[go: up one dir, main page]

CN106434513A - Corynebacterium glutamicum recombinant strain for producing 5-aminolevulinic acid - Google Patents

Corynebacterium glutamicum recombinant strain for producing 5-aminolevulinic acid Download PDF

Info

Publication number
CN106434513A
CN106434513A CN201610986837.7A CN201610986837A CN106434513A CN 106434513 A CN106434513 A CN 106434513A CN 201610986837 A CN201610986837 A CN 201610986837A CN 106434513 A CN106434513 A CN 106434513A
Authority
CN
China
Prior art keywords
bacterial strain
gene
corynebacterium glutamicum
strain
aminolevulinic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610986837.7A
Other languages
Chinese (zh)
Inventor
王智文
邹亚兰
陈涛
赵学明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201610986837.7A priority Critical patent/CN106434513A/en
Publication of CN106434513A publication Critical patent/CN106434513A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/34Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Corynebacterium (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/005Amino acids other than alpha- or beta amino acids, e.g. gamma amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/010375-Aminolevulinate synthase (2.3.1.37)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01032Phosphoenolpyruvate carboxykinase (GTP) (4.1.1.32)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了生产5‑氨基乙酰丙酸的谷氨酸棒杆菌重组菌株,构建方法为:(1)在谷氨酸棒杆菌ATCC 13032中敲除乳酸脱氢酶编码基因ldhA和乙酸生成基因pta‑ackA、pqo和cat,得菌株CG4;在CG4中的磷酸烯醇式丙酮酸羧化酶编码基因ppc前面插入sod启动子,得到菌株CG5;在CG5中敲除磷酸烯醇式丙酮酸羧激酶编码基因pck,得到菌株CG6;(2)在CG6中转入过表达5‑氨基乙酰丙酸合酶基因的质粒,得到重组菌株L;(3)在L中转入过表达5‑氨基乙酰丙酸运输蛋白质粒,本发明的重组菌株能促进5‑氨基乙酰丙酸向谷氨酸棒杆菌胞外的运输,与对照菌株比,5‑氨基乙酰丙酸产量提高了112.3%。The invention discloses a recombinant strain of Corynebacterium glutamicum producing 5-aminolevulinic acid. The construction method is as follows: (1) Knocking out the gene ldhA encoding lactate dehydrogenase and the gene pta for generating acetic acid in Corynebacterium glutamicum ATCC 13032 ‑ackA, pqo and cat to obtain bacterial strain CG4; insert the sod promoter in front of the phosphoenolpyruvate carboxylase coding gene ppc in CG4 to obtain bacterial strain CG5; knock out phosphoenolpyruvate carboxykinase in CG5 Encoding gene pck, to obtain bacterial strain CG6; (2) transfer the plasmid of overexpressing 5-aminolevulinic acid synthase gene in CG6 to obtain recombinant strain L; (3) transfer overexpressing 5-aminolevulinic acid synthase gene in L Acid-transporting protein particles, the recombinant strain of the invention can promote the transport of 5-aminolevulinic acid to the extracellular space of Corynebacterium glutamicum, and compared with the control strain, the output of 5-aminolevulinic acid has increased by 112.3%.

Description

生产5-氨基乙酰丙酸的谷氨酸棒杆菌重组菌株Recombinant strain of Corynebacterium glutamicum producing 5-aminolevulinic acid

技术领域technical field

本发明属生物工程技术与应用领域,具体地涉及一种生产5-氨基乙酰丙酸的谷氨酸棒杆菌重组菌株及构建及应用。The invention belongs to the field of bioengineering technology and application, in particular to a recombinant strain of Corynebacterium glutamicum producing 5-aminolevulinic acid and its construction and application.

背景技术Background technique

5-氨基乙酰丙酸(5-ALA),分子量为131.13,熔点为118℃。是一种非蛋白氨基酸。由于5-氨基乙酰丙酸具有副作用小、渗透性好的的特点,已经被广泛的应用于皮肤癌、膀胱癌、消化道癌、肺癌的诊断以及光动力治疗(PDT)中。5-Aminolevulinic acid (5-ALA), molecular weight 131.13, melting point 118°C. It is a non-protein amino acid. Because 5-aminolevulinic acid has the characteristics of less side effects and good permeability, it has been widely used in the diagnosis of skin cancer, bladder cancer, digestive tract cancer, lung cancer and photodynamic therapy (PDT).

5-氨基乙酰丙酸是生物体内吡咯化合物的前体物,具有广泛的应用。在农业上,由于5-氨基乙酰丙酸在环境中容易降解,对哺乳动物无害,可以选择性杀死害虫,因此可以作为光动力学杀虫剂被广泛的应用。除此之外,5-氨基乙酰丙酸在提高农作物的抗冻害和耐盐能力以及调节植物生长等方面也受到了人们的广泛关注。在医学领域,5-氨基乙酰丙酸作为第二代光敏剂,不仅可以用于局部或全身的皮肤癌的治疗,还可用于膀胱癌、消化道癌以及肺癌等癌症的诊断。5-Aminolevulinic acid is the precursor of pyrrole compounds in organisms and has a wide range of applications. In agriculture, since 5-aminolevulinic acid is easily degraded in the environment, it is harmless to mammals and can selectively kill pests, so it can be widely used as a photodynamic insecticide. In addition, 5-aminolevulinic acid has also received widespread attention in terms of improving the frost resistance and salt tolerance of crops and regulating plant growth. In the field of medicine, 5-aminolevulinic acid, as a second-generation photosensitizer, can not only be used for the treatment of local or systemic skin cancer, but also for the diagnosis of bladder cancer, digestive tract cancer and lung cancer.

据检索,现在尚未有将谷氨酸棒杆菌5-氨基乙酰丙酸运输蛋白基因过表达以提高5-ALA产量的报道。According to retrieval, there is no report on overexpressing the 5-aminolevulinic acid transporter gene of Corynebacterium glutamicum to increase the production of 5-ALA.

发明内容Contents of the invention

本发明的目的是克服现有技术的不足,提供一种生产5-氨基乙酰丙酸的谷氨酸棒杆菌重组菌株。The purpose of the present invention is to overcome the deficiencies in the prior art and provide a recombinant strain of Corynebacterium glutamicum producing 5-aminolevulinic acid.

本发明的第二个目的是提供一种生产5-氨基乙酰丙酸的谷氨酸棒杆菌重组菌株的构建方法。The second object of the present invention is to provide a method for constructing a recombinant strain of Corynebacterium glutamicum producing 5-aminolevulinic acid.

本发明的第三个目的是提供一种生产5-氨基乙酰丙酸的谷氨酸棒杆菌重组菌株的应用。The third object of the present invention is to provide an application of a recombinant strain of Corynebacterium glutamicum producing 5-aminolevulinic acid.

本发明的技术方案概述如下:Technical scheme of the present invention is summarized as follows:

生产5-氨基乙酰丙酸的谷氨酸棒杆菌重组菌株的构建方法,包括如下步骤:The construction method of the Corynebacterium glutamicum recombinant strain producing 5-aminolevulinic acid comprises the steps:

(1)在谷氨酸棒杆菌(Corynebacterium glutamicum)ATCC 13032中敲除乳酸脱氢酶编码基因ldhA和乙酸生成基因pta-ackA、pqo和cat,得到的菌株命名为CG4;在CG4菌株中的磷酸烯醇式丙酮酸羧化酶编码基因ppc前面插入sod启动子,得到菌株CG5;在CG5菌株中敲除磷酸烯醇式丙酮酸羧激酶编码基因pck,得到菌株CG6;(1) In Corynebacterium glutamicum (Corynebacterium glutamicum) ATCC 13032, the lactate dehydrogenase encoding gene ldhA and the acetic acid production genes pta-ackA, pqo and cat were knocked out, and the resulting strain was named CG4; the phosphoric acid in the CG4 strain Enol pyruvate carboxylase encoding gene ppc was inserted into the sod promoter to obtain bacterial strain CG5; phosphoenol pyruvate carboxykinase encoding gene pck was knocked out in the CG5 strain to obtain bacterial strain CG6;

(2)在菌株CG6中转入构建好的过表达5-氨基乙酰丙酸合酶基因的质粒pXA,得到重组菌株L;(2) Transfer the constructed plasmid pXA overexpressing the 5-aminolevulinic acid synthase gene into the strain CG6 to obtain the recombinant strain L;

(3)在重组菌株L中转入构建好的过表达5-氨基乙酰丙酸运输蛋白质粒pEP-Ncgl2065,得到生产5-氨基乙酰丙酸的谷氨酸棒杆菌重组菌株L2。(3) Transform the constructed overexpression 5-aminolevulinic acid transport protein pEP-Ncgl2065 into the recombinant strain L to obtain the recombinant strain L2 of Corynebacterium glutamicum producing 5-aminolevulinic acid.

