamma rays produced by the annihilation, will reduce the number of effective positrons; finally, the effective gamma rays are gated through the coincidence of two barium fluoride detectors, and the detection efficiency and coincidence ratio are very large. The counting efficiency is limited to a certain extent. The above three factors cause the coincidence measurement method to sacrifice the counting efficiency of positrons, making the counting efficiency of the β+-γ coincidence positron annihilation measurement spectrometer low.

针对上述问题,本发明提供了一种基于反符合的用于探测正电子湮没的方法及系统。In view of the above problems, the present invention provides a method and system for detecting positron annihilation based on anti-coincidence.

在所述背景技术部分公开的上述信息仅用于加强对本发明的背景的理解,因此它可以包括不构成对本领域普通技术人员已知的现有技术的信息。The above information disclosed in this Background section is only for enhancement of understanding of the background of the invention and therefore it may contain information that does not form the prior art that is already known in the art to a person of ordinary skill in the art.

发明内容Contents of the invention

有鉴于此,本发明提供一种基于反符合的用于探测正电子湮没的方法及系统,去除无效的伽马信号。In view of this, the present invention provides a method and system for detecting positron annihilation based on anti-coincidence to remove invalid gamma signals.

本发明的其他特性和优点将通过下面的详细描述变得显然,或部分地通过本发明的实践而习得。Other features and advantages of the invention will become apparent from the following detailed description, or in part, be learned by practice of the invention.

根据本发明的一方面,提供一种基于反符合的用于探测正电子湮没的方法,其特征在于,包括:利用放射源产生正电子,正电子包括进入样品的第一正电子和进入闪烁片的第二正电子;获取正电子湮没产生的伽马光子信号,伽马光子信号包括第一正电子湮没产生的第一伽马光子信号以及第二正电子湮没产生的第二伽马光子信号;获取第二正电子通过闪烁片时闪烁片产生的第一信号;根据第一信号,从伽马光子信号中去除第二伽马光子信号。According to one aspect of the present invention, there is provided a method for detecting positron annihilation based on anticoincidence, which is characterized in that it includes: using a radioactive source to generate positrons, the positrons include the first positrons entering the sample and entering the scintillator the second positron; obtaining the gamma photon signal generated by the annihilation of the positron, the gamma photon signal including the first gamma photon signal generated by the annihilation of the first positron and the second gamma photon signal generated by the annihilation of the second positron; acquiring a first signal generated by the scintillator when the second positron passes through the scintillator; and removing the second gamma photon signal from the gamma photon signal according to the first signal.

在本公开的一种示例性实施例中,第一信号为第二正电子在经过闪烁片时产生的荧光信号。In an exemplary embodiment of the present disclosure, the first signal is a fluorescent signal generated when the second positron passes through the scintillator.

在本公开的一种示例性实施例中,上述方法还包括:获取放射源产生的特征伽马光子信号,作为正电子湮没的起始信号。In an exemplary embodiment of the present disclosure, the above method further includes: acquiring a characteristic gamma photon signal generated by the radiation source as an initial signal of positron annihilation.

在本公开的一种示例性实施例中,从伽马光子信号中去除第二伽马光子信号包括:如果所述伽马光子信号的获取时刻与所述荧光信号的获取时刻在预设时间范围内,则将所述伽马光子信号排除。。In an exemplary embodiment of the present disclosure, removing the second gamma photon signal from the gamma photon signal includes: if the acquisition moment of the gamma photon signal and the acquisition moment of the fluorescence signal are within a preset time range , the gamma photon signal is excluded. .

根据本发明的另一方面,提供一种基于反符合的用于探测正电子湮没的系统,包括:闪烁片,用于在正电子进入时产生荧光;反符合探测系统,与闪烁片耦接,用于探测在进入闪烁片的第二正电子通过闪烁片时闪烁片产生的第一信号;伽马光子探测系统,用于获取正电子湮没产生的伽马光子信号作为正电子湮没的停止信号、以及放射源产生的特征伽马光子信号作为正电子湮没的起始信号;以及符合系统,用于根据第一信号、起始信号和停止信号获取有效伽马光子信号。According to another aspect of the present invention, there is provided a system for detecting positron annihilation based on anti-coincidence, comprising: a scintillator for generating fluorescence when a positron enters; an anti-coincidence detection system coupled with the scintillator, It is used to detect the first signal generated by the scintillator when the second positron entering the scintillator passes through the scintillator; the gamma photon detection system is used to obtain the gamma photon signal generated by the positron annihilation as the stop signal of the positron annihilation, And the characteristic gamma photon signal generated by the radiation source is used as the start signal of the positron annihilation; and a coincidence system is used to obtain the effective gamma photon signal according to the first signal, the start signal and the stop signal.

在本公开的一种示例性实施例中,其中反符合探测系统包括:光电倍增管,用于获取放射源发出的正电子穿过闪烁片时产生的第一信号,闪烁片置于放射源与光电倍增管之间;前放大器,用于将第一信号放大;主放大器,用于将经过前放大器放大的第一信号继续放大;单道分析器,用于将主放大器输出的信号进行能量选择,然后将信号转换成逻辑信号;以及第一延时器,用于将单道分析器输出信号进行延时。In an exemplary embodiment of the present disclosure, the anticoincidence detection system includes: a photomultiplier tube, configured to acquire the first signal generated when the positrons emitted by the radioactive source pass through the scintillator, and the scintillator is placed between the radioactive source and Between the photomultiplier tubes; the pre-amplifier is used to amplify the first signal; the main amplifier is used to further amplify the first signal amplified by the pre-amplifier; the single-channel analyzer is used to select the energy of the signal output by the main amplifier , and then converting the signal into a logic signal; and a first delayer, used for delaying the output signal of the single-channel analyzer.

在本公开的一种示例性实施例中,在闪烁片与光电二极管之间还包括光导。In an exemplary embodiment of the present disclosure, a light guide is further included between the scintillation sheet and the photodiode.

在本公开的一种示例性实施例中,闪烁片厚度在0.2-10mm之间,包括原子序数小于20的材料构成。In an exemplary embodiment of the present disclosure, the thickness of the scintillation sheet is between 0.2-10 mm, and it is composed of materials with an atomic number less than 20.

在本公开的一种示例性实施例中,其中伽马光子探测系统包括:起始信号探头,用于获取放射源产生的特征伽马光子信号作为正电子湮没的起始信号;停止信号探头,用于获取正电子湮没产生的伽马光子信号作为正电子湮没的停止信号;第一恒比定时器,用于实现对正电子湮没起始信号的判断;第二恒比定时器,用于实现对正电子湮没停止信号的判断;第二延时器,用于将第一恒比定时器输出的信号进行延迟;以及第三延时器,用于将第二恒比定时器输出的信号进行延迟。In an exemplary embodiment of the present disclosure, the gamma photon detection system includes: a start signal probe, which is used to acquire the characteristic gamma photon signal generated by the radioactive source as the start signal of positron annihilation; a stop signal probe, It is used to obtain the gamma photon signal generated by positron annihilation as the stop signal of positron annihilation; the first constant ratio timer is used to realize the judgment of the start signal of positron annihilation; the second constant ratio timer is used to realize Judging the positron annihilation stop signal; the second delayer is used to delay the signal output by the first constant ratio timer; and the third delayer is used to delay the signal output by the second constant ratio timer Delay.

