CN106434506A - Building method for producing lycopene recombinant bacteria and application - Google Patents
Building method for producing lycopene recombinant bacteria and application Download PDFInfo
- Publication number
- CN106434506A CN106434506A CN201610864886.3A CN201610864886A CN106434506A CN 106434506 A CN106434506 A CN 106434506A CN 201610864886 A CN201610864886 A CN 201610864886A CN 106434506 A CN106434506 A CN 106434506A
- Authority
- CN
- China
- Prior art keywords
- gene
- ispg
- isph
- recombinant bacterium
- sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 241000894006 Bacteria Species 0.000 title claims abstract description 120
- UPYKUZBSLRQECL-UKMVMLAPSA-N Lycopene Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1C(=C)CCCC1(C)C)C=CC=C(/C)C=CC2C(=C)CCCC2(C)C UPYKUZBSLRQECL-UKMVMLAPSA-N 0.000 title claims abstract description 72
- JEVVKJMRZMXFBT-XWDZUXABSA-N Lycophyll Natural products OC/C(=C/CC/C(=C\C=C\C(=C/C=C/C(=C\C=C\C=C(/C=C/C=C(\C=C\C=C(/CC/C=C(/CO)\C)\C)/C)\C)/C)\C)/C)/C JEVVKJMRZMXFBT-XWDZUXABSA-N 0.000 title claims abstract description 71
- 235000012661 lycopene Nutrition 0.000 title claims abstract description 71
- OAIJSZIZWZSQBC-GYZMGTAESA-N lycopene Chemical compound CC(C)=CCC\C(C)=C\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C=C(/C)CCC=C(C)C OAIJSZIZWZSQBC-GYZMGTAESA-N 0.000 title claims abstract description 71
- 239000001751 lycopene Substances 0.000 title claims abstract description 71
- 229960004999 lycopene Drugs 0.000 title claims abstract description 71
- ZCIHMQAPACOQHT-ZGMPDRQDSA-N trans-isorenieratene Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/c1c(C)ccc(C)c1C)C=CC=C(/C)C=Cc2c(C)ccc(C)c2C ZCIHMQAPACOQHT-ZGMPDRQDSA-N 0.000 title claims abstract description 71
- 238000004519 manufacturing process Methods 0.000 title description 78
- 101150081094 ispG gene Proteins 0.000 claims abstract description 130
- 101150017044 ispH gene Proteins 0.000 claims abstract description 119
- 230000014509 gene expression Effects 0.000 claims abstract description 112
- 241000588724 Escherichia coli Species 0.000 claims abstract description 92
- 101100126492 Streptomyces coelicolor (strain ATCC BAA-471 / A3(2) / M145) ispG1 gene Proteins 0.000 claims abstract description 69
- 101100180240 Burkholderia pseudomallei (strain K96243) ispH2 gene Proteins 0.000 claims abstract description 64
- 230000000694 effects Effects 0.000 claims abstract description 19
- 230000033228 biological regulation Effects 0.000 claims abstract description 18
- 101150081661 glpD gene Proteins 0.000 claims abstract description 16
- 108090000854 Oxidoreductases Proteins 0.000 claims abstract description 6
- 230000001105 regulatory effect Effects 0.000 claims description 107
- 108020004414 DNA Proteins 0.000 claims description 30
- 238000000034 method Methods 0.000 claims description 30
- 238000002744 homologous recombination Methods 0.000 claims description 28
- 230000006801 homologous recombination Effects 0.000 claims description 28
- 230000001939 inductive effect Effects 0.000 claims description 20
- 239000013612 plasmid Substances 0.000 claims description 17
- 238000003780 insertion Methods 0.000 claims description 13
- 230000037431 insertion Effects 0.000 claims description 13
- 238000000855 fermentation Methods 0.000 claims description 12
- 230000004151 fermentation Effects 0.000 claims description 12
- 101150109249 lacI gene Proteins 0.000 claims description 12
- 239000002773 nucleotide Substances 0.000 claims description 9
- 125000003729 nucleotide group Chemical group 0.000 claims description 9
- 108091033409 CRISPR Proteins 0.000 claims description 8
- 238000012216 screening Methods 0.000 claims description 7
- 230000001404 mediated effect Effects 0.000 claims description 6
- 238000010354 CRISPR gene editing Methods 0.000 claims description 4
- 238000010459 TALEN Methods 0.000 claims description 4
- 108010043645 Transcription Activator-Like Effector Nucleases Proteins 0.000 claims description 4
- 101150025220 sacB gene Proteins 0.000 claims description 4
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 claims description 2
- 235000011180 diphosphates Nutrition 0.000 claims description 2
- 230000001276 controlling effect Effects 0.000 claims 3
- 101100453077 Botryococcus braunii HDR gene Proteins 0.000 claims 2
- 108090000364 Ligases Proteins 0.000 claims 2
- 101100397457 Plasmodium falciparum (isolate 3D7) LytB gene Proteins 0.000 claims 2
- 230000006698 induction Effects 0.000 claims 1
- 229940048084 pyrophosphate Drugs 0.000 claims 1
- OENHQHLEOONYIE-UKMVMLAPSA-N all-trans beta-carotene Natural products CC=1CCCC(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C OENHQHLEOONYIE-UKMVMLAPSA-N 0.000 abstract description 78
- 235000013734 beta-carotene Nutrition 0.000 abstract description 78
- 239000011648 beta-carotene Substances 0.000 abstract description 78
- TUPZEYHYWIEDIH-WAIFQNFQSA-N beta-carotene Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CCCC1(C)C)C=CC=C(/C)C=CC2=CCCCC2(C)C TUPZEYHYWIEDIH-WAIFQNFQSA-N 0.000 abstract description 78
- 229960002747 betacarotene Drugs 0.000 abstract description 78
- OENHQHLEOONYIE-JLTXGRSLSA-N β-Carotene Chemical compound CC=1CCCC(C)(C)C=1\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C OENHQHLEOONYIE-JLTXGRSLSA-N 0.000 abstract description 78
- 150000003505 terpenes Chemical class 0.000 abstract description 27
- 238000010276 construction Methods 0.000 abstract description 12
- 230000001965 increasing effect Effects 0.000 abstract description 8
- 235000007586 terpenes Nutrition 0.000 abstract description 7
- 238000002474 experimental method Methods 0.000 abstract description 5
- 229910019142 PO4 Inorganic materials 0.000 abstract description 2
- 239000010452 phosphate Substances 0.000 abstract description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 abstract 1
- 239000002510 pyrogen Substances 0.000 abstract 1
- 229940023064 escherichia coli Drugs 0.000 description 72
- 101150118992 dxr gene Proteins 0.000 description 35
- 239000012634 fragment Substances 0.000 description 25
- 108090000623 proteins and genes Proteins 0.000 description 25
- 229960005091 chloramphenicol Drugs 0.000 description 24
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 24
- 101150014059 ispD gene Proteins 0.000 description 24
- 101150068863 ispE gene Proteins 0.000 description 24
- 239000000243 solution Substances 0.000 description 24
- 210000004027 cell Anatomy 0.000 description 22
- 239000002609 medium Substances 0.000 description 21
- 101150022203 ispDF gene Proteins 0.000 description 20
- 230000037361 pathway Effects 0.000 description 19
- 101100152417 Bacillus spizizenii (strain ATCC 23059 / NRRL B-14472 / W23) tarI gene Proteins 0.000 description 18
- 229960000723 ampicillin Drugs 0.000 description 16
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 14
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 14
- 238000003786 synthesis reaction Methods 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 10
- NUHSROFQTUXZQQ-UHFFFAOYSA-N isopentenyl diphosphate Chemical compound CC(=C)CCO[P@](O)(=O)OP(O)(O)=O NUHSROFQTUXZQQ-UHFFFAOYSA-N 0.000 description 10
- 238000012163 sequencing technique Methods 0.000 description 10
- 238000012795 verification Methods 0.000 description 10
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 9
- 230000001580 bacterial effect Effects 0.000 description 9
- CBIDRCWHNCKSTO-UHFFFAOYSA-N prenyl diphosphate Chemical compound CC(C)=CCO[P@](O)(=O)OP(O)(O)=O CBIDRCWHNCKSTO-UHFFFAOYSA-N 0.000 description 9
- 238000011529 RT qPCR Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 101100286286 Dictyostelium discoideum ipi gene Proteins 0.000 description 7
- 230000003321 amplification Effects 0.000 description 7
- 101150014423 fni gene Proteins 0.000 description 7
- 101150075592 idi gene Proteins 0.000 description 7
- 239000006228 supernatant Substances 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- 102000053602 DNA Human genes 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical group OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 229930006000 Sucrose Natural products 0.000 description 6
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 235000011187 glycerol Nutrition 0.000 description 6
- 229930027917 kanamycin Natural products 0.000 description 6
- 229960000318 kanamycin Drugs 0.000 description 6
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 6
- 229930182823 kanamycin A Natural products 0.000 description 6
- 238000003199 nucleic acid amplification method Methods 0.000 description 6
- 239000005720 sucrose Substances 0.000 description 6
- 241000196324 Embryophyta Species 0.000 description 5
- 239000003242 anti bacterial agent Substances 0.000 description 5
- 229940088710 antibiotic agent Drugs 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 238000012258 culturing Methods 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 239000011573 trace mineral Substances 0.000 description 5
- 235000013619 trace mineral Nutrition 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 238000011144 upstream manufacturing Methods 0.000 description 5
- 101100010593 Bacillus anthracis dxr2 gene Proteins 0.000 description 4
- 238000012408 PCR amplification Methods 0.000 description 4
- 230000010261 cell growth Effects 0.000 description 4
- 239000002299 complementary DNA Substances 0.000 description 4
- 108091008053 gene clusters Proteins 0.000 description 4
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 244000005700 microbiome Species 0.000 description 4
- 239000010413 mother solution Substances 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 238000009790 rate-determining step (RDS) Methods 0.000 description 4
- KJTLQQUUPVSXIM-ZCFIWIBFSA-N (R)-mevalonic acid Chemical compound OCC[C@](O)(C)CC(O)=O KJTLQQUUPVSXIM-ZCFIWIBFSA-N 0.000 description 3
- YFAUKWZNPVBCFF-XHIBXCGHSA-N 4-CDP-2-C-methyl-D-erythritol Chemical compound O[C@@H]1[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H](O)[C@@](O)(CO)C)O[C@H]1N1C(=O)N=C(N)C=C1 YFAUKWZNPVBCFF-XHIBXCGHSA-N 0.000 description 3
- 101100233615 Burkholderia mallei (strain ATCC 23344) ispH1 gene Proteins 0.000 description 3
- KJTLQQUUPVSXIM-UHFFFAOYSA-N DL-mevalonic acid Natural products OCCC(O)(C)CC(O)=O KJTLQQUUPVSXIM-UHFFFAOYSA-N 0.000 description 3
- 108090000769 Isomerases Proteins 0.000 description 3
- 101100504994 Lactococcus lactis subsp. lactis (strain IL1403) glpO gene Proteins 0.000 description 3
- 108091081024 Start codon Proteins 0.000 description 3
- 108020004530 Transaldolase Proteins 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 101150020594 glpD1 gene Proteins 0.000 description 3
- 230000012010 growth Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000002503 metabolic effect Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 230000001954 sterilising effect Effects 0.000 description 3
- 238000004659 sterilization and disinfection Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 101150106193 tal gene Proteins 0.000 description 3
- 101150040618 talB gene Proteins 0.000 description 3
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 2
- AJPADPZSRRUGHI-RFZPGFLSSA-N 1-deoxy-D-xylulose 5-phosphate Chemical compound CC(=O)[C@@H](O)[C@H](O)COP(O)(O)=O AJPADPZSRRUGHI-RFZPGFLSSA-N 0.000 description 2
- 108020004306 Alpha-ketoglutarate dehydrogenase Proteins 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 101100010589 Bacillus anthracis dxr1 gene Proteins 0.000 description 2
