[go: up one dir, main page]

CN106441319A - A system and method for generating a lane-level navigation map of an unmanned vehicle - Google Patents

A system and method for generating a lane-level navigation map of an unmanned vehicle Download PDF

Info

Publication number
CN106441319A
CN106441319A CN201610846436.1A CN201610846436A CN106441319A CN 106441319 A CN106441319 A CN 106441319A CN 201610846436 A CN201610846436 A CN 201610846436A CN 106441319 A CN106441319 A CN 106441319A
Authority
CN
China
Prior art keywords
road
map
lane
vehicle
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610846436.1A
Other languages
Chinese (zh)
Other versions
CN106441319B (en
Inventor
王智灵
金鹏
梁华为
崔国才
黄俊杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Zhongke Xingchi Automatic Driving Technology Co ltd
Original Assignee
Hefei Institutes of Physical Science of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Institutes of Physical Science of CAS filed Critical Hefei Institutes of Physical Science of CAS
Priority to CN201610846436.1A priority Critical patent/CN106441319B/en
Publication of CN106441319A publication Critical patent/CN106441319A/en
Application granted granted Critical
Publication of CN106441319B publication Critical patent/CN106441319B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • G01C21/30Map- or contour-matching
    • G01C21/32Structuring or formatting of map data

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Navigation (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明涉及一种基于多源数据的无人驾驶车辆车道级导航地图的生成系统及方法,包括离线全局地图和在线局部地图两部分,离线模块是指,在无人驾驶车辆行驶的目标区域内,利用卫星照片(或者航拍照片)、车载传感器(激光雷达和相机)、高精度组合定位系统(卫星定位系统和惯性导航系统)来获取原始道路数据,然后将原始道路数据经过离线处理,提取出多种道路信息,最后将道路信息提取结果融合生成离线全局地图。离线全局地图采用分层结构存储。在线模块是指,当无人驾驶车辆在目标区域内自动驾驶的时候,根据实时定位信息,提取出离线全局地图中的道路数据,绘制出以车辆为中心,固定距离范围内的在线局部地图。本发明可以应用在无人驾驶车辆的融合感知、高精度定位和智能决策中。

The invention relates to a system and method for generating a lane-level navigation map of an unmanned vehicle based on multi-source data, including two parts: an offline global map and an online local map. The offline module refers to the target area where the unmanned vehicle is driving , use satellite photos (or aerial photos), vehicle sensors (lidar and camera), high-precision combined positioning system (satellite positioning system and inertial navigation system) to obtain the original road data, and then process the original road data offline to extract A variety of road information, and finally fuse the road information extraction results to generate an offline global map. Offline global maps are stored in a hierarchical structure. The online module refers to that when the unmanned vehicle drives automatically in the target area, according to the real-time positioning information, the road data in the offline global map is extracted, and an online local map centered on the vehicle and within a fixed distance range is drawn. The invention can be applied in fusion perception, high-precision positioning and intelligent decision-making of unmanned vehicles.

Description

一种无人驾驶车辆车道级导航地图的生成系统及方法A system and method for generating a lane-level navigation map of an unmanned vehicle

技术领域technical field

本发明属于无人驾驶车辆技术领域,具体地涉及一种基于多源数据的无人驾驶车辆车道级高精度导航地图的生成系统及方法。The invention belongs to the technical field of unmanned vehicles, and in particular relates to a system and method for generating a lane-level high-precision navigation map for unmanned vehicles based on multi-source data.

背景技术Background technique

当前,无人驾驶车辆及关键技术的研究开发方兴未艾,越来越多的国内外汽车制造厂家、IT企业以及高校、科研院所等都在投入大量的人力和物力积极推动无人驾驶车辆、辅助驾驶系统、智能网联汽车等的研发及其商业化进程。近几年,奥迪、奔驰、通用、福特、丰田、日产、上汽、特斯拉等众多国内外汽车制造厂家以及谷歌等科技公司都尝试在2020年前后将其无人驾驶车辆投放市场。At present, the research and development of unmanned vehicles and key technologies is in the ascendant. More and more domestic and foreign automobile manufacturers, IT companies, universities, research institutes, etc. are investing a lot of manpower and material resources to actively promote unmanned vehicles and auxiliary vehicles. R&D and commercialization of driving systems, intelligent connected vehicles, etc. In recent years, Audi, Mercedes-Benz, GM, Ford, Toyota, Nissan, SAIC, Tesla and many other domestic and foreign automakers, as well as technology companies such as Google, have tried to put their driverless vehicles on the market around 2020.

而高精度电子地图则是推动无人驾驶车辆发展的关键因素之一。普通的导航地图精度低,信息量小,只能提供道路级别精度的地理信息,没有包含具体的车道信息、道路特征信息等数据。随着先进驾驶辅助系统和无人驾驶车辆的研发和应用,车道级别的高精度地图得到了越来越多的应用。获取了高精度的地图之后,无人驾驶车辆无需实时地感知周围环境来构建局部地图,一边探索一边前进,而是只需根据感知的周围环境,将车辆准确地匹配到电子地图中,便能使决策系统做出正确的决策。电子地图的引入,无疑能够降低感知系统的成本和检测要求,有利于无人驾驶技术的推广。另一方面,有了电子地图,决策系统就能够提前规划好运动路径,选择最合理的车道行驶,提高车辆的智能性和舒适性。The high-precision electronic map is one of the key factors to promote the development of unmanned vehicles. Ordinary navigation maps have low precision and a small amount of information, and can only provide geographic information with road-level precision, without specific lane information, road feature information, and other data. With the development and application of advanced driver assistance systems and unmanned vehicles, lane-level high-precision maps have been used more and more. After obtaining a high-precision map, the unmanned vehicle does not need to sense the surrounding environment in real time to build a local map and move forward while exploring. Instead, it only needs to accurately match the vehicle to the electronic map according to the perceived surrounding environment. Make the decision-making system make the right decision. The introduction of electronic maps will undoubtedly reduce the cost and detection requirements of the perception system, which is conducive to the promotion of driverless technology. On the other hand, with the electronic map, the decision-making system can plan the movement path in advance, choose the most reasonable lane to drive, and improve the intelligence and comfort of the vehicle.

目前高精度地图的采集制作也存在其他方法,例如使用拍摄图片的方式,拍摄图片的方式成本低廉,操作便捷,但其数据采集和图像变换的工作量大,并且在路面颠簸的情况下会产生较大偏差。采用多源数据的制作方法,可以综合多种方法的优点,在各种道路条件下都能采集生成地图。At present, there are other methods for the collection and production of high-precision maps, such as the method of taking pictures. The cost of taking pictures is low and the operation is convenient. large deviation. Using the method of making multi-source data, the advantages of various methods can be integrated, and maps can be collected and generated under various road conditions.

公开号为CN104089619A的中国专利(申请号201410202876.4),该专利提供了一种无人驾驶车辆GPS导航地图精确匹配系统。该系统利用GPS导航系统把所有道路的信息都采集下来,制作出KML文本地图,在行驶过程中将GPS信息和文本地图进行匹配来矫正定位误差。该专利地图制作以及使用过程中只使用到了GPS定位信息,数据来源单一,没有利用道路上的特征信息,在隧道、楼宇间等GPS信号受干扰的场景下无法实施。The Chinese patent with publication number CN104089619A (application number 201410202876.4) provides an accurate matching system for GPS navigation maps of unmanned vehicles. The system uses the GPS navigation system to collect all the road information, makes a KML text map, and matches the GPS information with the text map to correct the positioning error during driving. Only GPS positioning information is used in the production and use of the patented map, the data source is single, and the characteristic information on the road is not used. It cannot be implemented in scenarios where GPS signals are interfered, such as tunnels and buildings.

公开号为CN104573733A的中国专利(申请号201410838713.5),该专利提供了一种基于高清正射影图的高精细地图生成系统及方法。该方法利用车载图像拍摄模块采集道路图像,得到正射影像图,结合对应的地理信息文件,生成全局地图底图,进一步标注各类地理信息数据。该方法在道路不平的情况下会使得到的地图底图产生较大的偏差,而且摄像头本身存在畸变,视野有限,全局性不够好。The Chinese patent with publication number CN104573733A (application number 201410838713.5) provides a high-definition map generation system and method based on high-definition orthophoto maps. The method uses the vehicle-mounted image capture module to collect road images to obtain an orthophoto map, and combines the corresponding geographic information files to generate a global map base map, and further labels various geographic information data. This method will cause large deviations in the obtained map base map when the road is uneven, and the camera itself is distorted, the field of view is limited, and the globality is not good enough.

发明内容Contents of the invention

本发明的技术解决问题:克服现有技术的不足,提供一种基于多源数据的无人驾驶车辆车道级导航地图的生成方法,本发明都能够结合多种地图采集方法的优点,在各种道路条件下都能够获得高精地图,并且生成的电子地图信息丰富,能够支持车道级的高精度定位、路径规划以及智能决策。The technical problem of the present invention is to overcome the deficiencies of the prior art and provide a method for generating a lane-level navigation map for unmanned vehicles based on multi-source data. The present invention can combine the advantages of various map collection methods, in various High-precision maps can be obtained under road conditions, and the generated electronic maps are rich in information, which can support lane-level high-precision positioning, path planning, and intelligent decision-making.

为了实现上述目的,本发明采用以下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:

本发明提供一种无人驾驶车辆车道级导航地图的生成系统,包括:The invention provides a system for generating a lane-level navigation map of an unmanned vehicle, comprising:

离线模块,使用多种数据采集方式获取无人驾驶车辆行驶目标区域内的原始道路数据,经过离线处理,提取出多种道路信息,然后将提取结果融合生成离线全局地图;The offline module uses a variety of data collection methods to obtain the original road data in the target area of the unmanned vehicle, and after offline processing, extracts a variety of road information, and then fuses the extracted results to generate an offline global map;

在线模块,车辆在目标区域内自动驾驶的过程中,根据实时定位信息,提取出离线全局地图中的道路数据,绘制出以车辆为中心、固定距离范围内的在线局部地图。In the online module, during the automatic driving process of the vehicle in the target area, the road data in the offline global map is extracted according to the real-time positioning information, and an online local map centered on the vehicle and within a fixed distance range is drawn.

所述离线模块中原始道路数据的来源包括:卫星照片或者航拍照片、车载传感器、高精度组合定位系统,车载传感器包括激光雷达和相机,高精度组合定位系统包括卫星定位系统和惯性导航系统;其中卫星照片用于获得道路之间的拓扑关系、道路长度、车道数量、车道宽度道路属性信息以及车道线、停止线路面标识信息;激光雷达用于检测道路边沿的位置和高度;相机用于检测车道线的宽度和颜色;高精度组合定位系统用于获得车辆在某一时刻的位置航向信息和某一时段内的行驶轨迹信息。The source of the original road data in the offline module includes: satellite photos or aerial photos, vehicle sensors, high-precision integrated positioning system, vehicle-mounted sensors include laser radar and camera, and high-precision integrated positioning system includes satellite positioning system and inertial navigation system; wherein Satellite photos are used to obtain the topological relationship between roads, road length, number of lanes, lane width, road attribute information, lane lines, and stop road surface identification information; lidar is used to detect the position and height of road edges; cameras are used to detect lanes The width and color of the line; the high-precision combined positioning system is used to obtain the position and heading information of the vehicle at a certain moment and the driving track information within a certain period of time.

所述离线模块中道路信息的提取过程包括两种:The extraction process of road information in the offline module includes two kinds:

第一种,利用地图标注软件人工提取;The first one is manual extraction using map labeling software;

第二种,利用算法自动检测,并人工确认检测结果,去除误检的结果,补全漏检的结果。The second is to use algorithms to automatically detect and manually confirm the detection results, remove false detection results, and complete missed detection results.

所述离线全局地图采用分层结构存储,共两层结构,每一层数据相互关联,即:The offline global map is stored in a hierarchical structure, with a total of two layers, and each layer of data is related to each other, namely:

第一层,道路级导航信息,包含道路之间的拓扑关系、道路长度、车道数量、车道宽度等道路属性信息;The first layer is road-level navigation information, including road attribute information such as topological relationship between roads, road length, number of lanes, and lane width;

第二层,车道级导航信息,包含每个路段中的各种路面标识、道路边沿的位置和高度、车道线的宽度和颜色等车道属性信息,以及车辆行驶轨迹信息。The second layer, lane-level navigation information, includes lane attribute information such as various road signs in each road segment, position and height of road edges, width and color of lane lines, and vehicle trajectory information.