在本公开的一种示例性实施例中,其中符合系统包括:符合单元,用于接受第一信号与正电子湮没的开始信号以及正电子湮没的停止信号,并对第一信号、开始信号以及所述信号进行判断。时间幅度转换器,用于将第二延时器传送过来的信号与第三延时器传送过来的信号之间的时间差值转换为一个高度与所述时间差之成正比的脉冲信号;以及多道分析器,用于对时间幅度转换器传送的脉冲信号进行统计。In an exemplary embodiment of the present disclosure, the coincidence system includes: a coincidence unit, configured to receive the first signal, the start signal of the positron annihilation and the stop signal of the positron annihilation, and compare the first signal, the start signal and the The signal is judged. A time-to-amplitude converter, which is used to convert the time difference between the signal transmitted by the second delayer and the signal transmitted by the third delayer into a pulse signal whose height is proportional to the time difference; and multiple Trace analyzer for statistics on pulsed signals delivered by time-to-amplitude converters.

根据本发明一些实施例的基于反符合的用于探测正电子湮没的方法及系统,能实现放射源和样品的分离,还可尽量缩短样品与放射源的间距。According to some embodiments of the present invention, the method and system for detecting positron annihilation based on anti-coincidence can realize the separation of the radioactive source and the sample, and can also shorten the distance between the sample and the radioactive source as much as possible.

根据本发明一些实施例的基于反符合的用于探测正电子湮没的方法及系统,能够至少部分排除非样品正电子湮没成分。The anti-coincidence-based method and system for detecting positron annihilation according to some embodiments of the present invention can at least partially exclude non-sample positron annihilation components.

应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本发明。It is to be understood that both the foregoing general description and the following detailed description are exemplary only and are not restrictive of the invention.

附图说明Description of drawings

通过参照附图详细描述其示例实施例,本发明的上述和其它目标、特征及优点将变得更加显而易见。The above and other objects, features and advantages of the present invention will become more apparent by describing in detail exemplary embodiments thereof with reference to the accompanying drawings.

图1是根据现有技术示出的一种“三明治”结构正电子湮没测量系统原理框图。Fig. 1 is a schematic block diagram of a "sandwich" structure positron annihilation measurement system according to the prior art.

图2是根据现有技术示出的一种“β+-γ”符合正电子湮没测量系统原理框图。Fig. 2 is a schematic block diagram of a "β+-γ" consistent positron annihilation measurement system according to the prior art.

图3是根据一示例性实施例示出的一种基于反符合的用于探测正电子湮没的方法的流程图。Fig. 3 is a flowchart showing a method for detecting positron annihilation based on anti-coincidence according to an exemplary embodiment.

图4是根据一示例性实施例示出的再一种基于反符合的用于探测正电子湮没的方法的流程图。。Fig. 4 is a flowchart showing another method for detecting positron annihilation based on anti-coincidence according to an exemplary embodiment. .

图5是根据一示例性实施例示出的一种基于反符合的用于探测正电子湮没的系统的框图。Fig. 5 is a block diagram of a system for detecting positron annihilation based on anti-coincidence according to an exemplary embodiment.

附图标记说明:Explanation of reference signs:

“三明治”结构正电子湮没测量系统 100"Sandwich" structure positron annihilation measurement system 100

放射源 103 开始信号探测器 105 停止信号探测器 107radioactive source 103 start signal detector 105 stop signal detector 107

第一恒比定时器 109 延时器 111 第二恒比定时器 113The first constant ratio timer 109 Delay device 111 The second constant ratio timer 113

时间幅度转换器 115 多道分析器 117 待测样品 101Time-to-Amplitude Converter 115 Multichannel Analyzer 117 Test Sample 101

“β+-γ”符合正电子湮没测量系统 200"β+-γ" corresponds to the positron annihilation measurement system 200

放射源 203 闪烁片 205 开始信号探测器 207Radioactive source 203 Scintillation film 205 Start signal detector 207

停止信号探测器 209 第一定时器 211 第二定时器 213Stop Signal Detector 209 First Timer 211 Second Timer 213

光电倍增管 215 第三定时器 217 时间幅度转换器 219Photomultiplier tube 215 Third timer 217 Time-to-amplitude converter 219

符合电路 221 多道分析器 223 待测样品 201Coincidence circuit 221 Multichannel analyzer 223 Sample to be tested 201

基于反符合的用于探测正电子湮没的系统 500Anticoincidence-Based System for Detecting Positron Annihilation 500

闪烁片 502 光电倍增管 504 前放大器 506Scintillation plate 502 Photomultiplier tube 504 Preamplifier 506

主放大器 508 单道分析器 510 延时器 512Main Amplifier 508 Single Channel Analyzer 510 Delay 512

起始信号探头 514 停止信号探头 516 第一恒比定时器 518Start signal probe 514 Stop signal probe 516 First constant ratio timer 518

第二恒比定时器 520 第二延时器 522 第三延时器 524The second constant ratio timer 520 The second delayer 522 The third delayer 524

符合单元 526 时间幅度转换器 528 多道分析器 530Coincidence Unit 526 Time-to-Amplitude Converter 528 Multichannel Analyzer 530

放射源 505 待测样件 501Radioactive source 505 Sample to be tested 501

具体实施例specific embodiment

现在将参考附图更全面地描述示例实施例。然而,示例实施例能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施例使得本发明将更加全面和完整,并将示例实施例的构思全面地传达给本领域的技术人员。附图仅为本发明的示意性图解,并非一定是按比例绘制。图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。Example embodiments will now be described more fully with reference to the accompanying drawings. Example embodiments may, however, be embodied in many forms and should not be construed as limited to examples set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of example embodiments to those skilled in the art. The drawings are merely schematic illustrations of the invention and are not necessarily drawn to scale. The same reference numerals in the drawings denote the same or similar parts, and thus repeated descriptions thereof will be omitted.

此外,所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本发明的实施例的充分理解。然而,本领域技术人员将意识到,可以实践本发明的技术方案而省略所述特定细节中的一个或更多,或者可以采用其它的方法、组元、装置、步骤等。在其它情况下,不详细示出或描述公知结构、方法、装置、实现、材料或者操作以避免喧宾夺主而使得本发明的各方面变得模糊。Furthermore, the described features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. In the following description, numerous specific details are provided in order to give a thorough understanding of embodiments of the invention. However, those skilled in the art will appreciate that the technical solution of the present invention may be practiced without one or more of the specific details, or other methods, components, devices, steps, etc. may be adopted. In other instances, well-known structures, methods, devices, implementations, materials, or operations are not shown or described in detail to avoid obscuring aspects of the invention.

图3是根据一示例性实施例示出的一种基于反符合的用于探测正电子湮没的方法的流程图。Fig. 3 is a flowchart showing a method for detecting positron annihilation based on anti-coincidence according to an exemplary embodiment.