- 101100180239 Burkholderia mallei (strain ATCC 23344) ispH2 gene Proteins 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- 239000001888 Peptone Substances 0.000 description 2
- 108010080698 Peptones Proteins 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- 108010012901 Succinate Dehydrogenase Proteins 0.000 description 2
- XMWHRVNVKDKBRG-CRCLSJGQSA-N [(2s,3r)-2,3,4-trihydroxy-3-methylbutyl] dihydrogen phosphate Chemical compound OC[C@](O)(C)[C@@H](O)COP(O)(O)=O XMWHRVNVKDKBRG-CRCLSJGQSA-N 0.000 description 2
- QUXJUZYDAKGAQF-UHFFFAOYSA-N [hydroxy(phosphonooxy)phosphoryl] 3-methylbutanoate Chemical compound C(CC(C)C)(=O)OP(=O)(O)OP(=O)(O)O QUXJUZYDAKGAQF-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229940041514 candida albicans extract Drugs 0.000 description 2
- 101150022865 crtX gene Proteins 0.000 description 2
- 101150085103 crtY gene Proteins 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 235000013402 health food Nutrition 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 230000001976 improved effect Effects 0.000 description 2
- 238000011090 industrial biotechnology method and process Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 210000002429 large intestine Anatomy 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- 238000012269 metabolic engineering Methods 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000012452 mother liquor Substances 0.000 description 2
- 235000019319 peptone Nutrition 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000008223 sterile water Substances 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 2
- -1 terpene compounds Chemical class 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000012138 yeast extract Substances 0.000 description 2
- HGVJFBSSLICXEM-UHNVWZDZSA-N (2s,3r)-2-methylbutane-1,2,3,4-tetrol Chemical compound OC[C@@](O)(C)[C@H](O)CO HGVJFBSSLICXEM-UHNVWZDZSA-N 0.000 description 1
- MDSIZRKJVDMQOQ-UHFFFAOYSA-N (4-hydroxy-3-methylbut-2-enyl) phosphono hydrogen phosphate Chemical compound OCC(C)=CCOP(O)(=O)OP(O)(O)=O MDSIZRKJVDMQOQ-UHFFFAOYSA-N 0.000 description 1
- LXJXRIRHZLFYRP-VKHMYHEASA-L (R)-2-Hydroxy-3-(phosphonooxy)-propanal Natural products O=C[C@H](O)COP([O-])([O-])=O LXJXRIRHZLFYRP-VKHMYHEASA-L 0.000 description 1
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- 108010068049 1-deoxy-D-xylulose 5-phosphate reductoisomerase Proteins 0.000 description 1
- 101710094045 1-deoxy-D-xylulose-5-phosphate synthase Proteins 0.000 description 1
- 108020004465 16S ribosomal RNA Proteins 0.000 description 1
- SFRQRNJMIIUYDI-UHNVWZDZSA-N 2-C-methyl-D-erythritol 2,4-cyclic diphosphate Chemical compound OC[C@]1(C)OP(O)(=O)OP(O)(=O)OC[C@H]1O SFRQRNJMIIUYDI-UHNVWZDZSA-N 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 206010008342 Cervix carcinoma Diseases 0.000 description 1
- 241000195628 Chlorophyta Species 0.000 description 1
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 description 1
- LXJXRIRHZLFYRP-VKHMYHEASA-N D-glyceraldehyde 3-phosphate Chemical compound O=C[C@H](O)COP(O)(O)=O LXJXRIRHZLFYRP-VKHMYHEASA-N 0.000 description 1
- 101710088194 Dehydrogenase Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000191070 Escherichia coli ATCC 8739 Species 0.000 description 1
- 241001646716 Escherichia coli K-12 Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 102000004195 Isomerases Human genes 0.000 description 1
- 208000007976 Ketosis Diseases 0.000 description 1
- HGVJFBSSLICXEM-UHFFFAOYSA-N L-2-methyl-erythritol Natural products OCC(O)(C)C(O)CO HGVJFBSSLICXEM-UHFFFAOYSA-N 0.000 description 1
- 101100509110 Leifsonia xyli subsp. xyli (strain CTCB07) ispDF gene Proteins 0.000 description 1
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 108091000041 Phosphoenolpyruvate Carboxylase Proteins 0.000 description 1
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 description 1
- 208000000453 Skin Neoplasms Diseases 0.000 description 1
- 240000003768 Solanum lycopersicum Species 0.000 description 1
- 101100278777 Streptomyces coelicolor (strain ATCC BAA-471 / A3(2) / M145) dxs1 gene Proteins 0.000 description 1
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 1
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 1
- 241001464837 Viridiplantae Species 0.000 description 1
- 229930003268 Vitamin C Natural products 0.000 description 1
- 229930003427 Vitamin E Natural products 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 230000003712 anti-aging effect Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 235000015895 biscuits Nutrition 0.000 description 1
- 235000008429 bread Nutrition 0.000 description 1
- 235000012970 cakes Nutrition 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001746 carotenes Chemical class 0.000 description 1
- 235000005473 carotenes Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 201000010881 cervical cancer Diseases 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 210000000172 cytosol Anatomy 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000001177 diphosphate Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 101150056470 dxs gene Proteins 0.000 description 1
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 229910052564 epsomite Inorganic materials 0.000 description 1
- 108010031246 erythritol kinase Proteins 0.000 description 1
- 239000012526 feed medium Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 101150091561 galP gene Proteins 0.000 description 1
- FJEKYHHLGZLYAT-FKUIBCNASA-N galp Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCSC)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@H](C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(O)=O)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC=1N=CNC=1)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(N)=O)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CO)C(O)=O)[C@@H](C)CC)[C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H]1N(CCC1)C(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)CNC(=O)CNC(=O)[C@H](CCCNC(N)=N)NC(=O)CNC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H](C)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](C)N)[C@@H](C)O)C(C)C)C1=CNC=N1 FJEKYHHLGZLYAT-FKUIBCNASA-N 0.000 description 1
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000010362 genome editing Methods 0.000 description 1
- 101150042675 glk gene Proteins 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 241000411851 herbal medicine Species 0.000 description 1
- 235000015243 ice cream Nutrition 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000007154 intracellular accumulation Effects 0.000 description 1
- 101150000769 ispB gene Proteins 0.000 description 1
- 101150018742 ispF gene Proteins 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000037353 metabolic pathway Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 238000009629 microbiological culture Methods 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 229930029653 phosphoenolpyruvate Natural products 0.000 description 1
- DTBNBXWJWCWCIK-UHFFFAOYSA-N phosphoenolpyruvic acid Chemical compound OC(=O)C(=C)OP(O)(O)=O DTBNBXWJWCWCIK-UHFFFAOYSA-N 0.000 description 1
- 210000002706 plastid Anatomy 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000001054 red pigment Substances 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 201000000849 skin cancer Diseases 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 230000005758 transcription activity Effects 0.000 description 1
- JREYOWJEWZVAOR-UHFFFAOYSA-N triazanium;[3-methylbut-3-enoxy(oxido)phosphoryl] phosphate Chemical compound [NH4+].[NH4+].[NH4+].CC(=C)CCOP([O-])(=O)OP([O-])([O-])=O JREYOWJEWZVAOR-UHFFFAOYSA-N 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 201000005112 urinary bladder cancer Diseases 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- NCYCYZXNIZJOKI-UHFFFAOYSA-N vitamin A aldehyde Natural products O=CC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C NCYCYZXNIZJOKI-UHFFFAOYSA-N 0.000 description 1
- 235000019154 vitamin C Nutrition 0.000 description 1
- 239000011718 vitamin C Substances 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 229940046009 vitamin E Drugs 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0093—Oxidoreductases (1.) acting on CH or CH2 groups (1.17)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0006—Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P5/00—Preparation of hydrocarbons or halogenated hydrocarbons
- C12P5/007—Preparation of hydrocarbons or halogenated hydrocarbons containing one or more isoprene units, i.e. terpenes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y101/00—Oxidoreductases acting on the CH-OH group of donors (1.1)
- C12Y101/01—Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
- C12Y101/01008—Glycerol-3-phosphate dehydrogenase (NAD+) (1.1.1.8)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y117/00—Oxidoreductases acting on CH or CH2 groups (1.17)
- C12Y117/01—Oxidoreductases acting on CH or CH2 groups (1.17) with NAD+ or NADP+ as acceptor (1.17.1)
- C12Y117/01002—4-Hydroxy-3-methylbut-2-enyl diphosphate reductase (1.17.1.2)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y117/00—Oxidoreductases acting on CH or CH2 groups (1.17)
- C12Y117/04—Oxidoreductases acting on CH or CH2 groups (1.17) with a disulfide as acceptor (1.17.3)
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
本发明公开了一种生产番茄红素重组菌的构建方法与应用。本发明提供了重组菌,为如下1)‑3)中任一种:1)为提高产番茄红素大肠杆菌中(E)‑4‑羟基‑3‑甲基‑2‑丁烯基‑焦磷酸合成酶基因ispG和(E)‑4‑羟基‑3‑甲基‑2‑丁烯基‑焦磷酸还原酶基因ispH的表达和/或活性,得到重组菌;2)为调控1)所示重组菌的crt操纵子表达和/或活性,得到的重组菌;3)为调控2)所示重组菌的glpD基因表达和/或活性,得到的重组菌。本发明的实验证明,在具有一定萜类化合物合成能力的重组大肠杆菌中,协调表达ispG和ispH基因,可以有效提高重组大肠杆菌的萜烯类化合物合成能力,包括β‑胡萝卜素和番茄红素,以及其它萜烯类化合物。The invention discloses a construction method and application of a recombinant bacterium producing lycopene. The invention provides a recombinant bacterium, which is any one of the following 1)-3): 1) for increasing the concentration of (E)-4-hydroxyl-3-methyl-2-butenyl-pyrogen in Escherichia coli producing lycopene The expression and/or activity of phosphate synthase gene ispG and (E)-4-hydroxyl-3-methyl-2-butenyl-pyrophosphate reductase gene ispH obtain recombinant bacteria; 2) is shown in regulation 1) The expression and/or activity of the crt operon of the recombinant bacterium to obtain the recombinant bacterium; 3) the expression and/or activity of the glpD gene of the recombinant bacterium shown in 2) to regulate the obtained recombinant bacterium. Experiments of the present invention prove that in recombinant Escherichia coli with a certain ability to synthesize terpenoids, the coordinated expression of ispG and ispH genes can effectively improve the ability to synthesize terpenes in recombinant Escherichia coli, including β-carotene and lycopene , and other terpenoids.
Description
技术领域technical field
本发明属于生物技术领域,尤其涉及一种生产番茄红素重组菌的构建方法与应用。The invention belongs to the field of biotechnology, and in particular relates to a construction method and application of a recombinant bacterium producing lycopene.
背景技术Background technique
萜类化合物(terpenoids)是自然界中存在的一类由异戊二烯为结构单元组成的化合物。许多萜类化合物具有很好的药理活性,是中药和天然植物药的主要有效成分。有些萜类化合物已经开发出临床广泛应用的有效药物。Terpenoids are a class of compounds that exist in nature and are composed of isoprene as a structural unit. Many terpenoids have good pharmacological activity and are the main active ingredients of traditional Chinese medicine and natural herbal medicine. Some terpenoids have been developed into effective drugs widely used in clinical practice.