上述方法构建的生产5-氨基乙酰丙酸的谷氨酸棒杆菌重组菌株L2。The 5-aminolevulinic acid-producing Corynebacterium glutamicum recombinant strain L2 constructed by the above method.

上述生产5-氨基乙酰丙酸的谷氨酸棒杆菌重组菌株L2发酵生产5-氨基乙酰丙酸的用途。The use of the above-mentioned Corynebacterium glutamicum recombinant strain L2 producing 5-aminolevulinic acid through fermentation to produce 5-aminolevulinic acid.

本发明构建的生产5-氨基乙酰丙酸的谷氨酸棒杆菌重组菌株能促进5-氨基乙酰丙酸向谷氨酸棒杆菌胞外的运输,从而使得5-氨基乙酰丙酸的产量得到显著提高。与对照菌株比较,5-氨基乙酰丙酸产量提高了112.3%。The recombinant strain of Corynebacterium glutamicum producing 5-aminolevulinic acid constructed by the present invention can promote the transportation of 5-aminolevulinic acid to the extracellular space of Corynebacterium glutamicum, thereby significantly increasing the output of 5-aminolevulinic acid . Compared with the control strain, the production of 5-aminolevulinic acid was increased by 112.3%.

附图说明Description of drawings

图1为质粒pXA的酶切验证图谱。Fig. 1 is the enzyme digestion verification map of plasmid pXA.

图2为基因Ncgl2065过表达的PCR验证图谱。Fig. 2 is a PCR verification map of gene Ncgl2065 overexpression.

图3为重组菌株L、L1、L2在摇瓶中的发酵结果。Fig. 3 is the fermentation result of recombinant strains L, L1, L2 in shake flasks.

具体实施方式detailed description

机理:将Ncgl2065基因过表达质粒(pEP-Ncgl2065)导入生产5-氨基乙酰丙酸的谷氨酸棒杆菌的重组菌株,能够促进5-氨基乙酰丙酸向谷氨酸棒杆菌胞外的运输,从而使得5-氨基乙酰丙酸的产量得到显著提高。Mechanism: Introducing the Ncgl2065 gene overexpression plasmid (pEP-Ncgl2065) into the recombinant strain of Corynebacterium glutamicum producing 5-aminolevulinic acid can promote the extracellular transport of 5-aminolevulinic acid to Corynebacterium glutamicum, thereby The production of 5-aminolevulinic acid is significantly improved.

下面结合具体实施例对本发明做进一步说明,下述实施例是为了使本领域的技术人员能够更好地理解本发明,但对本发明不作任何限制。The present invention will be further described below in conjunction with specific examples. The following examples are intended to enable those skilled in the art to better understand the present invention, but do not limit the present invention in any way.

本发明所用到的:Used in the present invention:

原始菌株谷氨酸棒杆菌(C.glutamicum)ATCC 13032在2013.10购于美国ATCC(American Type Culture Collection,http://www.atcc.org/);The original strain Corynebacterium glutamicum (C.glutamicum) ATCC 13032 was purchased from ATCC (American Type Culture Collection, http://www.atcc.org/ ) in 2013.10;

原始质粒pK18mobsacB、pXMJ19、pEC-XK99E、pEP2购买于BioVector NTCC公司(http://www.biovector.net/)。The original plasmids pK18mobsacB, pXMJ19, pEC-XK99E, pEP2 were purchased from BioVector NTCC (http://www.biovector.net/).

5-氨基乙酰丙酸标准品从sigma公司(http://www.sigmaaldrich.com/sigma-aldrich)购买。所用限制性内切酶、去磷酸化酶、DNA连接酶等分子生物学试剂从Thermo公司购买(http://www.thermoscientificbio.com/fermentas),所用其他生化试剂从生工生物工程(上海)股份有限公司购买(http://www.sangon.com/)。5-aminolevulinic acid standard was purchased from sigma company (http://www.sigmaaldrich.com/sigma-aldrich). Molecular biology reagents such as restriction endonucleases, dephosphorylases, and DNA ligases were purchased from Thermo (http://www.thermoscientificbio.com/fermentas), and other biochemical reagents were purchased from Sangon Bioengineering (Shanghai) Co., Ltd. purchase ( http://www.sangon.com/ ).

实施例1:敲除质粒pD-sacB的构建和过表达5-氨基乙酰丙酸合酶基因质粒pXA的构建Example 1: Construction of knockout plasmid pD-sacB and construction of overexpression 5-aminolevulinic acid synthase gene plasmid pXA

pD-sacB质粒的构建:Construction of pD-sacB plasmid:

首先以HindIII切割后的pK18mobsacB线性片段作为模板,用如下引物sacB-1/sacB-2扩增sacB基因。将sacB基因片段经过MunI/EcoRV双酶切后与经过EcoRI/SmalI双酶切后的质粒pEC-XK99E进行连接,得到质粒pEC-XK99E-sacB。用如下的引物trcsacB-1/trcsacB-2,以pEC-XK99E-sacB质粒作为模板扩增含有trc启动子的trcsacB片段。Firstly, the linear fragment of pK18mobsacB cut by HindIII was used as a template, and the sacB gene was amplified with the following primers sacB-1/sacB-2. The sacB gene fragment was ligated with the plasmid pEC-XK99E after the MunI/EcoRV double digestion and the EcoRI/SmalI double digestion to obtain the plasmid pEC-XK99E-sacB. Use the following primers trcsacB-1/trcsacB-2 to amplify the trcsacB fragment containing the trc promoter using the pEC-XK99E-sacB plasmid as a template.

用如下的引物pD-1/pD-2,以pK18mobsacB质粒作为模板扩增含有卡那霉素抗性和大肠杆菌复制子的pD片段,最后将经过AatII酶切的片段trcsacB和经过相同酶切的pD片段进行连接,得到质粒pD-sacB。Use the following primers pD-1/pD-2, and use the pK18mobsacB plasmid as a template to amplify the pD fragment containing kanamycin resistance and E. The pD fragments were ligated to obtain plasmid pD-sacB.

pXA质粒的构建:Construction of pXA plasmid:

将类球红细菌(Rhodobactersphaeroides)的5-氨基乙酰丙酸合酶基因hemA根据谷氨酸棒杆菌的密码子偏好性进行密码子优化,将优化后的hemA基因用全基因合成的方法进行合成(如SEQ ID NO.39所示),利用引物hemA-1/hemA-2扩增优化后的hemA片段(SEQ IDNO.39),将得到的hemA片段经过PstI/XbaI双酶切后与经过相同双酶切后的穿梭质粒pXMJ19连接,得到pXA质粒,质粒pXA的酶切验证图谱见图1。The 5-aminolevulinic acid synthase gene hemA of Rhodobacter sphaeroides was codon-optimized according to the codon preference of Corynebacterium glutamicum, and the optimized hemA gene was synthesized by total gene synthesis ( As shown in SEQ ID NO.39), utilize primer hemA-1/hemA-2 to amplify the optimized hemA fragment (SEQ ID NO.39), the obtained hemA fragment is digested with PstI/XbaI double enzymes and undergoes the same double The digested shuttle plasmid pXMJ19 was ligated to obtain the pXA plasmid, and the enzyme digestion verification map of the plasmid pXA is shown in Figure 1.