在步骤S302中,利用放射源产生正电子,正电子包括进入样品的第一正电子和进入闪烁片的第二正电子。In step S302, a radiation source is used to generate positrons, and the positrons include first positrons entering the sample and second positrons entering the scintillator.

物质是由原子组成的,而原子由原子核和一定数量的电子组成。原子核在中心,带正电。电子绕着原子核在特定的轨道上运动,带负电。整个原子的正负电荷相等,是中性的。原子核是由一定数量的质子和中子组成。中子数比质子数稍多一些。两者数目具有一定的比例。如果质子的数目过多或过少,也即中子数目过少或过多。原子核往往是不稳定的,它能够自发地发生变化,同时放出射线和能量。在本实施例中,正电子由放射源产生,例如放射源可为22Na。Matter is made up of atoms, and atoms are made up of nuclei and a certain number of electrons. The nucleus is in the center and is positively charged. Electrons move in specific orbits around the nucleus and are negatively charged. The entire atom has equal positive and negative charges and is neutral. The nucleus of an atom is composed of a certain number of protons and neutrons. There are slightly more neutrons than protons. The two numbers have a certain ratio. If there are too many or too few protons, there are too few or too many neutrons. The nucleus is often unstable, it can change spontaneously, emitting radiation and energy at the same time. In this embodiment, the positrons are generated by a radioactive source, such as 22 Na.

放射源向空间中发射正电子,在本实施例中,正电子的运行轨迹没有指向性,正电子向空间四散发射。放射源发射出的正电子一部分进入了待测样品中,与待测样品发生反应,另一部分进入了闪烁片中,与闪烁片发生反应。The radioactive source emits positrons into space. In this embodiment, the trajectory of positrons has no directivity, and positrons are scattered into space. Part of the positrons emitted by the radioactive source enters the sample to be tested and reacts with the sample to be tested, and the other part enters the scintillator and reacts with the scintillator.

在步骤S304中,获取正电子湮没产生的伽马光子信号,伽马光子信号包括第一正电子湮没产生的第一伽马光子信号以及第二正电子湮没产生的第二伽马光子信号。In step S304, a gamma photon signal generated by positron annihilation is acquired, and the gamma photon signal includes a first gamma photon signal generated by the first positron annihilation and a second gamma photon signal generated by the second positron annihilation.

放射源产生高能正电子的同时产生伽马光子。放射源发射出的高能正电子射入物质中后,首先在极短时间内通过一系列非弹性碰撞减速,损失绝大部分能量,这一过程称为注入与热化。热化后的正电子将在样品中进行无规扩散热运动,最后将在物质内部与电子发生湮没。其中,正电子与电子相遇,两者同时消失而产生伽马射线的过程成为正电子湮灭过程。从正电子射入待测样品一直到发生湮没所经历的时间一般称为正电子寿命。由于正电子湮没是随机发生的,正电子湮没寿命只能从大量湮没事件统计得出。The radioactive source produces high-energy positrons and simultaneously produces gamma photons. After the high-energy positrons emitted by the radioactive source are injected into the matter, they first decelerate through a series of inelastic collisions in a very short time, and lose most of their energy. This process is called injection and thermalization. The thermalized positrons will undergo random diffusion thermal motion in the sample, and finally annihilate with electrons inside the material. Among them, the process in which positrons and electrons meet and both disappear simultaneously to produce gamma rays is called positron annihilation process. The time elapsed from the time a positron is injected into the sample to be annihilated is generally called the positron lifetime. Since positron annihilation occurs randomly, the positron annihilation lifetime can only be obtained statistically from a large number of annihilation events.

正电子经热化扩散后与待测样品中的电子发生湮没,发射出伽马光子信号,例如,本实施例中的伽马光子信号包括第一正电子湮没产生的第一伽马光子信号以及第二正电子湮没产生的第二伽马光子信号。After thermal diffusion, the positrons annihilate with the electrons in the sample to be measured, and emit a gamma photon signal. For example, the gamma photon signal in this embodiment includes the first gamma photon signal generated by the annihilation of the first positron and The second gamma photon signal from the annihilation of the second positron.

例如放射源22Na在产生高能正电子的同时,产生1.28MeV伽马光子,正电子在待测样品中湮没后大部分发出2个能量范围在0.511MeV左右的伽马光子,两个光子呈大概180度角方向发射。For example, the radioactive source 22 Na generates 1.28MeV gamma photons while producing high-energy positrons. After the positrons are annihilated in the sample to be tested, most of them emit two gamma photons with an energy range of about 0.511MeV. Launch in 180-degree angle direction.

在步骤S306中,获取第二正电子通过闪烁片时闪烁片产生的第一信号。In step S306, a first signal generated by the scintillator when the second positron passes through the scintillator is acquired.

当伽马光子射入闪烁片内部时,发生康普顿效应,康普顿效应是指短波电磁辐射(例如:X射线,伽马射线)的光子跟物质相互作用,因失去能量而导致发射出的散射射线中,具有比入射射线波长更长的射线产生。在本实施例中,当伽马光子通过闪烁片时发生康普顿效应,康普顿效应所产生的反冲电子的能量被闪烁体吸收而发生第一信号(在本实施例中,可将此信号称之为反符合信号),也即是说,康普顿效应使得第二正电子通过闪烁片的时候,闪烁片产生第一信号,例如:荧光信号。When gamma photons are injected into the scintillator, the Compton effect occurs. The Compton effect refers to the interaction of photons of short-wave electromagnetic radiation (such as: X-rays, gamma rays) with matter, resulting in the emission of Of the scattered rays, rays with longer wavelengths than the incident rays are produced. In this embodiment, the Compton effect occurs when gamma photons pass through the scintillator, and the energy of the recoil electrons generated by the Compton effect is absorbed by the scintillator to generate the first signal (in this embodiment, the This signal is called an anti-coincidence signal), that is to say, the Compton effect causes the second positron to pass through the scintillator, and the scintillator generates the first signal, such as a fluorescent signal.

在步骤S308中,根据第一信号,从伽马光子信号中去除第二伽马光子信号。In step S308, according to the first signal, the second gamma photon signal is removed from the gamma photon signal.

如上文所述,22Na放射源产生正电子和1.28MeV伽马光子,一部分正电子在待测样品中湮没产生第一伽马光子信号,而不在待测样品中湮没的正电子进入闪烁片,在闪烁片中湮没产生第二伽马光子信号。在本实施例中,进入待测样品中的正电子和进入闪烁片中的正电子湮没时,均会产生0.511MeV的伽马光子信号。而进入闪烁片中的正电子在产生0.511MeV的伽马光子信号的同时产生第一信号,例如荧光信号。根据接收到的第一信号,可以通过时间上的排除法在接收到0.511MeV的伽马光子信号中去除来自闪烁片的0.511MeV的伽马信号。As mentioned above, the 22 Na radiation source produces positrons and 1.28MeV gamma photons, and a part of the positrons are annihilated in the sample to be tested to generate the first gamma photon signal, while the positrons that are not annihilated in the sample to be tested enter the scintillator, Annihilation in the scintillation plate produces a second gamma photon signal. In this embodiment, when the positrons entering the sample to be tested and the positrons entering the scintillator are annihilated, a gamma photon signal of 0.511 MeV will be generated. The positrons entering the scintillator generate a first signal, such as a fluorescent signal, while generating a 0.511 MeV gamma photon signal. According to the received first signal, the 0.511 MeV gamma signal from the scintillation plate can be removed from the received 0.511 MeV gamma photon signal by time exclusion method.