番茄红素是一种典型的萜类化合物;是构成西红柿红色色素的主要成分,是一种出色的抗氧化剂。番茄红素可防止代谢产物“游离基”对人体组织器官所造成的伤害,可作为天然保健食品或者药品。含番茄红素的保健食品可预防老年性视力退化、抗衰老以及预防心血管病,番茄红素还对消化道癌、宫颈癌、乳腺癌、皮肤癌、膀胱癌等均具有一定的抑制作用。番茄红素无毒无害,它与β-胡萝卜素一样可添加到冰淇淋、果子露、硬糖、面包、饼干、蛋糕等食品中,可提高其营养价值。它的保健作用胜过维生素E和β-胡萝卜素。Lycopene is a typical terpenoid; it is the main component of tomato red pigment and is an excellent antioxidant. Lycopene can prevent the damage caused by metabolite "free radicals" to human tissues and organs, and can be used as natural health food or medicine. Health food containing lycopene can prevent senile vision degradation, anti-aging and prevent cardiovascular disease. Lycopene also has a certain inhibitory effect on digestive tract cancer, cervical cancer, breast cancer, skin cancer, and bladder cancer. Lycopene is non-toxic and harmless. Like β-carotene, it can be added to ice cream, sherbet, hard candy, bread, biscuits, cakes and other foods to improve its nutritional value. Its health care function is better than vitamin E and β-carotene.
由于萜类化合物具有广泛的应用前景,市场需求巨大,因此高效生产萜类化合物的方法一直以来是研究热点。目前萜类化合物的生产方法主要有三种:化学合成法、植物提取法和微生物发酵法。化学合成法工艺流程复杂、能耗高、污染大;另一方面,萜类化合物在植物中的含量通常很低,植物提取法对野生植物资源造成严重破坏;相比之下,微生物发酵法不受原料的限制、生产过程绿色清洁,具有很大的优势。由于大肠杆菌(Escherichiacoli)基因组序列已完全公布,遗传背景和代谢途径都非常清楚、具有培养基要求简单和生长迅速等优点,很多研究都选取大肠杆菌作为出发菌种进行改造生产萜类化合物。图1为引入萜烯类合成基因后大肠杆菌生成萜烯类化合物的合成途径。Since terpenoids have broad application prospects and huge market demand, methods for efficiently producing terpenoids have always been a research hotspot. At present, there are three main production methods of terpenoids: chemical synthesis, plant extraction and microbial fermentation. The chemical synthesis method has complicated process, high energy consumption and heavy pollution; on the other hand, the content of terpenoids in plants is usually very low, and the plant extraction method causes serious damage to wild plant resources; in contrast, the microbial fermentation method does not Due to the limitation of raw materials, the production process is green and clean, which has great advantages. Since the genome sequence of Escherichia coli (Escherichia coli) has been fully published, the genetic background and metabolic pathways are very clear, and it has the advantages of simple medium requirements and rapid growth, many studies have selected Escherichia coli as the starting strain to transform and produce terpenoids. Fig. 1 is the synthesis pathway of Escherichia coli to produce terpene compounds after the introduction of terpene synthesis genes.
异戊烯焦磷酸(IPP)和二甲基丙烯基焦磷酸(Dimethylallyl pyrophosphate,DMAPP)是所有萜类化合物的前体化合物,目前已知有两种合成途径(Lee et al.,2002)。一种是甲羟戊酸途径(Mevalonic Acid Pathway,MVA途径),主要存在于真菌和植物的胞液或内质网上。另一种是MEP途径,主要存在于细菌、绿藻和植物质体中。该途径的起始物是3-磷酸甘油醛和丙酮酸,经一系列酶催化形成大约5:1的IPP和DMAPP混合物。IPP在异戊酰焦磷酸异构酶(Isopentenyl diphosphate isomerase,Idi)的催化下异构成二甲基丙烯基焦磷酸DMAPP。IPP与DMAPP是萜类化合物的基本C5单位,可以在此基础上合成各种萜类化合物。Isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) are the precursor compounds of all terpenoids, and there are currently two known synthetic routes (Lee et al., 2002). One is the mevalonic acid pathway (Mevalonic Acid Pathway, MVA pathway), which mainly exists in the cytosol or endoplasmic reticulum of fungi and plants. The other is the MEP pathway, which mainly exists in bacteria, green algae and plant plastids. The initiators of this pathway are glyceraldehyde-3-phosphate and pyruvate, which are catalyzed by a series of enzymes to form an approximately 5:1 mixture of IPP and DMAPP. IPP isomerized to DMAPP under the catalysis of isopentenyl diphosphate isomerase (Idi). IPP and DMAPP are the basic C5 units of terpenoids, on which various terpenoids can be synthesized.
大肠杆菌具有MEP途径,可以合成萜类化合物的前体物质IPP与DMAPP,将萜类化合物的合成基因引入大肠杆菌,大肠杆菌即可生产萜类化合物。但由于大肠杆菌合成IPP和DMAPP的能力很差,所以萜类化合物的产量通常很低。提高大肠杆菌中MEP途径的代谢流、提高合成IPP与DMAPP的能力,成为提高大肠杆菌合成萜烯类化合物产量的关键。多个研究小组在寻找MEP途径中限速步骤、提高MEP途径中关键基因的表达强度中,做了大量工作(Yoonet al.,2007;Ajikumar et al.,2010;Alper etal.,2005a;Alper et al.,2005b;Choi etal.,2010;Jin and Stephanopoulos,2007;Yuan et al.,2006)。研究表明提高MEP途径中1-脱氧-木酮糖-5-磷酸合成酶基因(dxs)、4-二磷酸胞苷-2-C-甲基-D赤藓糖醇合成酶基因(ispD)和4-二磷酸胞苷-2-C-甲基-D赤藓糖醇激酶基因(ispF)、2-C-甲基-D-赤藓醇-2,4-环焦磷酸合成酶基因(ispE)、异戊酰焦磷酸异构酶基因(idi)的表达强度能提高重组大肠杆菌生产β-胡萝卜素的能力。但提高MEP途径中1-脱氧-木酮糖-5-磷酸还原异构酶基因(dxr)、(E)-4-羟基-3-甲基-2-丁烯基-焦磷酸合成酶基因(ispG)、(E)-4-羟基-3-甲基-2-丁烯基-焦磷酸还原酶基因(ispH)的表达强度反而降低了重组大肠杆菌生产β-胡萝卜素的能力(Yuan et al.,2006)。Escherichia coli has the MEP pathway, which can synthesize IPP and DMAPP, the precursors of terpenoids, and the synthesis gene of terpenoids is introduced into Escherichia coli, and Escherichia coli can produce terpenoids. However, due to the poor ability of E. coli to synthesize IPP and DMAPP, the yield of terpenoids is usually very low. Improving the metabolic flow of the MEP pathway in E. coli and improving the ability to synthesize IPP and DMAPP has become the key to increasing the production of terpenes synthesized by E. coli. Many research groups have done a lot of work in finding the rate-limiting steps in the MEP pathway and increasing the expression intensity of key genes in the MEP pathway (Yonet al., 2007; Ajikumar et al., 2010; Alper et al., 2005a; Alper et al. al., 2005b; Choi et al., 2010; Jin and Stephanopoulos, 2007; Yuan et al., 2006). Studies have shown that the 1-deoxy-xylulose-5-phosphate synthase gene (dxs), 4-diphosphate cytidine-2-C-methyl-D erythritol synthase gene (ispD) and 4-diphosphocytidine-2-C-methyl-D erythritol kinase gene (ispF), 2-C-methyl-D-erythritol-2,4-cyclic pyrophosphate synthase gene (ispE ), the expression intensity of isovaleryl pyrophosphate isomerase gene (idi) can improve the ability of recombinant Escherichia coli to produce β-carotene. However, the 1-deoxy-xylulose-5-phosphate reductoisomerase gene (dxr), (E)-4-hydroxy-3-methyl-2-butenyl-pyrophosphate synthase gene ( ispG), (E)-4-hydroxy-3-methyl-2-butenyl-pyrophosphate reductase gene (ispH) expression intensity reduced the ability of recombinant E. coli to produce β-carotene (Yuan et al ., 2006).
为了鉴定MEP途经的限速步骤,Yuan等利用同源重组的方法,用T5启动子在染色体上分别替换了MEP途径的各基因的启动子,发现调控dxs、idi、ispB、ispDF基因后,β-胡萝卜素产量分别提高了100%、40%、20%和40%。用T5启动子对这4个基因进行组合调控后,β-胡萝卜素产量提高了6.3倍,达到6mg/g干重细胞(Yuan et al.,2006)。Suh用强启动子T5调控MEP途经的关键基因dxs、idi和ispDF后,β-胡萝卜素产量比对照提高了4.5倍(Suh etal.,2012)。除了已经鉴定的MEP途径中的限速步骤外,可能MEP途径中还有其他蛋白因为高表达时可溶性低,而没有发现限速(Zhou et al.,2012)。Zhao 2013研究发现,在前体物质供给不足时,下游β-胡萝卜素合成基因很难完成高强度启动子调控实验,而当前体物质供应充足时,很容易实现高强度启动子调控下游基因,因此认为,菌株条件改变,大肠杆菌产β-胡萝卜素的限速步骤会跟着改变(Zhao et al.,2013)。In order to identify the rate-limiting steps of the MEP pathway, Yuan et al. used the method of homologous recombination to replace the promoters of the genes of the MEP pathway on the chromosome with the T5 promoter, and found that after regulating the dxs, idi, ispB, and ispDF genes, β - Carotene production increased by 100%, 40%, 20% and 40% respectively. After combined regulation of these 4 genes with the T5 promoter, the production of β-carotene was increased by 6.3 times, reaching 6 mg/g dry weight cells (Yuan et al., 2006). After Suh used the strong promoter T5 to regulate the key genes dxs, idi and ispDF of the MEP pathway, the production of β-carotene increased by 4.5 times compared with the control (Suh et al., 2012). In addition to the identified rate-limiting steps in the MEP pathway, there may be other proteins in the MEP pathway that have not been found to be rate-limiting because of their high expression and low solubility (Zhou et al., 2012). Zhao 2013 found that when the supply of precursor substances is insufficient, the downstream β-carotene synthesis gene is difficult to complete the high-strength promoter regulation experiment, but when the precursor substance supply is sufficient, it is easy to achieve high-strength promoter regulation of downstream genes, so It is believed that the rate-limiting step of E. coli producing β-carotene will change as the strain conditions change (Zhao et al., 2013).
发明内容Contents of the invention
本发明一个目的是提供重组菌。One object of the present invention is to provide recombinant bacteria.
本发明提供的重组菌,为如下1)-3)中任一种:The recombinant bacterium provided by the present invention is any one of the following 1)-3):
1)为提高含有crt操纵子且产番茄红素的大肠杆菌中(E)-4-羟基-3-甲基-2-丁烯基-焦磷酸合成酶基因ispG和(E)-4-羟基-3-甲基-2-丁烯基-焦磷酸还原酶基因ispH的表达和/或活性,得到重组菌;1) In order to improve (E)-4-hydroxyl-3-methyl-2-butenyl-pyrophosphate synthase gene ispG and (E)-4-hydroxyl in Escherichia coli containing crt operon and producing lycopene -expression and/or activity of 3-methyl-2-butenyl-pyrophosphate reductase gene ispH to obtain recombinant bacteria;
2)为调控1)所示重组菌的crt操纵子表达和/或活性,得到的重组菌;2) The recombinant bacteria obtained for regulating the expression and/or activity of the crt operon of the recombinant bacteria shown in 1);
3)为调控2)所示重组菌的glpD基因表达和/或活性,得到的重组菌。3) A recombinant bacterium obtained for regulating the glpD gene expression and/or activity of the recombinant bacterium shown in 2).