在线模块中的在线局部地图为宽500、高750的栅格地图,其中每一个栅格代表实际道路场景中20cm*20cm大小的方块;车辆中心位于栅格地图坐标系的(250,500)处,绘制出的局部地图的范围为车辆前方100米,后方50米,左侧和右侧各50米。The online local map in the online module is a grid map with a width of 500 and a height of 750, where each grid represents a 20cm*20cm square in the actual road scene; the center of the vehicle is located at (250, 500) of the grid map coordinate system , the range of the drawn local map is 100 meters in front of the vehicle, 50 meters behind, and 50 meters on the left and right sides respectively.

本发明提供一种无人驾驶车辆车道级导航地图的生成方法,具体步骤如下:The invention provides a method for generating a lane-level navigation map of an unmanned vehicle, and the specific steps are as follows:

步骤1、获取带有地理位置信息的卫星照片或者航拍照片,在相关地图标注软件上人工提取道路信息。其中卫星照片可以从相关的卫星照片提供商免费获取或者购买获得,航拍照片可以从相关的航拍照片提供商购买获得或者利用小型航拍机拍摄获得。地图标注软件可以是免费的地图软件(例如谷歌地球软件)或收费的地图软件,也可以是自行开发的卫星地图地理信息标注软件。需要提取的道路信息包括无人驾驶车辆行驶目标区域中各条道路的路段起始路点和中间路点、道路之间的拓扑关系、道路宽度、道路长度、道路形态、车道数量、车道宽度、车道类型等道路属性信息,以及每条道路中的白色实线、白色虚线、黄色实线、黄色虚线、车道停止线、人行道、道路隔离带、网格线、菱形减速标识、直行箭头、左转箭头、右转箭头、调头箭头、停车位等路面标识信息;Step 1. Obtain satellite photos or aerial photos with geographic location information, and manually extract road information on relevant map labeling software. The satellite photos can be obtained free of charge or purchased from relevant satellite photo providers, and the aerial photos can be purchased from relevant aerial photo providers or obtained by using a small aerial camera. Map labeling software can be free map software (such as Google Earth software) or paid map software, or self-developed satellite map geographic information labeling software. The road information that needs to be extracted includes the starting waypoint and middle waypoint of each road segment in the target area of the driverless vehicle, the topological relationship between roads, road width, road length, road shape, number of lanes, lane width, Road attribute information such as lane type, and white solid line, white dashed line, yellow solid line, yellow dashed line, lane stop line, sidewalk, road median, grid line, diamond-shaped deceleration sign, straight arrow, left turn in each road Arrows, right-turn arrows, U-turn arrows, parking spaces and other road marking information;

步骤2、人工驾驶无人驾驶车辆在目标区域内行驶,利用车载传感器(激光雷达和相机)和高精度组合定位系统(卫星定位系统和惯性导航系统)采集原始道路数据;Step 2. Manually driving the unmanned vehicle to drive in the target area, using on-board sensors (lidar and camera) and high-precision combined positioning system (satellite positioning system and inertial navigation system) to collect raw road data;

步骤3、利用车辆采集的激光雷达数据和相机数据,离线自动检测道路的相关特征信息,并将检测结果进行人工确认,去除误检的结果,补全漏检的结果。其中激光雷达数据用于检测道路边沿的位置和高度,相机数据用于检测车道线的宽度和颜色;Step 3. Use the lidar data and camera data collected by the vehicle to automatically detect the relevant feature information of the road offline, and manually confirm the detection results, remove the false detection results, and complete the missed detection results. The lidar data is used to detect the position and height of the road edge, and the camera data is used to detect the width and color of the lane line;

步骤4、利用车辆在目标路段上采集的定位数据,经过扩展卡尔曼滤波平滑处理,去除定位信号的跳变,生成车辆在某一条车道上的行驶轨迹;Step 4. Using the positioning data collected by the vehicle on the target road section, after smoothing with the extended Kalman filter, the jump of the positioning signal is removed, and the driving track of the vehicle on a certain lane is generated;

步骤5、将步骤1、步骤3、步骤4得到的结果进行融合,生成全局离线地图。其中步骤1得到的道路属性信息、步骤3得到的道路边沿和车道线信息用于生成地图的第一层;步骤1得到的路面标识信息、步骤4得到的车辆行驶轨迹信息用于生成地图的第二层。地图第二层中的数据根据其地理位置,与第一层中的数据进行关联;Step 5. Combine the results obtained in Step 1, Step 3, and Step 4 to generate a global offline map. The road attribute information obtained in step 1, the road edge and lane line information obtained in step 3 are used to generate the first layer of the map; the road surface identification information obtained in step 1, and the vehicle trajectory information obtained in step 4 are used to generate the first layer of the map second floor. The data in the second layer of the map is associated with the data in the first layer according to its geographic location;

步骤6、无人驾驶车辆在目标区域内自动驾驶的过程中,根据实时定位信息,提取出离线全局地图中的道路数据,绘制出以车辆为中心,前方100米,后方50米,左右各50米范围内的在线局部地图。Step 6. During the automatic driving process of the unmanned vehicle in the target area, according to the real-time positioning information, the road data in the offline global map is extracted, and the vehicle is centered, 100 meters in front, 50 meters behind, and 50 meters on the left and right. Online local maps within meters.

本发明与现有技术相比,其有益效果如下:现有技术存在的主要问题是导航地图的数据来源单一,只能适用于某些特定的环境,并且生成的导航地图数据不够充分,无法支持无人驾驶车辆车道级别的决策规划。本发明的创新性在于,采用了多种设备作为数据来源,融合各个道路信息的提取结果,生成导航地图,因此适用性广泛、地图数据详细丰富。Compared with the prior art, the present invention has the following beneficial effects: the main problem of the prior art is that the data source of the navigation map is single, which can only be applied to some specific environments, and the generated navigation map data is not sufficient enough to support Lane-Level Decision Planning for Autonomous Vehicles. The innovation of the present invention lies in that various devices are used as data sources, and the extraction results of various road information are fused to generate a navigation map, so the applicability is wide and the map data is detailed and rich.

(1)本发明利用包括卫星照片、激光雷达、相机、组合定位系统等多种设备作为数据来源,结合了各种传感器和高精地图采集方法的优点,在各种道路条件下都能够获得所需的无人驾驶车辆导航地图,适用范围广泛;(1) The present invention utilizes multiple devices including satellite photos, laser radars, cameras, combined positioning systems, etc. Navigation maps for unmanned vehicles that are required for a wide range of applications;

(2)本发明所采集和生成的地图,具有车道级别的精度,能够使得车辆在理想的情况下始终匹配定位在预定的车道内,实现车道级高精度定位;(2) The map collected and generated by the present invention has the accuracy of the lane level, which can make the vehicle always be matched and positioned in the predetermined lane under ideal conditions, and realize high-precision positioning of the lane level;

(3)本发明在所采集生成的地图,包括有路面标识、道路边沿的位置和高度等车道属性信息,能够实现基于先验信息的在线道路环境感知和基于交通规则的车道级智能决策。(3) The map collected and generated by the present invention includes lane attribute information such as road surface markings, road edge positions and heights, etc., and can realize online road environment perception based on prior information and lane-level intelligent decision-making based on traffic rules.

附图说明Description of drawings

通过参阅以下附图对非限制性实施例所做的描述,本发明的其他特征、目的和优点将会变得更加明显:Other characteristics, objects and advantages of the present invention will become more apparent from the description of non-limiting embodiments with reference to the following drawings:

图1为本发明无人驾驶车辆车道级导航地图生成方法的流程图;Fig. 1 is the flow chart of the method for generating an unmanned vehicle lane-level navigation map of the present invention;

图2为车载传感器一种示例安装配置方法的示意图;Fig. 2 is a schematic diagram of an example installation and configuration method of a vehicle-mounted sensor;

图3为合肥市离线全局地图中某一区域的示意图;Fig. 3 is a schematic diagram of a certain area in the offline global map of Hefei;

图4为合肥市离线全局地图中某一路口的放大图;Figure 4 is an enlarged view of a certain intersection in the offline global map of Hefei;

图中:激光雷达1,相机2,高精度组合定位系统信号接收天线3。In the figure: laser radar 1, camera 2, high-precision integrated positioning system signal receiving antenna 3.

具体实施方式detailed description

下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。The present invention will be described in detail below in conjunction with specific embodiments. The following examples will help those skilled in the art to further understand the present invention, but do not limit the present invention in any form. It should be noted that those skilled in the art can make several modifications and improvements without departing from the concept of the present invention. These all belong to the protection scope of the present invention.

一种无人驾驶车辆车道级导航地图的生成系统,如图1所示,包括:A system for generating lane-level navigation maps for unmanned vehicles, as shown in Figure 1, includes:

离线模块,使用多种数据采集方式获取无人驾驶车辆行驶目标区域内的原始道路数据,经过离线处理,提取出多种道路信息,然后将提取结果融合生成离线全局地图;The offline module uses a variety of data collection methods to obtain the original road data in the target area of the unmanned vehicle, and after offline processing, extracts a variety of road information, and then fuses the extracted results to generate an offline global map;

在线模块,车辆在目标区域内自动驾驶的过程中,根据实时定位信息,提取出离线全局地图中的道路数据,绘制出以车辆为中心、固定距离范围内的在线局部地图。In the online module, during the automatic driving process of the vehicle in the target area, the road data in the offline global map is extracted according to the real-time positioning information, and an online local map centered on the vehicle and within a fixed distance range is drawn.

其中离线模块中的原始道路数据来源包括:The original road data sources in the offline module include:

卫星照片,用于提取无人驾驶车辆行驶目标区域中各条道路的路段起始路点和中间路点、道路之间的拓扑关系、道路宽度、道路长度、道路形态、车道数量、车道宽度、车道类型等道路属性信息,以及每条道路中的白色实线、白色虚线、黄色实线、黄色虚线、车道停止线、人行道、道路隔离带、网格线、菱形减速标识、直行箭头、左转箭头、右转箭头、调头箭头、停车位等路面标识信息;Satellite photos are used to extract the starting waypoint and middle waypoint of each road segment in the target area of unmanned driving vehicles, the topological relationship between roads, road width, road length, road shape, number of lanes, lane width, Road attribute information such as lane type, and white solid line, white dashed line, yellow solid line, yellow dashed line, lane stop line, sidewalk, road median, grid line, diamond-shaped deceleration sign, straight arrow, left turn in each road Arrows, right-turn arrows, U-turn arrows, parking spaces and other road marking information;

激光雷达,用于检测道路边沿的位置和高度。本实施例中,激光雷达采用Velodyne公司的HDL-64E高精度激光雷达。激光雷达架设于车顶前方的位置,可以实时地感知构建车辆周围的三维场景,检测道路边沿、障碍物等信息;LiDAR to detect the location and height of road edges. In this embodiment, the laser radar adopts the HDL-64E high-precision laser radar of Velodyne Company. The lidar is installed in front of the roof, which can sense and construct the three-dimensional scene around the vehicle in real time, and detect information such as road edges and obstacles;

相机,用于检测车道线的宽度和颜色。本实施例中,相机采用映美精公司的DFK23G274工业相机。相机安装于挡风玻璃内侧,后视镜的位置;A camera to detect the width and color of lane lines. In this embodiment, the camera adopts the DFK23G274 industrial camera of Yingmeijing Company. The camera is installed on the inside of the windshield, where the rearview mirror is located;

高精度组合定位系统,用于获得车辆在某一时刻的位置航向信息和某一时段内的行驶轨迹信息。本实施例中组合定位系统采用NovAtel公司的惯性组合导航系统SPAN-CPT,其具有定位精度高,抗干扰性好等优点,能够满足本发明的应用需求。组合定位系统的信号接收天线位于车顶后方的位置。The high-precision combined positioning system is used to obtain the position and heading information of the vehicle at a certain moment and the driving track information within a certain period of time. In this embodiment, the integrated positioning system adopts the inertial integrated navigation system SPAN-CPT of NovAtel Company, which has the advantages of high positioning accuracy and good anti-interference, and can meet the application requirements of the present invention. The signal receiving antenna of the combined positioning system is located at the rear of the roof.

图2是本实施例中,激光雷达、相机以及组合定位系统信号接收天线在车辆中的安装配置示意图,其中激光雷达1用于检测道路边沿,相机2用于检测车道线,组合定位系统信号接收天线3用于接收定位信号。Figure 2 is a schematic diagram of the installation and configuration of the laser radar, camera and combined positioning system signal receiving antenna in the vehicle in this embodiment, wherein the laser radar 1 is used to detect the edge of the road, the camera 2 is used to detect lane lines, and the combined positioning system signal reception Antenna 3 is used to receive positioning signals.