实施例2:乳酸脱氢酶编码基因ldhA的敲除和乙酸生成途径基因pta-ackA、pqo和cat的敲除Example 2: Knockout of the lactate dehydrogenase encoding gene ldhA and knockout of the acetate production pathway genes pta-ackA, pqo and cat

乳酸脱氢酶编码基因ldhA的敲除:Knockout of the gene ldhA encoding lactate dehydrogenase:

以谷氨酸棒杆菌(C.glutamicum)ATCC 13032基因组为模板,以ldh-1/ldh-2为引物扩增基因ldhA的上游片段,ldh-3/ldh-4为引物扩增基因ldhA的下游片段。将两个片段切胶回收后,以等摩尔比例的片段为模板,以ldh-1/ldh-4为引物,扩增得到两个片段的融合产物。将融合后的片段用EcoRI/HindIII双酶切与经过同样双酶切后的pD-sacB连接,得到质粒pD-ldhA。Using the genome of Corynebacterium glutamicum (C. glutamicum) ATCC 13032 as a template, using ldh-1/ldh-2 as primers to amplify the upstream fragment of gene ldhA, and ldh-3/ldh-4 as primers to amplify the downstream of gene ldhA fragment. After the two fragments were recovered by gel cutting, the fusion product of the two fragments was amplified using the equimolar proportion of the fragments as a template and ldh-1/ldh-4 as primers. The fused fragment was digested with EcoRI/HindIII and ligated with pD-sacB after the same double digestion to obtain plasmid pD-ldhA.

将pD-ldhA质粒转入到C.glutamicum ATCC 13032中,用卡那霉素筛选重组成功的阳性克隆,挑出的转化子接种于5mL BHIS液体培养基中,30℃,220rpm过夜培养,将菌液稀释1000倍涂布在BHIS-Sucrose固体平板上。将平板上长出的菌落对点无抗的BHIS固体平板和含有25μg/mL卡那霉素的BHIS固体平板。选择在无抗平板上生长而卡那霉素平板不生长的菌落接种到5mL BHIS液体培养基中,提取基因组,使用引物ldh-1/ldh-4进行PCR验证,得到ldhA基因敲除菌株CG1。Transfer the pD-ldhA plasmid into C.glutamicum ATCC 13032, and use kanamycin to screen the positive clones with successful recombination. The selected transformants were inoculated in 5mL BHIS liquid medium, cultivated overnight at 30°C and 220rpm, and the bacteria The solution was diluted 1000 times and spread on the BHIS-Sucrose solid plate. The colony grown on the plate was not resistant to the BHIS solid plate and the BHIS solid plate containing 25 μg/mL kanamycin. The colony that grew on the non-antibiotic plate but not on the kanamycin plate was selected and inoculated into 5 mL of BHIS liquid medium, the genome was extracted, and PCR verification was performed using primers ldh-1/ldh-4 to obtain the ldhA gene knockout strain CG1.

pta-ackA操纵子的敲除Knockout of the pta-ackA operon

以C.glutamicum ATCC13032基因组为模板,以ackA-1/ackA-2为引物扩增操纵子pta-ackA的上游片段,ackA-3/ackA-4为引物扩增操纵子pta-ackA的下游片段。将两个片段切胶回收后,以等摩尔比例的片段为模板,以ackA-1/ackA-4为引物,扩增得到两个片段的融合产物。将融合后的片段用SalI/XbaI双酶切与经过同样双酶切后的pD-sacB质粒连接,得到pta-ackA操纵子敲除质粒pD-pta。The genome of C. glutamicum ATCC13032 was used as a template, the upstream fragment of operon pta-ackA was amplified with ackA-1/ackA-2 as primers, and the downstream fragment of operon pta-ackA was amplified with ackA-3/ackA-4 as primers. After the two fragments were recovered by gel cutting, the fusion product of the two fragments was amplified using the equimolar proportion of the fragments as a template and ackA-1/ackA-4 as primers. The fused fragment was double digested with SalI/XbaI and ligated with the pD-sacB plasmid after the same double digestion to obtain the pta-ackA operon knockout plasmid pD-pta.

将pD-pta质粒转入到菌株CG1中,用卡那霉素筛选重组成功的阳性克隆,挑出的转化子接种于5mL BHIS液体培养基中,30℃,220rpm过夜培养,将菌液稀释1000倍涂布在BHIS-Sucrose固体平板上。将平板上长出的菌落对点无抗的BHIS固体平板和含有25μg/mL卡那霉素的BHIS固体平板。选择在无抗平板上生长而卡那霉素平板不生长的菌落接种到5mLBHIS液体培养基中,提取基因组,使用引物ackA-1/ackA-4进行PCR验证,在CG1的基础上得到pta-ackA操纵子敲除菌株CG2。Transfer the pD-pta plasmid into the strain CG1, use kanamycin to screen the positive clones with successful recombination, inoculate the selected transformants in 5mL BHIS liquid medium, cultivate overnight at 30°C, 220rpm, and dilute the bacterial solution by 1000 Double coated on BHIS-Sucrose solid plate. The colony grown on the plate was not resistant to the BHIS solid plate and the BHIS solid plate containing 25 μg/mL kanamycin. Select the colony that grows on the non-antibiotic plate but does not grow on the kanamycin plate and inoculate it into 5mL BHIS liquid medium, extract the genome, use primers ackA-1/ackA-4 for PCR verification, and obtain pta-ackA on the basis of CG1 The operon knockout strain CG2.

pqo基因的敲除Knockout of the pqo gene

以C.glutamicum ATCC13032基因组为模板,以pqo-1/pqo-2为引物扩增pqo基因的上游片段,pqo-3/pqo-4为引物扩增pqo的下游片段。将两个片段切胶回收后,以等摩尔比例的片段为模板,以pqo-1/pqo-4为引物,扩增得到两个片段的融合产物。将融合后的片段用XbaI/PstI双酶切与经过同样双酶切后的pD-sacB连接,得到pqo基因的敲除质粒pD-pqo。C. glutamicum ATCC13032 genome was used as template, pqo-1/pqo-2 was used as primer to amplify the upstream fragment of pqo gene, and pqo-3/pqo-4 was used as primer to amplify the downstream fragment of pqo. After the two fragments were recovered by gel cutting, the fusion product of the two fragments was amplified using the equimolar proportion of the fragments as a template and pqo-1/pqo-4 as primers. The fused fragment was digested with XbaI/PstI and ligated with pD-sacB after the same double digestion to obtain the pqo gene knockout plasmid pD-pqo.

将pD-pqo质粒转入到菌株CG2中,用卡那霉素筛选重组成功的阳性克隆,挑出的转化子接种于5mL BHIS液体培养基中,30℃,220rpm过夜培养,将菌液稀释1000倍涂布在BHIS-Sucrose固体平板上。将平板上长出的菌落对点无抗的BHIS固体平板和含有25μg/mL卡那霉素的BHIS固体平板。选择在无抗平板上生长而卡那霉素平板不生长的菌落接种到5mLBHIS液体培养基中,提取基因组,使用引物pqo-1/pqo-4进行PCR验证,在CG2的基础上得到pqo基因的敲除菌株CG3。Transfer the pD-pqo plasmid into the strain CG2, use kanamycin to screen the positive clones with successful recombination, inoculate the selected transformants in 5mL BHIS liquid medium, cultivate overnight at 30°C, 220rpm, and dilute the bacterial solution to 1000 Double coated on BHIS-Sucrose solid plate. The colony grown on the plate was not resistant to the BHIS solid plate and the BHIS solid plate containing 25 μg/mL kanamycin. Select the colony that grows on the non-antibiotic plate but does not grow on the kanamycin plate and inoculate it into 5mL BHIS liquid medium, extract the genome, use primers pqo-1/pqo-4 for PCR verification, and obtain the pqo gene on the basis of CG2 Knockout strain CG3.

cat基因的敲除knockout of the cat gene

以C.glutamicum ATCC13032基因组为模板,以cat-1/cat-2为引物扩增cat基因的上游片段,cat-3/cat-4为引物扩增cat的下游片段。将两个片段切胶回收后,以等摩尔比例的片段为模板,以cat-1/cat-4为引物,扩增得到两个片段的融合产物。将融合后的片段用XbaI/SalI双酶切与经过同样双酶切后的pD-sacB连接,得到cat基因的敲除质粒pD-cat。The C. glutamicum ATCC13032 genome was used as a template, the upstream fragment of cat gene was amplified with cat-1/cat-2 primers, and the downstream fragment of cat gene was amplified with cat-3/cat-4 primers. After the two fragments were recovered by gel cutting, the fusion product of the two fragments was amplified using the equimolar proportion of the fragments as a template and cat-1/cat-4 as primers. The fused fragment was digested with XbaI/SalI and ligated with pD-sacB after the same double digestion to obtain the cat gene knockout plasmid pD-cat.