上述重组菌中,所述提高产番茄红素大肠杆菌中(E)-4-羟基-3-甲基-2-丁烯基-焦磷酸合成酶基因ispG和(E)-4-羟基-3-甲基-2-丁烯基-焦磷酸还原酶基因ispH的表达和/或活性为通过如下(1)或(2)实现:In the above-mentioned recombinant bacteria, the (E)-4-hydroxyl-3-methyl-2-butenyl-pyrophosphate synthase gene ispG and (E)-4-hydroxyl-3 -expression and/or activity of the methyl-2-butenyl-pyrophosphate reductase gene ispH is achieved by the following (1) or (2):
(1)将所述产番茄红素大肠杆菌中的ispG基因前插入启动ispG基因表达的序列23所示的调控元件mRSL-4::ispG,且将所述产番茄红素大肠杆菌中的ispH基因前插入启动ispH基因表达的序列32所示的mRSL-14::ispH;(1) The ispG gene in the lycopene-producing Escherichia coli is inserted into the regulatory element mRSL-4::ispG shown in the sequence 23 that initiates the expression of the ispG gene, and the ispH gene in the lycopene-producing Escherichia coli is inserted into mRSL-14::ispH shown in the sequence 32 to start the expression of the ispH gene is inserted before the gene;
(2)将所述产番茄红素大肠杆菌中的ispG基因前插入启动ispG基因表达的序列21所示的mRSL调控元件mRSL-1::ispG,且将所述产番茄红素大肠杆菌中的ispH基因前插入启动ispH基因表达的序列32所示的mRSL-14::ispH;(2) inserting the ispG gene in the lycopene-producing Escherichia coli into the mRSL regulatory element mRSL-1::ispG shown in the sequence 21 that starts the expression of the ispG gene, and inserting the ispG gene in the lycopene-producing Escherichia coli mRSL-14::ispH shown in the sequence 32 inserted before the ispH gene to start the expression of the ispH gene;
所述调控1)所示重组菌的crt操纵子表达和/或活性为将1)所示重组菌中的crt操纵子的启动子替换为诱导型启动子;The expression and/or activity of the crt operon of the recombinant bacteria shown in the regulation 1) is to replace the promoter of the crt operon in the recombinant bacteria shown in 1) with an inducible promoter;
所述调控2)所示重组菌的glpD基因表达和/或活性为将2)所示重组菌中的glpD基因的启动子替换成人工调控元件M1-46。The regulation of the glpD gene expression and/or activity of the recombinant bacteria shown in 2) is to replace the promoter of the glpD gene in the recombinant bacteria shown in 2) with the artificial regulatory element M1-46.
上述插入位置均为插入被调控基因前面,且紧邻被调控基因的起始密码子。The above insertion positions are all inserted in front of the regulated gene and close to the start codon of the regulated gene.
上述重组菌中,所述插入是采用基因组定点编辑或同源重组的方式进行;In the above-mentioned recombinant bacteria, the insertion is performed by site-directed genome editing or homologous recombination;
或所述基因组定点编辑具体为ZFN编辑、TALEN编辑或CRISPR/Cas9编辑;Or the targeted editing of the genome is specifically ZFN editing, TALEN editing or CRISPR/Cas9 editing;
或所述同源重组具体为λ-red同源重组或sacB基因介导筛选的同源重组或整合质粒介导的同源重组。Or the homologous recombination is specifically λ-red homologous recombination or homologous recombination mediated by sacB gene selection or integration plasmid mediated homologous recombination.
上述重组菌中,所述诱导型启动子为含有诱导型启动子Trc启动子和lacI的DNA分子;In the above-mentioned recombinant bacteria, the inducible promoter is a DNA molecule containing an inducible promoter Trc promoter and lacI;
或所述含有诱导型启动子Trc启动子和lacI的DNA分子的核苷酸序列为序列33;Or the nucleotide sequence of the DNA molecule containing the inducible promoter Trc promoter and lacI is sequence 33;
或所述人工调控元件M1-46的核苷酸序列为序列35;Or the nucleotide sequence of the artificial regulatory element M1-46 is sequence 35;
或所述产番茄红素大肠杆菌为大肠杆菌CAR001菌株β-胡萝卜素合成基因簇中crtX和crtY基因敲除,构建合成番茄红素菌株,再将α-酮戊二酸脱氢酶基因sucAB、丁二酸脱氢酶基因sdhABCD和转醛醇酶基因talB的原始调控元件均替换为人工调控元件M1-46得到的菌,然后分别用RBS文库调控crt操纵子、dxs和idi基因,并进行组合调控获得;具体为LYC010。Or the lycopene-producing Escherichia coli is knocked out of the crtX and crtY genes in the β-carotene synthesis gene cluster of the E. The original regulatory elements of the succinate dehydrogenase gene sdhABCD and the transaldolase gene talB were replaced by the artificial regulatory element M1-46, and then the RBS library was used to regulate the crt operon, dxs and idi genes respectively and combine them Regulatory acquisition; specifically LYC010.
上述重组菌中,3)所示的重组菌的保藏号为CGMCC No.12883。Among the above recombinant bacteria, the preservation number of the recombinant bacteria shown in 3) is CGMCC No.12883.
LYC029于2016年8月19日保藏于中国微生物菌种保藏管理委员会普通微生物中心(简称CGMCC,地址:北京市朝阳区北辰西路1号院3号,中国科学院微生物研究所,邮编100101)保藏号为CGMCC No.12883,分类命名为大肠埃希氏菌(Escherichiacoli)。LYC029 was deposited on August 19, 2016 in the General Microbiology Center of China Committee for Culture Collection of Microorganisms (CGMCC for short, address: No. 3, Yard 1, Beichen West Road, Chaoyang District, Beijing, Institute of Microbiology, Chinese Academy of Sciences, Zip Code 100101) It is CGMCC No.12883, and the classification is named Escherichia coli (Escherichiacoli).
本发明另一个目的是提供一种构建上述重组菌的方法,包括如下步骤:Another object of the present invention is to provide a method for constructing the above-mentioned recombinant bacteria, comprising the steps of:
A-C:A-C:
A为如下1)或2):A is the following 1) or 2):
1)将产番茄红素大肠杆菌中的ispG基因前插入启动ispG基因表达的序列23所示的调控元件mRSL-4::ispG,且将所述产番茄红素大肠杆菌中的ispH基因前插入启动ispH基因表达的序列32所示的mRSL-14::ispH,得到重组菌;1) Pre-insert the ispG gene in lycopene-producing Escherichia coli into the regulatory element mRSL-4::ispG shown in Sequence 23 that initiates the expression of ispG gene, and insert the ispH gene in the lycopene-producing Escherichia coli The mRSL-14::ispH shown in the sequence 32 that starts the expression of the ispH gene is obtained to obtain the recombinant bacteria;
2)将所述产番茄红素大肠杆菌中的ispG基因前插入启动ispG基因表达的序列21所示的mRSL调控元件mRSL-1::ispG,且将所述产番茄红素大肠杆菌中的ispH基因前插入启动ispH基因表达的序列32所示的mRSL-14::ispH,得到重组菌;2) inserting the ispG gene in the lycopene-producing Escherichia coli into the mRSL regulatory element mRSL-1::ispG shown in the sequence 21 that initiates the expression of the ispG gene, and inserting the ispH gene in the lycopene-producing Escherichia coli mRSL-14::ispH shown in the sequence 32 to start the expression of the ispH gene is inserted before the gene to obtain the recombinant bacteria;
B、将A)得到的重组菌中的crt操纵子的启动子替换为诱导型启动子,得到重组菌;B, replacing the promoter of the crt operon in the recombinant bacterium obtained in A) with an inducible promoter to obtain the recombinant bacterium;
C、将B)得到的重组菌中的glpD基因的启动子替换成人工调控元件M1-46,得到重组菌。C. Replace the promoter of the glpD gene in the recombinant bacteria obtained in B) with the artificial regulatory element M1-46 to obtain the recombinant bacteria.
上述方法中,所述插入是采用基因组定点编辑或同源重组的方式进行;In the above method, the insertion is performed by means of genome-directed editing or homologous recombination;
或所述基因组定点编辑具体为ZFN编辑、TALEN编辑或CRISPR/Cas9编辑;Or the targeted editing of the genome is specifically ZFN editing, TALEN editing or CRISPR/Cas9 editing;
或所述同源重组具体为λ-red同源重组或sacB基因介导筛选的同源重组或整合质粒介导的同源重组。Or the homologous recombination is specifically λ-red homologous recombination or homologous recombination mediated by sacB gene selection or integration plasmid mediated homologous recombination.
上述方法中,所述诱导型启动子为含有诱导型启动子Trc启动子和lacI的DNA分子;In the above method, the inducible promoter is a DNA molecule containing an inducible promoter Trc promoter and lacI;
或所述含有诱导型启动子Trc启动子和lacI的DNA分子的核苷酸序列为序列33;Or the nucleotide sequence of the DNA molecule containing the inducible promoter Trc promoter and lacI is sequence 33;
或所述人工调控元件M1-46的核苷酸序列为序列35;Or the nucleotide sequence of the artificial regulatory element M1-46 is sequence 35;
或所述产番茄红素大肠杆菌为LYC010。Or the lycopene-producing Escherichia coli is LYC010.
上述的重组菌在生产番茄红素中的应用也是本发明保护的范围。The application of the above-mentioned recombinant bacteria in the production of lycopene is also within the protection scope of the present invention.
本发明第三个目的是提供一种生产番茄红素的方法。The third object of the present invention is to provide a method for producing lycopene.
本发明提供的方法,包括如下步骤:发酵上述的重组菌,得到番茄红素。The method provided by the invention includes the following steps: fermenting the above-mentioned recombinant bacteria to obtain lycopene.
本发明的实验证明,在具有一定萜类化合物合成能力的重组大肠杆菌中,MEP途径中间体HMBPP胞内积累,可以引起细胞毒性;协调表达ispG和ispH基因,可以有效提高重组大肠杆菌的萜烯类化合物合成能力,包括β-胡萝卜素和番茄红素,以及其它萜烯类化合物。Experiments of the present invention prove that in recombinant Escherichia coli with a certain ability to synthesize terpenoids, the intracellular accumulation of the MEP pathway intermediate HMBPP can cause cytotoxicity; the coordinated expression of ispG and ispH genes can effectively increase the terpene content of recombinant Escherichia coli. Ability to synthesize compounds including β-carotene and lycopene, as well as other terpenoids.
附图说明Description of drawings
图1为引入萜烯类合成基因后大肠杆菌生成萜烯类化合物的合成途径。Fig. 1 is the synthesis pathway of Escherichia coli to produce terpene compounds after the introduction of terpene synthesis genes.
图2为建库调控及测定细胞量、β-胡萝卜素相对产量及相应基因的转录水平;Figure 2 is the control and measurement of cell mass, relative production of β-carotene and transcription level of corresponding genes for library construction;
A为dxr建库后所选菌株的细胞量和β-胡萝卜素相对产量;B为dxr建库后所选菌株dxr相对表达量;C为ispD建库后所选菌株的细胞量和β-胡萝卜素相对产量;D为ispD建库后所选菌株ispD相对表达量;E为ispE建库后所选菌株的细胞量和β-胡萝卜素相对产量;F为ispE建库后所选菌株ispE相对表达量。G为ispG建库后所选菌株的细胞量和β-胡萝卜素相对产量;H为ispG建库后所选菌株ispG相对表达量;I为ispH建库后所选菌株的细胞量和β-胡萝卜素相对产量;J为ispH建库后所选菌株ispH相对表达量。A is the cell mass and relative production of β-carotene of the selected strains after the establishment of the dxr bank; B is the relative expression of dxr in the selected strains after the establishment of the dxr bank; C is the cell mass and β-carotene of the selected strains after the establishment of the ispD bank D is the relative expression of ispD of the selected strains after the ispD library is built; E is the cell mass and relative production of β-carotene of the selected strains after the ispE library is built; F is the relative expression of ispE of the selected strains after the ispE library is built quantity. G is the cell mass and relative yield of β-carotene of the selected strains after the ispG library is built; H is the relative expression of ispG of the selected strains after the ispG library is built; I is the cell mass and β-carotene of the selected strains after the ispH library is built J is the relative expression level of ispH strains selected after ispH library construction.
图3为ispG和ispH基因组合调控菌株细胞生长和β-胡萝卜素产量变化。A为OD600;B为β-胡萝卜素相对产量。Fig. 3 shows that the combination of ispG and ispH genes regulates the changes in cell growth and β-carotene production of the strain. A is OD 600 ; B is the relative yield of β-carotene.
