[go: up one dir, main page]

CN106441173A - Position correcting tool and X-ray position measurement device - Google Patents

Position correcting tool and X-ray position measurement device Download PDF

Info

Publication number
CN106441173A
CN106441173A CN201610423198.3A CN201610423198A CN106441173A CN 106441173 A CN106441173 A CN 106441173A CN 201610423198 A CN201610423198 A CN 201610423198A CN 106441173 A CN106441173 A CN 106441173A
Authority
CN
China
Prior art keywords
ray
image
transmission part
position correction
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610423198.3A
Other languages
Chinese (zh)
Other versions
CN106441173B (en
Inventor
东海林健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Chuangshi Co.,Ltd.
Original Assignee
Seiko Precision Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Precision Inc filed Critical Seiko Precision Inc
Publication of CN106441173A publication Critical patent/CN106441173A/en
Application granted granted Critical
Publication of CN106441173B publication Critical patent/CN106441173B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/02Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring thickness
    • G01B15/025Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring thickness by measuring absorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/10Different kinds of radiation or particles
    • G01N2223/101Different kinds of radiation or particles electromagnetic radiation
    • G01N2223/1016X-ray

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Electromagnetism (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)

Abstract

The objective of the invention is to provide a position correcting tool and an X-ray position measurement device, which can rapidly adjust an emitting center of an X-ray emitter and an optical axis of an X-ray camera at a high precision. A position correcting tool of the X-ray position measurement device is used for shooting an image of X-ray emitted by the X-ray emitter by using the X-ray camera and aligning the emitting center of an X-ray emitter and the optical axis of the X-ray camera of the X-ray position measurement device for measuring a measuring object. The position correction tool includes a first penetrating portion for allowing the X-ray emitted by the X-ray emitter to penetrate; and a second penetrating portion for allowing the X-ray penetrating the first penetrating portion to penetrate and to be projected on the X-ray camera. The position correction tool projects a first projection image of the X-ray penetrating the first penetrating portion and a second projection image of the X-ray penetrating the second penetrating portion to the X-ray camera.

Description

位置校正用工具以及X射线位置计测装置Tool for position correction and X-ray position measuring device

技术领域technical field

本发明涉及位置校正用工具以及X射线位置计测装置。The present invention relates to a tool for position correction and an X-ray position measuring device.

背景技术Background technique

已知有使用X射线发射器和X射线相机来进行印刷板的位置计测的X射线位置计测装置(专利文献1)。在这种X射线位置计测装置中,当X射线发射器的发射中心和X射线相机的光轴不一致时,会在X射线相机的拍摄图像中发生变形,无法进行准确的定位。因此,在这种X射线位置计测装置中,进行使发射器的发射中心与X射线相机的光轴一致的调整。An X-ray position measurement device that measures the position of a printing plate using an X-ray emitter and an X-ray camera is known (Patent Document 1). In such an X-ray position measuring device, when the emission center of the X-ray emitter does not coincide with the optical axis of the X-ray camera, distortion occurs in an image captured by the X-ray camera, and accurate positioning cannot be performed. Therefore, in such an X-ray position measuring device, adjustment is performed so that the emission center of the emitter coincides with the optical axis of the X-ray camera.

专利文献1:日本特开2012-88170号公报Patent Document 1: Japanese Patent Laid-Open No. 2012-88170

这样,在进行使发射器的发射中心与X射线相机的光轴一致的调整时,希望调整不耽搁工夫,能够在较短的调整时间内准确进行使发射器的发射中心与X射线相机的光轴一致的调整。In this way, when adjusting the emission center of the emitter to coincide with the optical axis of the X-ray camera, it is hoped that the adjustment will not delay work, and the emission center of the emitter and the light axis of the X-ray camera can be accurately adjusted within a short adjustment time. Axis-aligned adjustments.

发明内容Contents of the invention

鉴于上述问题,本发明的目的在于提供一种能够迅速且高精度地调整X射线发射器的发射中心与X射线相机的光轴的位置校正用工具、以及能够使用这种位置校正用工具的X射线位置计测装置。In view of the above problems, the object of the present invention is to provide a tool for position correction that can quickly and accurately adjust the emission center of an X-ray emitter and the optical axis of an X-ray camera, and an X-ray system that can use such a tool for position correction. Ray position measuring device.

(1)为了实现上述目的,本发明的一个方式是一种位置校正用工具,该位置校正用工具是X射线位置计测装置的位置校正用工具,该X射线位置计测装置利用X射线相机来拍摄基于从X射线发射器发射的X射线的图像而对测定对象物进行测定,该位置校正用工具使所述X射线位置计测装置中的所述X射线发射器的X射线发射中心与所述X射线相机的光轴对准,其中,该位置校正用工具具有:第1透过部,其使所述X射线发射器侧发射的X射线透过;以及第2透过部,其使由所述第1透过部透过的X射线透过并投影到所述X射线相机,所述位置校正用工具将基于由所述第1透过部透过的X射线的第1投影像、和基于由所述第2透过部透过的X射线的第2投影像投影到所述X射线相机。(1) In order to achieve the above object, one aspect of the present invention is a position correction tool, the position correction tool is a position correction tool of an X-ray position measuring device, and the X-ray position measuring device uses an X-ray camera The object to be measured is measured by taking an image based on the X-rays emitted from the X-ray emitter, and the position correction tool makes the X-ray emission center of the X-ray emitter in the X-ray position measuring device and The optical axis of the X-ray camera is aligned, wherein the position correction tool has: a first transmission part that transmits X-rays emitted from the X-ray emitter side; and a second transmission part that transmits The X-rays transmitted through the first transmission part are transmitted and projected onto the X-ray camera, and the position correction tool is based on the first projection based on the X-rays transmitted through the first transmission part. An image and a second projected image based on X-rays transmitted through the second transmission unit are projected to the X-ray camera.

(2)此外,在本发明的一个方式的位置校正用工具中,可以是,所述第1透过部和所述第2透过部具有使X射线透过的孔。(2) Furthermore, in the position correction tool according to one aspect of the present invention, the first transmission part and the second transmission part may have holes through which X-rays pass.

(3)此外,在本发明的一个方式的位置校正用工具中,可以是,所述第1透过部的孔的直径小于所述第2透过部的孔的直径。(3) Furthermore, in the position correction tool according to one aspect of the present invention, the diameter of the hole of the first transmission part may be smaller than the diameter of the hole of the second transmission part.

(4)此外,在本发明的一个方式的位置校正用工具中可以是,所述第1透过部的部件的厚度比所述第2透过部的部件的厚度薄。(4) Furthermore, in the position correction tool according to the aspect of the present invention, the thickness of the member of the first transmission part may be thinner than the thickness of the member of the second transmission part.

(5)此外,在本发明的一个方式的位置校正用工具中,可以是,所述第1透过部和所述第2透过部由X射线透过率彼此不同的部件构成。(5) Furthermore, in the position correction tool according to one aspect of the present invention, the first transmission part and the second transmission part may be formed of members having different X-ray transmittances.

(6)此外,在本发明的一个方式的位置校正用工具中,可以是,所述第1透过部的部件为铝,所述第2透过部的部件为黄铜。(6) Furthermore, in the position correction tool according to one aspect of the present invention, the member of the first transmission part may be aluminum, and the member of the second transmission part may be brass.

(7)为了实现上述目的,本发明的一个方式的X射线位置计测装置具有:X射线发射器和X射线相机;工件载置台,其载置测定对象物;第1移动部,其使所述X射线发射器相对于所述工件载置台上的测定对象物沿着该工件载置台的面移动;第2移动部,其使所述X射线相机相对于所述工件载置台上的测定对象物沿着该工件载置台的面移动;图像显示部,从所述X射线发射器发射并透过了所述测定对象物的X射线作为2个不同的X射线投影像而投影在该图像显示部上;以及上述的位置校正用工具,所述X射线位置计测装置根据所述2个不同的X射线投影像的位置偏移量使所述第1移动部和第2移动部中的至少一方移动,由此使所述X射线发射器的X射线发射中心与所述X射线相机的光轴一致。(7) In order to achieve the above object, an X-ray position measuring device according to an aspect of the present invention includes: an X-ray emitter and an X-ray camera; a workpiece mounting table on which an object to be measured is placed; The X-ray emitter moves relative to the measurement object on the workpiece mounting table along the surface of the workpiece mounting table; the second moving part moves the X-ray camera relative to the measurement object on the workpiece mounting table The object moves along the surface of the workpiece mounting table; the image display unit projects the X-rays emitted from the X-ray emitter and transmitted through the measurement object on the image display as two different X-ray projection images. part; and the above-mentioned tool for position correction, the X-ray position measuring device makes at least one of the first moving part and the second moving part One side is moved so that the X-ray emission center of the X-ray emitter coincides with the optical axis of the X-ray camera.

发明效果Invention effect

根据本发明,能够使用2个不同的X射线投影像,迅速且准确地进行使X射线发射器的X射线发射中心与X射线相机的光轴一致的调整。According to the present invention, two different X-ray projection images can be used to quickly and accurately adjust the X-ray emission center of the X-ray emitter to coincide with the optical axis of the X-ray camera.

附图说明Description of drawings

图1是示出能够通过本发明的实施方式的位置校正用工具进行位置调整的X射线位置计测装置的整体结构的立体图。FIG. 1 is a perspective view showing an overall configuration of an X-ray position measuring device capable of position adjustment by a position correction tool according to an embodiment of the present invention.

图2是从X射线位置计测装置的-Y方向观察的示意性的侧视图。Fig. 2 is a schematic side view seen from the -Y direction of the X-ray position measuring device.

图3是用于说明X射线位置计测装置的硬件结构的功能框图。FIG. 3 is a functional block diagram illustrating a hardware configuration of the X-ray position measuring device.

图4是第1实施方式的位置校正用工具的侧视剖视图。Fig. 4 is a side sectional view of the position correction tool according to the first embodiment.

图5的(A)和(B)是第1实施方式的位置校正用工具的图像分析的说明图。(A) and (B) of FIG. 5 are explanatory diagrams of image analysis of the position correction tool of the first embodiment.

图6的(A)和(B)是使用了第1实施方式的位置校正用工具的光轴调整的说明图。(A) and (B) of FIG. 6 are explanatory views of optical axis adjustment using the position correction tool of the first embodiment.