一种无人驾驶车辆车道级导航地图的生成方法,具体实施步骤如下:A method for generating a lane-level navigation map of an unmanned vehicle, the specific implementation steps are as follows:

步骤1、利用谷歌地球软件获取无人驾驶车辆目标行驶区域内的卫星照片,并利用软件的“添加路径”功能人工提取道路信息。需要提取的道路信息包括无人驾驶车辆行驶目标区域中各条道路的路段起始路点和中间路点、道路之间的拓扑关系、道路宽度、道路长度、道路形态、车道数量、车道宽度、车道类型等道路属性信息,以及每条道路中的白色实线、白色虚线、黄色实线、黄色虚线、车道停止线、人行道、道路隔离带、网格线、菱形减速标识、直行箭头、左转箭头、右转箭头、调头箭头、停车位等路面标识信息;Step 1. Use Google Earth software to obtain satellite photos of the target driving area of the unmanned vehicle, and use the "Add Path" function of the software to manually extract road information. The road information that needs to be extracted includes the starting waypoint and middle waypoint of each road segment in the target area of the driverless vehicle, the topological relationship between roads, road width, road length, road shape, number of lanes, lane width, Road attribute information such as lane type, and white solid line, white dashed line, yellow solid line, yellow dashed line, lane stop line, sidewalk, road median, grid line, diamond-shaped deceleration sign, straight arrow, left turn in each road Arrows, right-turn arrows, U-turn arrows, parking spaces and other road marking information;

步骤2、人工驾驶无人驾驶车辆在目标区域内行驶,利用车载传感器(激光雷达和相机)和高精度组合定位系统(卫星定位系统和惯性导航系统)采集原始道路数据。其中,激光雷达采用Velodyne公司的HDL-64E高精度激光雷达,架设于车顶前方的位置;相机采用映美精公司的DFK 23G274工业相机,安装于挡风玻璃内侧,后视镜的位置;组合定位系统采用NovAtel公司的惯性组合导航系统SPAN-CPT,组合定位系统的信号接收天线位于车顶后方的位置;Step 2. Manually drive the unmanned vehicle to drive in the target area, and use the on-board sensors (lidar and camera) and high-precision integrated positioning system (satellite positioning system and inertial navigation system) to collect raw road data. Among them, the laser radar adopts Velodyne's HDL-64E high-precision laser radar, which is installed in front of the roof; the camera adopts the DFK 23G274 industrial camera of Imaging Company, which is installed on the inside of the windshield and at the position of the rearview mirror; combined positioning The system uses NovAtel's inertial integrated navigation system SPAN-CPT, and the signal receiving antenna of the integrated positioning system is located at the rear of the roof;

步骤3、利用车辆采集的激光雷达数据和相机数据,离线自动检测道路的相关特征信息,并将检测结果进行人工确认,去除误检的结果,补全漏检的结果。其中激光雷达数据用于检测道路边沿的位置和高度,相机数据用于检测车道线的宽度和颜色。离线检测到的道路边沿的位置和高度、车道线的宽度和颜色等信息,将会作为无人驾驶车辆在自动驾驶的过程中,在线检测道路边沿和车道线的先验信息,从而提高其检测率;Step 3. Use the lidar data and camera data collected by the vehicle to automatically detect the relevant feature information of the road offline, and manually confirm the detection results, remove the false detection results, and complete the missed detection results. The lidar data is used to detect the position and height of the road edge, and the camera data is used to detect the width and color of the lane line. The location and height of the road edge detected offline, the width and color of the lane line and other information will be used as the prior information of the unmanned vehicle to detect the road edge and lane line online during the automatic driving process, thereby improving its detection. Rate;

步骤4、利用车辆在目标路段上采集的定位数据,经过扩展卡尔曼滤波平滑处理,去除定位信号的跳变,生成车辆在某一条车道上的行驶轨迹。得到车辆行驶轨迹之后,无人驾驶车辆在恶劣条件下,如果无法检测出道路边沿、车道线,无法将自身准确地匹配到局部地图中,可以依据车辆行驶轨迹前进。另一方面,车辆在路口转弯的时候,也可以参考行驶轨迹前进;Step 4. Using the positioning data collected by the vehicle on the target road section, after smoothing by the extended Kalman filter, the jump of the positioning signal is removed, and the driving track of the vehicle on a certain lane is generated. After obtaining the vehicle trajectory, if the unmanned vehicle cannot detect the road edge and lane line under harsh conditions, and cannot accurately match itself to the local map, it can move forward according to the vehicle trajectory. On the other hand, when the vehicle turns at the intersection, it can also refer to the driving track to move forward;

步骤5、将步骤1、步骤3、步骤4得到的结果进行融合,生成全局离线地图。其中步骤1得到的道路属性信息、步骤3得到的道路边沿和车道线信息用于生成地图的第一层;步骤1得到的路面标识信息、步骤4得到的车辆行驶轨迹信息用于生成地图的第二层。地图第二层中的数据根据其地理位置,与第一层中的数据进行关联。如图3是合肥市离线全局地图中某一区域的示意图。如图4是合肥市离线全局地图中某一路口的放大图;Step 5. Combine the results obtained in Step 1, Step 3, and Step 4 to generate a global offline map. The road attribute information obtained in step 1, the road edge and lane line information obtained in step 3 are used to generate the first layer of the map; the road surface identification information obtained in step 1, and the vehicle trajectory information obtained in step 4 are used to generate the first layer of the map second floor. Data in the second layer of the map is associated with data in the first layer based on its geographic location. Figure 3 is a schematic diagram of a certain area in the offline global map of Hefei. Figure 4 is an enlarged view of an intersection in the offline global map of Hefei;

步骤6、无人驾驶车辆在目标区域内自动驾驶的过程中,根据实时定位信息,提取出离线全局地图中的道路数据,生成以车辆为中心的在线局部栅格地图。在线局部栅格地图的大小和每个栅格代表的实际大小可以根据实际需求来定义。本发明实施例中,栅格地图宽500、高750,其中每一个栅格代表实际道路场景中20cm*20cm大小的方块。车辆中心位于栅格地图坐标的(250,500)处,因此绘制出的局部栅格地图的范围为车辆前方100米,后方50米,左侧和右侧各50米。Step 6. During the automatic driving process of the unmanned vehicle in the target area, the road data in the offline global map is extracted according to the real-time positioning information, and an online local grid map centered on the vehicle is generated. The size of the online partial grid map and the actual size of each grid representation can be defined according to actual needs. In the embodiment of the present invention, the grid map has a width of 500 and a height of 750, where each grid represents a 20cm*20cm square in the actual road scene. The center of the vehicle is located at (250, 500) of the grid map coordinates, so the range of the drawn local grid map is 100 meters in front of the vehicle, 50 meters behind, and 50 meters on the left and right sides.

总之,本发明涉及一种基于多源数据的无人驾驶车辆车道级导航地图的生成系统及方法,可以应用在城区道路中的无人驾驶车辆车道级高精度定位及路径规划。本发明利用卫星照片和车辆自身传感器,提取道路信息,生成车道级导航地图。该地图对于无人驾驶车辆的作用主要有三个方面:第一,车辆在自动驾驶的过程中,可以根据实时定位信息,读取当前道路的宽度、道路边沿的位置和高度、车道线的宽度和颜色等属性信息,以此为先验信息进一步检测道路边沿和车道线,提高检测率;第二,在检测出道路边沿和车道线相对于本车的位置之后,和地图中的相关数据进行匹配,修正当前定位误差,从而实现车道级定位;第三,在车辆实现车道级定位之后,决策系统就可以做出车道级的路径规划,从而使得无人驾驶车辆能够按照实际交通规则来行驶,提高了无人驾驶车辆的智能性和舒适性。In a word, the present invention relates to a system and method for generating a lane-level navigation map of unmanned vehicles based on multi-source data, which can be applied to lane-level high-precision positioning and path planning of unmanned vehicles in urban roads. The invention utilizes satellite photos and the vehicle's own sensors to extract road information and generate lane-level navigation maps. The map has three main functions for unmanned vehicles: First, during the process of automatic driving, the vehicle can read the width of the current road, the position and height of the road edge, the width and height of the lane line according to the real-time positioning information. Attribute information such as color, using this as a priori information to further detect road edges and lane lines, and improve the detection rate; second, after detecting the position of road edges and lane lines relative to the vehicle, match with the relevant data in the map , correct the current positioning error, so as to achieve lane-level positioning; third, after the vehicle achieves lane-level positioning, the decision-making system can make lane-level path planning, so that unmanned vehicles can drive according to actual traffic rules, improving It improves the intelligence and comfort of unmanned vehicles.

本发明未详细阐述部分属于本领域技术人员的公知技术。Parts not described in detail in the present invention belong to the known techniques of those skilled in the art.

以上内容是结合具体的实施方式对本发明进行的详细说明,但并不能认定本发明的具体实施只限于这些内容。在不脱离本发明的原理和精神的前提下,本领域技术人员可以对这些实施进行若干调整、修改,本发明的保护范围有所附权利要求及其等同内容限定。The above content is a detailed description of the present invention in conjunction with specific implementation modes, but it cannot be assumed that the specific implementation of the present invention is limited to these content. Without departing from the principle and spirit of the present invention, those skilled in the art can make some adjustments and modifications to these implementations, and the protection scope of the present invention is defined by the appended claims and their equivalents.

Claims (6)