图4为LYC010中ispG和ispH基因组合调控菌株番茄红素产量变化。Figure 4 shows the changes in lycopene production of strains regulated by the combination of ispG and ispH genes in LYC010.
图5为LYC023和LYC029中ispG和ispH基因组合调控菌株番茄红素产量变化。Figure 5 shows the changes in lycopene production of strains regulated by the combination of ispG and ispH genes in LYC023 and LYC029.
图6为发酵工艺图。Figure 6 is a fermentation process diagram.
具体实施方式detailed description
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。The experimental methods used in the following examples are conventional methods unless otherwise specified.
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。The materials and reagents used in the following examples can be obtained from commercial sources unless otherwise specified.
大肠杆菌ATCC 8739在文献“Gunsalus IC,Hand DB.(1941).The use ofbacteria in the chemical determination of total vitamin C.J Biol Chem.141:853-858.”中公开过,公众可从天津工业生物技术研究所获得;Escherichia coli ATCC 8739 has been disclosed in the document "Gunsalus IC, Hand DB. (1941). The use of bacteria in the chemical determination of total vitamin C.J Biol Chem.141:853-858." The public can obtain it from Tianjin Industrial Biotechnology Research obtained;
重组菌株M1-93在文献“Lu,J.,J.Tang,et al.(2012).Combinatorialmodulation of galP and glkgene expression for improved alternative glucoseutilization.ApplMicrobiolBiotechnol93(6):2455-2462.”中公开过,公众可从天津工业生物技术研究所获得。The recombinant strain M1-93 was disclosed in the document "Lu, J., J.Tang, et al. (2012). Combinatorial modulation of galP and glkgene expression for improved alternative glucoseutilization. ApplMicrobiolBiotechnol93 (6): 2455-2462.", public Available from Tianjin Institute of Industrial Biotechnology.
M1-93人工调控元件序列见序列1。See sequence 1 for the sequence of M1-93 artificial regulatory element.
番茄红素购自Sigma,产品目录号为L9879。Lycopene was purchased from Sigma, catalog number L9879.
2-C-Methyl-D-erythritol 4-phosphate(MEP)购自Echelon Biosciences,产品目录号为I-M051。2-C-Methyl-D-erythritol 4-phosphate (MEP) was purchased from Echelon Biosciences with catalog number I-M051.
1-Hydroxy-2-methyl-2-buten-4-yl 4-diphosphate(HMBPP)购自EchelonBiosciences,产品目录号为I-M055。1-Hydroxy-2-methyl-2-buten-4-yl 4-diphosphate (HMBPP) was purchased from Echelon Biosciences with catalog number I-M055.
1-Deoxy-D-xylulose 5-phosphate(DXP)购自Echelon Biosciences,产品目录号为I-M050。1-Deoxy-D-xylulose 5-phosphate (DXP) was purchased from Echelon Biosciences with catalog number I-M050.
4-Diphosphocytidyl-2-C-methyl-D-erythritol(CDP-ME)购自EchelonBiosciences,产品目录号为I-M052。4-Diphosphocytidyl-2-C-methyl-D-erythritol (CDP-ME) was purchased from Echelon Biosciences, catalog number I-M052.
2-C-Methyl-D-erythritol 2,4-cyclophosphate(MEcPP)购自EchelonBiosciences,产品目录号为I-M054。2-C-Methyl-D-erythritol 2,4-cyclophosphate (MEcPP) was purchased from Echelon Biosciences with catalog number I-M054.
Isopentenyl pyrophosphate triammonium salt solution(IPP)购自Sigma,产品目录号为I0503-1VL。Isopentenyl pyrophosphate triammonium salt solution (IPP) was purchased from Sigma with catalog number I0503-1VL.
pXZ-CS质粒在文献“Tan Z,Zhu X,Chen J,Li Q,Zhang X(2013)Activatingphosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase incombination for improving succinate production.Appl Environ Microbiol79(16):4838-4844.”中公开过,公众可从天津工业生物技术研究所获得。The pXZ-CS plasmid was disclosed in the document "Tan Z, Zhu X, Chen J, Li Q, Zhang X(2013) Activating phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase combination for improving succinate production. Appl Environ Microbiol79(16):4838-4844." , publicly available from Tianjin Institute of Industrial Biotechnology.
pKD46质粒在文献“Datsenko,wanner.One-step inactivation of chromosomalgenes in Escherichia coli K-12using PCR products.Proc Natl Acad SciUSA.2000.97(12):6640-6645;”中公开过,公众可从天津工业生物技术研究所获得。The pKD46 plasmid has been disclosed in the document "Datsenko, wanner. One-step inactivation of chromosomalgenes in Escherichia coli K-12 using PCR products. Proc Natl Acad SciUSA. 2000.97 (12): 6640-6645; ", and the public can obtain it from Tianjin Industrial Biotechnology obtained by the Institute.
重组大肠杆菌LYC010为将重组大肠杆菌CAR001菌株β-胡萝卜素合成基因簇中crtX和crtY基因敲除,构建合成番茄红素菌株,再将α-酮戊二酸脱氢酶基因sucAB、丁二酸脱氢酶基因sdhABCD和转醛醇酶基因talB的原始调控元件均替换为人工调控元件M1-46得到的菌,然后分别用RBS文库调控crt操纵子、dxs和idi基因,并进行组合调控获得;具体构建方法在公开号为ZL 201410029600.0、发明名称为“一株生产番茄红素的重组菌及其应用”的发明专利中公开过,公众可从天津工业生物技术研究所获得。已于2013年9月23日保藏于中国微生物菌种保藏管理委员会普通微生物中心(简称CGMCC,地址:北京市朝阳区北辰西路1号院3号,中国科学院微生物研究所,邮编100101),保藏号为CGMCC No.8238。Recombinant Escherichia coli LYC010 is to knock out the crtX and crtY genes in the β-carotene synthesis gene cluster of the recombinant Escherichia coli CAR001 strain to construct a strain that synthesizes lycopene, and then the α-ketoglutarate dehydrogenase gene sucAB, succinate The original regulatory elements of the dehydrogenase gene sdhABCD and the transaldolase gene talB were replaced with the artificial regulatory element M1-46, and then the RBS library was used to regulate the crt operon, dxs and idi genes, and combined regulation was obtained; The specific construction method has been disclosed in the invention patent with the publication number ZL 201410029600.0 and the invention title "A Recombinant Bacteria for Lycopene Production and Its Application", and the public can obtain it from Tianjin Institute of Industrial Biotechnology. On September 23, 2013, it was deposited in the General Microorganism Center of China Committee for Culture Collection of Microbial Cultures (CGMCC for short, address: No. 3, Yard 1, Beichen West Road, Chaoyang District, Beijing, Institute of Microbiology, Chinese Academy of Sciences, zip code 100101), deposit The number is CGMCC No.8238.
重组菌CAR005为将β-胡萝卜素合成基因簇和trc调控元件导入大肠杆菌中,再将β-胡萝卜素合成基因簇的trc调控元件替换为人工调控元件M1-93;再将1-脱氧-木酮糖-5-磷酸合成酶基因dxs的原始调控元件替换为人工调控元件M1-37;再将异戊酰焦磷酸异构酶基因idi的原始调控元件替换为人工调控元件M1-46;再将α-酮戊二酸脱氢酶基因sucAB、丁二酸脱氢酶基因sdhABCD和转醛醇酶基因talB的原始调控元件均替换为人工调控元件M1-46得到的菌,具体构建方法在公开号为CN 103087972A、发明名称为“生产萜类化合物的重组微生物及构建方法”的发明专利中公开过,公众可从天津工业生物技术研究所获得。The recombinant strain CAR005 is to introduce the β-carotene synthesis gene cluster and the trc regulatory element into Escherichia coli, and then replace the trc regulatory element of the β-carotene synthesis gene cluster with the artificial regulatory element M1-93; The original regulatory element of ketose-5-phosphate synthase gene dxs was replaced by artificial regulatory element M1-37; the original regulatory element of isovaleryl pyrophosphate isomerase gene idi was replaced by artificial regulatory element M1-46; The original regulatory elements of α-ketoglutarate dehydrogenase gene sucAB, succinate dehydrogenase gene sdhABCD and transaldolase gene talB were all replaced with artificial regulatory element M1-46. The specific construction method is in the publication number It is disclosed in the invention patent of CN 103087972A and the invention title is "Recombinant Microorganism for Producing Terpenoids and Construction Method", and the public can obtain it from Tianjin Institute of Industrial Biotechnology.
带有pKD46的大肠杆菌CAR005为将质粒pKD46导入大肠杆菌CAR005中得到的菌。Escherichia coli CAR005 carrying pKD46 is a bacterium obtained by introducing plasmid pKD46 into Escherichia coli CAR005.
无盐LB的制备方法如下:The preparation method of salt-free LB is as follows:
50%的蔗糖溶液:称取500g蔗糖,少量超纯水溶解后,定溶至1L,115℃,灭菌20min。50% sucrose solution: Weigh 500g of sucrose, dissolve it in a small amount of ultrapure water, and dilute to 1L, sterilize at 115°C for 20 minutes.
10%的无盐蔗糖LB培养基:称取5g酵母膏,10g蛋白胨于800ml水中,115℃,灭菌20min。灭菌后加200ml的50%的蔗糖溶液。10% salt-free sucrose LB medium: Weigh 5g of yeast extract, 10g of peptone in 800ml of water, sterilize at 115°C for 20min. Add 200ml of 50% sucrose solution after sterilization.
6%的无盐蔗糖LB培养基:称取5g酵母膏,10g蛋白胨,15g琼脂粉,溶于880ml水中,115℃,灭菌20min。灭菌后加120ml的50%的蔗糖溶液。6% salt-free sucrose LB medium: Weigh 5g yeast extract, 10g peptone, 15g agar powder, dissolve in 880ml water, sterilize at 115°C for 20min. Add 120ml of 50% sucrose solution after sterilization.
实施例中氯霉素、氨苄霉素、卡那霉素的浓度均分别为34μg/L、50μg/L、50μg/L。The concentrations of chloramphenicol, ampicillin, and kanamycin in the examples were 34 μg/L, 50 μg/L, and 50 μg/L, respectively.
发酵培养基的制备方法如下:The preparation method of fermentation medium is as follows:
1.10%甘油母液:称取100g甘油,加去离子水至1L,121℃,灭菌20min。1. 10% glycerin mother solution: Weigh 100g glycerol, add deionized water to 1L, sterilize at 121°C for 20min.
2.微量元素母液:。微量元素溶液的成分:1L溶液中含10g FeSO4·7H2O、5.25gZnSO4·7H2O、3.0g CuSO4·5H2O、0.5g MnSO4·4H2O、0.23g。2. Trace element mother liquor:. The composition of trace element solution: 1L solution contains 10g FeSO 4 ·7H 2 O, 5.25g ZnSO 4 ·7H 2 O, 3.0g CuSO 4 ·5H 2 O, 0.5g MnSO 4 ·4H 2 O, 0.23g.
3.称取酵母粉:10g/l、K2HPO4:10.5g/l、(NH4)2HPO4:6g/l、甘油:15g/l、柠檬酸:1.84g/l、10ml微量元素母液于700ml水中,121℃,灭菌20min。灭菌后加入灭菌的MgSO4·7H2O溶液和100ml 10%的甘油母液,最终加无菌水至1L3. Weigh yeast powder: 10g/l, K 2 HPO 4 : 10.5g/l, (NH 4 ) 2 HPO 4 : 6g/l, glycerin: 15g/l, citric acid: 1.84g/l, 10ml trace elements The mother liquor was sterilized in 700ml of water at 121°C for 20 minutes. After sterilization, add sterilized MgSO 4 7H 2 O solution and 100ml 10% glycerin mother solution, and finally add sterile water to 1L
MgSO4·7H2O溶液:MgSO4·7H2O:5g溶于20ml去离子水中,121℃,灭菌20min。MgSO4·7H2O solution: MgSO 4 ·7H 2 O: 5g was dissolved in 20ml deionized water, sterilized at 121°C for 20min.