图7的(A)和(B)是使用了第1实施方式的位置校正用工具的光轴调整的说明图。(A) and (B) of FIG. 7 are explanatory diagrams of optical axis adjustment using the position correction jig of 1st Embodiment.

图8是示出使用第1实施方式的位置校正用工具来进行使X射线发射器的X射线发射中心与X射线相机的光轴一致的调整时的处理的流程图。FIG. 8 is a flowchart illustrating a process for adjusting the X-ray emission center of the X-ray emitter to coincide with the optical axis of the X-ray camera using the position correction tool according to the first embodiment.

图9的(A)和(B)是第2实施方式的位置校正用工具的图像分析的说明图。(A) and (B) of FIG. 9 are explanatory diagrams of image analysis of the position correction tool of the second embodiment.

图10的(A)和(B)是第3实施方式的位置校正用工具的图像分析的说明图。(A) and (B) of FIG. 10 are explanatory diagrams of image analysis of the position correction tool of the third embodiment.

标号说明Label description

10:X射线位置计测装置;10a:X射线发射器;10b:X射线相机;10c:工件载置台;21:第2X马达;22:第2Y马达;31:第3X马达;32:第3Y马达;81:控制器;101、201、301:位置校正用工具;112a、212a、312a:底面部(第1透过部);112b、212b、312b:底面部(第2透过部);113a、113b、213a、213b、313a、313b:孔。10: X-ray position measuring device; 10a: X-ray emitter; 10b: X-ray camera; 10c: workpiece mounting table; 21: 2nd X motor; 22: 2Y motor; 31: 3X motor; 32: 3Y Motor; 81: controller; 101, 201, 301: tools for position correction; 112a, 212a, 312a: bottom surface (first transmission part); 112b, 212b, 312b: bottom surface (second transmission part); 113a, 113b, 213a, 213b, 313a, 313b: holes.

具体实施方式detailed description

以下,参照附图对本发明的实施方式进行说明。图1是示出使用X射线发射器和X射线相机来进行印刷板的位置计测的X射线位置计测装置的一例的立体图,图2是从X射线位置计测装置10的-Y方向观察的示意性的侧视图。在这种X射线位置计测装置10中,在进行使发射器的发射中心与X射线相机的光轴一致的调整时,使用本发明的实施方式的位置校正用工具。Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 is a perspective view showing an example of an X-ray position measuring device that uses an X-ray emitter and an X-ray camera to measure the position of a printing plate, and FIG. 2 is viewed from the -Y direction of the X-ray position measuring device 10. Schematic side view of . In such an X-ray position measuring device 10 , the position correction tool according to the embodiment of the present invention is used when adjusting the emission center of the emitter to coincide with the optical axis of the X-ray camera.

如图1和图2所示,X射线位置计测装置10具有X射线发射器10a、X射线相机10b和矩形框状的工件载置台10c。如图2所示,在工件载置台10c上载置多层印刷基板70。As shown in FIGS. 1 and 2 , the X-ray position measuring device 10 has an X-ray emitter 10a, an X-ray camera 10b, and a rectangular frame-shaped workpiece mounting table 10c. As shown in FIG. 2 , a multilayer printed circuit board 70 is placed on the workpiece mounting table 10c.

X射线位置计测装置10还具有:基座10d,其在俯视时呈方形,设置于地板或工作台上;以及竖立设置板10e,其呈矩形的平板状,从该基座10d的Y方向中央部向上方(+Z方向)竖立设置。该基座10d的各边分别沿着左右方向(±X方向)、前后方向(±Y方向)、上下方向(±Z方向),竖立设置板10e在左右方向上延伸。工件载置台10c与基座10d的上表面平行配置。The X-ray position measuring device 10 also has: a base 10d, which is square in plan view, and is installed on the floor or a workbench; The central portion is erected upward (+Z direction). Each side of the base 10d is along the left-right direction (±X direction), the front-rear direction (±Y direction), and the up-down direction (±Z direction), and the standing plate 10e extends in the left-right direction. The workpiece mounting table 10c is arranged in parallel to the upper surface of the base 10d.

X射线发射器10a和X射线相机10b以隔开规定距离地沿上下方向对置的方式配置在工件载置台10c的开口内。从X射线发射器10a发射并透过了多层印刷基板的X射线在X射线相机10b的受光面被捕获为X射线投影像。The X-ray emitter 10a and the X-ray camera 10b are disposed in the opening of the workpiece mounting table 10c so as to face each other vertically with a predetermined distance therebetween. The X-rays emitted from the X-ray emitter 10a and transmitted through the multilayer printed board are captured as X-ray projection images on the light receiving surface of the X-ray camera 10b.

X射线相机10b被截面呈L形的Z方向移动体15支承,该Z方向移动体15被支承为能够利用一对第1轨道51而相对于矩形的第1X方向移动体13在上下方向上移动。而且,Z方向移动体15借助配置于第1X方向移动体13的Z马达43,能够被一对第1轨道51引导并相对于第1X方向移动体13在与工件载置台面垂直的方向(上下方向)上移动。该一对第1轨道51以沿Z方向延伸的方式配置于第1X方向移动体13的+Y侧的侧面的大致中央部。The X-ray camera 10b is supported by a Z-direction moving body 15 having an L-shaped cross section, and the Z-direction moving body 15 is supported so as to be movable in the vertical direction relative to the rectangular first X-direction moving body 13 by a pair of first rails 51. . Moreover, the Z-direction movable body 15 can be guided by the pair of first rails 51 via the Z motor 43 disposed on the first X-direction movable body 13, and can be guided in a direction (up and down) with respect to the first X-direction movable body 13 in a direction perpendicular to the workpiece mounting table surface. direction) to move up. This pair of 1st rail 51 is arrange|positioned at the substantially center part of the side surface of the +Y side of the 1st X direction moving body 13 so that it may extend along a Z direction.

第1X方向移动体13能够利用一对第2轨道52而相对于竖立设置板10e在X方向上移动。该一对第2轨道52以沿X方向延伸的方式配置于竖立设置板10e的+Y侧的侧面的上下周缘部。而且,第1X方向移动体13借助配置于竖立设置板10e的第1X马达11,能够被第2轨道52引导并沿着竖立设置板10e在X方向上移动。并且,X射线相机10b借助配置在Z方向移动体15上的第3X马达31和第3Y马达32,能够相对于Z方向移动体15在X方向和Y方向上在微小的范围内移动。The 1st X direction moving body 13 can move to the X direction with respect to the standing board 10e by the pair of 2nd rail 52. As shown in FIG. The pair of second rails 52 is disposed on the upper and lower peripheral edge portions of the side surface on the +Y side of the standing plate 10e so as to extend in the X direction. And the 1st X direction moving body 13 is guided by the 2nd rail 52 by the 1st X motor 11 arrange|positioned at the erecting installation board 10e, and can move in the X direction along the erecting installation board 10e. Furthermore, the X-ray camera 10 b can move within a small range in the X direction and the Y direction relative to the Z direction moving body 15 by the third X motor 31 and the third Y motor 32 arranged on the Z direction moving body 15 .

X射线发射器10a载置在矩形平板状的第2X方向移动体14上,该第2X方向移动体14能够利用沿着X方向延伸的一对第3轨道53而相对于基座10d在X方向上移动。而且,第2X方向移动体14借助配置于基座10d的第2X马达21,能够被第3轨道53引导并相对于基座10d在X方向上移动。一对第3轨道53和第2X马达21配置于槽部10f的底面,该槽部10f以沿着X方向延伸的方式形成于基座10d的中央部。并且,X射线发射器10a借助配置在第2X方向移动体14上的第2Y马达22,能够相对于第2X方向移动体14在Y方向上在微小的范围内移动。The X-ray emitter 10a is placed on the rectangular plate-shaped second X-direction movable body 14, which can move in the X direction with respect to the base 10d by using a pair of third rails 53 extending along the X direction. move up. And the 2nd X direction moving body 14 is guided by the 3rd rail 53 via the 2nd X motor 21 arrange|positioned at 10 d of bases, and can move in the X direction with respect to 10 d of bases. A pair of 3rd rail 53 and 2nd X motor 21 are arrange|positioned in the bottom surface of 10 f of groove parts formed in the center part of base 10d so that it may extend along an X direction. Furthermore, the X-ray emitter 10 a can move within a small range in the Y direction with respect to the second X-direction movable body 14 via the second Y motor 22 arranged on the second X-direction movable body 14 .

这样,X射线发射器10a和X射线相机10b借助第1X马达11和第2X马达21,能够相对于工件载置台10c上的多层印刷基板分别独立地沿着该工件载置台面移动。In this way, the X-ray emitter 10a and the X-ray camera 10b can independently move along the workpiece mounting table surface with respect to the multilayer printed board on the workpiece mounting table 10c via the first X motor 11 and the second X motor 21 .

工件载置台10c能够利用一对第3轨道54而相对于基座10d在Y方向上移动。该第3轨道54以沿着Y方向延伸的方式配置于基座10d的左右周缘部。而且,工件载置台10c借助配置在基座10d上的第4Y马达42,能够被第3轨道54引导并相对于基座10d在Y方向上移动。The workpiece mounting table 10c is movable in the Y direction with respect to the base 10d by the pair of third rails 54 . The third rail 54 is arranged on the left and right peripheral edge parts of the base 10d so as to extend along the Y direction. Furthermore, the workpiece mounting table 10c is guided by the third rail 54 via the fourth Y motor 42 arranged on the base 10d, and can move in the Y direction relative to the base 10d.

此外,位置校正用工具101被安装于X射线相机10b和X射线发射器10a之间。位置校正用工具101用于使X射线发射器10a的X射线发射中心与X射线相机10b的光轴一致。位置校正用工具101被成型为圆筒形形状,具有侧面部111和圆筒的两端的底面部112a、112b。底面部112a配置于X射线发射器10a侧,底面部112b配置于X射线相机10b侧。Furthermore, the position correction tool 101 is installed between the X-ray camera 10b and the X-ray emitter 10a. The position correction tool 101 is used to align the X-ray emission center of the X-ray emitter 10a with the optical axis of the X-ray camera 10b. The position correction tool 101 is molded into a cylindrical shape, and has side surfaces 111 and bottom surfaces 112a and 112b at both ends of the cylinder. The bottom surface 112a is arranged on the X-ray emitter 10a side, and the bottom surface 112b is arranged on the X-ray camera 10b side.