如上文所述,放射源为22Na,放射源发出的正电子在待测样品中湮没后大部分发出2个能量范围在0.511MeV左右的伽马光子,两个光子呈大概180度角方向发射,在一些实施例中,选择0.511MeV左右的伽马光子作为正电子湮没的终止信号。起始信号和终止信号的时间差即为正电子的寿命,通过大量正电子在待测样品中的寿命时间的统计,最后形成正电子寿命谱。As mentioned above, the radioactive source is 22 Na. After the positrons emitted by the radioactive source are annihilated in the sample to be tested, most of them emit two gamma photons with an energy range of about 0.511 MeV, and the two photons are emitted at an angle of about 180 degrees. , in some embodiments, a gamma photon around 0.511 MeV is selected as the termination signal for positron annihilation. The time difference between the start signal and the stop signal is the lifetime of the positron. Through the statistics of the lifetime of a large number of positrons in the sample to be tested, the positron lifetime spectrum is finally formed.

本发明实施例的基于反符合的用于探测正电子湮没的方法,通过闪烁片中产生的信号,将不在待测样品中湮没的伽马信号排除,得到在样品中湮没的伽马信号。In the method for detecting positron annihilation based on anti-coincidence in the embodiment of the present invention, the gamma signal that is not annihilated in the sample to be measured is excluded through the signal generated in the scintillation plate, and the gamma signal that is annihilated in the sample is obtained.

应清楚地理解,本发明描述了如何形成和使用特定示例,但本发明的原理不限于这些示例的任何细节。相反,基于本发明公开的内容的教导,这些原理能够应用于许多其它实施例。It should be clearly understood that this disclosure describes how to make and use specific examples, but the principles of the invention are not limited to any details of these examples. Rather, these principles can be applied to many other embodiments based on the teachings of the present disclosure.

根据另一示例性实施例示出的另一种基于反符合的用于探测正电子湮没的方法中,获取放射源产生的特征伽马光子信号,作为正电子湮没的起始信号。In another method for detecting positron annihilation based on anti-coincidence according to another exemplary embodiment, a characteristic gamma photon signal generated by a radiation source is obtained as an initial signal of positron annihilation.

放射源放射出正电子的同时伴随特征伽马光子产生。例如,放射源22Na放射出正电子的同时伴随有1.28MeV特征伽马光子产生。在本实施例中的正电子寿命谱测量中,例如可以选择1.28MeV该特征伽马光子作为正电子湮没的开始信号。The emission of positrons from radioactive sources is accompanied by characteristic gamma photons. For example, the radiation source 22Na emits positrons accompanied by 1.28MeV characteristic gamma photons. In the positron lifetime spectrum measurement in this embodiment, for example, the characteristic gamma photon at 1.28 MeV can be selected as the start signal of positron annihilation.

图4是根据一示例性实施例示出的另一种基于反符合的用于探测正电子湮没的方法的流程图。图4中的步骤是对图3中步骤S308“根据第一信号,从伽马光子信号中去除第二伽马光子信号”的进一步说明。如果所述伽马光子信号的获取时刻与所述荧光信号的获取时刻在预设时间范围内,则将所述伽马光子信号排除。Fig. 4 is a flow chart showing another method for detecting positron annihilation based on anti-coincidence according to an exemplary embodiment. The steps in FIG. 4 are further descriptions of step S308 “removing the second gamma photon signal from the gamma photon signal according to the first signal” in FIG. 3 . If the acquisition moment of the gamma photon signal and the acquisition moment of the fluorescent signal are within a preset time range, the gamma photon signal is excluded.

在步骤S402中,获取伽马光子信号产生时刻与荧光信号产生时刻。In step S402, the generation time of the gamma photon signal and the generation time of the fluorescence signal are acquired.

如上文所述,22Na放射源产生正电子和1.28MeV伽马光子,一部分正电子在待测样品中湮没产生第一伽马光子信号,而不在待测样品中湮没的正电子进入闪烁片,在闪烁片中湮没产生第二伽马光子信号。正电子在待测样品中湮没后大部分发出2个能量范围在0.511MeV左右的伽马光子,两个光子呈大概180度角方向发射,在一些实施例中,可以选择能量范围在0.511MeV左右的伽马光子作为正电子湮没的终止信号,在本实施例中,获取第二伽马光子信号产生的时间与0.511MeV左右的伽马光子产生的时刻。As mentioned above, the 22 Na radiation source produces positrons and 1.28MeV gamma photons, and a part of the positrons are annihilated in the sample to be tested to generate the first gamma photon signal, while the positrons that are not annihilated in the sample to be tested enter the scintillator, Annihilation in the scintillation plate produces a second gamma photon signal. After the positrons are annihilated in the sample to be tested, most of them emit two gamma photons with an energy range of about 0.511 MeV, and the two photons are emitted at an angle of about 180 degrees. In some embodiments, the energy range can be selected to be about 0.511 MeV The gamma photon is used as the termination signal of the positron annihilation. In this embodiment, the time when the second gamma photon signal is generated and the moment when the gamma photon of about 0.511 MeV is generated are obtained.

在步骤S404中,判断时刻是否在预设的时间范围内。In step S404, it is determined whether the time is within a preset time range.

如果第二伽马光子信号产生的时间与0.511MeV左右的伽马光子产生的时刻在预设的时间范围内,则进入步骤S406;否则进入步骤S408。If the generation time of the second gamma photon signal and the generation time of the gamma photon of about 0.511 MeV are within the preset time range, go to step S406; otherwise go to step S408.

在步骤S406中,不记录该时刻的伽马光子信号。In step S406, the gamma photon signal at this moment is not recorded.

如果第二伽马光子信号产生的时间与0.511MeV左右的伽马光子产生的在预设的时间范围内,则不记录该时刻的伽马光子信号。如上文所述,根据接收到的第一信号,可以通过时间上的排除法在接收到0.511MeV的伽马光子信号中去除来自闪烁片的0.511MeV的伽马信号。在本实施例中,通过反符合电路实现此项功能。反符合电路在探测到第一信号,例如:荧光信号的同时,不记录当前时刻接收到的0.511MeV的伽马光子信号。从而,将在闪烁片中湮没的正电子信号排除出去。If the time at which the second gamma photon signal is generated is within the preset time range with that of the gamma photon at about 0.511 MeV, the gamma photon signal at this moment will not be recorded. As mentioned above, according to the received first signal, the 0.511 MeV gamma signal from the scintillation plate can be removed from the received 0.511 MeV gamma photon signal by time exclusion method. In this embodiment, this function is realized by an anti-coincidence circuit. The anticoincidence circuit does not record the 0.511 MeV gamma photon signal received at the current moment while detecting the first signal, for example, the fluorescence signal. Thus, the positron signal annihilated in the scintillation sheet is excluded.