高密度发酵培养基制备方法如下:The preparation method of high-density fermentation medium is as follows:
1.底料培养基:酵母粉:20g/l、KH2PO4:10.5g/l、(NH4)2HPO4:6g/l、甘油:30g/l、柠檬酸:1.84g/l、MgSO4·7H2O:10g/L、15ml/L微量元素母液。1. Base medium: yeast powder: 20g/l, KH 2 PO 4 : 10.5g/l, (NH 4 ) 2 HPO 4 : 6g/l, glycerin: 30g/l, citric acid: 1.84g/l, MgSO 4 ·7H 2 O: 10g/L, 15ml/L trace element mother solution.
2.100倍微量元素母液:1L溶液中含10g FeSO4·7H2O、5.25g ZnSO4·7H2O、3.0gCuSO4·5H2O、0.5g MnSO4·4H2O、0.23g。2. 100 times trace element mother solution: 1L solution contains 10g FeSO 4 ·7H 2 O, 5.25g ZnSO 4 ·7H 2 O, 3.0g CuSO 4 ·5H 2 O, 0.5g MnSO 4 ·4H 2 O, 0.23g.
3.补料培养基:甘油:700g/l。3. Feed medium: glycerol: 700g/l.
表1本发明中所用的引物Primers used in the present invention in table 1
表2.本发明中构建菌株Table 2. Bacterial strains constructed in the present invention
实施例1、MEP途径ispG和ispH基因表达强度与β-胡萝卜素产量的关系Example 1, the relationship between the MEP pathway ispG and ispH gene expression intensity and β-carotene output
为了研究CAR005(Zhao J,Li Q,Sun T,et al.Engineering central metabolicmodules of Escherichia coli for improving beta-carotene production.Metabolicengineering 2013;17:42-50.CAR001和CAR005D都出自这篇文章)中MEP途径各基因表达强度与β-胡萝卜素产量的关系,建立mRS文库调控dxr、ispD、ispE、ispG和ispH基因,随机选15个菌株,测定β-胡萝卜素的产量,根据β-胡萝卜素的产量,再选几株代表性菌株用实时定量PCR方法,测定基因表达量,研究表达量与β-胡萝卜素的产量的关系。In order to study the MEP pathway in CAR005 (Zhao J, Li Q, Sun T, et al. Engineering central metabolic modules of Escherichia coli for improving beta-carotene production. Metabolicengineering 2013; 17:42-50. Both CAR001 and CAR005D are from this article) The relationship between the expression intensity of each gene and the production of β-carotene, the mRS library was established to regulate dxr, ispD, ispE, ispG and ispH genes, 15 strains were randomly selected, and the production of β-carotene was determined. According to the production of β-carotene, Then select several representative strains and use the real-time quantitative PCR method to measure the gene expression level, and study the relationship between the expression level and the yield of β-carotene.
一、构建mRS文库调控CAR005中dxr、ispD、ispE、ispG和ispH基因1. Construction of mRS library to regulate dxr, ispD, ispE, ispG and ispH genes in CAR005
本实施案例PCR扩增出mRS(mRNA稳定区)文库片段,插在几个待调控基因的起始密码子前,保留原始调控元件。原核生物中-10区同-35区之间称为mRNA稳定区,该区核苷酸种类和数目的变动会影响基因转录活性的高低,在这个区域建立文库,可以得到不同活性的启动子。该文库序列见序列2。In this implementation case, the mRS (mRNA stable region) library fragment was amplified by PCR and inserted before the start codons of several genes to be regulated, and the original regulatory elements were retained. In prokaryotes, the region between -10 and -35 is called the mRNA stable region. Changes in the type and number of nucleotides in this region will affect the level of gene transcription activity. A library can be established in this region to obtain promoters with different activities. See sequence 2 for the library sequence.
dxr-1、dxr-2、dxr-3……dxr-15分别为将大肠杆菌中CAR005基因组中的dxr基因前分别插入用于启动dxr基因的表达的表2所示的mRSL-1::dxr-mRSL-15::dxr。dxr-1, dxr-2, dxr-3... dxr-15 are the mRSL-1::dxr shown in Table 2 for respectively inserting the dxr gene in the CAR005 genome in Escherichia coli into the expression of the dxr gene respectively -mRSL-15::dxr.
ispD-1、ispD-2、ispD-3……ispD-15分别为将大肠杆菌中CAR005基因组中的ispD基因前分别插入用于启动ispD基因的表达的表2所示的mRSL-1::ispD-mRSL-15::ispD,。ispD-1, ispD-2, ispD-3...ispD-15 are the mRSL-1::ispD shown in Table 2 that are respectively inserted before the ispD gene in the CAR005 genome in Escherichia coli to initiate the expression of the ispD gene - mRSL-15::ispD, .
ispE-1、ispE-2、ispE-3……ispE-15分别为将大肠杆菌中CAR005基因组中的ispE基因前分别插入用于启动ispE基因的表达的表2所示的mRSL-1::ispE-mRSL-15::ispE。ispE-1, ispE-2, ispE-3...ispE-15 are the mRSL-1::ispE shown in Table 2 for respectively inserting the ispE gene in the CAR005 genome in Escherichia coli into the expression of the ispE gene respectively -mRSL-15::ispE.
ispG-1、ispG-2、ispG-3……ispG-15分别为将大肠杆菌中CAR005基因组中的ispG基因前分别插入用于启动ispG基因的表达的表2所示的mRSL-1::ispG-mRSL-15::ispG。ispG-1, ispG-2, ispG-3...ispG-15 are the mRSL-1::ispG shown in Table 2, respectively inserted before the ispG gene in the CAR005 genome in Escherichia coli to initiate the expression of the ispG gene -mRSL-15::ispG.
ispH-1、ispH-2、ispH-3……ispH-15分别为将大肠杆菌中CAR005基因组中的ispG基因前分别插入用于启动ispH基因的表达的表2所示的mRSL-1::ispH-mRSL-15::ispH。ispH-1, ispH-2, ispH-3...ispH-15 are the mRSL-1::ispH shown in Table 2 respectively inserted before the ispG gene in the CAR005 genome in Escherichia coli to initiate the expression of the ispH gene -mRSL-15::ispH.
得到的所有菌构成文库菌株。All obtained strains constitute the library strains.
二、文库菌株β-胡萝卜素的产量2. Production of β-carotene from library strains
将上述一得到的各个文库菌株分别挑单菌落于4ml的LB培养基的试管中,30℃,250rpm过夜培养;然后按照1%(体积百分含量)的接种量,即100μl菌液,将试管中的菌液转接到含10ml培养液的100ml三角瓶中,30℃,250rpm培养;培养24h后。取500μL菌液于13000rpm离心3min弃上清液,用灭菌水清洗菌体,加1ml丙酮重悬菌体,在55℃黑暗条件下萃取15min,13000rpm离心10min收集上清液。以CAR005为对照。Each of the library strains obtained in the above-mentioned one was singled out and colonized in a test tube of 4 ml of LB medium, and cultured overnight at 30°C and 250 rpm; The bacterial solution in the medium was transferred to a 100ml Erlenmeyer flask containing 10ml of culture solution, cultivated at 30°C and 250rpm; after 24 hours of cultivation. Take 500 μL of bacterial solution and centrifuge at 13,000 rpm for 3 minutes to discard the supernatant, wash the bacterial cells with sterilized water, add 1 ml of acetone to resuspend the bacterial cells, extract at 55°C in the dark for 15 minutes, and centrifuge at 13,000 rpm for 10 minutes to collect the supernatant. Take CAR005 as the control.
采用紫外分光光度计453nm下测定上清液中β-胡萝卜素吸收值。The absorption value of β-carotene in the supernatant was measured by an ultraviolet spectrophotometer at 453 nm.
β-胡萝卜素的相对产量=上清液中β-胡萝卜素吸收值乘以/上清液细胞浊度(OD600nm)The relative yield of β-carotene = the absorption value of β-carotene in the supernatant multiplied by the turbidity of the cells in the supernatant (OD600nm)
dxr-1、dxr-2、dxr-3……dxr-15β-胡萝卜素的相对产量的结果见图2A,图2A表明,CAR005的dxr基因经mRS文库调控后,随机所选15株菌的β-胡萝卜素产量为CAR005的0.5到0.99倍,细胞量为CAR005的0.66到0.9倍。选β-胡萝卜素产量较低的菌株dxr-4(调控元件mRSL-4::dxr序列见序列3)和dxr-6(调控元件mRSL-6::dxr序列见序列4)、β-胡萝卜素产量中等的菌株dxr-2(调控元件mRSL-2::dxr序列见序列5)和dxr-5(调控元件mRSL-5::dxr序列见序列6)、及β-胡萝卜素产量较高的菌株dxr-11(调控元件mRSL-11::dxr序列见序列7)和dxr-15(调控元件mRSL-15::dxr序列见序列8)用实时定量PCR方法测定dxr基因的表达量。The results of the relative production of dxr-1, dxr-2, dxr-3...dxr-15β-carotene are shown in Figure 2A. Figure 2A shows that after the dxr gene of CAR005 was regulated by the mRS library, the β-carotene of 15 strains randomly selected -Carotene production is 0.5 to 0.99 times that of CAR005, and the cell volume is 0.66 to 0.9 times that of CAR005. Select the bacterial strain dxr-4 (regulatory element mRSL-4::dxr sequence see sequence 3) and dxr-6 (regulatory element mRSL-6::dxr sequence see sequence 4) with lower β-carotene production, β-carotene Strains dxr-2 (regulatory element mRSL-2::dxr sequence see sequence 5) and dxr-5 (regulatory element mRSL-5::dxr sequence see sequence 6) with medium yield, and strains with higher β-carotene production For dxr-11 (regulatory element mRSL-11::dxr sequence, see SEQ ID NO: 7) and dxr-15 (regulatory element mRSL-15::dxr sequence, see SEQ ID NO: 8), the expression level of dxr gene was determined by real-time quantitative PCR.
ispD-1至ispD-15β-胡萝卜素的相对产量的结果见图2C所示,表明,CAR005的ispD基因经mRS文库调控后,随机所选15株菌的β-胡萝卜素产量为CAR005的0.99到1.05倍。选β-胡萝卜素产量较低的菌株ispD-1(调控元件mRSL-1::ispD序列见序列9)和ispD-15(调控元件mRSL-15::ispD序列见序列10)、β-胡萝卜素产量中等的菌株ispD-6(调控元件mRSL-6::ispD序列见序列11)和ispD-13(调控元件mRSL-13::ispD序列见序列12)、及β-胡萝卜素产量较高的菌株ispD-7(调控元件mRSL-7::ispD序列见序列13)和ispD-9(调控元件mRSL-9::ispD序列见序列14)用实时定量PCR方法测定ispD基因的表达量。The results of the relative production of β-carotene from ispD-1 to ispD-15 are shown in Figure 2C, indicating that after the ispD gene of CAR005 was regulated by the mRS library, the β-carotene production of 15 randomly selected strains was 0.99 to 0.99% of that of CAR005. 1.05 times. The bacterial strain ispD-1 (regulatory element mRSL-1::ispD sequence is shown in sequence 9) and ispD-15 (regulatory element mRSL-15::ispD sequence is shown in sequence 10) and β-carotene with lower β-carotene production Strains ispD-6 (regulatory element mRSL-6::ispD sequence, see SEQ ID NO: 11) and ispD-13 (regulatory element mRSL-13::ispD sequence: see SEQ ID NO: 12) and strains with higher β-carotene production ispD-7 (see SEQ ID NO: 13 for the regulatory element mRSL-7::ispD sequence) and ispD-9 (see SEQ ID NO: 14 for the regulatory element mRSL-9::ispD sequence) were used to measure the expression level of ispD gene by real-time quantitative PCR.