1.一无人驾驶车辆车道级导航地图的生成系统,其特征在于:包括离线模块和在线模块;1. A generation system of an unmanned vehicle lane-level navigation map, characterized in that: comprising an offline module and an online module; 离线模块,使用多种数据采集方式获取无人驾驶车辆行驶目标区域内的原始道路数据,经过离线处理,提取出多种道路信息,然后将提取结果融合生成离线全局地图;The offline module uses a variety of data collection methods to obtain the original road data in the target area of the unmanned vehicle, and after offline processing, extracts a variety of road information, and then fuses the extracted results to generate an offline global map; 在线模块,车辆在目标区域内自动驾驶的过程中,根据实时定位信息,提取出离线全局地图中的道路数据,绘制出以车辆为中心、固定距离范围内的在线局部地图。In the online module, during the automatic driving process of the vehicle in the target area, the road data in the offline global map is extracted according to the real-time positioning information, and an online local map centered on the vehicle and within a fixed distance range is drawn. 2.根据权利要求1所述的一种无人驾驶车辆车道级导航地图的生成系统,其特征在于:所述离线模块中原始道路数据的来源包括:卫星照片或者航拍照片、车载传感器、高精度组合定位系统,车载传感器包括激光雷达和相机,高精度组合定位系统包括卫星定位系统和惯性导航系统;其中卫星照片用于获得道路之间的拓扑关系、道路长度、车道数量、车道宽度道路属性信息以及车道线、停止线路面标识信息;激光雷达用于检测道路边沿的位置和高度;相机用于检测车道线的宽度和颜色;高精度组合定位系统用于获得车辆在某一时刻的位置航向信息和某一时段内的行驶轨迹信息。2. The generating system of a lane-level navigation map for unmanned vehicles according to claim 1, wherein the sources of the original road data in the offline module include: satellite photos or aerial photos, on-board sensors, high-precision Integrated positioning system, vehicle sensors include lidar and camera, high-precision integrated positioning system includes satellite positioning system and inertial navigation system; where satellite photos are used to obtain road topology relationship between roads, road length, number of lanes, lane width road attribute information And lane lines, stop road surface identification information; lidar is used to detect the position and height of the road edge; camera is used to detect the width and color of lane lines; high-precision combined positioning system is used to obtain the position and heading information of the vehicle at a certain moment And the driving trajectory information within a certain period of time. 3.根据权利要求1所述的一种无人驾驶车辆车道级导航地图的生成系统,其特征在于:所述离线模块中道路信息的提取过程包括两种:3. the generation system of a kind of unmanned vehicle lane-level navigation map according to claim 1, is characterized in that: the extraction process of road information in the described off-line module comprises two kinds: 第一种,利用地图标注软件人工提取;The first one is manual extraction using map labeling software; 第二种,利用算法自动检测,并人工确认检测结果,去除误检的结果,补全漏检的结果。The second is to use algorithms to automatically detect and manually confirm the detection results, remove false detection results, and complete missed detection results. 4.根据权利要求1所述的一种无人驾驶车辆车道级导航地图的生成系统,其特征在于:所述离线全局地图采用分层结构存储,共两层结构,每一层数据相互关联,即:4. The generation system of a kind of unmanned vehicle lane-level navigation map according to claim 1, is characterized in that: described offline global map adopts layered structure storage, altogether two-layer structure, each layer of data is interrelated, which is: 第一层,道路级导航信息,包含道路之间的拓扑关系、道路长度、车道数量、车道宽度等道路属性信息;The first layer is road-level navigation information, including road attribute information such as topological relationship between roads, road length, number of lanes, and lane width; 第二层,车道级导航信息,包含每个路段中的各种路面标识、道路边沿的位置和高度、车道线的宽度和颜色等车道属性信息,以及车辆行驶轨迹信息。The second layer, lane-level navigation information, includes lane attribute information such as various road signs in each road segment, position and height of road edges, width and color of lane lines, and vehicle trajectory information. 5.根据权利要求1所述的一种无人驾驶车辆车道级导航地图的生成系统,其特征在于:在线模块中的在线局部地图为宽500、高750的栅格地图,其中每一个栅格代表实际道路场景中20cm*20cm大小的方块;车辆中心位于栅格地图坐标系的(250,500)处,绘制出的局部地图的范围为车辆前方100米,后方50米,左侧和右侧各50米。5. The generation system of a lane-level navigation map for unmanned vehicles according to claim 1, wherein the online partial map in the online module is a grid map with a width of 500 and a height of 750, wherein each grid Represents a 20cm*20cm square in the actual road scene; the center of the vehicle is located at (250, 500) of the grid map coordinate system, and the range of the drawn local map is 100 meters in front of the vehicle, 50 meters behind, left and right 50 meters each. 6.一种无人驾驶车辆车道级导航地图的生成方法,其特征在于:所述方法具体步骤如下:6. A method for generating an unmanned vehicle lane-level navigation map, characterized in that: the specific steps of the method are as follows: 步骤1、获取带有地理位置信息的卫星照片或者航拍照片,在相关地图标注软件上人工提取道路信息,其中卫星照片可以从相关的卫星照片提供商免费获取或者购买获得,航拍照片可以从相关的航拍照片提供商购买获得或者利用小型航拍机拍摄获得;地图标注软件可以是免费的地图软件或收费的地图软件,也可以是自行开发的卫星地图地理信息标注软件;需要提取的道路信息包括无人驾驶车辆行驶目标区域中各条道路的路段起始路点和中间路点、道路之间的拓扑关系、道路宽度、道路长度、道路形态、车道数量、车道宽度、车道类型道路属性信息,以及每条道路中的白色实线、白色虚线、黄色实线、黄色虚线、车道停止线、人行道、道路隔离带、网格线、菱形减速标识、直行箭头、左转箭头、右转箭头、调头箭头、停车位路面标识信息;Step 1. Obtain satellite photos or aerial photos with geographic location information, and manually extract road information on relevant map labeling software. Satellite photos can be obtained for free or purchased from relevant satellite photo providers, and aerial photos can be obtained from relevant Aerial photos purchased from providers or taken by small aerial cameras; map labeling software can be free map software or paid map software, or self-developed satellite map geographic information labeling software; road information to be extracted includes unmanned The starting waypoint and intermediate waypoint of each road in the driving vehicle driving target area, the topological relationship between roads, road width, road length, road shape, number of lanes, lane width, lane type road attribute information, and each white solid line, white dashed line, yellow solid line, yellow dashed line, lane stop line, sidewalk, road median, grid line, diamond-shaped deceleration sign, straight arrow, left turn arrow, right turn arrow, U-turn arrow, Parking space pavement identification information; 步骤2、人工驾驶无人驾驶车辆在目标区域内行驶,利用车载传感器和高精度组合定位系统采集原始道路数据,车载传感器包括激光雷达和相机,高精度组合定位系统包括卫星定位系统和惯性导航系统;Step 2. Manually drive the unmanned vehicle to drive in the target area, and use the on-board sensor and high-precision integrated positioning system to collect raw road data. The on-board sensor includes laser radar and camera, and the high-precision integrated positioning system includes satellite positioning system and inertial navigation system. ; 步骤3、利用车辆采集的激光雷达数据和相机数据,离线自动检测道路的相关特征信息,并将检测结果进行人工确认,去除误检的结果,补全漏检的结果,其中激光雷达数据用于检测道路边沿的位置和高度,相机数据用于检测车道线的宽度和颜色;Step 3. Use the lidar data and camera data collected by the vehicle to automatically detect the relevant feature information of the road offline, and manually confirm the detection results, remove the false detection results, and complete the missed detection results. The lidar data is used for Detect the position and height of the road edge, and the camera data is used to detect the width and color of the lane line; 步骤4、利用车辆在目标路段上采集的定位数据,经过扩展卡尔曼滤波平滑处理,去除定位信号的跳变,生成车辆在某一条车道上的行驶轨迹;Step 4. Using the positioning data collected by the vehicle on the target road section, after smoothing with the extended Kalman filter, the jump of the positioning signal is removed, and the driving track of the vehicle on a certain lane is generated; 步骤5、将步骤1、步骤3、步骤4得到的结果进行融合,生成全局离线地图;其中步骤1得到的道路属性信息、步骤3得到的道路边沿和车道线信息用于生成地图的第一层;步骤1得到的路面标识信息、步骤4得到的车辆行驶轨迹信息用于生成地图的第二层;地图第二层中的数据根据其地理位置,与第一层中的数据进行关联;Step 5. Fusion the results obtained in step 1, step 3, and step 4 to generate a global offline map; the road attribute information obtained in step 1, the road edge and lane line information obtained in step 3 are used to generate the first layer of the map The road identification information obtained in step 1 and the vehicle travel track information obtained in step 4 are used to generate the second layer of the map; the data in the second layer of the map is associated with the data in the first layer according to its geographic location; 步骤6、无人驾驶车辆在目标区域内自动驾驶的过程中,根据实时定位信息,提取出离线全局地图中的道路数据,绘制出以车辆为中心,前方100米,后方50米,左右各50米范围内的在线局部地图。Step 6. During the automatic driving process of the unmanned vehicle in the target area, according to the real-time positioning information, the road data in the offline global map is extracted, and the vehicle is centered, 100 meters in front, 50 meters behind, and 50 meters on the left and right. Online local maps within meters.
CN201610846436.1A 2016-09-23 2016-09-23 A system and method for generating a lane-level navigation map of an unmanned vehicle Active CN106441319B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610846436.1A CN106441319B (en) 2016-09-23 2016-09-23 A system and method for generating a lane-level navigation map of an unmanned vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610846436.1A CN106441319B (en) 2016-09-23 2016-09-23 A system and method for generating a lane-level navigation map of an unmanned vehicle

Publications (2)

Publication Number Publication Date
CN106441319A true CN106441319A (en) 2017-02-22
CN106441319B CN106441319B (en) 2019-07-16

Family

ID=58167146

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610846436.1A Active CN106441319B (en) 2016-09-23 2016-09-23 A system and method for generating a lane-level navigation map of an unmanned vehicle

Country Status (1)

Country Link
CN (1) CN106441319B (en)