图3是用于说明X射线位置计测装置10的硬件结构的功能框图。如图3所示,X射线位置计测装置10具备:具有CPU(Central Processing Unit,中央处理单元)的控制器81、图像显示部45、X射线发射器驱动部46、存储部47和输入部48。上述的图像显示部45、X射线发射器驱动部46、存储部47和输入部48分别与控制器81连接。FIG. 3 is a functional block diagram illustrating the hardware configuration of the X-ray position measuring device 10 . As shown in Figure 3, the X-ray position measuring device 10 has: a controller 81 with a CPU (Central Processing Unit, central processing unit), an image display unit 45, an X-ray emitter drive unit 46, a storage unit 47 and an input unit 48. The above-mentioned image display unit 45 , X-ray emitter drive unit 46 , storage unit 47 and input unit 48 are respectively connected to the controller 81 .

此外,在控制器81上连接有用于驱动上述X射线位置计测装置10的各结构要素的伺服马达组44、即上述的第1X马达11、第2X马达21、Z马达43、第2Y马达22、第3X马达31、第3Y马达32和第4Y马达42。In addition, the servo motor group 44 for driving each component of the above-mentioned X-ray position measuring device 10 , that is, the above-mentioned first X motor 11 , second X motor 21 , Z motor 43 , and second Y motor 22 is connected to the controller 81 . , the 3rd X motor 31 , the 3rd Y motor 32 and the 4th Y motor 42 .

图像显示部45与X射线相机10b连接,对投影到X射线相机10b的受光面的X射线投影像进行投影。而且,控制器81对显示于图像显示部45的显示画面上的X射线投影像进行图像处理。The image display unit 45 is connected to the X-ray camera 10b, and projects an X-ray projected image projected onto the light receiving surface of the X-ray camera 10b. Furthermore, the controller 81 performs image processing on the X-ray projection image displayed on the display screen of the image display unit 45 .

X射线发射器驱动部46与X射线发射器10a连接,根据来自输入部48的输入信息使X射线从X射线发射器10a发射,或使该发射停止。存储部47包含RAM(Random Access Memory:随机存取存储器)、ROM(Read Only Memory:只读存储器)和半导体存储器等非易失性存储器。在存储部47中存储有由控制器81执行的程序、程序的执行所需的各种参数、和用于驱动上述伺服马达组44而使X射线发射器10a和X射线相机10b移动的各种信息。The X-ray emitter driving unit 46 is connected to the X-ray emitter 10 a, and emits X-rays from the X-ray emitter 10 a or stops the emission based on input information from the input unit 48 . The storage unit 47 includes nonvolatile memories such as RAM (Random Access Memory), ROM (Read Only Memory), and semiconductor memory. The program executed by the controller 81, various parameters required for the execution of the program, and various parameters for driving the servo motor unit 44 to move the X-ray emitter 10a and the X-ray camera 10b are stored in the storage unit 47. information.

输入部48构成为包含电源开关和用于输入针对X射线位置计测装置10的指令的操作面板等,受理来自用户的输入。来自用户的指示经由该输入部48被输入,并通知给控制器81。The input unit 48 is configured including a power switch, an operation panel for inputting commands to the X-ray position measuring device 10 , and the like, and accepts input from a user. An instruction from the user is input via the input unit 48 and notified to the controller 81 .

接着,对第1实施方式的位置校正用工具101进行说明。如图1和图2所示,X射线位置计测装置10使用X射线相机10b捕获来自X射线发射器10a的X射线图像,进行多层印刷基板的位置计测。在这种X射线位置计测装置10中,需要预先使X射线发射器10a的X射线发射中心与X射线相机10b的光轴一致。在这种X射线位置计测装置10中,本实施方式的位置校正用工具101用于使X射线发射器10a的X射线发射中心和X射线相机10b的光轴一致。Next, the position correction tool 101 according to the first embodiment will be described. As shown in FIGS. 1 and 2 , an X-ray position measurement device 10 captures an X-ray image from an X-ray emitter 10 a using an X-ray camera 10 b to measure the position of a multilayer printed circuit board. In such an X-ray position measuring device 10 , it is necessary to align the X-ray emission center of the X-ray emitter 10 a with the optical axis of the X-ray camera 10 b in advance. In such an X-ray position measuring device 10 , the position correction jig 101 of this embodiment is used to align the X-ray emission center of the X-ray emitter 10 a with the optical axis of the X-ray camera 10 b.

图4是本实施方式的位置校正用工具101的侧视剖视图。如图4所示,位置校正用工具101被成型为圆筒形形状,具有侧面部111、圆筒的两端的底面部112a(第1透过部)和底面部112b(第2透过部)。底面部112a利用X射线透过率比构成底面部112b的部件大的(容易透过X射线的)部件、例如铝来成型。在底面部112a的中心形成有圆形的孔113a。底面部112b利用X射线透过率小的(不易透过X射线的)部件、例如黄铜来成型。在底面部112b的中心形成有圆形的孔113b。底面部112a的孔113a的直径小于底面部112b的孔113b的直径。在侧面部111设有凸缘部115。FIG. 4 is a side cross-sectional view of the position correction tool 101 according to this embodiment. As shown in FIG. 4 , the position correction tool 101 is formed into a cylindrical shape, and has a side surface 111, a bottom surface 112a (first transmission part) and a bottom surface 112b (second transmission part) at both ends of the cylinder. . The bottom portion 112a is molded from a member having higher X-ray transmittance than the members constituting the bottom portion 112b (easily transmits X-rays), for example, aluminum. A circular hole 113a is formed at the center of the bottom surface portion 112a. The bottom portion 112b is molded with a member having a low X-ray transmittance (hard to transmit X-rays), for example, brass. A circular hole 113b is formed at the center of the bottom surface portion 112b. The diameter of the hole 113a of the bottom surface 112a is smaller than the diameter of the hole 113b of the bottom surface 112b. A flange portion 115 is provided on the side portion 111 .

另外,在该例子中,利用例如黄铜使侧面部111和底面部112b成型为一体,利用例如铝来成型底面部112a并嵌入到位置校正用工具101的端面,但是,可以任意加工底面部112a和底面部112b。In addition, in this example, the side surface 111 and the bottom surface 112b are molded integrally with, for example, brass, and the bottom surface 112a is molded with, for example, aluminum and fitted into the end surface of the tool 101 for position correction. However, the bottom surface 112a can be processed arbitrarily. and the bottom portion 112b.

此外,此处虽然使底面部112a为铝,使底面部112b为黄铜,但是,只要是X射线透过率不同的部件的组合,则可以使用任意部件。例如,底面部112a可以使用树脂来代替铝。此外,底面部112b可以使用铁、铜、不锈钢来代替黄铜。In addition, although the bottom part 112a is made of aluminum and the bottom part 112b is made of brass here, any member may be used as long as it is a combination of members with different X-ray transmittances. For example, resin may be used instead of aluminum for the bottom portion 112a. In addition, instead of brass, iron, copper, or stainless steel may be used for the bottom portion 112b.

此外,在该例子中,底面部112a和底面部112b的厚度比侧面部111的厚度薄。这是为了提高位置检测精度。In addition, in this example, the thickness of the bottom surface part 112a and the bottom surface part 112b is thinner than the thickness of the side surface part 111. This is to improve position detection accuracy.

如上所述,在本实施方式的位置校正用工具101中,由例如铝来成型一方的底面部112a,由例如黄铜来成型另一方的底面部112b,一方的底面部112a和另一方的底面部112b使用了X射线透过率不同的部件。而且,基于由底面部112a(第1透过部)透过的X射线的第1投影像和基于由底面部112b(第2透过部)透过的X射线的第2投影像被投影到X射线相机10b。因此,能够根据X射线相机10b的拍摄图像区别并检测底面部112a的孔113a的投影像和底面部112b的孔113b的投影像。As described above, in the position correction tool 101 of the present embodiment, one bottom portion 112a is molded from, for example, aluminum, the other bottom portion 112b is molded from, for example, brass, and the one bottom portion 112a and the other bottom surface are molded. Part 112b uses members with different X-ray transmittances. Furthermore, the first projection image based on the X-rays transmitted through the bottom surface 112a (first transmission part) and the second projection image based on the X-rays transmitted through the bottom surface 112b (second transmission part) are projected onto the X-ray camera 10b. Therefore, the projection image of the hole 113a of the bottom surface portion 112a and the projection image of the hole 113b of the bottom surface portion 112b can be distinguished and detected from the image captured by the X-ray camera 10b.

图5是本实施方式的位置校正用工具101的图像分析的说明图。在图5中,P101表示来自X射线发射器10a的X射线焦点。P102表示X射线相机10b的受光面。G100表示X射线相机10b的拍摄图像。FIG. 5 is an explanatory diagram of image analysis of the position correction tool 101 according to this embodiment. In FIG. 5 , P101 represents the X-ray focal point from the X-ray emitter 10 a. P102 represents the light receiving surface of the X-ray camera 10b. G100 represents an image captured by the X-ray camera 10b.

在图5的(A)中,来自X射线焦点P101的X射线照射到一方的底面部112a。到达底面部112a的X射线中的、照射到孔113a的X射线直接透过并到达另一方的底面部112b。此处,底面部112a由X射线透过率高的铝成型。因此,照射到底面部112a的X射线的一部分从底面部112a通过,到达另一方的底面部112b。In (A) of FIG. 5 , X-rays from the X-ray focal point P101 are irradiated to one bottom surface portion 112a. Among the X-rays reaching the bottom surface portion 112a, the X-rays irradiated to the hole 113a directly pass through and reach the other bottom surface portion 112b. Here, the bottom portion 112a is formed of aluminum with high X-ray transmittance. Therefore, part of the X-rays irradiated to the bottom surface portion 112a passes through the bottom surface portion 112a and reaches the other bottom surface portion 112b.

底面部112b由黄铜成型。黄铜几乎截断X射线。因此,到达底面部112b的X射线中的、照射到孔113b的X射线直接透过,并到达X射线相机10b的受光面,到达孔113b的周围的X射线在底面部112b被截断。The bottom portion 112b is molded from brass. Brass nearly cuts off X-rays. Therefore, among the X-rays reaching the bottom portion 112b, the X-rays irradiating the hole 113b pass through directly and reach the light receiving surface of the X-ray camera 10b, and the X-rays reaching the periphery of the hole 113b are intercepted by the bottom portion 112b.