在本实施例中,例如,不在样品中湮没的正电子会在经过闪烁片时产生光信号,然后再湮没产生0.511MeV伽马光子,这个过程瞬时发生,根据时间关联性,若探测器探测到0.511MeV光子信号时,反符合探测单元的PMT也有信号输出,则该伽马光子信号不被记录,如此将不在样品中湮没产生的伽马光子信号进行排除。In this embodiment, for example, positrons that are not annihilated in the sample will generate light signals when they pass through the scintillator, and then annihilate to generate 0.511MeV gamma photons. This process occurs instantaneously. According to the time correlation, if the detector detects When the photon signal is 0.511MeV, the PMT of the anti-coincidence detection unit also has a signal output, and the gamma photon signal is not recorded, so that the gamma photon signal that is not annihilated in the sample is excluded.

在步骤S408中,记录该时刻的伽马光子信号。In step S408, the gamma photon signal at this moment is recorded.

如果第二伽马光子信号产生的时间与0.511MeV左右的伽马光子产生的时刻不在预设的时间范围内,则记录该时刻的伽马光子信号。If the time when the second gamma photon signal is generated and the time when the gamma photon around 0.511 MeV is generated is not within the preset time range, record the gamma photon signal at this time.

在本实施例中,在接受到0.511MeV的伽马光子信号的同时,反符合电路没有探测到第一信号,例如:荧光信号,则记录当前时刻接收到的0.511MeV的伽马光子信号。In this embodiment, when the gamma photon signal of 0.511 MeV is received, the anticoincidence circuit does not detect the first signal, for example, the fluorescence signal, and the gamma photon signal of 0.511 MeV received at the current moment is recorded.

下述为本发明系统实施例,可以用于执行本发明方法实施例。在下文对系统的描述中,与前述方法相同的部分,将不再赘述。The following are system embodiments of the present invention, which can be used to implement the method embodiments of the present invention. In the description of the system below, the parts that are the same as those of the aforementioned methods will not be repeated here.

图5是根据一示例性实施例示出的一种基于反符合的用于探测正电子湮没的系统的框图。该系统可例如用于如图3或4所示的基于反符合的用于探测正电子湮没的方法,但本发明不限于此。Fig. 5 is a block diagram of a system for detecting positron annihilation based on anti-coincidence according to an exemplary embodiment. This system can be used, for example, in anticoincidence-based methods for detecting positron annihilation as shown in Fig. 3 or 4, but the invention is not limited thereto.

如图5所示,基于反符合的用于探测正电子湮没的系统500包括:As shown in FIG. 5, a system 500 for detecting positron annihilation based on anti-coincidence includes:

闪烁片502,用于在正电子进入时产生荧光。在本实施例中,例如:闪烁片厚度在0.2-1mm之间,由原子序数小于20的材料构成。在闪烁片502与所述光电倍增管504之间还包括光导。The scintillation sheet 502 is used for generating fluorescence when positrons enter. In this embodiment, for example, the thickness of the scintillation sheet is between 0.2-1 mm, and it is made of materials with an atomic number less than 20. A light guide is also included between the scintillator plate 502 and the photomultiplier tube 504 .

如图所示,反符合探测系统与闪烁片502耦接,用于探测在进入所述闪烁片的第二正电子通过闪烁片502时闪烁片502产生的第一信号。反符合探测系统包括:光电倍增管504、放大器,单道分析器510以及第一延时器512,其中放大器包括:前放大器506与主放大器508,但本发明不限于此。As shown, the anticoincidence detection system is coupled to the scintillator 502 for detecting the first signal generated by the scintillator 502 when the second positron entering the scintillator passes through the scintillator 502 . The anti-coincidence detection system includes: a photomultiplier tube 504, an amplifier, a single-channel analyzer 510 and a first delayer 512, wherein the amplifier includes: a pre-amplifier 506 and a main amplifier 508, but the present invention is not limited thereto.

如图所示,伽马光子探测系统,用于获取正电子湮没产生的伽马光子信号作为正电子湮没的停止信号、以及放射源产生的特征伽马光子信号作为正电子湮没的起始信号;伽马光子探测系统包括:起始信号探头514、停止信号探头516、第一恒比定时器518、第二恒比定时器520、第二延时器522以及第三延时器524,但本发明不限于此。As shown in the figure, the gamma photon detection system is used to obtain the gamma photon signal generated by the positron annihilation as the stop signal of the positron annihilation, and the characteristic gamma photon signal generated by the radioactive source as the start signal of the positron annihilation; The gamma photon detection system includes: a start signal probe 514, a stop signal probe 516, a first constant ratio timer 518, a second constant ratio timer 520, a second delayer 522 and a third delayer 524, but this The invention is not limited thereto.

如图所示,符合系统,用于根据所述第一信号、所述起始信号和所述停止信号获取有效伽马光子信号。符合系统包括:符合单元526、时间幅度转换器528以及多道分析器530,但本发明不限于此。As shown in the figure, a coincidence system is used for obtaining an effective gamma photon signal according to the first signal, the start signal and the stop signal. The coincidence system includes: a coincidence unit 526 , a time-to-amplitude converter 528 and a multi-channel analyzer 530 , but the invention is not limited thereto.

在反符合系统中,光电倍增管504,用于获取放射源发出的正电子穿过闪烁片时产生的第一信号,闪烁片502置于放射源505与光电倍增管504之间。前放大器506,用于将第一信号放大。主放大器508,用于将经过前放大器506放大的第一信号继续放大。单道分析器510,用于将主放大器506输出的信号进行能量选择,然后将信号转换成逻辑信号。第一延时器512,用于将所述单道分析器输出信号进行延时。In the anticoincidence system, the photomultiplier tube 504 is used to acquire the first signal generated when the positrons emitted by the radiation source pass through the scintillation plate, and the scintillation plate 502 is placed between the radiation source 505 and the photomultiplier tube 504 . A preamplifier 506, configured to amplify the first signal. The main amplifier 508 is configured to further amplify the first signal amplified by the pre-amplifier 506 . The single-channel analyzer 510 is used to perform energy selection on the signal output by the main amplifier 506, and then convert the signal into a logic signal. The first delayer 512 is configured to delay the output signal of the single-channel analyzer.

在伽马光子探测系统中,起始信号探头514,用于获取放射源505产生的特征伽马光子信号作为正电子湮没的起始信号。停止信号探头516,用于获取正电子湮没产生的伽马光子信号作为正电子湮没的停止信号。第一恒比定时器518,用于实现对正电子湮没起始信号的判断。第二恒比定时器520,用于实现对正电子湮没停止信号的判断。第二延时器522,用于将所述第一恒比定时器输出的信号进行延迟。第三延时器524,用于将所述第二恒比定时器输出的信号进行延迟。In the gamma photon detection system, the start signal probe 514 is used to acquire the characteristic gamma photon signal generated by the radiation source 505 as the start signal of positron annihilation. The stop signal probe 516 is used to acquire the gamma photon signal generated by the positron annihilation as the stop signal of the positron annihilation. The first constant ratio timer 518 is used to realize the judgment of the positron annihilation start signal. The second constant ratio timer 520 is used to realize the judgment of the positron annihilation stop signal. The second delayer 522 is configured to delay the signal output by the first constant ratio timer. The third delayer 524 is configured to delay the signal output by the second constant ratio timer.