Cited By (150)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106949897A (en) * 2017-02-28 2017-07-14 四川九洲电器集团有限责任公司 A kind of method and device that road is generated in map
CN106998358A (en) * 2017-03-24 2017-08-01 武汉光庭信息技术股份有限公司 Map sensor network method for establishing model and system based on MQTT and LCM
CN107036619A (en) * 2017-05-27 2017-08-11 广州汽车集团股份有限公司 High accuracy geography signal reconstruct method, device, Vehicle Decision Method system and server
CN107161141A (en) * 2017-03-08 2017-09-15 深圳市速腾聚创科技有限公司 Pilotless automobile system and automobile
CN107179086A (en) * 2017-05-24 2017-09-19 北京数字绿土科技有限公司 A kind of drafting method based on laser radar, apparatus and system
CN107229690A (en) * 2017-05-19 2017-10-03 广州中国科学院软件应用技术研究所 Dynamic High-accuracy map datum processing system and method based on trackside sensor
CN107329466A (en) * 2017-08-28 2017-11-07 北京华清智能科技有限公司 A kind of automatic Pilot compact car
CN107958451A (en) * 2017-12-27 2018-04-24 深圳普思英察科技有限公司 Vision high accuracy map production method and device
CN107976182A (en) * 2017-11-30 2018-05-01 深圳市隐湖科技有限公司 A kind of Multi-sensor Fusion builds drawing system and its method
CN108089185A (en) * 2017-03-10 2018-05-29 南京沃杨机械科技有限公司 The unmanned air navigation aid of agricultural machinery perceived based on farm environment
CN108107887A (en) * 2017-03-10 2018-06-01 南京沃杨机械科技有限公司 Farm machinery navigation farm environment cognitive method
CN108169743A (en) * 2017-03-10 2018-06-15 南京沃杨机械科技有限公司 Agricultural machinery is unmanned to use farm environment cognitive method
CN108226938A (en) * 2017-12-08 2018-06-29 华南理工大学 A kind of alignment system and method for AGV trolleies
CN108332766A (en) * 2018-01-28 2018-07-27 武汉光庭信息技术股份有限公司 A kind of dynamic fusion method and system for planning of multi-source road network
CN108458746A (en) * 2017-12-23 2018-08-28 天津国科嘉业医疗科技发展有限公司 One kind being based on sensor method for self-adaption amalgamation
WO2018157541A1 (en) * 2017-03-01 2018-09-07 华为技术有限公司 Method and device for drawing roads in electronic map
TWI635302B (en) * 2017-07-18 2018-09-11 李綱 Real-time precise positioning system of vehicle
CN108519773A (en) * 2018-03-07 2018-09-11 西安交通大学 A path planning method for unmanned vehicles in a structured environment
CN108645420A (en) * 2018-04-26 2018-10-12 北京联合大学 A kind of creation method of the automatic driving vehicle multipath map based on differential navigation
CN108646752A (en) * 2018-06-22 2018-10-12 奇瑞汽车股份有限公司 The control method and device of automated driving system
CN108663059A (en) * 2017-03-29 2018-10-16 高德信息技术有限公司 A kind of navigation path planning method and device
CN108763287A (en) * 2018-04-13 2018-11-06 同济大学 On a large scale can traffic areas driving map construction method and its unmanned application process
CN108876857A (en) * 2018-07-02 2018-11-23 上海西井信息科技有限公司 Localization method, system, equipment and the storage medium of automatic driving vehicle
CN108958242A (en) * 2018-06-25 2018-12-07 武汉中海庭数据技术有限公司 A kind of lane change decision assistant method and system based on high-precision map
CN108955702A (en) * 2018-05-07 2018-12-07 西安交通大学 Based on the lane of three-dimensional laser and GPS inertial navigation system grade map creation system
CN108981729A (en) * 2017-06-02 2018-12-11 腾讯科技(深圳)有限公司 Vehicle positioning method and device
CN108981727A (en) * 2018-07-24 2018-12-11 佛山市高明曦逻科技有限公司 Automobile ad hoc network navigation map system
WO2018227980A1 (en) * 2017-06-13 2018-12-20 蔚来汽车有限公司 Camera sensor based lane line map construction method and construction system
CN109073761A (en) * 2017-03-20 2018-12-21 谷歌有限责任公司 The system and method for determining improved user location using real world map and sensing data
CN109084786A (en) * 2018-08-09 2018-12-25 北京智行者科技有限公司 A kind of processing method of map datum
CN109086277A (en) * 2017-06-13 2018-12-25 纵目科技(上海)股份有限公司 A kind of overlay region building ground drawing method, system, mobile terminal and storage medium
CN109143259A (en) * 2018-08-20 2019-01-04 北京主线科技有限公司 High-precision cartography method towards the unmanned truck in harbour
CN109166189A (en) * 2018-07-13 2019-01-08 中国交通通信信息中心 A kind of current management equipment of the high speed based on Beidou high accuracy positioning
CN109189058A (en) * 2018-07-18 2019-01-11 深圳市海梁科技有限公司 A kind of multi-wavelength lacquer painting, dynamic light stream line walking navigation system and automatic driving vehicle
CN109215487A (en) * 2018-08-24 2019-01-15 宽凳(北京)科技有限公司 A kind of high-precision cartography method based on deep learning
CN109211575A (en) * 2017-07-05 2019-01-15 百度在线网络技术(北京)有限公司 Pilotless automobile and its field test method, apparatus and readable medium
CN109323701A (en) * 2017-08-01 2019-02-12 郑州宇通客车股份有限公司 The localization method and system combined based on map with FUSION WITH MULTISENSOR DETECTION
CN109325390A (en) * 2017-08-01 2019-02-12 郑州宇通客车股份有限公司 A kind of localization method combined based on map with FUSION WITH MULTISENSOR DETECTION and system
CN109357680A (en) * 2018-10-26 2019-02-19 北京主线科技有限公司 The unmanned container truck high-precision ground drawing generating method in harbour
CN109470255A (en) * 2018-12-03 2019-03-15 禾多科技(北京)有限公司 Automatic generation method of high-precision map based on high-precision positioning and lane line recognition
CN109472844A (en) * 2018-11-01 2019-03-15 百度在线网络技术(北京)有限公司 Crossing inside lane line mask method, device and storage medium
CN109491378A (en) * 2017-09-12 2019-03-19 百度(美国)有限责任公司 The route guiding system based on roadway segment of automatic driving vehicle
CN109492599A (en) * 2018-11-20 2019-03-19 中车株洲电力机车有限公司 A kind of multiaxis electricity car self- steering method
CN109556615A (en) * 2018-10-10 2019-04-02 吉林大学 The driving map generation method of Multi-sensor Fusion cognition based on automatic Pilot
CN109584706A (en) * 2018-10-31 2019-04-05 百度在线网络技术(北京)有限公司 Electronic map lane line processing method, equipment and computer readable storage medium
CN109859611A (en) * 2019-01-16 2019-06-07 北京百度网讯科技有限公司 Acquisition method, device, equipment and the storage medium of map datum
CN109935098A (en) * 2017-12-18 2019-06-25 上海交通大学 Device and method for broadcasting high-precision relative position information based on vehicle-road cooperative communication
CN109976332A (en) * 2018-12-29 2019-07-05 惠州市德赛西威汽车电子股份有限公司 One kind being used for unpiloted accurately graph model and autonomous navigation system
CN110021185A (en) * 2019-04-04 2019-07-16 邵沈齐 A kind of wisdom traffic management system
CN110110029A (en) * 2019-05-17 2019-08-09 百度在线网络技术(北京)有限公司 Method and apparatus for matching lane
CN110120081A (en) * 2018-02-07 2019-08-13 北京四维图新科技股份有限公司 A kind of method, apparatus and storage equipment of generation electronic map traffic lane line
CN110132291A (en) * 2019-05-16 2019-08-16 深圳数翔科技有限公司 Grating map generation method, system, equipment and storage medium for harbour
CN110174113A (en) * 2019-04-28 2019-08-27 福瑞泰克智能系统有限公司 A kind of localization method, device and the terminal in vehicle driving lane
CN110174115A (en) * 2019-06-05 2019-08-27 武汉中海庭数据技术有限公司 A kind of method and device automatically generating high accuracy positioning map based on perception data
CN110197097A (en) * 2018-02-24 2019-09-03 北京图森未来科技有限公司 A kind of port area monitoring method and system, central control system
CN110196056A (en) * 2018-03-29 2019-09-03 文远知行有限公司 For generating the method and navigation device that are used for the road-map of automatic driving vehicle navigation and decision
CN110220521A (en) * 2019-05-24 2019-09-10 上海蔚来汽车有限公司 A kind of generation method and device of high-precision map
CN110264586A (en) * 2019-05-28 2019-09-20 浙江零跑科技有限公司 L3 grades of automated driving system driving path data acquisitions, analysis and method for uploading
CN110264517A (en) * 2019-06-13 2019-09-20 上海理工大学 A kind of method and system determining current vehicle position information based on three-dimensional scene images
CN110263607A (en) * 2018-12-07 2019-09-20 电子科技大学 A kind of for unpiloted road grade global context drawing generating method
CN110345951A (en) * 2019-07-08 2019-10-18 武汉光庭信息技术股份有限公司 A kind of ADAS accurately map generalization method and device
CN110440816A (en) * 2018-05-04 2019-11-12 沈阳美行科技有限公司 A kind of creation of lane labyrinth and navigation routine recommended method and device
CN110506194A (en) * 2017-03-31 2019-11-26 日产自动车株式会社 Driving control method and steering control device
CN110530389A (en) * 2019-09-06 2019-12-03 禾多科技(北京)有限公司 Crossing mode identification method and identifying system based on high-precision map of navigation electronic
CN110544375A (en) * 2019-06-10 2019-12-06 河南北斗卫星导航平台有限公司 Vehicle supervision method and device and computer readable storage medium
CN110567465A (en) * 2018-06-06 2019-12-13 丰田研究所股份有限公司 System and method for locating a vehicle using an accuracy specification
CN110568452A (en) * 2019-08-16 2019-12-13 苏州禾昆智能科技有限公司 parking lot rapid map building method and system based on field-end laser radar
CN110562258A (en) * 2019-09-30 2019-12-13 驭势科技(北京)有限公司 Method for vehicle automatic lane change decision, vehicle-mounted equipment and storage medium
CN110610521A (en) * 2019-10-08 2019-12-24 云海桥(北京)科技有限公司 Positioning system and method adopting distance measurement mark and image recognition matching
CN110704560A (en) * 2019-09-17 2020-01-17 武汉中海庭数据技术有限公司 Method and device for structuring lane line group based on road level topology
CN110706307A (en) * 2019-10-11 2020-01-17 江苏徐工工程机械研究院有限公司 Electronic map construction method and device and storage medium
CN110766006A (en) * 2019-10-24 2020-02-07 吉林大学 An unsupervised intelligent parking charging method based on visual artificial intelligence
CN110779496A (en) * 2018-07-30 2020-02-11 阿里巴巴集团控股有限公司 Three-dimensional map construction system, method, device and storage medium
CN110851545A (en) * 2018-07-27 2020-02-28 比亚迪股份有限公司 Map drawing method, device and equipment
CN110869703A (en) * 2017-08-23 2020-03-06 创新龙有限公司 Navigation method and navigation equipment
CN110940347A (en) * 2018-09-21 2020-03-31 阿里巴巴集团控股有限公司 Auxiliary vehicle navigation method and system
CN110941684A (en) * 2018-09-21 2020-03-31 高德软件有限公司 Production method of map data, related device and system
CN110989591A (en) * 2019-12-02 2020-04-10 长沙中联重科环境产业有限公司 Sanitation robot for performing auxiliary operation control based on road edge identification
CN111046709A (en) * 2018-10-15 2020-04-21 广州汽车集团股份有限公司 Vehicle lane level positioning method and system, vehicle and storage medium
CN111104849A (en) * 2018-10-29 2020-05-05 安波福技术有限公司 Automatic annotation of environmental features in maps during vehicle navigation
CN111174780A (en) * 2019-12-31 2020-05-19 同济大学 Road inertial navigation positioning system for blind people
CN111177288A (en) * 2018-11-09 2020-05-19 通用汽车环球科技运作有限责任公司 System for deriving autonomous vehicle enabled drivable maps
WO2020098456A1 (en) * 2018-11-14 2020-05-22 Huawei Technologies Co., Ltd. Method and system for generating predicted occupancy grid maps
CN111192341A (en) * 2019-12-31 2020-05-22 北京三快在线科技有限公司 Method and device for generating high-precision map, automatic driving equipment and storage medium
CN111192468A (en) * 2019-12-31 2020-05-22 武汉中海庭数据技术有限公司 Automatic driving method and system based on acceleration and deceleration in intersection, server and medium
CN111238503A (en) * 2018-11-29 2020-06-05 沈阳美行科技有限公司 Road segment map generation method, device and related system
CN111238504A (en) * 2018-11-29 2020-06-05 沈阳美行科技有限公司 Road segment modeling data generation method and device of road map and related system
CN111238499A (en) * 2018-11-29 2020-06-05 沈阳美行科技有限公司 Road map generation method and device and related system
CN111238498A (en) * 2018-11-29 2020-06-05 沈阳美行科技有限公司 Lane-level display road map generation method and device and related system
CN110427902B (en) * 2019-08-08 2020-06-12 昆明理工大学 Method and system for extracting traffic signs on aviation image road surface
CN111316288A (en) * 2019-02-28 2020-06-19 深圳市大疆创新科技有限公司 Road structure information extraction method, unmanned aerial vehicle and automatic driving system
WO2020125686A1 (en) * 2018-12-19 2020-06-25 长沙智能驾驶研究院有限公司 Method for generating real-time relative map, intelligent driving device and computer storage medium
CN111380546A (en) * 2018-12-28 2020-07-07 沈阳美行科技有限公司 Vehicle positioning method and device based on parallel road, electronic equipment and medium
CN111380539A (en) * 2018-12-28 2020-07-07 沈阳美行科技有限公司 Vehicle positioning and navigation method and device and related system
CN111380544A (en) * 2018-12-29 2020-07-07 沈阳美行科技有限公司 Method and device for generating map data of lane line
CN111400418A (en) * 2019-01-03 2020-07-10 长沙智能驾驶研究院有限公司 Lane positioning method and device, vehicle, storage medium and map construction method
CN111426330A (en) * 2020-03-24 2020-07-17 江苏徐工工程机械研究院有限公司 Path generation method and device, unmanned transportation system and storage medium
CN111448601A (en) * 2017-12-04 2020-07-24 株式会社电装 Lane network data generating device, lane network data generating program, and storage medium
US10739459B2 (en) 2018-01-12 2020-08-11 Ford Global Technologies, Llc LIDAR localization
CN111582019A (en) * 2020-03-24 2020-08-25 北京掌行通信息技术有限公司 Method, system, terminal and storage medium for judging unmanned vehicle lane level scene
CN111656421A (en) * 2018-02-01 2020-09-11 株式会社电装 Vehicle image data generation device, travel track data generation system, section image data generation program, and storage medium
CN111693056A (en) * 2019-03-13 2020-09-22 赫尔环球有限公司 Small map for maintaining and updating self-repairing high-definition map
CN111837014A (en) * 2018-03-05 2020-10-27 御眼视觉技术有限公司 System and method for anonymizing navigation information
CN111854788A (en) * 2019-04-29 2020-10-30 安波福电子(苏州)有限公司 AR navigation compensation system based on inertial measurement unit
CN111854780A (en) * 2020-06-10 2020-10-30 恒大恒驰新能源汽车研究院(上海)有限公司 Vehicle navigation method, device, vehicle, electronic equipment and storage medium
CN111932887A (en) * 2020-08-17 2020-11-13 武汉四维图新科技有限公司 Method and equipment for generating lane-level track data
CN111947642A (en) * 2019-05-15 2020-11-17 宜升有限公司 Vehicle navigation apparatus for self-driving vehicle
CN112033420A (en) * 2019-06-03 2020-12-04 北京京东叁佰陆拾度电子商务有限公司 Lane map construction method and device
CN112154355A (en) * 2019-09-19 2020-12-29 深圳市大疆创新科技有限公司 High-precision map positioning method, system, platform and computer readable storage medium
CN112212874A (en) * 2020-11-09 2021-01-12 福建牧月科技有限公司 Vehicle track prediction method and device, electronic equipment and computer readable medium
CN112292582A (en) * 2018-04-20 2021-01-29 文远知行有限公司 Method and system for generating high definition map
CN112384963A (en) * 2018-09-27 2021-02-19 株式会社日立制作所 Map data high-detail system, server and method thereof
CN112602133A (en) * 2018-08-31 2021-04-02 株式会社电装 Travel track data generation device in intersection, travel track data generation program, and vehicle-mounted device
CN112729316A (en) * 2019-10-14 2021-04-30 北京图森智途科技有限公司 Positioning method and device of automatic driving vehicle, vehicle-mounted equipment, system and vehicle
CN112833891A (en) * 2020-12-31 2021-05-25 武汉光庭信息技术股份有限公司 Road data and lane-level map data fusion method based on satellite film recognition
CN112859107A (en) * 2019-11-12 2021-05-28 亚庆股份有限公司 Vehicle navigation switching equipment of golf course self-driving vehicle
CN112863202A (en) * 2021-01-04 2021-05-28 广东韶钢松山股份有限公司 Station monitoring method and device, electronic equipment and storage medium
CN112904850A (en) * 2021-01-18 2021-06-04 香港理工大学 Road positioning mark for unmanned vehicle service
CN112923931A (en) * 2019-12-06 2021-06-08 北理慧动(常熟)科技有限公司 Feature map matching and GPS positioning information fusion method based on fixed route
CN112988922A (en) * 2019-12-16 2021-06-18 长沙智能驾驶研究院有限公司 Perception map construction method and device, computer equipment and storage medium
CN113034584A (en) * 2021-04-16 2021-06-25 广东工业大学 Mobile robot visual positioning method based on object semantic road sign
CN113077622A (en) * 2021-03-11 2021-07-06 雄狮汽车科技(南京)有限公司 Road network file generation method and device and vehicle
CN113155144A (en) * 2021-02-03 2021-07-23 东风汽车集团股份有限公司 Automatic driving method based on high-precision map real-time road condition modeling
CN113196010A (en) * 2018-12-27 2021-07-30 大陆汽车系统公司 Intersection maps learned from long-term sensor data
CN113261037A (en) * 2018-12-25 2021-08-13 株式会社电装 Map data generation device, in-vehicle device, map data generation system, map data generation program, map data utilization program, and storage medium
CN113313943A (en) * 2021-05-27 2021-08-27 中国科学院合肥物质科学研究院 Road side perception-based intersection traffic real-time scheduling method and system
WO2021169993A1 (en) * 2020-02-29 2021-09-02 华为技术有限公司 Method for constructing self-driving map and related device
CN113396313A (en) * 2019-02-06 2021-09-14 维宁尔美国公司 Lane level position determination
CN113532417A (en) * 2021-06-11 2021-10-22 上海追势科技有限公司 A high-precision map collection method for parking lots
CN113587915A (en) * 2021-06-08 2021-11-02 中绘云图信息科技有限公司 High-precision navigation configuration method
CN113701770A (en) * 2021-07-16 2021-11-26 西安电子科技大学 High-precision map generation method and system
CN114018240A (en) * 2021-10-29 2022-02-08 广州小鹏自动驾驶科技有限公司 Map data processing method and device
CN114076595A (en) * 2022-01-19 2022-02-22 浙江吉利控股集团有限公司 Road high-precision map generation method, device, device and storage medium
CN114234987A (en) * 2021-11-05 2022-03-25 河北汉光重工有限责任公司 Self-adaptive smooth adjustment method of off-line electronic map along with dynamic track of unmanned vehicle
CN114323040A (en) * 2021-11-18 2022-04-12 鄂尔多斯市普渡科技有限公司 A method of positioning an unmanned vehicle
DE102020212771A1 (en) 2020-10-09 2022-05-05 Zf Friedrichshafen Ag Computer-implemented method and computer program for trajectory planning for an automated system and computing system embedded in an automated system for trajectory planning and/or regulation and/or control
CN114604270A (en) * 2022-03-07 2022-06-10 爱步科技(深圳)有限公司 An automatic driving system for an electric vehicle
CN115004123A (en) * 2019-12-30 2022-09-02 新骑有限公司 Sequential mapping and localization for navigation (SMAL)
CN115143977A (en) * 2021-03-30 2022-10-04 武汉智行者科技有限公司 A fast high-precision map construction method, device and vehicle thereof
CN115203216A (en) * 2022-05-23 2022-10-18 中国测绘科学研究院 Geographic information data classification grading and protecting method and system for automatic driving map online updating scene
CN115388879A (en) * 2022-09-07 2022-11-25 吉林大学 High-precision map format conversion system and method for intelligent driving simulation test
CN115649184A (en) * 2022-06-06 2023-01-31 阿波罗智联(北京)科技有限公司 Vehicle control instruction generation method, device and equipment
CN115824235A (en) * 2022-11-17 2023-03-21 腾讯科技(深圳)有限公司 A lane positioning method, device, computer equipment and readable storage medium
CN116045995A (en) * 2023-03-21 2023-05-02 北京集度科技有限公司 Map generation system, method, vehicle and medium
CN116238504A (en) * 2023-03-20 2023-06-09 一汽解放汽车有限公司 Vehicle control method, device, device, medium and product
CN116255990A (en) * 2021-12-10 2023-06-13 北京百度网讯科技有限公司 Vehicle navigation method, device, vehicle and storage medium
CN116878522A (en) * 2023-05-31 2023-10-13 华能伊敏煤电有限责任公司 A mapping method for open pit mines
CN116972870A (en) * 2023-09-21 2023-10-31 南京遇简信息科技有限公司 Road navigation enhancement method, system and medium based on computer image recognition
US12038516B2 (en) 2018-07-31 2024-07-16 Cloud Wise Ltd. Method and system for real-time vehicle location and in-vehicle tracking device
CN119169567A (en) * 2024-11-22 2024-12-20 浙江吉利控股集团有限公司 Lane matching method, device and computer readable storage medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100266161A1 (en) * 2007-11-16 2010-10-21 Marcin Michal Kmiecik Method and apparatus for producing lane information
US20130300740A1 (en) * 2010-09-13 2013-11-14 Alt Software (Us) Llc System and Method for Displaying Data Having Spatial Coordinates
CN104029676A (en) * 2013-03-05 2014-09-10 通用汽车环球科技运作有限责任公司 Vehicle Lane Determination
CN104573733A (en) * 2014-12-26 2015-04-29 上海交通大学 High-precision map generation system and method based on high-definition ortho-photo map
CN104766058A (en) * 2015-03-31 2015-07-08 百度在线网络技术(北京)有限公司 Method and device for obtaining lane line
CN105783936A (en) * 2016-03-08 2016-07-20 武汉光庭信息技术股份有限公司 Road sign drawing and vehicle positioning method and system for automatic drive