这样,当将位置校正用工具101安装于X射线发射器10a与X射线相机10b之间时,在从X射线发射器10a发射的X射线的行进方向上,介入配置有作为第1透过部的底面部112a和作为第2透过部的底面部112b这2个透过部。而且,在X射线发射器10a侧的底面部112a,利用孔113a的部分来使X射线全部透过,利用除此以外的部分来使X射线的一部分透过。此外,在X射线相机10b侧的底面部112b,利用孔113b的部分来使X射线全部透过,利用除此以外的部分来将X射线截断。In this way, when the position correction tool 101 is installed between the X-ray emitter 10a and the X-ray camera 10b, in the traveling direction of the X-rays emitted from the X-ray emitter 10a, the first transmission part There are two transmission parts, the bottom surface 112a and the bottom surface 112b as the second transmission part. Furthermore, in the bottom surface portion 112a on the side of the X-ray emitter 10a, all the X-rays are transmitted through the part of the hole 113a, and part of the X-rays are transmitted through the other parts. In addition, in the bottom surface portion 112b on the side of the X-ray camera 10b, all the X-rays are transmitted through the portion of the hole 113b, and the X-rays are blocked by the other portions.

由此,X射线相机10b的拍摄图像G100如图5的(B)所示。即,如图5的(B)所示,在X射线相机10b的拍摄图像G100中,周围最暗,在其内侧产生圆形的像Q102。最暗的部分是利用由例如黄铜构成的底面部112b来将X射线截断的部分。由于底面部112b的孔113b大于底面部112a的孔113a,所以该圆形的像Q102的部分是底面部112b的孔113b的像。而且,在圆形的像Q102的内侧产生略微变亮的部分,在其内侧产生圆形的像Q101。圆形的像Q102的内侧的略微变亮的部分是X射线从由例如铝构成的底面部112a通过的部分,圆形的像Q101是底面部112a的孔113a的像。这样,在X射线相机10b的拍摄图像G100中,在变得最暗的部分的投影像的中心映出孔113b的像Q102,在略微变亮的部分的投影像的中心映出孔113a的像Q101作为最亮的像。因此,通过检测像的亮度,能够分离地检测X射线相机10b的拍摄图像G100上的、底面部112a的孔113a的像Q101和底面部112b的孔113b的像Q102的位置。如果能够检测出X射线相机10b的拍摄图像G100上的、底面部112a的孔113a的像Q101的位置和底面部112b的孔113b的像Q102的位置,则能够如以下所说明那样进行使X射线发射器10a的X射线发射中心与X射线相机10b的光轴一致的光轴调整。Thereby, the captured image G100 of the X-ray camera 10b is as shown in (B) of FIG. 5 . That is, as shown in (B) of FIG. 5 , in the captured image G100 of the X-ray camera 10 b , the periphery is the darkest, and a circular image Q102 is formed inside it. The darkest portion is a portion where X-rays are cut off by the bottom surface portion 112b made of, for example, brass. Since the hole 113b of the bottom surface 112b is larger than the hole 113a of the bottom surface 112a, the portion of the circular image Q102 is an image of the hole 113b of the bottom surface 112b. Furthermore, a slightly brightened portion is generated inside the circular image Q102, and a circular image Q101 is generated inside it. The slightly brightened portion inside the circular image Q102 is a portion through which X-rays pass through the bottom surface 112a made of, for example, aluminum, and the circular image Q101 is an image of the hole 113a of the bottom surface 112a. In this way, in the captured image G100 of the X-ray camera 10b, the image Q102 of the hole 113b is reflected in the center of the projected image of the darkest part, and the image of the hole 113a is reflected in the center of the projected image of the slightly brighter part. Q101 as the brightest image. Therefore, by detecting the brightness of the image, the positions of the image Q101 of the hole 113a of the bottom surface 112a and the image Q102 of the hole 113b of the bottom surface 112b on the image G100 captured by the X-ray camera 10b can be detected separately. If the position of the image Q101 of the hole 113a of the bottom portion 112a and the position of the image Q102 of the hole 113b of the bottom portion 112b on the image G100 captured by the X-ray camera 10b can be detected, X-ray radiation can be performed as described below. The X-ray emission center of the emitter 10a is adjusted to coincide with the optical axis of the X-ray camera 10b.

图6和图7是使用了本实施方式的位置校正用工具101的光轴调整的说明图。6 and 7 are explanatory views of optical axis adjustment using the position correction tool 101 of this embodiment.

图6示出X射线发射器10a的X射线发射中心与X射线相机10b的光轴一致的情况。如图6的(A)所示,如果X射线发射器10a的X射线发射中心、X射线相机10b的光轴、位置校正用工具101的中心完全一致,则位置校正用工具101的2个圆形的孔113a和113b的中心位于连结X射线发射器10a的X射线焦点P101和X射线相机10b的图像传感器C101的位置的线上。因此,如图6的(B)所示,在X射线相机10b的拍摄图像G100中,利用拍摄图像G100的图像传感器C101,以使孔113a的像Q101的中心与孔113b的像Q102的中心一致的方式拍摄出X射线图像。FIG. 6 shows a case where the X-ray emission center of the X-ray emitter 10a coincides with the optical axis of the X-ray camera 10b. As shown in FIG. 6(A), if the X-ray emission center of the X-ray emitter 10a, the optical axis of the X-ray camera 10b, and the center of the position correction tool 101 coincide completely, the two circles of the position correction tool 101 The centers of the shaped holes 113a and 113b are located on a line connecting the positions of the X-ray focal point P101 of the X-ray emitter 10a and the position of the image sensor C101 of the X-ray camera 10b. Therefore, as shown in FIG. 6(B), in the captured image G100 of the X-ray camera 10b, the image sensor C101 of the captured image G100 is used so that the center of the image Q101 of the hole 113a coincides with the center of the image Q102 of the hole 113b. way to take X-ray images.

与此相对,图7示出X射线发射器10a的X射线发射中心与X射线相机10b的光轴错开的情况。如图7的(A)所示,当X射线发射器10a的X射线发射中心与X射线相机10b的光轴的中心错开时,如图7的(B)所示,在孔113a的像Q101的中心与孔113b的像Q102的中心之间产生偏差。In contrast, FIG. 7 shows a case where the X-ray emission center of the X-ray emitter 10a is shifted from the optical axis of the X-ray camera 10b. As shown in (A) of Figure 7, when the center of the X-ray emission center of X-ray emitter 10a and the optical axis of X-ray camera 10b staggered, as shown in (B) of Figure 7, the image Q101 in hole 113a A deviation occurs between the center of the hole 113b and the center of the image Q102 of the hole 113b.

由此,X射线位置计测装置10分析X射线相机10b的拍摄图像G100,检测孔113a的像Q101的位置和孔113b的像Q102的位置,由此对X射线发射器10a的X射线发射中心与X射线相机10b的光轴的偏差进行校正。Thus, the X-ray position measuring device 10 analyzes the image G100 captured by the X-ray camera 10b, detects the position of the image Q101 of the hole 113a and the position of the image Q102 of the hole 113b, and thereby measures the X-ray emission center of the X-ray emitter 10a. The deviation from the optical axis of the X-ray camera 10b is corrected.

图8是示出使用本实施方式的位置校正用工具101来进行使X射线发射器10a的X射线发射中心与X射线相机10b的光轴一致的调整时的处理的流程图。在图8所示的处理中,首先,在步骤S102到步骤S104中,进行使配置于X射线相机10b侧的底面部112b的孔113b的像Q102的中心位置与X射线相机10b的图像传感器C101一致的处理。接着,在步骤S105到步骤S106中,进行使配置于X射线发射器10a侧的底面部112a的孔113a的像Q101的中心位置与X射线相机10b的图像传感器C101一致的处理。如果以上的处理结束,则底面部112a的孔113a的像Q101的中心位置、底面部112b的孔113b的像Q102的中心位置、X射线相机10b的图像传感器C101变得完全一致,从而如图6所示地X射线发射器10a的X射线发射中心与X射线相机10b的光轴变得一致。FIG. 8 is a flowchart illustrating a process for adjusting the X-ray emission center of the X-ray emitter 10a to coincide with the optical axis of the X-ray camera 10b using the position correction tool 101 according to this embodiment. In the processing shown in FIG. 8, first, in steps S102 to S104, the center position of the image Q102 of the hole 113b arranged on the bottom surface portion 112b of the X-ray camera 10b side is aligned with the image sensor C101 of the X-ray camera 10b. consistent processing. Next, in steps S105 to S106, processing is performed to align the center position of the image Q101 of the hole 113a disposed on the bottom portion 112a of the X-ray emitter 10a side with the image sensor C101 of the X-ray camera 10b. If the above processing ends, then the center position of the image Q101 of the hole 113a of the bottom portion 112a, the center position of the image Q102 of the hole 113b of the bottom portion 112b, and the image sensor C101 of the X-ray camera 10b become completely consistent, thus as shown in FIG. 6 The X-ray emission center of the shown X-ray emitter 10a and the optical axis of the X-ray camera 10b become coincident.

在图8中,控制器81使X射线相机10b和X射线发射器10a移动到位置校正用工具101的附近(步骤S101)。然后,X射线相机10b接受来自X射线发射器10a的X射线,取得X射线投影像,并投影到图像显示部45(步骤S102)。In FIG. 8, the controller 81 moves the X-ray camera 10b and the X-ray emitter 10a to the vicinity of the tool 101 for position correction (step S101). Then, the X-ray camera 10b receives the X-rays from the X-ray emitter 10a, obtains an X-ray projection image, and projects it on the image display unit 45 (step S102).

在步骤S102中取得X射线图像后,控制器81根据X射线投影像来检测孔113b的像Q102的中心位置与X射线相机10b的图像传感器C101的偏差量,判定该孔113b的像Q102的中心位置与X射线相机10b的图像传感器C101的偏差量是否在规定值以内(步骤S103)。After acquiring the X-ray image in step S102, the controller 81 detects the amount of deviation between the center position of the image Q102 of the hole 113b and the image sensor C101 of the X-ray camera 10b based on the X-ray projection image, and determines the center of the image Q102 of the hole 113b. Whether or not the amount of deviation between the position and the image sensor C101 of the X-ray camera 10b is within a predetermined value (step S103).