在符合系统中,符合单元526,用于接受第一信号与正电子湮没的开始信号以及正电子湮没的停止信号,并对第一信号、开始信号以及停止信号进行判断。时间幅度转换器528,用于将第二延时器522传送过来的信号与第三延时器524传送过来的信号之间的时间差值转换为一个高度与所述时间差之成正比的脉冲信号。多道分析器530,用于对所述时间幅度转换器传送的所述脉冲信号进行统计。In the coincidence system, the coincidence unit 526 is configured to receive the first signal, the start signal of the positron annihilation and the stop signal of the positron annihilation, and judge the first signal, the start signal and the stop signal. The time amplitude converter 528 is used to convert the time difference between the signal transmitted by the second delayer 522 and the signal transmitted by the third delayer 524 into a pulse signal whose height is proportional to the time difference . The multi-channel analyzer 530 is configured to perform statistics on the pulse signal transmitted by the time-to-amplitude converter.

图5中还示出了待测样品501。A sample to be tested 501 is also shown in FIG. 5 .

在本发明提供的实施例中,放射源505放射出的正电子,一部分正电子(第一正电子)进入待测样品中,另一部分正电子(第二正电子)进入闪烁片502中。进入闪烁片502中的正电子使得闪烁片产生荧光信号。In the embodiment provided by the present invention, of the positrons emitted by the radiation source 505 , a part of the positrons (first positrons) enters the sample to be tested, and another part of the positrons (the second positrons) enters the scintillator 502 . Positrons entering the scintillation plate 502 cause the scintillation plate to generate a fluorescent signal.

停止信号探头514探测到的信号经第一恒比定时器518定时和粗略的能量选择以及经由第二延时器522适当的延时后输入时间幅度转化器528。起始信号探头514探测到的信号经第二恒比定时器520定时和粗略的能量选择以及经由第三延时器524适当的延时后输入时间幅度转化器528。第一恒比定时器与第二恒比定时器自带的单道分析功能进行能量选择,实现对起始信号(例如:1.28MeV的伽马光子信号)和停止信号(例如:0.511MeV的伽马光子信号)的判断。The signal detected by the stop signal probe 514 is input to the time-to-amplitude converter 528 after being timed by the first constant ratio timer 518 , roughly selected for energy, and appropriately delayed by the second delayer 522 . The signal detected by the start signal probe 514 is input to the time-to-amplitude converter 528 after being timed by the second constant ratio timer 520 , roughly selected for energy, and appropriately delayed by the third delayer 524 . The single-channel analysis function of the first constant-ratio timer and the second constant-ratio timer performs energy selection to realize the start signal (for example: 1.28MeV gamma photon signal) and stop signal (for example: 0.511MeV gamma photon signal) horse photon signal) judgment.

光电倍增管504获取闪烁片502产生的荧光信号,光电倍增管504输出信号经前放大器506及主放大器508放大,经单道分析器510进行适当的能量选择后(例如:去除噪声信号),并将主放大器508输出波形转换成逻辑信号。之后将信号输入符合单元526实现反符合判选。符合单元526输出信号经由时间幅度转换器528进行选通,选通的时间幅度转化器528将起始信号探头514和停止信号探头516得到的起始时间信号与停止时间信号的时间差转化成信号幅值,输入给多道分析器630进行统计,得到反符合正电子湮没寿命。The photomultiplier tube 504 obtains the fluorescent signal generated by the scintillator 502, the output signal of the photomultiplier tube 504 is amplified by the pre-amplifier 506 and the main amplifier 508, and after the single-channel analyzer 510 performs appropriate energy selection (for example: noise signal removal), and The main amplifier 508 output waveform is converted into a logic signal. Afterwards, the signal is input into the coincidence unit 526 to realize anti-coincidence judgment. The output signal of the coincidence unit 526 is gated through the time-amplitude converter 528, and the gated time-amplitude converter 528 converts the time difference between the start time signal and the stop time signal obtained by the start signal probe 514 and the stop signal probe 516 into a signal amplitude The value is input to the multi-channel analyzer 630 for statistics, and the anticoincidence positron annihilation lifetime is obtained.

根据本发明一些实施例的基于反符合的用于探测正电子湮没的系统,不仅适用于常规情况下的测量,也适用于只能进行单样品的测量(例如:非采样现场检测,放射性样品非接触测量,液态样品表面测量),以及改变样品的测量环境(例如:改变样品的温度,改变样品所处环境的气氛,或对样品施加压力)等应用范围。The system for detecting positron annihilation based on anti-coincidence according to some embodiments of the present invention is not only applicable to measurements under conventional conditions, but also applicable to measurements that can only be performed on a single sample (for example: non-sampling on-site detection, radioactive samples that are not Contact measurement, liquid sample surface measurement), and changing the measurement environment of the sample (for example: changing the temperature of the sample, changing the atmosphere of the sample's environment, or applying pressure to the sample) and other applications.

如前所述,根据本发明实施例的基于反符合的用于探测正电子湮没的方法和系统具有如下优点中的至少一种。As mentioned above, the anti-coincidence-based method and system for detecting positron annihilation according to the embodiments of the present invention has at least one of the following advantages.

根据本发明一些实施例的基于反符合的用于探测正电子湮没的方法及系统,能实现放射源和样品的分离,还可尽量缩短样品与放射源的间距。According to some embodiments of the present invention, the method and system for detecting positron annihilation based on anti-coincidence can realize the separation of the radioactive source and the sample, and can also shorten the distance between the sample and the radioactive source as much as possible.

根据本发明一些实施例的基于反符合的用于探测正电子湮没的方法及系统,能够至少部分排除非样品正电子湮没成分。The anti-coincidence-based method and system for detecting positron annihilation according to some embodiments of the present invention can at least partially exclude non-sample positron annihilation components.

需要注意的是,上述附图中所示的框图是功能实体,不一定必须与物理或逻辑上独立的实体相对应。可以采用软件形式来实现这些功能实体,或在一个或多个硬件模块或集成电路中实现这些功能实体,或在不同网络和/或处理器装置和/或微控制器装置中实现这些功能实体。It should be noted that the block diagrams shown in the above drawings are functional entities and do not necessarily correspond to physically or logically independent entities. These functional entities may be implemented in software, or in one or more hardware modules or integrated circuits, or in different network and/or processor means and/or microcontroller means.

以上具体地示出和描述了本发明的示例性实施例。应可理解的是,本发明不限于这里描述的详细结构、设置方式或实现方法;相反,本发明意图涵盖包含在所附权利要求的精神和范围内的各种修改和等效设置。Exemplary embodiments of the present invention have been specifically shown and described above. It should be understood that the invention is not limited to the detailed structures, arrangements or methods of implementation described herein; on the contrary, the invention is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.