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100266161A1 (en) * 2007-11-16 2010-10-21 Marcin Michal Kmiecik Method and apparatus for producing lane information
US20130300740A1 (en) * 2010-09-13 2013-11-14 Alt Software (Us) Llc System and Method for Displaying Data Having Spatial Coordinates
CN104029676A (en) * 2013-03-05 2014-09-10 通用汽车环球科技运作有限责任公司 Vehicle Lane Determination
CN104573733A (en) * 2014-12-26 2015-04-29 上海交通大学 High-precision map generation system and method based on high-definition ortho-photo map
CN104766058A (en) * 2015-03-31 2015-07-08 百度在线网络技术(北京)有限公司 Method and device for obtaining lane line
CN105783936A (en) * 2016-03-08 2016-07-20 武汉光庭信息技术股份有限公司 Road sign drawing and vehicle positioning method and system for automatic drive

Cited By (213)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106949897B (en) * 2017-02-28 2020-08-07 四川九洲电器集团有限责任公司 Method and device for generating roads in map
CN106949897A (en) * 2017-02-28 2017-07-14 四川九洲电器集团有限责任公司 A kind of method and device that road is generated in map
WO2018157541A1 (en) * 2017-03-01 2018-09-07 华为技术有限公司 Method and device for drawing roads in electronic map
CN107161141A (en) * 2017-03-08 2017-09-15 深圳市速腾聚创科技有限公司 Pilotless automobile system and automobile
CN108089185A (en) * 2017-03-10 2018-05-29 南京沃杨机械科技有限公司 The unmanned air navigation aid of agricultural machinery perceived based on farm environment
CN108107887A (en) * 2017-03-10 2018-06-01 南京沃杨机械科技有限公司 Farm machinery navigation farm environment cognitive method
CN108169743A (en) * 2017-03-10 2018-06-15 南京沃杨机械科技有限公司 Agricultural machinery is unmanned to use farm environment cognitive method
CN109073761A (en) * 2017-03-20 2018-12-21 谷歌有限责任公司 The system and method for determining improved user location using real world map and sensing data
CN106998358A (en) * 2017-03-24 2017-08-01 武汉光庭信息技术股份有限公司 Map sensor network method for establishing model and system based on MQTT and LCM
CN108663059A (en) * 2017-03-29 2018-10-16 高德信息技术有限公司 A kind of navigation path planning method and device
CN110506194A (en) * 2017-03-31 2019-11-26 日产自动车株式会社 Driving control method and steering control device
CN110506194B (en) * 2017-03-31 2020-09-25 日产自动车株式会社 Driving control method and driving control device
CN107229690A (en) * 2017-05-19 2017-10-03 广州中国科学院软件应用技术研究所 Dynamic High-accuracy map datum processing system and method based on trackside sensor
CN107179086A (en) * 2017-05-24 2017-09-19 北京数字绿土科技有限公司 A kind of drafting method based on laser radar, apparatus and system
CN107179086B (en) * 2017-05-24 2020-04-24 北京数字绿土科技有限公司 Drawing method, device and system based on laser radar
CN107036619B (en) * 2017-05-27 2019-08-06 广州汽车集团股份有限公司 High-precision geographic information reconstruction method, device, vehicle decision-making system and server
CN107036619A (en) * 2017-05-27 2017-08-11 广州汽车集团股份有限公司 High accuracy geography signal reconstruct method, device, Vehicle Decision Method system and server
CN108981729A (en) * 2017-06-02 2018-12-11 腾讯科技(深圳)有限公司 Vehicle positioning method and device
CN108981729B (en) * 2017-06-02 2021-11-19 腾讯科技(深圳)有限公司 Vehicle positioning method and device
CN109086277B (en) * 2017-06-13 2024-02-02 纵目科技(上海)股份有限公司 Method, system, mobile terminal and storage medium for constructing map in overlapping area
WO2018227980A1 (en) * 2017-06-13 2018-12-20 蔚来汽车有限公司 Camera sensor based lane line map construction method and construction system
CN109086277A (en) * 2017-06-13 2018-12-25 纵目科技(上海)股份有限公司 A kind of overlay region building ground drawing method, system, mobile terminal and storage medium
CN109084782A (en) * 2017-06-13 2018-12-25 蔚来汽车有限公司 Lane line map construction method and system based on camera sensor
CN109084782B (en) * 2017-06-13 2024-03-12 蔚来(安徽)控股有限公司 Lane line map construction method and system based on camera sensors
CN109211575A (en) * 2017-07-05 2019-01-15 百度在线网络技术(北京)有限公司 Pilotless automobile and its field test method, apparatus and readable medium
TWI635302B (en) * 2017-07-18 2018-09-11 李綱 Real-time precise positioning system of vehicle
CN109325390A (en) * 2017-08-01 2019-02-12 郑州宇通客车股份有限公司 A kind of localization method combined based on map with FUSION WITH MULTISENSOR DETECTION and system
CN109325390B (en) * 2017-08-01 2021-11-05 郑州宇通客车股份有限公司 Positioning method and system based on combination of map and multi-sensor detection
CN109323701A (en) * 2017-08-01 2019-02-12 郑州宇通客车股份有限公司 The localization method and system combined based on map with FUSION WITH MULTISENSOR DETECTION
CN110869703A (en) * 2017-08-23 2020-03-06 创新龙有限公司 Navigation method and navigation equipment
CN107329466A (en) * 2017-08-28 2017-11-07 北京华清智能科技有限公司 A kind of automatic Pilot compact car
CN109491378A (en) * 2017-09-12 2019-03-19 百度(美国)有限责任公司 The route guiding system based on roadway segment of automatic driving vehicle
CN107976182A (en) * 2017-11-30 2018-05-01 深圳市隐湖科技有限公司 A kind of Multi-sensor Fusion builds drawing system and its method
CN111448601A (en) * 2017-12-04 2020-07-24 株式会社电装 Lane network data generating device, lane network data generating program, and storage medium
CN108226938A (en) * 2017-12-08 2018-06-29 华南理工大学 A kind of alignment system and method for AGV trolleies
CN108226938B (en) * 2017-12-08 2021-09-21 华南理工大学 AGV trolley positioning system and method
CN109935098B (en) * 2017-12-18 2020-11-06 上海交通大学 High-precision relative position information broadcasting device and method based on vehicle-road cooperative communication
CN109935098A (en) * 2017-12-18 2019-06-25 上海交通大学 Device and method for broadcasting high-precision relative position information based on vehicle-road cooperative communication
CN108458746A (en) * 2017-12-23 2018-08-28 天津国科嘉业医疗科技发展有限公司 One kind being based on sensor method for self-adaption amalgamation
CN107958451A (en) * 2017-12-27 2018-04-24 深圳普思英察科技有限公司 Vision high accuracy map production method and device
US10739459B2 (en) 2018-01-12 2020-08-11 Ford Global Technologies, Llc LIDAR localization
CN108332766A (en) * 2018-01-28 2018-07-27 武汉光庭信息技术股份有限公司 A kind of dynamic fusion method and system for planning of multi-source road network
CN108332766B (en) * 2018-01-28 2020-09-15 武汉光庭信息技术股份有限公司 Dynamic fusion planning method and system for multi-source road network
CN111656421B (en) * 2018-02-01 2022-07-05 株式会社电装 Vehicle image data generation device, travel track data generation system, section image data generation program, and storage medium
CN111656421A (en) * 2018-02-01 2020-09-11 株式会社电装 Vehicle image data generation device, travel track data generation system, section image data generation program, and storage medium
CN110120081A (en) * 2018-02-07 2019-08-13 北京四维图新科技股份有限公司 A kind of method, apparatus and storage equipment of generation electronic map traffic lane line
CN110197097A (en) * 2018-02-24 2019-09-03 北京图森未来科技有限公司 A kind of port area monitoring method and system, central control system
CN110197097B (en) * 2018-02-24 2024-04-19 北京图森智途科技有限公司 Harbor district monitoring method and system and central control system
CN111837014A (en) * 2018-03-05 2020-10-27 御眼视觉技术有限公司 System and method for anonymizing navigation information
CN108519773A (en) * 2018-03-07 2018-09-11 西安交通大学 A path planning method for unmanned vehicles in a structured environment
CN110196056B (en) * 2018-03-29 2023-12-05 文远知行有限公司 Method and navigation device for generating road maps for autonomous vehicle navigation and decision-making
CN110196056A (en) * 2018-03-29 2019-09-03 文远知行有限公司 For generating the method and navigation device that are used for the road-map of automatic driving vehicle navigation and decision
CN108763287A (en) * 2018-04-13 2018-11-06 同济大学 On a large scale can traffic areas driving map construction method and its unmanned application process
CN112292582A (en) * 2018-04-20 2021-01-29 文远知行有限公司 Method and system for generating high definition map
CN108645420A (en) * 2018-04-26 2018-10-12 北京联合大学 A kind of creation method of the automatic driving vehicle multipath map based on differential navigation
CN108645420B (en) * 2018-04-26 2022-06-14 北京联合大学 Method for creating multipath map of automatic driving vehicle based on differential navigation
CN110440816A (en) * 2018-05-04 2019-11-12 沈阳美行科技有限公司 A kind of creation of lane labyrinth and navigation routine recommended method and device
CN110440816B (en) * 2018-05-04 2021-06-22 沈阳美行科技有限公司 Lane maze creating and navigation route recommending method and device
CN108955702B (en) * 2018-05-07 2021-09-07 西安交通大学 Lane-level map creation system based on 3D laser and GPS inertial navigation system
CN108955702A (en) * 2018-05-07 2018-12-07 西安交通大学 Based on the lane of three-dimensional laser and GPS inertial navigation system grade map creation system
CN110567465B (en) * 2018-06-06 2023-08-18 丰田研究所股份有限公司 System and method for locating a vehicle using accuracy specifications
CN110567465A (en) * 2018-06-06 2019-12-13 丰田研究所股份有限公司 System and method for locating a vehicle using an accuracy specification
CN108646752B (en) * 2018-06-22 2021-12-28 奇瑞汽车股份有限公司 Control method and device of automatic driving system
CN108646752A (en) * 2018-06-22 2018-10-12 奇瑞汽车股份有限公司 The control method and device of automated driving system
CN108958242A (en) * 2018-06-25 2018-12-07 武汉中海庭数据技术有限公司 A kind of lane change decision assistant method and system based on high-precision map
CN108958242B (en) * 2018-06-25 2021-12-24 武汉中海庭数据技术有限公司 Lane change decision-making auxiliary method and system based on high-precision map
CN108876857A (en) * 2018-07-02 2018-11-23 上海西井信息科技有限公司 Localization method, system, equipment and the storage medium of automatic driving vehicle
CN108876857B (en) * 2018-07-02 2020-09-29 上海西井信息科技有限公司 Method, system, device and storage medium for positioning unmanned vehicle
CN109166189A (en) * 2018-07-13 2019-01-08 中国交通通信信息中心 A kind of current management equipment of the high speed based on Beidou high accuracy positioning
CN109189058B (en) * 2018-07-18 2021-10-15 深圳市海梁科技有限公司 Multi-wavelength paint surface and dynamic optical flow line patrol navigation system and unmanned vehicle
CN109189058A (en) * 2018-07-18 2019-01-11 深圳市海梁科技有限公司 A kind of multi-wavelength lacquer painting, dynamic light stream line walking navigation system and automatic driving vehicle
CN108981727A (en) * 2018-07-24 2018-12-11 佛山市高明曦逻科技有限公司 Automobile ad hoc network navigation map system
CN110851545A (en) * 2018-07-27 2020-02-28 比亚迪股份有限公司 Map drawing method, device and equipment
CN110779496A (en) * 2018-07-30 2020-02-11 阿里巴巴集团控股有限公司 Three-dimensional map construction system, method, device and storage medium
US12038516B2 (en) 2018-07-31 2024-07-16 Cloud Wise Ltd. Method and system for real-time vehicle location and in-vehicle tracking device
CN109084786A (en) * 2018-08-09 2018-12-25 北京智行者科技有限公司 A kind of processing method of map datum
CN109143259A (en) * 2018-08-20 2019-01-04 北京主线科技有限公司 High-precision cartography method towards the unmanned truck in harbour
CN109215487A (en) * 2018-08-24 2019-01-15 宽凳(北京)科技有限公司 A kind of high-precision cartography method based on deep learning
CN112602133A (en) * 2018-08-31 2021-04-02 株式会社电装 Travel track data generation device in intersection, travel track data generation program, and vehicle-mounted device
CN110940347B (en) * 2018-09-21 2024-04-12 斑马智行网络(香港)有限公司 A method and system for assisting vehicle navigation
CN110941684B (en) * 2018-09-21 2023-06-13 阿里巴巴(中国)有限公司 Map data production method, related device and system
CN110940347A (en) * 2018-09-21 2020-03-31 阿里巴巴集团控股有限公司 Auxiliary vehicle navigation method and system
CN110941684A (en) * 2018-09-21 2020-03-31 高德软件有限公司 Production method of map data, related device and system
CN112384963A (en) * 2018-09-27 2021-02-19 株式会社日立制作所 Map data high-detail system, server and method thereof
CN109556615A (en) * 2018-10-10 2019-04-02 吉林大学 The driving map generation method of Multi-sensor Fusion cognition based on automatic Pilot
CN111046709B (en) * 2018-10-15 2021-02-09 广州汽车集团股份有限公司 Vehicle lane-level positioning method, system, vehicle and storage medium
CN111046709A (en) * 2018-10-15 2020-04-21 广州汽车集团股份有限公司 Vehicle lane level positioning method and system, vehicle and storage medium
CN109357680A (en) * 2018-10-26 2019-02-19 北京主线科技有限公司 The unmanned container truck high-precision ground drawing generating method in harbour
CN111104849B (en) * 2018-10-29 2022-05-31 动态Ad有限责任公司 Automatic annotation of environmental features in a map during navigation of a vehicle
US12140446B2 (en) 2018-10-29 2024-11-12 Motional Ad Llc Automatic annotation of environmental features in a map during navigation of a vehicle
US11774261B2 (en) 2018-10-29 2023-10-03 Motional Ad Llc Automatic annotation of environmental features in a map during navigation of a vehicle
CN111104849A (en) * 2018-10-29 2020-05-05 安波福技术有限公司 Automatic annotation of environmental features in maps during vehicle navigation
CN109584706A (en) * 2018-10-31 2019-04-05 百度在线网络技术(北京)有限公司 Electronic map lane line processing method, equipment and computer readable storage medium
CN109584706B (en) * 2018-10-31 2021-08-03 百度在线网络技术(北京)有限公司 Electronic map lane line processing method, device and computer readable storage medium
CN109472844A (en) * 2018-11-01 2019-03-15 百度在线网络技术(北京)有限公司 Crossing inside lane line mask method, device and storage medium
CN111177288A (en) * 2018-11-09 2020-05-19 通用汽车环球科技运作有限责任公司 System for deriving autonomous vehicle enabled drivable maps
US11465633B2 (en) 2018-11-14 2022-10-11 Huawei Technologies Co., Ltd. Method and system for generating predicted occupancy grid maps
CN113348422A (en) * 2018-11-14 2021-09-03 华为技术有限公司 Method and system for generating a predicted occupancy grid map
WO2020098456A1 (en) * 2018-11-14 2020-05-22 Huawei Technologies Co., Ltd. Method and system for generating predicted occupancy grid maps
CN109492599A (en) * 2018-11-20 2019-03-19 中车株洲电力机车有限公司 A kind of multiaxis electricity car self- steering method
CN111238498A (en) * 2018-11-29 2020-06-05 沈阳美行科技有限公司 Lane-level display road map generation method and device and related system
CN111238499A (en) * 2018-11-29 2020-06-05 沈阳美行科技有限公司 Road map generation method and device and related system
CN111238504A (en) * 2018-11-29 2020-06-05 沈阳美行科技有限公司 Road segment modeling data generation method and device of road map and related system
CN111238503A (en) * 2018-11-29 2020-06-05 沈阳美行科技有限公司 Road segment map generation method, device and related system
CN111238499B (en) * 2018-11-29 2023-04-07 沈阳美行科技股份有限公司 Road map generation method and device and related system