如果孔113b的像Q102的中心位置与X射线相机10b的图像传感器C101的偏差量不在规定值以内(步骤S103:否),则控制器81以孔113b的像Q102的中心位置与X射线相机10b的图像传感器C101一致的方式使X射线相机10b的位置移动(步骤S104)。If the deviation between the center position of the image Q102 of the hole 113b and the image sensor C101 of the X-ray camera 10b is not within the prescribed value (step S103: No), the controller 81 sets the center position of the image Q102 of the hole 113b to the distance between the image sensor C101 of the X-ray camera 10b. The position of the X-ray camera 10b is moved so as to match the image sensor C101 (step S104).

即,X射线相机10b的位置能够借助第3X马达31和第3Y马达32而在X方向和Y方向上移动。控制器81向伺服马达组44发出指令,进行使第3X马达31和第3Y马达32移动的处理,以使孔113b的像Q102的中心位置与X射线相机10b的图像传感器C101的位置一致。That is, the position of the X-ray camera 10 b can be moved in the X direction and the Y direction by the third X motor 31 and the third Y motor 32 . The controller 81 issues a command to the servo motor unit 44 to move the third X motor 31 and the third Y motor 32 so that the center position of the image Q102 of the hole 113b coincides with the position of the image sensor C101 of the X-ray camera 10b.

控制器81在使X射线相机10b的位置移动后,使处理返回到步骤S102。在步骤S102中,使用X射线相机10b来取得X射线图像,并投影到图像显示部45。然后,在步骤S103中,控制器81判定孔113b的像Q102的中心位置与X射线相机10b的图像传感器C101的偏差量是否在规定值以内。After the controller 81 moves the position of the X-ray camera 10b, the process returns to step S102. In step S102 , an X-ray image is acquired using the X-ray camera 10 b and is projected on the image display unit 45 . Then, in step S103, the controller 81 determines whether or not the amount of deviation between the center position of the image Q102 of the hole 113b and the image sensor C101 of the X-ray camera 10b is within a predetermined value.

若判定为孔113b的像Q102的中心位置与X射线相机10b的图像传感器C101的偏差量在规定值以内(步骤S103:是),则控制器81检测X射线发射器10a侧的孔113a的像Q101的中心位置与X射线相机10b的图像传感器C101的偏差量,判定该孔113a的像Q101的中心位置与X射线相机10b的图像传感器C101的偏差量是否在规定值以内(步骤S105)。If it is determined that the deviation between the center position of the image Q102 of the hole 113b and the image sensor C101 of the X-ray camera 10b is within a predetermined value (step S103: Yes), the controller 81 detects the image of the hole 113a on the X-ray emitter 10a side. The amount of deviation between the center position of Q101 and the image sensor C101 of the X-ray camera 10b determines whether the amount of deviation between the center position of the image Q101 of the hole 113a and the image sensor C101 of the X-ray camera 10b is within a predetermined value (step S105).

如果在步骤S105中孔113a的像Q101的中心位置与X射线相机10b的图像传感器C101的偏差量未在规定值以内(步骤S105:否),则控制器81以孔113a的像Q101的中心位置与X射线相机10b的图像传感器C101一致的方式使X射线发射器10a的位置移动(步骤S106)。If in step S105 the deviation between the center position of the image Q101 of the hole 113a and the image sensor C101 of the X-ray camera 10b is not within the prescribed value (step S105: No), the controller 81 sets the center position of the image Q101 of the hole 113a The position of the X-ray emitter 10a is moved in conformity with the image sensor C101 of the X-ray camera 10b (step S106).

即,能够借助第2X马达21和第2Y马达22,使X射线发射器10a的位置在X方向和Y方向上移动。控制器81向伺服马达组44发出指令,进行使第2X马达21和第2Y马达22移动的处理,以使孔113a的像Q101的中心位置与X射线相机10b的图像传感器C101的位置一致。That is, the position of the X-ray emitter 10 a can be moved in the X direction and the Y direction by the second X motor 21 and the second Y motor 22 . The controller 81 issues a command to the servo motor unit 44 to move the second X motor 21 and the second Y motor 22 so that the center position of the image Q101 of the hole 113a coincides with the position of the image sensor C101 of the X-ray camera 10b.

控制器81在使X射线发射器10a的位置移动后,使处理返回到步骤S102。在步骤S102中,使用X射线相机10b取得X射线图像,并投影到图像显示部45。然后,在步骤S103中,控制器81判定孔113b的像Q102的中心位置与X射线相机10b的图像传感器C101的偏差量是否在规定值以内。After the controller 81 moves the position of the X-ray emitter 10a, it returns the process to step S102. In step S102 , an X-ray image is obtained using the X-ray camera 10 b and projected on the image display unit 45 . Then, in step S103, the controller 81 determines whether or not the amount of deviation between the center position of the image Q102 of the hole 113b and the image sensor C101 of the X-ray camera 10b is within a predetermined value.

另外,在步骤S102、步骤S103中再次进行使孔113b的像Q102的中心位置与X射线相机10b的图像传感器C101一致的处理是因为:由于在步骤S106中使X射线发射器10a的位置移动,从而孔113b的像Q102的中心位置与X射线相机10b的图像传感器C101之间的关系有可能打乱。In addition, the process of making the center position of the image Q102 of the hole 113b coincide with the image sensor C101 of the X-ray camera 10b again in steps S102 and S103 is because: since the position of the X-ray emitter 10a is moved in step S106, Therefore, the relationship between the center position of the image Q102 of the hole 113b and the image sensor C101 of the X-ray camera 10b may be disturbed.

如果在步骤S103中孔113b的像Q102的中心位置与X射线相机10b的图像传感器C101的偏差量在规定值以内(步骤S103:是),则在步骤S105中,控制器81检测孔113a的像Q101的中心位置与X射线相机10b的图像传感器C101的偏差量,判定该孔113a的像Q101的中心位置与X射线相机10b的图像传感器C101的偏差量是否在规定值以内(步骤S105)。If the center position of the image Q102 of the hole 113b and the image sensor C101 of the X-ray camera 10b deviate within a predetermined value in step S103 (step S103: Yes), then in step S105, the controller 81 detects the image of the hole 113a. The amount of deviation between the center position of Q101 and the image sensor C101 of the X-ray camera 10b determines whether the amount of deviation between the center position of the image Q101 of the hole 113a and the image sensor C101 of the X-ray camera 10b is within a predetermined value (step S105).

如果在步骤S105中判定为孔113a的像Q101的中心位置与X射线相机10b的图像传感器C101的偏差量在规定值以内(步骤S105:是),则结束位置校正处理。If it is determined in step S105 that the center position of the image Q101 of the hole 113a is within a predetermined value from the image sensor C101 of the X-ray camera 10b (step S105: YES), the position correction process ends.

在步骤S105中孔113a的像Q101的中心位置与X射线相机10b的图像传感器C101的偏差量未在规定值以内的情况下(步骤S105:否),反复步骤S102~步骤S105的处理。然后,如果在步骤S103中判定为孔113b的像Q102的中心位置与X射线相机10b的图像传感器C101的偏差量在规定值以内,且在步骤S105中判定为孔113a的像Q101的中心位置与X射线相机10b的图像传感器C101的偏差量在规定值以内,则结束位置校正处理。In step S105, if the center position of the image Q101 of the hole 113a is not within a predetermined value from the image sensor C101 of the X-ray camera 10b (step S105: NO), the processes of steps S102 to S105 are repeated. Then, if it is determined in step S103 that the deviation between the center position of the image Q102 of the hole 113b and the image sensor C101 of the X-ray camera 10b is within a predetermined value, and it is determined in step S105 that the center position of the image Q101 of the hole 113a is within a predetermined value. If the amount of deviation of the image sensor C101 of the X-ray camera 10b is within a predetermined value, the position correction process ends.

这里,可以将X射线发射器10a和X射线相机10b的校正值(移动量)存储到存储部47中,用作下一次的使X射线发射器10a的X射线发射中心与X射线相机10b的光轴一致的调整时的校正值。由此,能够迅速进行X射线发射器10a和X射线相机10b的光轴对准。Here, the correction value (movement amount) of the X-ray emitter 10a and the X-ray camera 10b can be stored in the storage unit 47, and used as the next time to make the X-ray emission center of the X-ray emitter 10a and the X-ray camera 10b move. Correction value for adjusting the optical axes to align. Thereby, the optical axis alignment of the X-ray emitter 10a and the X-ray camera 10b can be performed rapidly.

<第2实施方式><Second embodiment>

接着,对第2实施方式进行说明。图9是本实施方式的位置校正用工具201的图像分析的说明图。如图9所示,本实施方式的位置校正用工具201被成型为圆筒形形状,具有侧面部211、圆筒的两端的底面部212a(第1透过部)和底面部212b(第2透过部)。在侧面部211设有凸缘部215。底面部212a和212b为相同的部件,底面部212a的厚度成型为比底面部212b的厚度薄。考虑使用能够在某种程度上使X射线透过并能够容易进行加工的材料、例如铝或树脂来作为底面部212a和212b所用的材料。在底面部212a上形成圆形的孔213a。在底面部212b上形成圆形的孔213b。底面部212a的孔213a的直径小于底面部212b的孔213b的直径。Next, a second embodiment will be described. FIG. 9 is an explanatory diagram of image analysis of the position correction tool 201 according to this embodiment. As shown in FIG. 9 , the position correction tool 201 of this embodiment is formed into a cylindrical shape, and has a side surface 211, a bottom surface 212a (first transmission portion) at both ends of the cylinder, and a bottom surface 212b (second transmission portion). through the section). A flange portion 215 is provided on the side portion 211 . The bottom parts 212a and 212b are the same member, and the thickness of the bottom part 212a is formed to be thinner than the thickness of the bottom part 212b. As the material for the bottom parts 212a and 212b, it is conceivable to use a material that transmits X-rays to a certain extent and can be easily processed, for example, aluminum or resin. A circular hole 213a is formed in the bottom portion 212a. A circular hole 213b is formed in the bottom portion 212b. The diameter of the hole 213a of the bottom surface part 212a is smaller than the diameter of the hole 213b of the bottom surface part 212b.

此外,在图9中,P201表示来自X射线发射器10a的X射线焦点。P202表示X射线相机10b的受光面。G200表示X射线相机10b的拍摄图像。Q201表示底面部212a的孔213a的像,Q202表示底面部212b的孔213b的像。In addition, in FIG. 9 , P201 represents the X-ray focal point from the X-ray emitter 10 a. P202 represents the light receiving surface of the X-ray camera 10b. G200 represents an image captured by the X-ray camera 10b. Q201 shows the image of the hole 213a of the bottom surface 212a, and Q202 shows the image of the hole 213b of the bottom surface 212b.