将pD-cat质粒转入到菌株CG3中,用卡那霉素筛选重组成功的阳性克隆,挑出的转化子接种于5mL BHIS液体培养基中,30℃,220rpm过夜培养,将菌液稀释1000倍涂布在BHIS-Sucrose固体平板上。将平板上长出的菌落对点无抗的BHIS固体平板和含有25μg/mL卡那霉素的BHIS固体平板。选择在无抗平板上生长而卡那霉素平板不生长的菌落接种到5mL BHIS液体培养基中,提取基因组,使用引物cat-1/cat-4进行PCR验证,在CG3的基础上得到cat基因的敲除菌株CG4。Transfer the pD-cat plasmid into the strain CG3, use kanamycin to screen the positive clones with successful recombination, inoculate the selected transformants in 5mL BHIS liquid medium, cultivate overnight at 30°C, 220rpm, and dilute the bacterial solution by 1000 Double coated on BHIS-Sucrose solid plate. The colony grown on the plate was not resistant to the BHIS solid plate and the BHIS solid plate containing 25 μg/mL kanamycin. Select the colony that grows on the non-antibiotic plate but does not grow on the kanamycin plate and inoculate it into 5mL BHIS liquid medium, extract the genome, use primers cat-1/cat-4 for PCR verification, and obtain the cat gene on the basis of CG3 The knockout strain CG4.

其中BHIS培养基成分为(g/L):牛脑心浸粉37,山梨醇91,余量为水。The composition of the BHIS medium is (g/L): 37% of bovine brain heart extract powder, 91% of sorbitol, and the balance is water.

BHIS固体培养基成分为(g/L):牛脑心浸粉37,山梨醇91,琼脂2%(W/V),余量为水。The composition of BHIS solid medium is (g/L): bovine brain heart extract powder 37, sorbitol 91, agar 2% (W/V), and the balance is water.

BHIS-Sucrose固体培养基(g/L):牛脑心浸粉37,山梨醇91,琼脂2%(W/V),蔗BHIS-Sucrose solid medium (g/L): bovine brain heart extract powder 37, sorbitol 91, agar 2% (W/V), sugarcane

糖10%(W/V),余量为水。Sugar 10% (W/V), the balance is water.

实施例3:在ppc基因前面插入sod启动子和磷酸烯醇式丙酮酸羧激酶编码基因pck的敲除ppc基因前面插入sod启动子Example 3: Insertion of sod promoter and phosphoenolpyruvate carboxykinase encoding gene pck in front of ppc gene. Insertion of sod promoter in front of ppc gene

以C.glutamicum ATCC13032基因组为模板,以ppc-1/ppc-2为引物扩增基因ppc的上游片段。sod-1/sod-2用于扩增sod基因的启动子。ppc-3/ppc-4用于扩增ppc基因的下游片段,分别将3个片段切胶回收后,以等摩尔比例的片段为模板,用ppc-1/ppc-4为引物,扩增得到三个片段的融合产物。将融合后的片段用XbaI/HindIII双酶切后与经过同样双酶切后的质粒载体pD-sacB连接。得到质粒pD-ppc。Using C. glutamicum ATCC13032 genome as a template and ppc-1/ppc-2 as primers to amplify the upstream fragment of gene ppc. sod-1/sod-2 are used to amplify the promoter of the sod gene. ppc-3/ppc-4 is used to amplify the downstream fragment of the ppc gene. After the three fragments are cut and recovered, the equimolar proportion of the fragment is used as a template, and ppc-1/ppc-4 is used as a primer to amplify the obtained Fusion product of three fragments. The fused fragment was digested with XbaI/HindIII and ligated with the plasmid vector pD-sacB after the same double digestion. The plasmid pD-ppc was obtained.

将构建好的质粒pD-ppc利用电转转入到菌株CG4中,用卡那霉素筛选重组成功的阳性克隆,挑出的转化子接种于5mL BHIS液体培养基中,30℃,220rpm过夜培养,将菌液稀释1000倍涂布在BHIS-Sucrose固体平板上。将平板上长出的菌落对点无抗的BHIS固体平板和含有25μg/mL卡那霉素的BHIS固体平板。将在无抗平板上生长而卡那霉素平板不生长的菌落接种到5mLBHIS液体培养基中,提取基因组,送测序,在CG4的基础上得到在ppc基因前面插入sod启动子的菌株CG5。The constructed plasmid pD-ppc was transformed into the strain CG4 by electroporation, the positive clones with successful recombination were screened with kanamycin, and the selected transformants were inoculated in 5mL BHIS liquid medium, cultured overnight at 30°C and 220rpm , Dilute the bacterial solution 1000 times and spread it on the BHIS-Sucrose solid plate. The colony grown on the plate was not resistant to the BHIS solid plate and the BHIS solid plate containing 25 μg/mL kanamycin. Inoculate the colony that grew on the non-antibiotic plate but not on the kanamycin plate into 5 mL of BHIS liquid medium, extract the genome, and send it for sequencing. On the basis of CG4, the strain CG5 with the sod promoter inserted in front of the ppc gene was obtained.

pck基因的敲除Knockout of the pck gene

以C.glutamicum ATCC 13032基因组为模板,用如下引物进行PCR扩增。pck-1/pck-2用于扩增基因pck的上游片段。pck-3/pck-4用于扩增基因pck的下游片段。将上游片段经过EcoRI/XbaI双酶切后与经过相同双酶切后的pD-sacB质粒连接,得到质粒pD-pck(F),将构建的质粒pD-pck(F)经过PstI/HindIII双酶切后与经过PstI/HindIII双酶切的下游片段进行连接,得到pD-pck质粒。Using the C. glutamicum ATCC 13032 genome as a template, PCR amplification was performed with the following primers. pck-1/pck-2 was used to amplify the upstream fragment of gene pck. pck-3/pck-4 was used to amplify the downstream fragment of gene pck. The upstream fragment was digested with EcoRI/XbaI and then ligated with the pD-sacB plasmid after the same double digestion to obtain plasmid pD-pck(F), and the constructed plasmid pD-pck(F) was subjected to PstI/HindIII double enzyme After cutting, it was ligated with the downstream fragment digested with PstI/HindIII to obtain the pD-pck plasmid.

将该质粒转入到菌株CG5中,用卡那霉素筛选重组成功的阳性克隆,挑出的转化子接种于5mL BHIS液体培养基中,30℃,220rpm过夜培养,将菌液稀释1000倍涂布在BHIS-Sucrose固体平板上。将平板上长出的菌落对点无抗的BHIS固体平板和含有25μg/mL卡那霉素的BHIS固体平板。将在无抗平板上生长而卡那霉素平板不生长的菌落接种到5mL BHIS液体培养基中,提取基因组,使用引物pck-1/pck-4进行PCR验证,在CG5的基础上得到pck基因的敲除菌株CG6。Transfer the plasmid into the bacterial strain CG5, use kanamycin to screen the positive clones with successful recombination, inoculate the selected transformants in 5mL BHIS liquid medium, cultivate overnight at 30°C, 220rpm, dilute the bacterial solution 1000 times and spread Cloth on BHIS-Sucrose solid plate. The colony grown on the plate was not resistant to the BHIS solid plate and the BHIS solid plate containing 25 μg/mL kanamycin. Inoculate the colony that grows on the non-antibiotic plate but does not grow on the kanamycin plate into 5mL BHIS liquid medium, extract the genome, use primer pck-1/pck-4 for PCR verification, and obtain the pck gene on the basis of CG5 The knockout strain CG6.