Claims (10)

1.一种基于反符合的用于探测正电子湮没的方法,其特征在于,包括:1. A method for detecting positron annihilation based on anticoincidence, characterized in that, comprising: 利用放射源产生正电子,所述正电子包括进入样品的第一正电子和进入闪烁片的第二正电子;generating positrons using a radioactive source, the positrons comprising a first positron entering the sample and a second positron entering the scintillator plate; 获取正电子湮没产生的伽马光子信号,所述伽马光子信号包括所述第一正电子湮没产生的第一伽马光子信号以及所述第二正电子湮没产生的第二伽马光子信号;acquiring a gamma photon signal generated by positron annihilation, the gamma photon signal comprising a first gamma photon signal generated by the first positron annihilation and a second gamma photon signal generated by the second positron annihilation; 获取所述第二正电子通过所述闪烁片时所述闪烁片产生的第一信号;acquiring a first signal generated by the scintillator when the second positron passes through the scintillator; 根据所述第一信号,从所述伽马光子信号中去除所述第二伽马光子信号。The second gamma photon signal is removed from the gamma photon signal based on the first signal. 2.如权利要求1所述的方法,其特征在于,所述第一信号为所述第二正电子在经过所述闪烁片时产生的荧光信号。2. The method according to claim 1, wherein the first signal is a fluorescent signal generated when the second positron passes through the scintillator. 3.如权利要求1所述的方法,其特征在于,还包括:获取所述放射源产生的特征伽马光子信号,作为正电子湮没的起始信号。3. The method according to claim 1, further comprising: acquiring the characteristic gamma photon signal generated by the radiation source as the initial signal of positron annihilation. 4.如权利要求1所述的方法,其特征在于,从所述伽马光子信号中去除所述第二伽马光子信号包括:如果所述伽马光子信号的获取时刻与所述荧光信号的获取时刻在预设时间范围内,则将所述伽马光子信号排除。4. The method according to claim 1, wherein removing the second gamma photon signal from the gamma photon signal comprises: if the acquisition time of the gamma photon signal is different from that of the fluorescence signal If the acquisition time is within the preset time range, the gamma photon signal is excluded. 5.一种基于反符合的用于探测正电子湮没的系统,其特征在于,包括:5. A system for detecting positron annihilation based on anticoincidence, characterized in that it comprises: 闪烁片,用于在正电子进入时产生荧光;Scintillation sheet for fluorescence upon entry of positrons; 反符合探测系统,与所述闪烁片耦接,用于探测在进入所述闪烁片的第二正电子通过所述闪烁片时所述闪烁片产生的第一信号;an anti-coincidence detection system, coupled to the scintillator, for detecting the first signal generated by the scintillator when the second positron entering the scintillator passes through the scintillator; 伽马光子探测系统,用于获取正电子湮没产生的伽马光子信号作为正电子湮没的停止信号、以及放射源产生的特征伽马光子信号作为正电子湮没的起始信号;及The gamma photon detection system is used to obtain the gamma photon signal generated by the positron annihilation as the stop signal of the positron annihilation, and the characteristic gamma photon signal generated by the radioactive source as the start signal of the positron annihilation; and 符合系统,用于根据所述第一信号、所述起始信号和所述停止信号获取有效伽马光子信号。A coincidence system is used for obtaining effective gamma photon signals according to the first signal, the start signal and the stop signal. 6.如权利要求5所述的系统,其特征在于,其中所述反符合探测系统包括:6. The system of claim 5, wherein the anti-coincidence detection system comprises: 光电倍增管,用于获取放射源发出的正电子穿过闪烁片时产生的所述第一信号,所述闪烁片置于所述放射源与所述光电倍增管之间;a photomultiplier tube, configured to acquire the first signal generated when the positrons emitted by the radiation source pass through the scintillation plate, and the scintillation plate is placed between the radiation source and the photomultiplier tube; 放大器,用于将所述第一信号放大;an amplifier, configured to amplify the first signal; 单道分析器,用于将所述放大器输出的信号进行能量选择,然后将所述信号转换成逻辑信号;以及a single-channel analyzer for energy-selecting the signal output by the amplifier, and then converting the signal into a logic signal; and 第一延时器,用于将所述单道分析器输出信号进行延时。The first delayer is used to delay the output signal of the single-channel analyzer. 7.如权利要求6所述的系统,其特征在于,在所述闪烁片与所述光电倍增管之间还包括光导。7. The system of claim 6, further comprising a light guide between the scintillator plate and the photomultiplier tube. 8.如权利要求5所述的系统,其特征在于,所述闪烁片厚度在0.2-10mm之间,包括原子序数小于20的材料。8. The system according to claim 5, wherein the thickness of the scintillation sheet is between 0.2-10 mm, comprising materials with an atomic number less than 20. 9.如权利要求5所述的系统,其特征在于,所述伽马光子探测系统包括:9. The system of claim 5, wherein the gamma photon detection system comprises: 起始信号探头,用于获取所述放射源产生的特征伽马光子信号作为所述正电子湮没的起始信号;An initial signal probe, configured to obtain the characteristic gamma photon signal generated by the radioactive source as the initial signal of the positron annihilation; 停止信号探头,用于获取所述正电子湮没产生的伽马光子信号作为所述正电子湮没的停止信号;a stop signal probe, configured to acquire the gamma photon signal generated by the positron annihilation as the stop signal of the positron annihilation; 第一恒比定时器,用于实现对所述正电子湮没起始信号的判断;The first constant ratio timer is used to realize the judgment of the positron annihilation start signal; 第二恒比定时器,用于实现对所述正电子湮没停止信号的判断;The second constant ratio timer is used to realize the judgment of the positron annihilation stop signal; 第二延时器,用于将所述第一恒比定时器输出的信号进行延迟;以及The second delayer is used to delay the signal output by the first constant ratio timer; and 第三延时器,用于将所述第二恒比定时器输出的信号进行延迟。The third delayer is used to delay the signal output by the second constant ratio timer. 10.如权利要求5所述的系统,其特征在于,其中所述符合系统包括:10. The system of claim 5, wherein the compliance system comprises: 符合单元,用于接受所述第一信号与所述正电子湮没的开始信号以及所述正电子湮没的停止信号,并对所述第一信号、所述开始信号以及所述停止信号进行判断。A coincidence unit is configured to receive the first signal, the start signal of the positron annihilation, and the stop signal of the positron annihilation, and judge the first signal, the start signal, and the stop signal. 时间幅度转换器,用于将所述第二延时器传送过来的信号与所述第三延时器传送过来的信号之间的时间差值转换为一个高度与所述时间差之成正比的脉冲信号;以及A time-to-amplitude converter for converting the time difference between the signal transmitted by the second delayer and the signal transmitted by the third delayer into a pulse whose height is proportional to the time difference signal; and 多道分析器,用于对所述时间幅度转换器传送的所述脉冲信号进行统计。A multi-channel analyzer is used to perform statistics on the pulse signal transmitted by the time-to-amplitude converter.
CN201610808448.5A 2016-09-07 2016-09-07 Anticoincidence based positron annihilation detecting method and system Pending CN106443758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610808448.5A CN106443758A (en) 2016-09-07 2016-09-07 Anticoincidence based positron annihilation detecting method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610808448.5A CN106443758A (en) 2016-09-07 2016-09-07 Anticoincidence based positron annihilation detecting method and system