CN111238503B (en) * 2018-11-29 2022-12-02 沈阳美行科技股份有限公司 Map generation method, device and related system for road segments
CN111238498B (en) * 2018-11-29 2023-09-29 沈阳美行科技股份有限公司 Road map generation method, device and related system for lane-level display
CN109470255A (en) * 2018-12-03 2019-03-15 禾多科技(北京)有限公司 Automatic generation method of high-precision map based on high-precision positioning and lane line recognition
CN109470255B (en) * 2018-12-03 2022-03-29 禾多科技(北京)有限公司 High-precision map automatic generation method based on high-precision positioning and lane line identification
CN110263607B (en) * 2018-12-07 2022-05-20 电子科技大学 A road-level global environment map generation method for unmanned driving
CN110263607A (en) * 2018-12-07 2019-09-20 电子科技大学 A kind of for unpiloted road grade global context drawing generating method
WO2020125686A1 (en) * 2018-12-19 2020-06-25 长沙智能驾驶研究院有限公司 Method for generating real-time relative map, intelligent driving device and computer storage medium
CN113261037A (en) * 2018-12-25 2021-08-13 株式会社电装 Map data generation device, in-vehicle device, map data generation system, map data generation program, map data utilization program, and storage medium
CN113196010A (en) * 2018-12-27 2021-07-30 大陆汽车系统公司 Intersection maps learned from long-term sensor data
CN111380539A (en) * 2018-12-28 2020-07-07 沈阳美行科技有限公司 Vehicle positioning and navigation method and device and related system
CN111380546A (en) * 2018-12-28 2020-07-07 沈阳美行科技有限公司 Vehicle positioning method and device based on parallel road, electronic equipment and medium
CN109976332A (en) * 2018-12-29 2019-07-05 惠州市德赛西威汽车电子股份有限公司 One kind being used for unpiloted accurately graph model and autonomous navigation system
CN111380544A (en) * 2018-12-29 2020-07-07 沈阳美行科技有限公司 Method and device for generating map data of lane line
CN111400418A (en) * 2019-01-03 2020-07-10 长沙智能驾驶研究院有限公司 Lane positioning method and device, vehicle, storage medium and map construction method
CN111400418B (en) * 2019-01-03 2024-04-16 长沙智能驾驶研究院有限公司 Lane positioning method, lane positioning device, vehicle, storage medium and map construction method
CN109859611A (en) * 2019-01-16 2019-06-07 北京百度网讯科技有限公司 Acquisition method, device, equipment and the storage medium of map datum
CN113396313A (en) * 2019-02-06 2021-09-14 维宁尔美国公司 Lane level position determination
CN113396313B (en) * 2019-02-06 2024-04-30 安致尔软件有限责任公司 Lane level position determination
CN111316288A (en) * 2019-02-28 2020-06-19 深圳市大疆创新科技有限公司 Road structure information extraction method, unmanned aerial vehicle and automatic driving system
CN111693056A (en) * 2019-03-13 2020-09-22 赫尔环球有限公司 Small map for maintaining and updating self-repairing high-definition map
CN111693056B (en) * 2019-03-13 2024-02-02 赫尔环球有限公司 Small map for maintaining and updating self-healing high definition maps
CN110021185A (en) * 2019-04-04 2019-07-16 邵沈齐 A kind of wisdom traffic management system
CN110174113A (en) * 2019-04-28 2019-08-27 福瑞泰克智能系统有限公司 A kind of localization method, device and the terminal in vehicle driving lane
CN111854788A (en) * 2019-04-29 2020-10-30 安波福电子(苏州)有限公司 AR navigation compensation system based on inertial measurement unit
CN111854788B (en) * 2019-04-29 2023-09-01 安波福电子(苏州)有限公司 AR Navigation Compensation System Based on Inertial Measurement Unit
CN111947642A (en) * 2019-05-15 2020-11-17 宜升有限公司 Vehicle navigation apparatus for self-driving vehicle
CN111947642B (en) * 2019-05-15 2022-05-13 宜升有限公司 Vehicle navigation apparatus for self-driving vehicle
CN110132291A (en) * 2019-05-16 2019-08-16 深圳数翔科技有限公司 Grating map generation method, system, equipment and storage medium for harbour
CN110110029A (en) * 2019-05-17 2019-08-09 百度在线网络技术(北京)有限公司 Method and apparatus for matching lane
CN110220521B (en) * 2019-05-24 2023-07-07 上海蔚来汽车有限公司 High-precision map generation method and device
CN110220521A (en) * 2019-05-24 2019-09-10 上海蔚来汽车有限公司 A kind of generation method and device of high-precision map
CN110264586A (en) * 2019-05-28 2019-09-20 浙江零跑科技有限公司 L3 grades of automated driving system driving path data acquisitions, analysis and method for uploading
CN112033420B (en) * 2019-06-03 2024-06-18 北京京东叁佰陆拾度电子商务有限公司 Lane map construction method and device
CN112033420A (en) * 2019-06-03 2020-12-04 北京京东叁佰陆拾度电子商务有限公司 Lane map construction method and device
CN110174115A (en) * 2019-06-05 2019-08-27 武汉中海庭数据技术有限公司 A kind of method and device automatically generating high accuracy positioning map based on perception data
CN110544375A (en) * 2019-06-10 2019-12-06 河南北斗卫星导航平台有限公司 Vehicle supervision method and device and computer readable storage medium
CN110264517A (en) * 2019-06-13 2019-09-20 上海理工大学 A kind of method and system determining current vehicle position information based on three-dimensional scene images
CN110345951A (en) * 2019-07-08 2019-10-18 武汉光庭信息技术股份有限公司 A kind of ADAS accurately map generalization method and device
CN110427902B (en) * 2019-08-08 2020-06-12 昆明理工大学 Method and system for extracting traffic signs on aviation image road surface
CN110568452A (en) * 2019-08-16 2019-12-13 苏州禾昆智能科技有限公司 parking lot rapid map building method and system based on field-end laser radar
CN110530389A (en) * 2019-09-06 2019-12-03 禾多科技(北京)有限公司 Crossing mode identification method and identifying system based on high-precision map of navigation electronic
CN110704560B (en) * 2019-09-17 2021-12-24 武汉中海庭数据技术有限公司 Method and device for structuring lane line group based on road level topology
CN110704560A (en) * 2019-09-17 2020-01-17 武汉中海庭数据技术有限公司 Method and device for structuring lane line group based on road level topology
WO2021051361A1 (en) * 2019-09-19 2021-03-25 深圳市大疆创新科技有限公司 High-precision map positioning method and system, platform and computer-readable storage medium
CN112154355A (en) * 2019-09-19 2020-12-29 深圳市大疆创新科技有限公司 High-precision map positioning method, system, platform and computer readable storage medium
CN112154355B (en) * 2019-09-19 2024-03-01 深圳市大疆创新科技有限公司 High-precision map positioning method, system, platform and computer readable storage medium
CN110562258B (en) * 2019-09-30 2022-04-29 驭势科技(北京)有限公司 Method for vehicle automatic lane change decision, vehicle-mounted equipment and storage medium
CN110562258A (en) * 2019-09-30 2019-12-13 驭势科技(北京)有限公司 Method for vehicle automatic lane change decision, vehicle-mounted equipment and storage medium
CN110610521B (en) * 2019-10-08 2021-02-26 云海桥(北京)科技有限公司 Positioning system and method adopting distance measurement mark and image recognition matching
CN110610521A (en) * 2019-10-08 2019-12-24 云海桥(北京)科技有限公司 Positioning system and method adopting distance measurement mark and image recognition matching
CN110706307A (en) * 2019-10-11 2020-01-17 江苏徐工工程机械研究院有限公司 Electronic map construction method and device and storage medium
CN112729316A (en) * 2019-10-14 2021-04-30 北京图森智途科技有限公司 Positioning method and device of automatic driving vehicle, vehicle-mounted equipment, system and vehicle
CN112729316B (en) * 2019-10-14 2024-07-05 北京图森智途科技有限公司 Positioning method and device of automatic driving vehicle, vehicle-mounted equipment, system and vehicle
CN110766006A (en) * 2019-10-24 2020-02-07 吉林大学 An unsupervised intelligent parking charging method based on visual artificial intelligence
CN110766006B (en) * 2019-10-24 2022-07-12 吉林大学 An unsupervised intelligent parking charging method based on visual artificial intelligence
CN112859107B (en) * 2019-11-12 2023-11-24 亚庆股份有限公司 Vehicle navigation switching device for golf course self-driving vehicles
CN112859107A (en) * 2019-11-12 2021-05-28 亚庆股份有限公司 Vehicle navigation switching equipment of golf course self-driving vehicle
CN110989591A (en) * 2019-12-02 2020-04-10 长沙中联重科环境产业有限公司 Sanitation robot for performing auxiliary operation control based on road edge identification
CN112923931A (en) * 2019-12-06 2021-06-08 北理慧动(常熟)科技有限公司 Feature map matching and GPS positioning information fusion method based on fixed route
CN112988922A (en) * 2019-12-16 2021-06-18 长沙智能驾驶研究院有限公司 Perception map construction method and device, computer equipment and storage medium
CN115004123A (en) * 2019-12-30 2022-09-02 新骑有限公司 Sequential mapping and localization for navigation (SMAL)
CN111192468A (en) * 2019-12-31 2020-05-22 武汉中海庭数据技术有限公司 Automatic driving method and system based on acceleration and deceleration in intersection, server and medium
CN111192341A (en) * 2019-12-31 2020-05-22 北京三快在线科技有限公司 Method and device for generating high-precision map, automatic driving equipment and storage medium
CN111174780A (en) * 2019-12-31 2020-05-19 同济大学 Road inertial navigation positioning system for blind people
WO2021169993A1 (en) * 2020-02-29 2021-09-02 华为技术有限公司 Method for constructing self-driving map and related device
CN111426330A (en) * 2020-03-24 2020-07-17 江苏徐工工程机械研究院有限公司 Path generation method and device, unmanned transportation system and storage medium
CN111582019A (en) * 2020-03-24 2020-08-25 北京掌行通信息技术有限公司 Method, system, terminal and storage medium for judging unmanned vehicle lane level scene
CN111582019B (en) * 2020-03-24 2023-10-03 北京掌行通信息技术有限公司 Unmanned vehicle lane level scene judging method, system, terminal and storage medium
CN111854780A (en) * 2020-06-10 2020-10-30 恒大恒驰新能源汽车研究院(上海)有限公司 Vehicle navigation method, device, vehicle, electronic equipment and storage medium
CN111932887A (en) * 2020-08-17 2020-11-13 武汉四维图新科技有限公司 Method and equipment for generating lane-level track data
DE102020212771A1 (en) 2020-10-09 2022-05-05 Zf Friedrichshafen Ag Computer-implemented method and computer program for trajectory planning for an automated system and computing system embedded in an automated system for trajectory planning and/or regulation and/or control
CN112212874A (en) * 2020-11-09 2021-01-12 福建牧月科技有限公司 Vehicle track prediction method and device, electronic equipment and computer readable medium
CN112833891A (en) * 2020-12-31 2021-05-25 武汉光庭信息技术股份有限公司 Road data and lane-level map data fusion method based on satellite film recognition
CN112863202A (en) * 2021-01-04 2021-05-28 广东韶钢松山股份有限公司 Station monitoring method and device, electronic equipment and storage medium
CN112904850A (en) * 2021-01-18 2021-06-04 香港理工大学 Road positioning mark for unmanned vehicle service
CN112904850B (en) * 2021-01-18 2024-04-12 香港理工大学 Road positioning mark for service of unmanned vehicle
CN113155144A (en) * 2021-02-03 2021-07-23 东风汽车集团股份有限公司 Automatic driving method based on high-precision map real-time road condition modeling
CN113077622A (en) * 2021-03-11 2021-07-06 雄狮汽车科技(南京)有限公司 Road network file generation method and device and vehicle
CN115143977A (en) * 2021-03-30 2022-10-04 武汉智行者科技有限公司 A fast high-precision map construction method, device and vehicle thereof
CN115143977B (en) * 2021-03-30 2025-07-08 武汉智行者科技有限公司 Quick high-precision map construction method and device and vehicle
CN113034584A (en) * 2021-04-16 2021-06-25 广东工业大学 Mobile robot visual positioning method based on object semantic road sign
CN113034584B (en) * 2021-04-16 2022-08-30 广东工业大学 Mobile robot visual positioning method based on object semantic road sign
CN113313943B (en) * 2021-05-27 2022-07-12 中国科学院合肥物质科学研究院 Road side perception-based intersection traffic real-time scheduling method and system
CN113313943A (en) * 2021-05-27 2021-08-27 中国科学院合肥物质科学研究院 Road side perception-based intersection traffic real-time scheduling method and system
CN113587915A (en) * 2021-06-08 2021-11-02 中绘云图信息科技有限公司 High-precision navigation configuration method
CN113532417A (en) * 2021-06-11 2021-10-22 上海追势科技有限公司 A high-precision map collection method for parking lots
CN113701770A (en) * 2021-07-16 2021-11-26 西安电子科技大学 High-precision map generation method and system
CN114018240B (en) * 2021-10-29 2024-10-11 广州小鹏自动驾驶科技有限公司 Map data processing method and device
CN114018240A (en) * 2021-10-29 2022-02-08 广州小鹏自动驾驶科技有限公司 Map data processing method and device
CN114234987A (en) * 2021-11-05 2022-03-25 河北汉光重工有限责任公司 Self-adaptive smooth adjustment method of off-line electronic map along with dynamic track of unmanned vehicle
CN114234987B (en) * 2021-11-05 2024-06-11 河北汉光重工有限责任公司 Self-adaptive smooth adjustment method for dynamic track of offline electronic map along with unmanned vehicle
CN114323040A (en) * 2021-11-18 2022-04-12 鄂尔多斯市普渡科技有限公司 A method of positioning an unmanned vehicle
CN116255990A (en) * 2021-12-10 2023-06-13 北京百度网讯科技有限公司 Vehicle navigation method, device, vehicle and storage medium
CN114076595B (en) * 2022-01-19 2022-04-29 浙江吉利控股集团有限公司 Road high-precision map generation method, device, equipment and storage medium
CN114076595A (en) * 2022-01-19 2022-02-22 浙江吉利控股集团有限公司 Road high-precision map generation method, device, device and storage medium
CN114604270A (en) * 2022-03-07 2022-06-10 爱步科技(深圳)有限公司 An automatic driving system for an electric vehicle
CN115203216A (en) * 2022-05-23 2022-10-18 中国测绘科学研究院 Geographic information data classification grading and protecting method and system for automatic driving map online updating scene
CN115203216B (en) * 2022-05-23 2023-02-07 中国测绘科学研究院 A method and system for classification, grading and protection of geographic information data for automatic driving map online update scenarios
CN115649184A (en) * 2022-06-06 2023-01-31 阿波罗智联(北京)科技有限公司 Vehicle control instruction generation method, device and equipment
CN115388879A (en) * 2022-09-07 2022-11-25 吉林大学 High-precision map format conversion system and method for intelligent driving simulation test
CN115824235B (en) * 2022-11-17 2024-08-16 腾讯科技(深圳)有限公司 Lane positioning method, device, computer equipment and readable storage medium
CN115824235A (en) * 2022-11-17 2023-03-21 腾讯科技(深圳)有限公司 A lane positioning method, device, computer equipment and readable storage medium
CN116238504A (en) * 2023-03-20 2023-06-09 一汽解放汽车有限公司 Vehicle control method, device, device, medium and product
CN116045995A (en) * 2023-03-21 2023-05-02 北京集度科技有限公司 Map generation system, method, vehicle and medium
CN116878522A (en) * 2023-05-31 2023-10-13 华能伊敏煤电有限责任公司 A mapping method for open pit mines
CN116972870A (en) * 2023-09-21 2023-10-31 南京遇简信息科技有限公司 Road navigation enhancement method, system and medium based on computer image recognition
CN116972870B (en) * 2023-09-21 2023-12-15 南京遇简信息科技有限公司 Road navigation enhancement method, system and medium based on computer image recognition
CN119169567A (en) * 2024-11-22 2024-12-20 浙江吉利控股集团有限公司 Lane matching method, device and computer readable storage medium