将pXA质粒转入到CG6中,用氯霉素进行筛选,得到带有pXA质粒的5-氨基乙酰丙酸生产菌株L。The pXA plasmid was transferred into CG6 and screened with chloramphenicol to obtain the 5-aminolevulinic acid producing strain L carrying the pXA plasmid.

实施例4:过表达质粒pEP-tuf的构建和过表达运输蛋白质粒的构建Example 4: Construction of overexpression plasmid pEP-tuf and construction of overexpression transport protein plasmid

pEP-tuf的构建Construction of pEP-tuf

以C.glutamicum ATCC 13032基因组为模板,用如下引物进行PCR扩增。tuf-1/tuf-2用于扩增tuf启动子编码的基因。将扩增片段经过EcoRI/SalI双酶切后与经过相同酶切后的pEP2质粒连接。得到过表达质粒pEP-tuf。Using the C. glutamicum ATCC 13032 genome as a template, PCR amplification was performed with the following primers. TUF-1/TUF-2 were used to amplify genes encoded by the TUF promoter. The amplified fragment was digested with EcoRI/SalI and ligated with the pEP2 plasmid after the same digestion. The overexpression plasmid pEP-tuf was obtained.

将该质粒转入到菌株L中,用卡那霉素和氯霉素筛选重组成功的阳性克隆,30℃,将能够在双抗平板上生长的菌落接种到5mL BHIS液体培养基中,使用引物tuf-1/tuf-2进行菌液PCR验证,得到菌株L1。Transform the plasmid into strain L, use kanamycin and chloramphenicol to screen the positive clones that have successfully recombined, and inoculate the colonies that can grow on the double-antibody plate into 5mL BHIS liquid medium at 30°C, use primers Tuf-1/tuf-2 was verified by bacterial liquid PCR, and strain L1 was obtained.

pEP-Ncgl2065的构建Construction of pEP-Ncgl2065

以C.glutamicum ATCC 13032基因组为模板,用如下引物进行PCR扩增。Ncgl2065-1/Ncgl2065-2用于扩增基因Ncgl2065。将扩增片段经过XbaI/SalI双酶切后与经过相同酶切后的pEP-tuf质粒连接。得到Ncgl2065过表达质粒pEP-Ncgl2065。Using the C. glutamicum ATCC 13032 genome as a template, PCR amplification was performed with the following primers. Ncgl2065-1/Ncgl2065-2 were used to amplify the gene Ncgl2065. The amplified fragment was digested with XbaI/SalI and ligated with the pEP-tuf plasmid after the same digestion. The Ncgl2065 overexpression plasmid pEP-Ncgl2065 was obtained.

将pEP-Ncgl2065质粒转入到菌株L中,用卡那霉素和氯霉素筛选重组成功的阳性克隆,30℃,将能够在双抗平板上生长的菌落接种到5mL BHIS液体培养基中,使用引物Ncgl2065-1/Ncgl2065-2进行菌液PCR验证,得到菌株L2,见图2。Transfer the pEP-Ncgl2065 plasmid into the strain L, use kanamycin and chloramphenicol to screen the positive clones with successful recombination, and inoculate the colonies that can grow on the double-antibody plate into 5mL BHIS liquid medium at 30°C. Using primers Ncgl2065-1/Ncgl2065-2 to carry out bacterial liquid PCR verification, the strain L2 was obtained, as shown in FIG. 2 .

表1菌株构建所用引物序列(人工合成)Table 1 Primer sequences used for strain construction (artificial synthesis)

实施例5:利用构建的菌株进行5-氨基乙酰丙酸的摇瓶发酵Embodiment 5: Utilize the bacterial strain constructed to carry out the shake flask fermentation of 5-aminolevulinic acid

将菌株L、L1(对照)、L2在M2培养基中进行发酵。Strains L, L1 (control), L2 were fermented in M2 medium.

菌株L接种方式为:首先在BHIS固体平板上活化菌株,在30℃培养至菌落可视时,挑单菌落接种至装有终浓度为10μg/mL氯霉素的BHIS液体培养基的试管中培养15小时左右,转接到含有相应抗生素的M1培养基中,在培养至OD600=10左右时,将种子接种到M2培养基进行发酵,培养基中添加终浓度为10μg/mL的氯霉素和0.5mM的异丙基硫代半乳糖苷(IPTG),在30℃,pH为7.0,220rpm,发酵30h。The inoculation method of strain L is as follows: first activate the strain on the BHIS solid plate, cultivate it at 30°C until the colony is visible, then pick a single colony and inoculate it into a test tube containing BHIS liquid medium with a final concentration of 10 μg/mL chloramphenicol. After about 15 hours, transfer to the M1 medium containing the corresponding antibiotics, and when the culture reaches OD 600 =10, inoculate the seeds into the M2 medium for fermentation, and add chloramphenicol with a final concentration of 10 μg/mL to the medium and 0.5mM isopropylthiogalactopyranoside (IPTG), fermented at 30°C, pH 7.0, 220rpm, for 30h.

菌株L1、L2接种方式为:首先分别在BHIS固体平板上活化菌株,在30℃培养至菌落可视时,挑单菌落接种至装有终浓度为8μg/mL氯霉素和终浓度为20μg/mL卡那霉素的BHIS液体培养基的试管中培养15小时左右,分别转接到含有相应抗生素M1培养基中,在培养至OD600=10左右时,将种子接种到M2培养基进行发酵,并在培养基中添加终浓度为8μg/mL氯霉素和终浓度为20μg/mL卡那霉素和0.5mM的异丙基硫代半乳糖苷(IPTG),在30℃,pH为7.0,220rpm,发酵30h。The inoculation method of strains L1 and L2 is as follows: first activate the strains on BHIS solid plates, cultivate them at 30°C until the colonies are visible, and inoculate a single colony until the final concentration of chloramphenicol is 8 μg/mL and the final concentration is 20 μg/mL. Cultivate in the test tube of BHIS liquid medium with mL kanamycin for about 15 hours, and then transfer to the M1 medium containing the corresponding antibiotics respectively. And in the culture medium, add final concentration of 8 μg/mL chloramphenicol and final concentration of 20 μg/mL kanamycin and 0.5 mM isopropylthiogalactopyranoside (IPTG), at 30 ° C, pH 7.0, 220rpm, ferment for 30h.

发酵结果见图3。The fermentation results are shown in Figure 3.

M1培养基成分为(g/L):葡萄糖10,酵母抽提物10,胰蛋白胨10,NaCl 2.5,余量为水。The composition of M1 medium is (g/L): glucose 10, yeast extract 10, tryptone 10, NaCl 2.5, and the balance is water.

M2培养基成分为(g/L):葡萄糖10,酵母提取物7.5,硫酸氨10,磷酸二氢钾1,磷酸氢二钾1,七水硫酸镁0.1,氯化钙0.02,3-(N-吗啉)丙磺酸21,甘氨酸7.5,余量为水。The composition of M2 medium is (g/L): glucose 10, yeast extract 7.5, ammonium sulfate 10, potassium dihydrogen phosphate 1, dipotassium hydrogen phosphate 1, magnesium sulfate heptahydrate 0.1, calcium chloride 0.02, 3-(N -morpholine) propanesulfonic acid 21, glycine 7.5, and the balance is water.