ispE-1至ispE-15β-胡萝卜素的相对产量的结果如图2E所示,表明,CAR005的ispE基因经mRS文库调控后,随机所选15株菌的β-胡萝卜素产量为CAR005的0.97到1.09倍。选β-胡萝卜素产量较低的菌株ispE-5(调控元件mRSL-5::ispE序列见序列15)和ispE-15(调控元件mRSL-15::ispE序列见序列16)、β-胡萝卜素产量中等的菌株ispE-3(调控元件mRSL-3::ispE序列见序列17)和ispE-12(调控元件mRSL-12::ispE序列见序列18)、及β-胡萝卜素产量较高的菌株ispE-6(调控元件mRSL-6::ispE序列见序列19)和ispE-8(调控元件mRSL-8::ispE序列见序列20)用实时定量PCR方法测定ispE基因的表达量。The results of the relative production of β-carotene from ispE-1 to ispE-15 are shown in Figure 2E, indicating that after the ispE gene of CAR005 was regulated by the mRS library, the β-carotene production of 15 randomly selected strains was 0.97 to 0.97% of that of CAR005. 1.09 times. The strain ispE-5 (see sequence 15 for the regulatory element mRSL-5::ispE sequence) and ispE-15 (see sequence 16 for the regulatory element mRSL-15::ispE sequence) and β-carotene were selected for the lower production of β-carotene Strains ispE-3 (see SEQ ID NO: 17 for the regulatory element mRSL-3::ispE sequence) and ispE-12 (see SEQ ID NO: 18 for the regulatory element mRSL-12::ispE sequence) with medium yields, and strains with higher β-carotene production ispE-6 (see SEQ ID NO: 19 for the regulatory element mRSL-6::ispE sequence) and ispE-8 (see SEQ ID NO: 20 for the regulatory element mRSL-8::ispE sequence) were used to measure the expression level of the ispE gene by real-time quantitative PCR.
ispG-1至ispG-15β-胡萝卜素的相对产量的结果如图2G所示,表明,CAR005的ispG基因经mRS文库调控后,随机所选15株菌的β-胡萝卜素产量为CAR005的0.11到0.79倍,细胞量为CAR005的0.47到0.91倍。选β-胡萝卜素产量较低的菌株ispG-1(调控元件mRSL-1::ispG序列见序列21)和ispG-13(调控元件mRSL-13::ispG序列见序列22),β-胡萝卜素产量较低的菌株ispG-4(调控元件mRSL-4::ispG序列见序列23)和ispG-5(调控元件mRSL-5::ispG序列见序列24),及β-胡萝卜素产量较低的菌株ispG-11(调控元件mRSL-11::ispG序列见序列25)和ispG-14(调控元件mRSL-14::ispG序列见序列26),用实时定量PCR方法测定ispG基因的表达量。The results of the relative production of β-carotene from ispG-1 to ispG-15 are shown in Figure 2G, indicating that after the ispG gene of CAR005 was regulated by the mRS library, the production of β-carotene from 15 randomly selected strains was 0.11 to 0.11 to that of CAR005. 0.79 times, and the cell volume was 0.47 to 0.91 times that of CAR005. Select the lower bacterial strain ispG-1 (regulatory element mRSL-1::ispG sequence see sequence 21) and ispG-13 (regulatory element mRSL-13::ispG sequence see sequence 22) with lower β-carotene production, β-carotene The strain ispG-4 (regulatory element mRSL-4::ispG sequence is shown in SEQ ID NO: 23) and ispG-5 (regulatory element mRSL-5::ispG sequence is shown in SEQ ID NO: 24) with lower yield, and the lower yield of β-carotene For strains ispG-11 (regulatory element mRSL-11::ispG sequence, see SEQ ID NO: 25) and ispG-14 (regulatory element mRSL-14::ispG sequence, see SEQ ID NO: 26), real-time quantitative PCR method was used to measure the expression level of ispG gene.
ispH-1至ispH-15β-胡萝卜素的相对产量的结果如图2I表明,CAR005的ispH基因经mRS文库调控后,随机所选15株菌的β-胡萝卜素产量为CAR005的0.98到1.06倍。随机选ispH-1(调控元件mRSL-1::ispH序列见序列27)、ispH-2(调控元件mRSL-2::ispH序列见序列28)、ispH-3(调控元件mRSL-3::ispH序列见序列29)、ispH-4(调控元件mRSL-4::ispH序列见序列30)、ispH-5(调控元件mRSL-5::ispH序列见序列31)和ispH-14(调控元件mRSL-14::ispH序列见序列32)用实时定量PCR方法测定ispH基因的表达量。The results of the relative production of β-carotene from ispH-1 to ispH-15 are shown in Figure 2I. After the ispH gene of CAR005 was regulated by the mRS library, the β-carotene production of 15 randomly selected strains was 0.98 to 1.06 times that of CAR005. Randomly select ispH-1 (regulatory element mRSL-1::ispH sequence see sequence 27), ispH-2 (regulatory element mRSL-2::ispH sequence see sequence 28), ispH-3 (regulatory element mRSL-3::ispH sequence See SEQ ID NO: 29 for the sequence), ispH-4 (see SEQ ID NO: 30 for the regulatory element mRSL-4::ispH sequence), ispH-5 (see SEQ ID NO: 31 for the regulatory element mRSL-5::ispH sequence) and ispH-14 (see SEQ ID NO: 31 for the regulatory element mRSL- 14::ispH sequence see sequence 32) real-time quantitative PCR method was used to measure the expression level of ispH gene.
上述各菌为将各自基因的启动子替换为括号里面的调控元件。For each of the above bacteria, the promoters of their respective genes were replaced with the regulatory elements in brackets.
三、β-胡萝卜素产量与相应基因表达量关系3. Relationship between β-carotene production and corresponding gene expression
提取菌株dxr-4、dxr-6、dxr-2、dxr-5、dxr-11和dxr-15总RNA,反转录得到cDNA的第一链;以第一链cDNA为模板,dxr-610-f/dxr-802-r为引物,用iQSYBR Green RT-PCR试剂盒(Bio-Rad Laboratories,Hercules,CA)在实时定量PCR仪(Bio-Rad CFX Connect RealTime System)进行PCR,同时,以CAR005中dxr的cDNA量为对照,测定所选菌株中dxr的表达量。为了保证样品一致性,以16S RNA为内参基因,用于扩增的引物为16S-797-f/16S-963-r,所用引物序列见表1。Extract the total RNA of strains dxr-4, dxr-6, dxr-2, dxr-5, dxr-11 and dxr-15, and reverse transcribe to obtain the first strand of cDNA; using the first strand cDNA as a template, dxr-610- f/dxr-802-r was used as a primer, and PCR was carried out in a real-time quantitative PCR instrument (Bio-Rad CFX Connect RealTime System) with iQSYBR Green RT-PCR kit (Bio-Rad Laboratories, Hercules, CA), and at the same time, in CAR005 The cDNA amount of dxr was used as a control, and the expression amount of dxr in the selected strains was determined. In order to ensure the consistency of the samples, 16S RNA was used as the internal reference gene, and the primers used for amplification were 16S-797-f/16S-963-r. The sequences of the primers used are shown in Table 1.
实时定量PCR扩增程序:Real-time quantitative PCR amplification program:
1)95℃10min,1cycle1) 95℃10min, 1cycle
2)95℃15s-60℃30s-72℃30s,40cycles2) 95℃15s-60℃30s-72℃30s, 40cycles
3)60℃-95℃,0.2℃/s3) 60°C-95°C, 0.2°C/s
ABI Prism 7000SDS软件(Applied Biosystems)进行数据分析。ABI Prism 7000SDS software (Applied Biosystems) was used for data analysis.
将CAR005的cDNA按照一定浓度稀释,测定dxr和16S基因的相对表达量,绘制标准曲线,根据标准曲线计算各个样品中dxr和16S基因的相对表达量,然后计算每个样品做三个重复。Dilute the cDNA of CAR005 according to a certain concentration, measure the relative expression of dxr and 16S genes, draw a standard curve, calculate the relative expression of dxr and 16S genes in each sample according to the standard curve, and then do three replicates for each sample.
dxr样品=dxr相对量/16S相对量dxr sample = relative amount of dxr/relative amount of 16S
dxr相对表达强度=dxr样品/dxrCAR005dxr relative expression intensity = dxr sample/dxrCAR005
采用同样方法分别测定文库选定菌株相应基因的相对表达量,所用引物见表1。The relative expression levels of the corresponding genes of the selected strains in the library were determined by the same method, and the primers used are shown in Table 1.
结果如图2所示。The result is shown in Figure 2.
图2B表明,CAR005的dxr基因mRS文库所选6株菌中dxr表达量为CAR005中dxr表达量的的0.68到42.86倍。β-胡萝卜素产量最低的菌株dxr-4中dxr表达量最高,表达量是CAR005中dxr表达量的42.86倍;而β-胡萝卜素产量最高的dxr-15中dxr基因的表达量最低,为CAR005中dxr表达量的0.68倍。Dxr表达量与相应菌株β-胡萝卜素产量呈反比,即菌株中dxr表达量越高,其β-胡萝卜素产量越低。Figure 2B shows that the expression level of dxr in the 6 strains selected from the dxr gene mRS library of CAR005 is 0.68 to 42.86 times that of dxr in CAR005. The expression level of dxr gene in the strain dxr-4 with the lowest β-carotene production was the highest, which was 42.86 times that of dxr in CAR005; while the expression level of dxr gene in dxr-15 with the highest β-carotene production was the lowest, which was CAR005 0.68 times the expression level of dxr. The expression level of Dxr is inversely proportional to the production of β-carotene in the corresponding strain, that is, the higher the expression level of dxr in the strain, the lower the production of β-carotene.
图2D表明,CAR005的ispD基因mRS文库所选6株菌中ispD表达量为CAR005中ispD表达量的的7到116倍。ispD基因mRS文库所选株菌β-胡萝卜素产量和细胞量与出发菌株CAR005相比变化不大,而ispD表达水平有明显差异,因此,认为ispD表达量和β-胡萝卜素产量没有明显相关性。Figure 2D shows that the expression level of ispD in the 6 strains selected by the ispD gene mRS library of CAR005 is 7 to 116 times that of ispD in CAR005. Compared with the starting strain CAR005, the β-carotene production and cell mass of the strain selected from the ispD gene mRS library have little change, but the ispD expression level is significantly different. Therefore, it is considered that there is no obvious correlation between the ispD expression level and the β-carotene production. .
图2F表明,CAR005的ispE基因mRS文库所选6株菌中ispE表达量为CAR005中ispE表达量的6到44.5倍。ispE基因mRS文库所选株菌β-胡萝卜素产量和细胞量与出发菌株CAR005相比变化不大,而ispE表达水平有明显差异,因此,认为ispE表达量和β-胡萝卜素产量没有明显相关性。Figure 2F shows that the expression level of ispE in the 6 strains selected from the ispE gene mRS library of CAR005 was 6 to 44.5 times that of ispE in CAR005. Compared with the original strain CAR005, the β-carotene production and cell mass of the selected strains of the ispE gene mRS library have little change, but the ispE expression level is significantly different. Therefore, it is considered that there is no obvious correlation between the ispE expression level and the β-carotene production. .