Also Published As

Publication number Publication date
CN106441319B (en) 2019-07-16

Similar Documents

Publication Publication Date Title
CN106441319B (en) A system and method for generating a lane-level navigation map of an unmanned vehicle
US12151685B2 (en) Road vector fields
US12140446B2 (en) Automatic annotation of environmental features in a map during navigation of a vehicle
US12264936B2 (en) Fully aligned junctions
US20250067572A1 (en) Using semantic and non-semantic information to align drives and build maps
US20240255291A1 (en) Sparse map for autonomous vehicle navigation
CN104573733B (en) A kind of fine map generation system and method based on high definition orthophotoquad
JP2023106536A (en) System for vehicle navigation based on image analysis
CN106980657A (en) A kind of track level electronic map construction method based on information fusion
CN106969779A (en) Intelligent vehicle map emerging system and method based on DSRC
US20230136710A1 (en) Systems and methods for harvesting images for vehicle navigation
US11908075B2 (en) Generating and filtering navigational maps
NL2038491B1 (en) Systems and methods for navigating a vehicle on a covered road
CN117665816A (en) High-precision map determining method, system, vehicle and medium based on imaging radar
Choi et al. Detection-verification-cascade-based low-cost precise vehicle positioning exploiting extended digital map
CN113390422A (en) Automobile positioning method and device and computer storage medium
US20250172408A1 (en) Systems and Methods for Sign Orientation Determination
US20250130065A1 (en) Method for assisting in the creation of an elevation map
CN119437266A (en) A real-time path planning technology based on sensor fusion

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230328

Address after: 230088 China (Anhui) Free Trade Pilot Zone, Hefei City, Anhui Province 3201, Building A1, Phase I, Zhong'an Chuanggu Science Park, No. 900, Wangjiang West Road, High-tech Zone, Hefei City

Patentee after: Anhui Zhongke Xingchi Automatic Driving Technology Co.,Ltd.

Address before: 230031 No. 350 Lake Road, Hefei, Anhui, Shushan

Patentee before: HEFEI INSTITUTES OF PHYSICAL SCIENCE, CHINESE ACADEMY OF SCIENCES