SEQUENCE LISTINGSEQUENCE LISTING

<110> 天津大学<110> Tianjin University

<120> 生产5-氨基乙酰丙酸的谷氨酸棒杆菌重组菌株<120> Recombinant strain of Corynebacterium glutamicum producing 5-aminolevulinic acid

<130><130>

<160> 39<160> 39

<170> PatentIn version 3.3<170> PatentIn version 3.3

<210> 1<210> 1

<211> 31<211> 31

<212> DNA<212>DNA

<213> 人工合成<213> Synthetic

<400> 1<400> 1

cgtgccaatt ggataaagca ggcaagacct a 31cgtgccaatt ggataaagca ggcaagacct a 31

<210> 2<210> 2

<211> 33<211> 33

<212> DNA<212>DNA

<213> 人工合成<213> Synthetic

<400> 2<400> 2

cgtgcgatat cccatcggca ttttcttttg cgt 33cgtgcgatat cccatcggca ttttcttttg cgt 33

<210> 3<210> 3

<211> 34<211> 34

<212> DNA<212>DNA

<213> 人工合成<213> Synthetic

<400> 3<400> 3

agctctgacg tcttatcatc gactgcacgg tgca 34agctctgacg tcttatcatc gactgcacgg tgca 34

<210> 4<210> 4

<211> 35<211> 35

<212> DNA<212>DNA

<213> 人工合成<213> Synthetic

<400> 4<400> 4

agctctgacg tccccatcgg cattttcttt tgcgt 35agctctgacg tccccatcgg cattttcttt tgcgt 35

<210> 5<210> 5

<211> 37<211> 37

<212> DNA<212>DNA

<213> 人工合成<213> Synthetic

<400> 5<400> 5

agctctgacg tcaaccccag agtcccgctc agaagaa 37agctctgacg tcaacccccag agtcccgctc agaagaa 37

<210> 6<210> 6

<211> 38<211> 38

<212> DNA<212>DNA

<213> 人工合成<213> Synthetic

<400> 6<400> 6

agctctgacg tcatgatcct ccagcgcggg gatctcat 38agctctgacg tcatgatcct ccagcgcggg gatctcat 38

<210> 7<210> 7

<211> 48<211> 48

<212> DNA<212>DNA

<213> 人工合成<213> Synthetic

<400> 7<400> 7

aatacgctgc agaaggagat atagatatgg actacaacct cgccctcg 48aatacgctgc agaaggagat atagatatgg actacaacct cgccctcg 48

<210> 8<210> 8

<211> 29<211> 29

<212> DNA<212>DNA

<213> 人工合成<213> Synthetic

<400> 8<400> 8

aatctctaga ttatgcgacg acctcggcg 29aatctctaga ttatgcgacg acctcggcg 29

<210> 9<210> 9

<211> 29<211> 29

<212> DNA<212>DNA

<213> 人工合成<213> Synthetic

<400> 9<400> 9

atcggaattc ccaaggtgcc gacactaat 29atcggaattc ccaaggtgcc gacactaat 29

<210> 10<210> 10

<211> 29<211> 29

<212> DNA<212>DNA

<213> 人工合成<213> Synthetic

<400> 10<400> 10

cggtgatttc gcaactccaa catctcctg 29cggtgatttc gcaactccaa catctcctg 29

<210> 11<210> 11

<211> 29<211> 29

<212> DNA<212>DNA

<213> 人工合成<213> Synthetic

<400> 11<400> 11

ttggagttgc gaaatcaccg accacgaga 29ttggagttgc gaaatcaccg accacgaga 29

<210> 12<210> 12

<211> 29<211> 29

<212> DNA<212>DNA

<213> 人工合成<213> Synthetic

<400> 12<400> 12

ccggaagctt gcttccagac ggtttcatc 29ccggaagctt gcttccagac ggtttcatc 29

<210> 13<210> 13

<211> 30<211> 30

<212> DNA<212>DNA

<213> 人工合成<213> Synthetic

<400> 13<400> 13

aggctctaga ccacgaacct tccagatcag 30aggctctaga ccacgaacct tccagatcag 30

<210> 14<210> 14

<211> 40<211> 40

<212> DNA<212>DNA

<213> 人工合成<213> Synthetic

<400> 14<400> 14

ggaggcatcg gtggaaatca gaatccatcg aagctgcggt 40ggaggcatcg gtggaaatca gaatccatcg aagctgcggt 40

<210> 15<210> 15

<211> 40<211> 40

<212> DNA<212>DNA

<213> 人工合成<213> Synthetic

<400> 15<400> 15

accgcagctt cgatggattc tgatttccac cgatgcctcc 40accgcagctt cgatggattc tgatttccac cgatgcctcc 40

<210> 16<210> 16

<211> 30<211> 30

<212> DNA<212>DNA

<213> 人工合成<213> Synthetic

<400> 16<400> 16

atgcgtcgac tgagtgaatc ccgcatccga 30atgcgtcgac tgagtgaatc ccgcatccga 30

<210> 17<210> 17

<211> 31<211> 31

<212> DNA<212>DNA

<213> 人工合成<213> Synthetic

<400> 17<400> 17

agagtctaga gttttcgagg cgaccagaca g 31agagtctaga gttttcgagg cgaccagaca g 31

<210> 18<210> 18

<211> 42<211> 42

<212> DNA<212>DNA

<213> 人工合成<213> Synthetic

<400> 18<400> 18

catccgatca aggaaggaac gcaccgcaga acaaagtgac ag 42catccgatca aggaaggaac gcaccgcaga acaaagtgac ag 42

<210> 19<210> 19

<211> 42<211> 42

<212> DNA<212>DNA

<213> 人工合成<213> Synthetic

<400> 19<400> 19

ctgtcacttt gttctgcggt gcgttccttc cttgatcgga tg 42ctgtcacttt gttctgcggt gcgttccttc cttgatcgga tg 42

<210> 20<210> 20

<211> 31<211> 31

<212> DNA<212>DNA

<213> 人工合成<213> Synthetic

<400> 20<400> 20

agagaagctt gttaagcgct cgcggtcaat g 31agagaagctt gttaagcgct cgcggtcaat g 31

<210> 21<210> 21

<211> 30<211> 30

<212> DNA<212>DNA

<213> 人工合成<213> Synthetic

<400> 21<400> 21

aggctctaga aaggaatcgc agaaccgcca 30aggctctaga aaggaatcgc agaaccgcca 30

<210> 22<210> 22

<211> 40<211> 40

<212> DNA<212>DNA

<213> 人工合成<213> Synthetic

<400> 22<400> 22

agccgttctt agccaggttg ccggagaaac caaccttgtc 40agccgttctt agccaggttg ccggagaaac caaccttgtc 40

<210> 23<210> 23

<211> 40<211> 40

<212> DNA<212>DNA

<213> 人工合成<213> Synthetic

<400> 23<400> 23

gacaaggttg gtttctccgg caacctggct aagaacggct 40gacaaggttg gtttctccgg caacctggct aagaacggct 40

<210> 24<210> 24

<211> 30<211> 30

<212> DNA<212>DNA

<213> 人工合成<213> Synthetic

<400> 24<400> 24

atgcgtcgac gctgcggctg attttgctga 30atgcgtcgac gctgcggctg attttgctga 30

<210> 25<210> 25

<211> 30<211> 30

<212> DNA<212>DNA

<213> 人工合成<213> Synthetic

<400> 25<400> 25

agataagctt aaatccgtga agctggcacc 30agataagctt aaatccgtga agctggcacc 30

<210> 26<210> 26

<211> 44<211> 44

<212> DNA<212>DNA

<213> 人工合成<213> Synthetic

<400> 26<400> 26

cccggaataa ttggcagcta taactacttt aaacactctt tcac 44cccggaataa ttggcagcta taactacttt aaacactctt tcac 44

<210> 27<210> 27

<211> 44<211> 44

<212> DNA<212>DNA

<213> 人工合成<213> Synthetic

<400> 27<400> 27

gtgaaagagt gtttaaagta gttatagctg ccaattattc cggg 44gtgaaagagt gtttaaagta gttatagctg ccaattattc cggg 44