在本实施方式中,通过使底面部212a(第1透过部)的厚度和底面部212b(第2透过部)的厚度不同,能够根据X射线相机10b的拍摄图像G200来区别底面部212a的孔213a的像Q201和底面部212b的孔213b的像Q202。In this embodiment, by making the thickness of the bottom surface 212a (first transmission part) and the thickness of the bottom surface 212b (second transmission part) different, it is possible to distinguish the bottom surface 212a from the image G200 captured by the X-ray camera 10b. The image Q201 of the hole 213a and the image Q202 of the hole 213b of the bottom portion 212b.

即,在图9的(A)中,来自X射线焦点P201的X射线照射到一方的底面部112a。这里,底面部212a由较薄的材料成型,在其中心形成有孔213a。到达底面部212a的X射线中的、照射到孔213a的X射线直接到达另一方的底面部212b。此外,由于底面部212a为较薄的材料,所以照射到底面部212a的孔213a的周围的X射线的一部分从底面部212a通过,到达另一方的底面部212b。That is, in (A) of FIG. 9 , X-rays from the X-ray focal point P201 are irradiated to one bottom surface portion 112 a. Here, the bottom portion 212a is formed of a thinner material, and a hole 213a is formed at the center thereof. Among the X-rays reaching the bottom surface portion 212a, the X-rays irradiated to the hole 213a directly reach the other bottom surface portion 212b. In addition, since the bottom surface 212a is made of a thin material, part of the X-rays irradiated around the hole 213a of the bottom surface 212a passes through the bottom surface 212a and reaches the other bottom surface 212b.

底面部212b由较厚的材料成型。因此,到达底面部212b的X射线中的、照射到孔213b的X射线直接到达X射线相机10b的受光面,照射到孔213b的周围的X射线在底面部212b几乎被截断。即,在本实施方式中,由于底面部212a和底面部212b的厚度不同,所以即使材质相同,X射线的透过率也不同。The bottom portion 212b is formed of a thick material. Therefore, among the X-rays reaching the bottom portion 212b, the X-rays irradiated to the hole 213b directly reach the light-receiving surface of the X-ray camera 10b, and the X-rays irradiated around the hole 213b are almost cut off at the bottom 212b. That is, in this embodiment, since the thickness of the bottom surface part 212a and the bottom surface part 212b are different, even if the material is the same, the X-ray transmittance will differ.

由此,X射线相机10b的拍摄图像G200如图9的(B)所示。即,如图9的(B)所示,从底面部212a通过的投影像成为稍微亮的部分的投影像,在其中心映出孔213a的像Q201作为最亮的部分。此外,在底面部212b被截断的投影像成为暗的部分的投影像,在其中心映出孔213b的像Q202。Thereby, the captured image G200 of the X-ray camera 10b is as shown in (B) of FIG. 9 . That is, as shown in (B) of FIG. 9 , the projected image passing through the bottom surface portion 212 a is a projected image of a slightly brighter portion, and the image Q201 of the hole 213 a is reflected as the brightest portion at the center thereof. In addition, the projected image cut off at the bottom surface portion 212b becomes a projected image of a dark portion, and an image Q202 of the hole 213b is reflected at the center thereof.

这样,在本实施方式中,通过使底面部212a(第1透过部)和底面部212b(第2透过部)的厚度不同,能够分离地检测底面部212a的孔213a的像Q201和底面部212b的孔213b的像Q202的位置。其他的结构与第1实施方式相同。Thus, in this embodiment, by making the thickness of the bottom surface 212a (first transmission part) and the bottom surface 212b (second transmission part) different, the image Q201 of the hole 213a of the bottom surface 212a and the bottom surface can be detected separately. The position of the image Q202 of the hole 213b of the portion 212b. Other configurations are the same as those of the first embodiment.

<第3实施方式><third embodiment>

接着,对第3实施方式进行说明。图10是本实施方式的位置校正用工具301的图像分析的说明图。如图10所示,本实施方式的位置校正用工具301被成型为圆筒形形状,并具有侧面部311、圆筒的两端的底面部312a(第1透过部)和底面部312b(第2透过部)。在侧面部311设有凸缘部315。底面部312a和312b为相同的部件,能够使用相同厚度的材料。在底面部312a上形成有孔313a,该孔313a为例如中心为较小的圆形且其周围延伸有十字形的槽的形状。在底面部312b上形成圆形的孔313b。Next, a third embodiment will be described. FIG. 10 is an explanatory diagram of image analysis of the position correction tool 301 according to this embodiment. As shown in FIG. 10 , the position correction tool 301 of this embodiment is molded into a cylindrical shape, and has side surfaces 311, bottom surfaces 312a (first transparent parts) and bottom surfaces 312b (first transmission parts) at both ends of the cylinder. 2 through the section). A flange portion 315 is provided on the side surface portion 311 . The bottom parts 312a and 312b are the same member, and the material of the same thickness can be used. A hole 313a is formed in the bottom surface portion 312a. The hole 313a has a shape such as a small circle at the center and a cross-shaped groove extending around it. A circular hole 313b is formed in the bottom portion 312b.

此外,在图10中,P301表示来自X射线发射器10a的X射线焦点。P302表示X射线相机10b的受光面。G300表示X射线相机10b的拍摄图像。Q301表示底面部312a的孔313a的像,Q302表示底面部312b的孔313b的像。In addition, in FIG. 10, P301 has shown the X-ray focal point from the X-ray emitter 10a. P302 represents the light receiving surface of the X-ray camera 10b. G300 represents an image captured by the X-ray camera 10b. Q301 shows the image of the hole 313a of the bottom surface 312a, and Q302 shows the image of the hole 313b of the bottom surface 312b.

在本实施方式中,底面部312a的孔313a的形状是中心为较小的圆形且其周围延伸有十字形的槽这样的形态,底面部312b的孔313b的形状为圆形。因此,如图10的(B)所示,由拍摄图像G300取得的底面部312a的孔313a和底面部312b的孔313b的形状不同。由于孔313a是例如中心为较小的圆形且其周围延伸有十字形的槽的形状,所以当孔313的像Q313a的中心与孔313b的像Q302的中心一致时,像Q301的呈十字形延伸的部分的长度变得完全相同。由此,能够检测出孔313a的像Q301的位置与孔313b的像Q302的位置一致的情况。其他的结构与第1实施方式相同。In this embodiment, the hole 313a of the bottom surface 312a has a small circular center with a cross-shaped groove extending around it, and the hole 313b of the bottom surface 312b has a circular shape. Therefore, as shown in (B) of FIG. 10 , the shape of the hole 313 a of the bottom surface portion 312 a obtained from the captured image G300 is different from the shape of the hole 313 b of the bottom surface portion 312 b. Since the hole 313a is, for example, a small circle at the center and a cross-shaped groove extending around it, when the center of the image Q313a of the hole 313 coincides with the center of the image Q302 of the hole 313b, the image of Q301 is in the shape of a cross. The lengths of the extended parts become exactly the same. Thereby, it can be detected that the position of the image Q301 of the hole 313a coincides with the position of the image Q302 of the hole 313b. Other configurations are the same as those of the first embodiment.

另外,在上述的说明中,虽然在用于使X射线位置计测装置10的X射线发射器10a的X射线发射中心与X射线相机10b的光轴一致的调整中使用了本发明的实施方式的位置校正用工具101、201、301,但是本发明的实施方式的位置校正用工具101、201、301不仅能够用于X射线位置计测装置10,还能够用于其他设备。本发明的实施方式的位置校正用工具101、201、301例如能够用于印刷板的开孔装置。In addition, in the above description, although the embodiment of the present invention is used for the adjustment for making the X-ray emission center of the X-ray emitter 10a of the X-ray position measuring device 10 coincide with the optical axis of the X-ray camera 10b However, the position correction tools 101 , 201 , 301 according to the embodiment of the present invention can be used not only for the X-ray position measurement device 10 but also for other devices. The position correction tools 101 , 201 , and 301 according to the embodiments of the present invention can be used, for example, in a hole-drilling device for a printed board.

此外,虽然在本发明的实施方式中,对利用控制器81自动进行用于使X射线发射器10a的X射线发射中心与X射线相机10b的光轴一致的调整的情况进行了说明,但是也可以构成为,在作业人员手动使X射线发射器10a的X射线发射中心与X射线相机10b的光轴一致后,利用螺钉等固定构件来对X射线发射器10a和X射线相机10b进行固定。In addition, in the embodiment of the present invention, the case where the controller 81 is used to automatically perform the adjustment for making the X-ray emission center of the X-ray emitter 10a coincide with the optical axis of the X-ray camera 10b has been described. The X-ray emitter 10a and the X-ray camera 10b may be fixed with fixing members such as screws after the operator manually aligns the X-ray emission center of the X-ray emitter 10a with the optical axis of the X-ray camera 10b.

另外,虽然在上述本发明的实施方式中,对具有在X射线发射器10a侧具有1个孔的第1透过部和在X射线相机10b侧具有1个孔的第2透过部的例子进行了说明,但是不限于此。各透过部具备的孔的数量可以为2个以上。In addition, although in the embodiment of the present invention described above, the example having the first transmission part having one hole on the side of the X-ray emitter 10a and the second transmission part having one hole on the side of the X-ray camera 10b Description is made, but not limited thereto. The number of holes included in each permeable part may be two or more.