Publications (1)

Publication Number Publication Date
CN106443758A true CN106443758A (en) 2017-02-22

Family

ID=58164887

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610808448.5A Pending CN106443758A (en) 2016-09-07 2016-09-07 Anticoincidence based positron annihilation detecting method and system

Country Status (1)

Country Link
CN (1) CN106443758A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107272047A (en) * 2017-06-14 2017-10-20 中国科学院高能物理研究所 Positron annihilation lifetime measurement method and system
CN109655473A (en) * 2018-12-18 2019-04-19 北京应用物理与计算数学研究所 The analogy method and system for the spark photograph image received device that point detector counts
CN110824541A (en) * 2019-11-14 2020-02-21 南华大学 18F digital coincidence monitoring device and monitoring method
CN111487666A (en) * 2020-05-09 2020-08-04 中国科学院高能物理研究所 Positron annihilation angle correlation measurement method
CN113640852A (en) * 2021-09-18 2021-11-12 中国科学技术大学 A Positron Annihilation Lifetime Spectrometer for Measuring Thin Film Samples
CN113655513A (en) * 2021-08-16 2021-11-16 中国科学技术大学 Digitized anti-coincidence multi-path interaction-starting positron annihilation life spectrometer
CN114544682A (en) * 2021-06-10 2022-05-27 中国科学院高能物理研究所 A gamma photon detection device and a positron annihilation angle correlation measurement device
CN114791621A (en) * 2022-05-10 2022-07-26 中国科学院高能物理研究所 Positron annihilation lifetime spectrum measuring method and system for liquid flash characterization

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1264186A (en) * 1968-09-20 1972-02-16
US20040075052A1 (en) * 2002-06-27 2004-04-22 Osaka University Material defect evaluation apparatus using positron and its evaluation method
CN101013095A (en) * 2007-02-12 2007-08-08 清华大学 Positron annihilation lifetime spectrometer
US20120153167A1 (en) * 2010-11-24 2012-06-21 Toyo Seiko Co., Ltd. Positron annihilation characteristics measurement system and method for measuring positron annihilation characteristics
CN102944753A (en) * 2012-11-12 2013-02-27 中国航天科技集团公司第五研究院第五一〇研究所 Detection method of space high-energetic electrons and protons

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1264186A (en) * 1968-09-20 1972-02-16
US20040075052A1 (en) * 2002-06-27 2004-04-22 Osaka University Material defect evaluation apparatus using positron and its evaluation method
CN101013095A (en) * 2007-02-12 2007-08-08 清华大学 Positron annihilation lifetime spectrometer
US20120153167A1 (en) * 2010-11-24 2012-06-21 Toyo Seiko Co., Ltd. Positron annihilation characteristics measurement system and method for measuring positron annihilation characteristics
CN102944753A (en) * 2012-11-12 2013-02-27 中国航天科技集团公司第五研究院第五一〇研究所 Detection method of space high-energetic electrons and protons

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
黄宗祺 等: "《核物理与核医学仪器(初版)》", 30 November 1995 *
黄钢 等: "《住院医师规范化培训 核医学科示范案例》", 30 June 2016 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107272047A (en) * 2017-06-14 2017-10-20 中国科学院高能物理研究所 Positron annihilation lifetime measurement method and system
CN109655473A (en) * 2018-12-18 2019-04-19 北京应用物理与计算数学研究所 The analogy method and system for the spark photograph image received device that point detector counts
CN109655473B (en) * 2018-12-18 2021-10-22 北京应用物理与计算数学研究所 Simulation method and system of flash photography image receiving device for counting of point detector
CN110824541A (en) * 2019-11-14 2020-02-21 南华大学 18F digital coincidence monitoring device and monitoring method
CN111487666A (en) * 2020-05-09 2020-08-04 中国科学院高能物理研究所 Positron annihilation angle correlation measurement method
CN114544682A (en) * 2021-06-10 2022-05-27 中国科学院高能物理研究所 A gamma photon detection device and a positron annihilation angle correlation measurement device
CN113655513A (en) * 2021-08-16 2021-11-16 中国科学技术大学 Digitized anti-coincidence multi-path interaction-starting positron annihilation life spectrometer
CN113640852A (en) * 2021-09-18 2021-11-12 中国科学技术大学 A Positron Annihilation Lifetime Spectrometer for Measuring Thin Film Samples
CN113640852B (en) * 2021-09-18 2024-08-09 中国科学技术大学 A positron annihilation lifetime spectrometer for measuring thin film samples
CN114791621A (en) * 2022-05-10 2022-07-26 中国科学院高能物理研究所 Positron annihilation lifetime spectrum measuring method and system for liquid flash characterization

Similar Documents

Publication Publication Date Title
CN106443758A (en) Anticoincidence based positron annihilation detecting method and system
CN103698801B (en) The multilayer scintillation detector of high energy proton and neutron spectrum measurement and measuring method
US7342231B2 (en) Detection of coincident radiations in a single transducer by pulse shape analysis
CN103336020B (en) Positron lifetime spectrum measurement system and adopted measurement method thereof
JP2014534434A (en) Method for measuring dose applied to scintillator by ionizing radiation and related apparatus
CN106841238A (en) The method and system for positron annihilation dopplerbroadening spectrum based on anticoincidence
CN113109861A (en) Radiation detection device and method thereof
CN105911078B (en) The measurement method and measuring system of distribution fall into oblivion in the material in positron beam group
CN108107465B (en) Positron annihilation lifetime spectrum measuring method and system
Muralithar et al. A charged particle detector array for detection of light charged particles from nuclear reactions
CN116539649A (en) Positron annihilation lifetime measurement system and method based on position location
Potapov et al. A combined spectrometric detector of fast neutrons
CN114740521A (en) Detection system and method based on beta-gamma coincidence
CN114791621B (en) Positron annihilation lifetime spectrum measurement method and system for liquid scintillation characterization
Hu et al. A simple setup to measure muon lifetime and electron energy spectrum of muon decay and its Monte Carlo simulation
RU2357232C1 (en) Time spectrometre
CN119493144A (en) A β+-γ-γ Coincident Positron Annihilation Lifetime-Momentum Correlation Spectrometer
NORES ESTIMATION THROUGH ANALOG FILTERS
Amoedo Nores Optimal scintillation time estimation through analog filters
Gladen et al. Coincident measurement of the energy spectra of Doppler-shifted annihilation gamma quanta and positron-induced secondary electrons
Jalgén Initial characterization of a pixelated thermal-neutron detector
Nores Optimal Scintillation Time Estimation Through Analog Filters
Ermiş et al. A Comparison of Two Discrimination Spectrometers
CN119471777A (en) A positron annihilation lifetime measurement system
Fang Algorithms for nuclear data analysis applied to safety and materials

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170222