<210> 28<210> 28

<211> 44<211> 44

<212> DNA<212>DNA

<213> 人工合成<213> Synthetic

<400> 28<400> 28

gtcatcgcgt aaaaaatcag tcatgggtaa aaaatccttt cgta 44gtcatcgcgt aaaaaatcag tcatgggtaa aaaatccttt cgta 44

<210> 29<210> 29

<211> 44<211> 44

<212> DNA<212>DNA

<213> 人工合成<213> Synthetic

<400> 29<400> 29

tacgaaagga ttttttaccc atgactgatt ttttacgcga tgac 44tacgaaagga ttttttaccc atgactgatt ttttacgcga tgac 44

<210> 30<210> 30

<211> 30<211> 30

<212> DNA<212>DNA

<213> 人工合成<213> Synthetic

<400> 30<400> 30

agattctaga atgcgacggc ggatgttctt 30agattctaga atgcgacggc ggatgttctt 30

<210> 31<210> 31

<211> 31<211> 31

<212> DNA<212>DNA

<213> 人工合成<213> Synthetic

<400> 31<400> 31

atgagaattc tgtttgttaa taaatgggtt c 31atgagaattc tgtttgttaa taaatgggtt c 31

<210> 32<210> 32

<211> 31<211> 31

<212> DNA<212>DNA

<213> 人工合成<213> Synthetic

<400> 32<400> 32

agcgtctaga tacttctcca gattttgtgt c 31agcgtctaga tacttctcca gattttgtgt c 31

<210> 33<210> 33

<211> 33<211> 33

<212> DNA<212>DNA

<213> 人工合成<213> Synthetic

<400> 33<400> 33

gtcgacctgc aggcagttca cgcttaagaa ctg 33gtcgacctgc aggcagttca cgcttaagaa ctg 33

<210> 34<210> 34

<211> 29<211> 29

<212> DNA<212>DNA

<213> 人工合成<213> Synthetic

<400> 34<400> 34

gacgaagctt cgaacaaacc cgacctgac 29gacgaagctt cgaacaaacc cgacctgac 29

<210> 35<210> 35

<211> 30<211> 30

<212> DNA<212>DNA

<213> 人工合成<213> Synthetic

<400> 35<400> 35

aatcgaattc tggccgttac cctgcgaatg 30aatcgaattc tggccgttac cctgcgaatg 30

<210> 36<210> 36

<211> 57<211> 57

<212> DNA<212>DNA

<213> 人工合成<213> Synthetic

<400> 36<400> 36

atcagtcgac gagctccgat aggatccagg tatctagatg tatgtcctcc tggactt 57atcagtcgac gagctccgat aggatccagg tatctagatg tatgtcctcc tggactt 57

<210> 37<210> 37

<211> 44<211> 44

<212> DNA<212>DNA

<213> 人工合成<213> Synthetic

<400> 37<400> 37

acgctctaga aaggagatat agatgtgaat gatgctggct tgaa 44acgctctaga aaggagatat agatgtgaat gatgctggct tgaa 44

<210> 38<210> 38

<211> 34<211> 34

<212> DNA<212>DNA

<213> 人工合成<213> Synthetic

<400> 38<400> 38

aatggtcgac ctaggagggg cgtcgcaaag caac 34aatggtcgac ctaggagggg cgtcgcaaag caac 34

<210> 39<210> 39

<211> 1224<211> 1224

<212> DNA<212>DNA

<213> 人工合成<213> Synthetic

<400> 39<400> 39

atggactaca acctcgccct cgataccgcc ctcaaccgtc tgcacactga aggccgctac 60atggactaca acctcgccct cgataccgcc ctcaaccgtc tgcacactga aggccgctac 60

cgcaccttca tcgacatcga acgccgcaaa ggcgccttcc ctaaagccat gtggcgcaaa 120cgcaccttca tcgacatcga acgccgcaaa ggcgccttcc ctaaagccat gtggcgcaaa 120

cctgatggct ccgagaaaga gatcaccgtc tggtgcggca acgactacct gggtatgggt 180cctgatggct ccgagaaaga gatcaccgtc tggtgcggca acgactacct gggtatgggt 180

cagcacccag tcgtgctcgg tgcaatgcac gaagccctgg attctactgg tgccggttcc 240cagcacccag tcgtgctcgg tgcaatgcac gaagccctgg attctactgg tgccggttcc 240

ggcggtaccc gcaacatctc tggtaccacc ctgtatcaca agcgcctgga agcagagctc 300ggcggtaccc gcaacatctc tggtaccacc ctgtatcaca agcgcctgga agcagagctc 300

gccgatctcc acggtaagga agccgccctg gtgttctctt ccgcctatat cgccaacgac 360gccgatctcc acggtaagga agccgccctg gtgttctctt ccgcctatat cgccaacgac 360

gccactctgt ccactctgcc tcaactcatc ccaggcctcg tgatcgtctc cgacaagctc 420gccactctgt ccactctgcc tcaactcatc ccaggcctcg tgatcgtctc cgacaagctc 420

aatcacgcct ccatgatcga gggcattcgc cgttctggca ccgagaagca catcttcaaa 480aatcacgcct ccatgatcga gggcattcgc cgttctggca ccgagaagca catcttcaaa 480

cataatgacc tggacgacct ccgccgtatc ctgacttcta tcggcaagga tcgcccaatc 540cataatgacc tggacgacct ccgccgtatc ctgacttcta tcggcaagga tcgcccaatc 540

ctcgtggcct tcgagtccgt ctactccatg gacggcgact ttggtcgcat cgaggagatc 600ctcgtggcct tcgagtccgt ctactccatg gacggcgact ttggtcgcat cgaggagatc 600

tgcgatatcg ccgacgagtt cggcgccctc aagtacatcg atgaggtgca cgccgtgggt 660tgcgatatcg ccgacgagtt cggcgccctc aagtacatcg atgaggtgca cgccgtgggt 660

atgtacggtc ctcgcggtgg tggtgtcgcc gaacgtgatg gcctgatgga ccgcatcgac 720atgtacggtc ctcgcggtgg tggtgtcgcc gaacgtgatg gcctgatgga ccgcatcgac 720

atcattaacg gcaccctcgg caaggcctac ggcgtgttcg gtggctacat cgccgcctct 780atcattaacg gcaccctcgg caaggcctac ggcgtgttcg gtggctacat cgccgcctct 780

tctaagatgt gtgacgccgt ccgttcctat gcacctggct tcatcttctc cacttccctc 840tctaagatgt gtgacgccgt ccgttcctat gcacctggct tcatcttctc cacttccctc 840

ccacctgtgg tggcagcagg tgcagcagca tctgtccgcc atctgaaggg tgacgtcgag 900ccacctgtgg tggcagcagg tgcagcagca tctgtccgcc atctgaaggg tgacgtcgag 900

ctgcgcgaga aacatcagac ccaggcacgt atcctcaaga tgcgcctgaa aggcctgggc 960ctgcgcgaga aacatcagac ccaggcacgt atcctcaaga tgcgcctgaa aggcctgggc 960

ctgccaatca ttgaccacgg ctcccacatc gtgccagtgc atgtcggcga tcctgtgcac 1020ctgccaatca ttgaccacgg ctcccacatc gtgccagtgc atgtcggcga tcctgtgcac 1020

tgcaaaatga tctccgacat gctcctggag cacttcggca tctacgtcca gcctatcaac 1080tgcaaaatga tctccgacat gctcctggag cacttcggca tctacgtcca gcctatcaac 1080

ttcccaaccg tccctcgtgg taccgaacgc ctgcgtttca ctccatcccc tgtgcatgac 1140ttcccaaccg tccctcgtgg taccgaacgc ctgcgtttca ctccatcccc tgtgcatgac 1140

tccggcatga tcgaccatct ggtcaaggcc atggacgtgc tctggcagca ttgcgccctc 1200tccggcatga tcgaccatct ggtcaaggcc atggacgtgc tctggcagca ttgcgccctc 1200

aatcgcgccg aggtcgtcgc ataa 1224aatcgcgccg aggtcgtcgc ataa 1224

Claims (3)