如上所述,本发明的实施方式的位置校正用工具101是下述这样的X射线位置计测装置的位置校正用工具:用于利用X射线相机10b来拍摄基于从X射线发射器10a发射的X射线的图像并使对测定对象物进行测定的X射线位置计测装置10的X射线发射器的X射线发射中心与X射线相机的光轴对准,其中,该位置校正用工具具有:第1透过部(底面部112a、212a、312a),其使X射线发射器侧发射出的X射线透过;以及第2透过部(底面部112b、212b、312b),其使由第1透过部透过的X射线透过并投影到X射线相机,所述位置校正用工具将基于由第1透过部透过的X射线的第1投影像(像Q101、Q201、Q301)和基于由第2透过部透过的X射线的第2投影像(像Q102、Q202、Q302)投影到X射线相机。As described above, the position correction tool 101 according to the embodiment of the present invention is a position correction tool of an X-ray position measuring device for capturing images based on the X-ray image emitted from the X-ray emitter 10a by the X-ray camera 10b. The X-ray image is aligned with the X-ray emission center of the X-ray emitter 10 of the X-ray position measuring device 10 for measuring the object to be measured, and the optical axis of the X-ray camera, wherein the position correction tool has: 1 transmission part (bottom surface 112a, 212a, 312a), which transmits X-rays emitted from the X-ray emitter side; and a second transmission part (bottom surface 112b, 212b, 312b), which allows The X-rays transmitted through the transmission part are transmitted and projected to the X-ray camera, and the position correction tool uses the first projected image (like Q101, Q201, Q301) based on the X-rays transmitted through the first transmission part and The second projected images (images Q102, Q202, Q302) based on the X-rays transmitted through the second transmission part are projected to the X-ray camera.

根据该结构,能够使用2个不同的X射线投影像,迅速进行使X射线发射器10a的X射线发射中心与X射线相机10b的光轴一致的调整。According to this configuration, it is possible to promptly adjust the X-ray emission center of the X-ray emitter 10 a to coincide with the optical axis of the X-ray camera 10 b using two different X-ray projection images.

此外,在本发明的实施方式的位置校正用工具101中,第1透过部(底面部112a、212a、312a)和第2透过部(底面部112b、212b、312b)具有使X射线透过的孔(孔113a和113b、或者孔213a和213b或者孔313a和313b)。In addition, in the position correction tool 101 according to the embodiment of the present invention, the first transmission part (bottom surface part 112a, 212a, 312a) and the second transmission part (bottom surface part 112b, 212b, 312b) have a function to transmit X-rays. through holes (holes 113a and 113b, or holes 213a and 213b, or holes 313a and 313b).

根据该结构,通过例如检测底面部112a的孔113a的像Q101和底面部112b的孔113b的像Q102在X射线投影像上的中心位置,能够准确进行使X射线发射器10a的X射线发射中心与X射线相机10b的光轴一致的调整。According to this configuration, for example, by detecting the center positions of the image Q101 of the hole 113a of the bottom portion 112a and the image Q102 of the hole 113b of the bottom portion 112b on the X-ray projection image, it is possible to accurately center the X-ray emission of the X-ray emitter 10a. Adjustment to coincide with the optical axis of the X-ray camera 10b.

此外,在第1实施方式的位置校正用工具101中,第1透过部(底面部112a)的孔113a的直径小于第2透过部(底面部112b)的孔113b的直径。In addition, in the position correction tool 101 of the first embodiment, the diameter of the hole 113a of the first transmission part (bottom surface part 112a) is smaller than the diameter of the hole 113b of the second transmission part (bottom surface part 112b).

根据该结构,根据X射线投影像,X射线发射器10a侧的底面部112a(第1透过部)的孔113a的像Q101与X射线相机10b侧的底面部112b(第2透过部)的孔113b的像Q102不会完全重合。由此,能够根据1个拍摄画面来检测X射线发射器10a侧的底面部112a的孔113a的像Q101的位置与X射线相机10b侧的底面部112b的孔113b的像Q102的位置的偏差量,准确进行使X射线发射器10a的X射线发射中心与X射线相机10b的光轴一致的调整。According to this configuration, based on the X-ray projection image, the image Q101 of the hole 113a of the bottom surface 112a (first transmission portion) on the side of the X-ray emitter 10a and the bottom surface 112b (second transmission portion) on the side of the X-ray camera 10b The image Q102 of the hole 113b will not overlap completely. Thus, the amount of deviation between the position of the image Q101 of the hole 113a of the bottom surface 112a on the X-ray emitter 10a side and the position of the image Q102 of the hole 113b of the bottom surface 112b on the X-ray camera 10b side can be detected from one imaging screen. , accurately adjust the X-ray emission center of the X-ray emitter 10a to coincide with the optical axis of the X-ray camera 10b.

此外,在第2实施方式的位置校正用工具201中,第1透过部(底面部212a)的部件的厚度比第2透过部(底面部212b)的部件的厚度薄。In addition, in the position correction tool 201 of the second embodiment, the thickness of the first transmission part (bottom surface part 212a) is thinner than the thickness of the second transmission part (bottom surface part 212b).

根据该结构,通过使X射线发射器10a侧的底面部212a(第1透过部)的部件的厚度比X射线相机10b侧的底面部212b(第2透过部)的部件的厚度薄,X射线的一部分经由X射线发射器10a侧的底面部212a透过。由此,能够根据X射线投影像来判别X射线发射器10a侧的底面部212a的孔213a的像Q201和X射线相机10b侧的底面部212b的孔213b的像Q202。由此,能够根据1个拍摄画面来检测X射线发射器10a侧的底面部212a的孔213a的像Q201的位置与X射线相机10b侧的底面部212b的孔213b的像Q202的位置的偏差量,准确进行使X射线发射器10a的X射线发射中心与X射线相机10b的光轴一致的调整。According to this structure, by making the thickness of the members of the bottom surface 212a (first transmission part) on the side of the X-ray emitter 10a thinner than the thickness of the members of the bottom surface 212b (second transmission part) on the side of the X-ray camera 10b, Part of the X-rays passes through the bottom surface portion 212a on the side of the X-ray emitter 10a. Thus, the image Q201 of the hole 213a of the bottom surface 212a on the X-ray emitter 10a side and the image Q202 of the hole 213b of the bottom surface 212b on the X-ray camera 10b side can be distinguished from the X-ray projected image. Thus, the amount of deviation between the position of the image Q201 of the hole 213a of the bottom surface 212a on the side of the X-ray emitter 10a and the position of the image Q202 of the hole 213b of the bottom surface 212b on the side of the X-ray camera 10b can be detected from one imaging screen. , accurately adjust the X-ray emission center of the X-ray emitter 10a to coincide with the optical axis of the X-ray camera 10b.

此外,在第1实施方式的位置校正用工具101中,第1透过部(底面部112a)和第2透过部(底面部112b)由X射线透过率彼此不同的部件构成。In addition, in the position correction tool 101 of the first embodiment, the first transmission part (bottom surface part 112a) and the second transmission part (bottom surface part 112b) are composed of members having different X-ray transmittances.

此外,在第1实施方式的位置校正用工具101中,第1透过部(底面部112a)的部件为铝,第2透过部(底面部112b)的部件为黄铜。In addition, in the position correction tool 101 of the first embodiment, the first transmission part (bottom surface 112 a ) is made of aluminum, and the second transmission part (bottom surface 112 b ) is made of brass.

根据该结构,通过使X射线发射器10a侧的底面部112a(第1透过部)的部件与X射线相机10b侧的底面部112b(第2透过部)的部件的X射线透过率不同,X射线的一部分经由X射线发射器10a侧的底面部112a透过。由此,能够根据X射线投影像来判别X射线发射器10a侧的底面部112a的孔113a的像Q101和X射线相机10b侧的底面部112b的孔113b的像Q102。由此,能够根据1个拍摄画面来检测X射线发射器10a侧的底面部112a的孔113a的像Q101的位置与X射线相机10b侧的底面部112b的孔113b的像Q102的位置的偏差量,准确进行使X射线发射器10a的X射线发射中心与X射线相机10b的光轴一致的调整。According to this configuration, the X-ray transmittance of the members of the bottom surface 112a (first transmission part) on the side of the X-ray emitter 10a and the components of the bottom surface 112b (second transmission part) on the side of the X-ray camera 10b Differently, a part of the X-rays is transmitted through the bottom surface portion 112a on the side of the X-ray emitter 10a. Thus, the image Q101 of the hole 113a of the bottom surface 112a on the X-ray emitter 10a side and the image Q102 of the hole 113b of the bottom surface 112b on the X-ray camera 10b side can be distinguished from the X-ray projected image. Thus, the amount of deviation between the position of the image Q101 of the hole 113a of the bottom surface 112a on the X-ray emitter 10a side and the position of the image Q102 of the hole 113b of the bottom surface 112b on the X-ray camera 10b side can be detected from one imaging screen. , accurately adjust the X-ray emission center of the X-ray emitter 10a to coincide with the optical axis of the X-ray camera 10b.

此外,本发明的实施方式的X射线位置计测装置10具有:X射线发射器10a和X射线相机10b;工件载置台10c,其载置测定对象物;第1移动部(第2X马达21和第2Y马达22),其使X射线发射器10a相对于工件载置台10c上的测定对象物沿着该工件载置台面移动;第2移动部(第3X马达31和第3Y马达32),其使X射线相机10b相对于工件载置台10c上的测定对象物沿着该工件载置台面移动;图像显示部45,其将从X射线发射器10a发射并透过了测定对象物的X射线投影为2个不同的X射线投影像(像Q101和Q102);以及实施方式涉及的位置校正用工具101,所述X射线位置计测装置10根据2个不同的X射线投影像(像Q101和Q102)的位置偏移量来使第1移动部(第2X马达21和第2Y马达22)和第2移动部(第3X马达31和第3Y马达32)中的至少一方移动,由此使X射线发射器10a的X射线发射中心与X射线相机10b的光轴一致。In addition, the X-ray position measuring device 10 according to the embodiment of the present invention has: an X-ray emitter 10a and an X-ray camera 10b; a workpiece mounting table 10c on which an object to be measured is placed; The 2nd Y motor 22), it moves the X-ray emitter 10a relative to the object to be measured on the workpiece mounting table 10c along the workpiece mounting table surface; the 2nd moving part (3rd X motor 31 and 3rd Y motor 32), its The X-ray camera 10b is moved along the workpiece mounting table surface with respect to the object to be measured on the workpiece mounting table 10c; the image display unit 45 projects the X-rays emitted from the X-ray emitter 10a and transmitted through the object to be measured Two different X-ray projection images (like Q101 and Q102); ) to move at least one of the first moving part (the second X motor 21 and the second Y motor 22 ) and the second moving part (the third X motor 31 and the third Y motor 32 ), thereby causing the X-ray The X-ray emission center of the emitter 10a coincides with the optical axis of the X-ray camera 10b.

根据该结构,能够迅速并准确地使配置于X射线位置计测装置10的X射线发射器10a的X射线发射中心与X射线相机10b的光轴一致。According to this structure, the X-ray emission center of the X-ray emitter 10a arrange|positioned in the X-ray position measuring apparatus 10 can be made to coincide with the optical axis of the X-ray camera 10b rapidly and accurately.

以上,参照附图对本发明的实施方式详细进行了叙述,但具体的结构并不限于该实施方式,还包括不脱离本发明的宗旨的范围内的设计变更等。As mentioned above, although the embodiment of this invention was described in detail with reference to drawings, the specific structure is not limited to this embodiment, Design change etc. are included in the range which does not deviate from the summary of this invention.

Claims (7)

1.一种位置校正用工具,该位置校正用工具是X射线位置计测装置的位置校正用工具,该X射线位置计测装置利用X射线相机来拍摄基于从X射线发射器发射的X射线的图像而对测定对象物进行测定,该位置校正用工具使所述X射线位置计测装置中的所述X射线发射器的X射线发射中心与所述X射线相机的光轴对准,其中,该位置校正用工具具有:1. A tool for position correction, which is a tool for position correction of an X-ray position measuring device, which uses an X-ray camera to capture images based on X-rays emitted from an X-ray emitter The image of the measurement object is measured, and the position correction tool aligns the X-ray emission center of the X-ray emitter in the X-ray position measuring device with the optical axis of the X-ray camera, wherein , the tool for position correction has: 第1透过部,其使所述X射线发射器侧发射的X射线透过;以及a first transmission part that transmits X-rays emitted from the X-ray emitter side; and 第2透过部,其使由所述第1透过部透过的X射线透过并投影到所述X射线相机,a second transmission unit that transmits the X-rays transmitted through the first transmission unit and projects them onto the X-ray camera, 所述位置校正用工具将基于由所述第1透过部透过的X射线的第1投影像、和基于由所述第2透过部透过的X射线的第2投影像投影到所述X射线相机。The position correction tool projects a first projected image based on X-rays transmitted through the first transmission part and a second projected image based on X-rays transmitted through the second transmission part onto the The X-ray camera described above. 2.根据权利要求1所述的位置校正用工具,其中,2. The tool for position correction according to claim 1, wherein: 所述第1透过部和所述第2透过部具有使X射线透过的孔。The first transmission part and the second transmission part have holes for transmitting X-rays. 3.根据权利要求2所述的位置校正用工具,其中,3. The tool for position correction according to claim 2, wherein: 所述第1透过部的孔的直径小于所述第2透过部的孔的直径。The diameter of the hole of the first transmission part is smaller than the diameter of the hole of the second transmission part. 4.根据权利要求1~3中的任意一项所述的位置校正用工具,其中,4. The tool for position correction according to any one of claims 1 to 3, wherein: 所述第1透过部的部件的厚度比所述第2透过部的部件的厚度薄。The thickness of the member of the first transmission part is thinner than the thickness of the member of the second transmission part. 5.根据权利要求1~4中的任意一项所述的位置校正用工具,其中,5. The tool for position correction according to any one of claims 1 to 4, wherein: 所述第1透过部和所述第2透过部由X射线透过率彼此不同的部件构成。The first transmission part and the second transmission part are composed of members having different X-ray transmittances. 6.根据权利要求5所述的位置校正用工具,其中,6. The tool for position correction according to claim 5, wherein: 所述第1透过部的部件为铝,所述第2透过部的部件为黄铜。The member of the first transmission part is aluminum, and the member of the second transmission part is brass. 7.一种X射线位置计测装置,其具有:7. An X-ray position measuring device comprising: X射线发射器和X射线相机;X-ray emitters and X-ray cameras; 工件载置台,其载置测定对象物;A workpiece mounting table, on which an object to be measured is placed; 第1移动部,其使所述X射线发射器相对于所述工件载置台上的测定对象物沿着该工件载置台的面移动;a first moving unit that moves the X-ray emitter along the surface of the workpiece mounting table relative to the object to be measured on the workpiece mounting table; 第2移动部,其使所述X射线相机相对于所述工件载置台上的测定对象物沿着该工件载置台的面移动;a second moving unit that moves the X-ray camera along the surface of the workpiece mounting table relative to the object to be measured on the workpiece mounting table; 图像显示部,从所述X射线发射器发射并透过了所述测定对象物的X射线作为2个不同的X射线投影像而投影在该图像显示部上;以及an image display unit on which the X-rays emitted from the X-ray emitter and transmitted through the object to be measured are projected as two different X-ray projection images; and 权利要求1至6中的任意一项所述的位置校正用工具,The position correction tool according to any one of claims 1 to 6, 所述X射线位置计测装置根据所述2个不同的X射线投影像的位置偏移量使所述第1移动部和第2移动部中的至少一方移动,由此使所述X射线发射器的X射线发射中心与所述X射线相机的光轴一致。The X-ray position measuring device moves at least one of the first moving part and the second moving part according to the amount of positional displacement of the two different X-ray projection images, thereby emitting the X-rays. The X-ray emitting center of the device is consistent with the optical axis of the X-ray camera.
CN201610423198.3A 2015-08-11 2016-06-15 Position correction tool and X-ray position measuring device Active CN106441173B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-158702 2015-08-11
JP2015158702A JP6670054B2 (en) 2015-08-11 2015-08-11 Position correction jig, X-ray position measuring device, and X-ray optical axis alignment method

Publications (2)

Publication Number Publication Date
CN106441173A true CN106441173A (en) 2017-02-22
CN106441173B CN106441173B (en) 2020-01-14

Family

ID=58048410

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610423198.3A Active CN106441173B (en) 2015-08-11 2016-06-15 Position correction tool and X-ray position measuring device

Country Status (4)

Country Link
JP (1) JP6670054B2 (en)
KR (1) KR20170019318A (en)
CN (1) CN106441173B (en)
TW (1) TWI696805B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112504183A (en) * 2020-11-07 2021-03-16 奥士康科技股份有限公司 Hole deviation detection method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102520023B1 (en) * 2017-07-06 2023-04-10 (주) 브이에스아이 X-ray generator and manufacturing method thereof
JP6896606B2 (en) * 2017-12-27 2021-06-30 東芝エネルギーシステムズ株式会社 Flat panel detector position adjustment device, flat panel detector position adjustment method and radiation therapy device
KR102758588B1 (en) 2023-04-21 2025-01-22 티.비.티. 주식회사 pressing zig
KR102635148B1 (en) * 2023-09-25 2024-02-08 테크밸리 주식회사 Vision cam convergence type x-ray inspection apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000193751A (en) * 1998-12-24 2000-07-14 Fuji Photo Film Co Ltd Radiation image-pickup system arrangement confirmation method and arrangement confirmation tool used for it
JP2002345801A (en) * 2001-03-19 2002-12-03 Konica Corp Means for adjusting radiographic device, means for measuring with radiographic device, radiographic device and measurement tool
JP2008268132A (en) * 2007-04-24 2008-11-06 Seiko Precision Inc Reference scale, manufacturing method thereof, and processing apparatus
CN102564360A (en) * 2010-10-19 2012-07-11 精工精密有限公司 X-ray position measuring device, position measuring method of the device, and position measuring program for the device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000193751A (en) * 1998-12-24 2000-07-14 Fuji Photo Film Co Ltd Radiation image-pickup system arrangement confirmation method and arrangement confirmation tool used for it
JP2002345801A (en) * 2001-03-19 2002-12-03 Konica Corp Means for adjusting radiographic device, means for measuring with radiographic device, radiographic device and measurement tool
JP2008268132A (en) * 2007-04-24 2008-11-06 Seiko Precision Inc Reference scale, manufacturing method thereof, and processing apparatus
CN102564360A (en) * 2010-10-19 2012-07-11 精工精密有限公司 X-ray position measuring device, position measuring method of the device, and position measuring program for the device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112504183A (en) * 2020-11-07 2021-03-16 奥士康科技股份有限公司 Hole deviation detection method

Also Published As

Publication number Publication date
CN106441173B (en) 2020-01-14
TW201706562A (en) 2017-02-16
JP6670054B2 (en) 2020-03-18
JP2017037011A (en) 2017-02-16
TWI696805B (en) 2020-06-21
KR20170019318A (en) 2017-02-21

Similar Documents

Publication Publication Date Title
CN106441173B (en) Position correction tool and X-ray position measuring device
US10088301B2 (en) Image measurement device
JP4938782B2 (en) Method and apparatus utilizing optical criteria
US10088302B2 (en) Image measurement device
KR102255607B1 (en) Bonding device and method for detecting the height of the object to be bonded
US10147174B2 (en) Substrate inspection device and method thereof
KR101561895B1 (en) A laser apparatus and a method of directing laser to a workpiece surface
JP2017107201A (en) Dynamic autofocus system
JP2015190826A (en) Substrate inspection device
WO2014196008A1 (en) Inspection apparatus and inspection method
TWI627725B (en) Apparatus and method for calibrating a marking position
CN218723862U (en) Optical detection device and laser processing equipment
KR20080111653A (en) 3D measuring device to calibrate the origin of measuring probe using camera
US20130120762A1 (en) Diaphragm position measuring method, diaphragm position measuring apparatus, diaphragm positioning method and diaphragm positioning apparatus
WO2020241061A1 (en) Three-dimensional measurement apparatus and three-dimensional measurement method
JP7583586B2 (en) Optical Measuring Device
CN111505916B (en) Laser direct imaging device
CN220971096U (en) A rangefinder laser engraving machine
JP2003294419A (en) Micro size measuring device
JP4889616B2 (en) Aligner equipment
KR102543759B1 (en) Laser Machining System And Its Method Using Fixed Map-Based Alignment Compensation Control
JP2007033202A (en) Visual inspection apparatus and visual inspection method
KR102779119B1 (en) Laser beam evaluation power monitoring system for laser repair apparatus
CN214558380U (en) Laser processing system capable of quickly positioning mechanical arm to three-dimensional coordinate system
KR20180050857A (en) Apparatus for alignment of pivot point using vision

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
TA01 Transfer of patent application right

Effective date of registration: 20171115

Address after: Tokyo, Japan, Japan

Applicant after: Seiko Chronograph Limited

Address before: Chiba County, Japan

Applicant before: Seiko Precision Inc.

TA01 Transfer of patent application right
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: Tokyo, Japan

Patentee after: Seiko Chuangshi Co.,Ltd.

Address before: Tokyo, Japan

Patentee before: Seiko Timing System Co.,Ltd.

CP01 Change in the name or title of a patent holder