1. the construction method of the Corynebacterium glutamicum recombinant bacterial strain of production 5-ALA, is characterized in that including following step Suddenly:
(1) lactic acid dehydrogenase volume is knocked out in Corynebacterium glutamicum (Corynebacterium glutamicum) ATCC 13032 Code gene ldhA and acetic acid generate gene pta-ackA, pqo and cat, and the Strain Designation for obtaining is CG4;Phosphorus in CG4 bacterial strain Sour acid enol type pyruvate carboxylase encoding gene ppc is previously inserted into sod promoter, obtains bacterial strain CG5;Knock out in CG5 bacterial strain PCK encoding gene pck, obtains bacterial strain CG6;
(2) the plasmid pXA of the overexpression 5-Aminolevulinate synthase gene for building is proceeded in bacterial strain CG6, is recombinated Bacterial strain L;
(3) the overexpression 5-ALA transport protein plasmid pEP-Ncgl2065 for building is proceeded in recombinant bacterial strain L, Obtain producing the Corynebacterium glutamicum recombinant bacterial strain L2 of 5-ALA.
2. the Corynebacterium glutamicum recombinant bacterial strain L2 of the production 5-ALA that the method described in claim 1 builds.
3. claim 2 production 5-ALA Corynebacterium glutamicum recombinant bacterial strain L2 purposes.
CN201610986837.7A 2016-11-09 2016-11-09 Corynebacterium glutamicum recombinant strain for producing 5-aminolevulinic acid Pending CN106434513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610986837.7A CN106434513A (en) 2016-11-09 2016-11-09 Corynebacterium glutamicum recombinant strain for producing 5-aminolevulinic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610986837.7A CN106434513A (en) 2016-11-09 2016-11-09 Corynebacterium glutamicum recombinant strain for producing 5-aminolevulinic acid

Publications (1)

Publication Number Publication Date
CN106434513A true CN106434513A (en) 2017-02-22

Family

ID=58207289

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610986837.7A Pending CN106434513A (en) 2016-11-09 2016-11-09 Corynebacterium glutamicum recombinant strain for producing 5-aminolevulinic acid

Country Status (1)

Country Link
CN (1) CN106434513A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108517327A (en) * 2018-04-20 2018-09-11 中国科学院天津工业生物技术研究所 5-ALA superior strain and its preparation method and application
WO2020186326A1 (en) * 2019-03-21 2020-09-24 De Leao Rosenmann Bernardo Cosmetic formulations formed by a nutritive mixture from a fermentative process
WO2020232519A1 (en) * 2019-05-22 2020-11-26 De Leao Rosenmann Bernardo Nutritional compound formed by bacterial fermentation content for use as a supplement or additive for animal feed
CN112980758A (en) * 2021-03-05 2021-06-18 江南大学 Method for increasing yield of 5-aminolevulinic acid synthesized by corynebacterium glutamicum

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101063104A (en) * 2007-04-20 2007-10-31 浙江大学 Engineering bacterium producing 5-glycyl ethylformic acid and construction method thereof
CN103981203A (en) * 2013-02-07 2014-08-13 中国科学院天津工业生物技术研究所 5-amino levulinic acid (ALA) high-yield strain and preparation method and application thereof
CN104928226A (en) * 2015-07-17 2015-09-23 山东大学 Recombined corynebacterium glutamicum and application of corynebacterium glutamicum to 5-aminolevulinic acid production
CN106047916A (en) * 2016-06-03 2016-10-26 天津大学 Corynebacterium glutamicum strain for production of 5-aminolevulinic acid and construction and application of corynebacterium glutamicum strain

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101063104A (en) * 2007-04-20 2007-10-31 浙江大学 Engineering bacterium producing 5-glycyl ethylformic acid and construction method thereof
CN103981203A (en) * 2013-02-07 2014-08-13 中国科学院天津工业生物技术研究所 5-amino levulinic acid (ALA) high-yield strain and preparation method and application thereof
CN103981203B (en) * 2013-02-07 2018-01-12 中国科学院天津工业生物技术研究所 5 amino-laevulic acid superior strains and its preparation method and application
CN104928226A (en) * 2015-07-17 2015-09-23 山东大学 Recombined corynebacterium glutamicum and application of corynebacterium glutamicum to 5-aminolevulinic acid production
CN106047916A (en) * 2016-06-03 2016-10-26 天津大学 Corynebacterium glutamicum strain for production of 5-aminolevulinic acid and construction and application of corynebacterium glutamicum strain

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108517327A (en) * 2018-04-20 2018-09-11 中国科学院天津工业生物技术研究所 5-ALA superior strain and its preparation method and application
WO2020186326A1 (en) * 2019-03-21 2020-09-24 De Leao Rosenmann Bernardo Cosmetic formulations formed by a nutritive mixture from a fermentative process
WO2020232519A1 (en) * 2019-05-22 2020-11-26 De Leao Rosenmann Bernardo Nutritional compound formed by bacterial fermentation content for use as a supplement or additive for animal feed
CN112980758A (en) * 2021-03-05 2021-06-18 江南大学 Method for increasing yield of 5-aminolevulinic acid synthesized by corynebacterium glutamicum

Similar Documents

Publication Publication Date Title
CN106047916A (en) Corynebacterium glutamicum strain for production of 5-aminolevulinic acid and construction and application of corynebacterium glutamicum strain
CN111655860B (en) Novel promoter and method for producing L-amino acid using the same
ES2703256T3 (en) Microorganism that has a better ornithine production capacity and ornithine production method using the same
JP2023504236A (en) Genetically modified bacterium producing L-arginine, construction method and use thereof
CN110184230A (en) The genetic engineering bacterium and its construction method of one plant height production L-Histidine and application
CN103981203A (en) 5-amino levulinic acid (ALA) high-yield strain and preparation method and application thereof
CN111607544A (en) Recombinant microorganism capable of producing methyl anthranilate and method for producing methyl anthranilate using the same
CN106434513A (en) Corynebacterium glutamicum recombinant strain for producing 5-aminolevulinic acid
CN104004678A (en) Construction of corynebacterium glutamicum engineering bacteria for high-yielding production of L-valine and method for fermentation production of L-valine
CN101381698A (en) Recombinant Corynebacterium bacillus with enhanced expression of N-acetylglutamate kinase and its application
CN106434514A (en) Corynebacterium glutamicum engineering strain for producing 5-aminolevulinic acid
CN108531437B (en) 5-aminolevulinic acid biosynthesis pathway mediated by glyoxylate aminotransferase
CN111548979A (en) Recombinant Escherichia coli for synthesizing lactoyl N-neotetrasaccharide and its construction method and application
WO2022174597A1 (en) Genetically engineered bacterium for producing l-sarcosine, construction method therefor and use thereof
CN104195190B (en) Method for producing 5-aminolevulinic acid by carrying out anaerobic fermentation by utilizing recombinant escherichia coli
CN106636171A (en) Crynebacterium glutamicum engineering strain for producing 5-aminolevulinic acid and construction method thereof+
CN104928226A (en) Recombined corynebacterium glutamicum and application of corynebacterium glutamicum to 5-aminolevulinic acid production
WO2022007205A1 (en) Method for increasing content of intracellular heme in escherichia coli
CN115873814A (en) Application of bifunctional methylenetetrahydrofolate dehydrogenase encoding gene folD in L-amino acid synthesis
CN110218691A (en) One plant of genetic engineering bacterium for synthesizing altheine and its construction method and application
CN105980544B (en) Microorganism producing L-amino acid and method for producing L-amino acid using the same
CN116555156B (en) Method for improving L-valine yield and recombinant bacterium used by same
CN116536237B (en) Transformed Escherichia coli and its application in fermentation production of L-valine
CN116064266B (en) Recombinant saccharomyces cerevisiae with enhanced salt stress resistance, and construction method and application thereof
CN117384814A (en) A plasmid-free genetically engineered bacterium with high yield of D-pantothenate and its construction method and application

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170222

WD01 Invention patent application deemed withdrawn after publication