图2H表明,CAR005的ispG基因mRS文库所选9株菌中ispG表达量为CAR005中ispG表达量的的5.09到75.83倍。β-胡萝卜素产量最低的菌株ispG-1中ispG表达量最高,表达量是CAR005中ispG表达量的75.83倍;而β-胡萝卜素产量最高的ispG-11中ispG基因的表达量最低,为CAR005中ispG表达量的5.09倍。ispG表达量与相应菌株β-胡萝卜素产量呈反比,即菌株中ispG表达量越高,其β-胡萝卜素产量越低。Figure 2H shows that the expression level of ispG in the 9 strains selected by the ispG gene mRS library of CAR005 is 5.09 to 75.83 times that of ispG in CAR005. The expression level of ispG in the strain ispG-1 with the lowest β-carotene production is the highest, which is 75.83 times that of ispG in CAR005; while the expression level of ispG gene in ispG-11 with the highest β-carotene production is the lowest, which is CAR005 5.09 times the expression level of ispG. The expression level of ispG is inversely proportional to the production of β-carotene in the corresponding strain, that is, the higher the expression level of ispG in the strain, the lower the production of β-carotene.
图2J表明,CAR005的ispH基因mRS文库所选6株菌中ispH表达量为CAR005中ispH表达量的的4到36.4倍。ispH基因mRS文库所选株菌β-胡萝卜素产量和细胞量与出发菌株CAR005相比变化不大,而ispH表达水平有明显差异,因此,认为ispH表达量和β-胡萝卜素产量没有明显相关性。Figure 2J shows that the expression level of ispH in the 6 strains selected by the ispH gene mRS library of CAR005 is 4 to 36.4 times that of ispH in CAR005. Compared with the starting strain CAR005, the β-carotene production and cell mass of the strain selected from the ispH gene mRS library have little change, but the ispH expression level is significantly different. Therefore, it is considered that there is no obvious correlation between the ispH expression level and the β-carotene production. .
四、ispG和ispH组合调控得到的重组菌4. Recombinant bacteria obtained by combined regulation of ispG and ispH
分别将ispG库调控中ispG-1、ispG-4和ispG-11的ispG的人工调控元件,与ispH库中ispH-3、ispH-4和ispH-14的ispH的人工调控元件在CAR005中组合调控。The ispG artificial regulatory elements of ispG-1, ispG-4, and ispG-11 in the ispG library regulation, and the ispH artificial regulatory elements of ispH-3, ispH-4, and ispH-14 in the ispH library were combined and regulated in CAR005 .
1、重组大肠杆菌G1H3、G1H4、G1H14、G4H3、G4H4、G4H14、G11H3、G11H4和G11H14的构建1. Construction of recombinant Escherichia coli G1H3, G1H4, G1H14, G4H3, G4H4, G4H14, G11H3, G11H4 and G11H14
重组大肠杆菌G1H3为将出发菌CAR005基因组中的ispG基因前插入启动ispG基因表达的mRSL调控元件mRSL-1::ispG(序列21),且将出发菌CAR005基因组中的ispH基因前插入启动ispH基因表达的mRSL-3::ispH(序列29);Recombinant Escherichia coli G1H3 is the mRSL regulatory element mRSL-1::ispG (SEQ ID NO: 21) that pre-inserts the ispG gene in the genome of the starting bacteria CAR005 to start the expression of the ispG gene, and inserts the front of the ispH gene in the genome of the starting bacteria CAR005 to start the ispH gene Expressed mRSL-3::ispH (SEQ ID NO: 29);
重组大肠杆菌G1H4为将出发菌CAR005基因组中的ispG基因前插入启动ispG基因表达的mRSL调控元件mRSL-1::ispG(序列21),且将出发菌CAR005基因组中的ispH基因前插入启动ispH基因表达的mRSL-4::ispH(序列30);Recombinant Escherichia coli G1H4 is the mRSL regulatory element mRSL-1::ispG (SEQ ID NO: 21) that pre-inserts the ispG gene in the genome of the starting bacteria CAR005 to start the expression of the ispG gene, and inserts the front of the ispH gene in the genome of the starting bacteria CAR005 to start the ispH gene Expressed mRSL-4::ispH (SEQ ID NO: 30);
重组大肠杆菌G1H14为将出发菌CAR005基因组中的ispG基因前插入启动ispG基因表达的mRSL调控元件mRSL-1::ispG(序列21),且将出发菌CAR005基因组中的ispH基因前插入启动ispH基因表达的mRSL-14::ispH(序列32)。Recombinant Escherichia coli G1H14 is the mRSL regulatory element mRSL-1::ispG (SEQ ID NO: 21) that pre-inserts the ispG gene in the genome of the starting bacteria CAR005 to start the expression of the ispG gene, and inserts the front of the ispH gene in the genome of the starting bacteria CAR005 to start the ispH gene Expressed mRSL-14::ispH (SEQ ID NO: 32).
重组大肠杆菌G4H3为将出发菌CAR005基因组中的ispG基因前插入启动ispG基因表达的mRSL调控元件mRSL-4::ispG(序列23),且将出发菌CAR005基因组中的ispH基因前插入启动ispH基因表达的mRSL-3::ispH(序列29)。Recombinant Escherichia coli G4H3 is the mRSL regulatory element mRSL-4::ispG (sequence 23) that inserts the ispG gene in the genome of the starting bacteria CAR005 to start the expression of the ispG gene, and inserts the ispH gene in the genome of the starting bacteria CAR005 to start the ispH gene Expressed mRSL-3::ispH (SEQ ID NO: 29).
重组大肠杆菌G4H4为将出发菌CAR005基因组中的ispG基因前插入启动ispG基因表达的mRSL调控元件mRSL-4::ispG(序列23),且将出发菌CAR005基因组中的ispH基因前插入启动ispH基因表达的mRSL-4::ispH(序列30)。Recombinant Escherichia coli G4H4 is the mRSL-4::ispG (sequence 23) that pre-inserts the ispG gene in the genome of the starting bacterium CAR005 to start the expression of the ispG gene, and inserts the ispH gene in the genome of the starting bacterium CAR005 to start the ispH gene Expressed mRSL-4::ispH (SEQ ID NO: 30).
重组大肠杆菌G4H14为将出发菌CAR005基因组中的ispG基因前插入启动ispG基因表达的mRSL调控元件mRSL-4::ispG(序列23),且将出发菌CAR005基因组中的ispH基因前插入启动ispH基因表达的mRSL-14::ispH(序列32)。Recombinant Escherichia coli G4H14 is the mRSL regulatory element mRSL-4::ispG (sequence 23) that inserts the ispG gene in the genome of the starting bacteria CAR005 to start the expression of the ispG gene, and inserts the ispH gene in the genome of the starting bacteria CAR005 to start the ispH gene Expressed mRSL-14::ispH (SEQ ID NO: 32).
重组大肠杆菌G11H3为将出发菌CAR005基因组中的ispG基因前插入启动ispG基因表达的mRSL调控元件mRSL-11::ispG(序列25),且将出发菌CAR005基因组中的ispH基因前插入启动ispH基因表达的mRSL-3::ispH(序列29)。Recombinant Escherichia coli G11H3 is the mRSL regulatory element mRSL-11::ispG (sequence 25) that inserts the ispG gene in the genome of the starting bacteria CAR005 to start the expression of the ispG gene, and inserts the ispH gene in the genome of the starting bacteria CAR005 to start the ispH gene Expressed mRSL-3::ispH (SEQ ID NO: 29).
重组大肠杆菌G11H4为将出发菌CAR005基因组中的ispG基因前插入启动ispG基因表达的mRSL调控元件mRSL-11::ispG(序列25),且将出发菌CAR005基因组中的ispH基因前插入启动ispH基因表达的mRSL-4::ispH(序列30)。Recombinant Escherichia coli G11H4 is the mRSL regulatory element mRSL-11::ispG (sequence 25) that inserts the ispG gene in the genome of the starting bacteria CAR005 to start the expression of the ispG gene, and inserts the ispH gene in the genome of the starting bacteria CAR005 to start the ispH gene Expressed mRSL-4::ispH (SEQ ID NO: 30).
重组大肠杆菌G11H14为将出发菌CAR005基因组中的ispG基因前插入启动ispG基因表达的mRSL调控元件mRSL-11::ispG(序列25),且将出发菌CAR005基因组中的ispH基因前插入启动ispH基因表达的mRSL-14::ispH(序列32)。Recombinant Escherichia coli G11H14 is the mRSL regulatory element mRSL-11::ispG (sequence 25) that pre-inserts the ispG gene in the genome of the starting bacteria CAR005 to start the expression of the ispG gene, and inserts the front of the ispH gene in the genome of the starting bacteria CAR005 to start the ispH gene Expressed mRSL-14::ispH (SEQ ID NO: 32).
上述重组大肠杆菌均用两步同源重组的方法,插入人工调控元件,以G1H3、G1H4、G1H14构建方法为例,具体如下:The above-mentioned recombinant Escherichia coli all use the two-step homologous recombination method to insert artificial regulatory elements. Taking the construction method of G1H3, G1H4, and G1H14 as an example, the details are as follows:
(一)以pXZ-CS质粒为模板,ispH-cat-up和ispH-cat–down为引物,PCR得到3000bp左右的DNA片段I;DpnI处理后,将DNA片段I电转至带有pKD46的大肠杆菌ispG-1中。取200μl转化的菌液涂在含有氯霉素和氨苄的LB平板上,30℃过夜培养后,分别在含有氯霉素氨苄的LB平板和含有卡那霉素的LB平板上筛选,得到在卡那霉素LB平板上不长,氯霉素氨苄LB平板上长的克隆,使用引物cat-up和ispH-395-down进菌落PCR验证,结果重组菌正确,该重组菌为ispH基因前带有cat-sacB的大肠杆菌ispG-1,该菌可用于第二步同源重组。(1) Using the pXZ-CS plasmid as a template, ispH-cat-up and ispH-cat–down as primers, a DNA fragment I of about 3000 bp was obtained by PCR; after DpnI treatment, the DNA fragment I was electrotransferred into Escherichia coli with pKD46 ispG-1. Take 200 μl of the transformed bacteria solution and spread it on the LB plate containing chloramphenicol and ampicillin, after culturing overnight at 30°C, screen it on the LB plate containing chloramphenicol and ampicillin and the LB plate containing kanamycin respectively to obtain the It does not grow on the Namycin LB plate, and the clone that grows on the Chloramphenicol-Ampicillin LB plate was verified by colony PCR using primers cat-up and ispH-395-down. The result was that the recombinant bacteria were correct, and the recombinant bacteria were pre-ispH genes. Escherichia coli ispG-1 of cat-sacB, which can be used for the second step of homologous recombination.
(二)分别以ispH-3、ispH-4和ispH-14的基因组DNA为模板,扩增引物为ispH-440-up/ispH-395-down,PCR扩增得到940bp左右的DNA片段II;这个片段包括相应调控元件及上下游400bp左右的同源臂,将这条片段电转至步骤(一)得到的含pKD46的菌株中。将转化菌液转入50ml无盐LB+10%surcose培养基中,37℃、250rpm震荡培养24h后,在无盐LB+6%surcose平板上划线,41℃过夜培养,去除pKD46质粒。分别在含有氯霉素的LB平板和不含抗生素的LB平板上筛选,得到在含氯霉素的LB平板上不长的克隆,进行PCR验证,使用引物P-up/ispH-395-down进行验证。筛选验证正确,送去测序,测序正确的菌株命名为G1H3、G1H4、G1H14。所述案例中所用引物见表1,构建菌株见表2.(2) Using the genomic DNA of ispH-3, ispH-4 and ispH-14 as templates respectively, the amplification primers are ispH-440-up/ispH-395-down, and the DNA fragment II of about 940bp is obtained by PCR amplification; this The fragment includes corresponding regulatory elements and about 400 bp upstream and downstream homology arms, and this fragment is electrotransformed into the strain containing pKD46 obtained in step (1). Transfer the transformed bacteria solution into 50ml of salt-free LB+10% surcose medium, culture at 37°C and 250rpm for 24 hours with shaking, then streak on a salt-free LB+6%surcose plate, and culture overnight at 41°C to remove the pKD46 plasmid. Screen on LB plates containing chloramphenicol and LB plates without antibiotics respectively, and obtain clones that do not grow on LB plates containing chloramphenicol, and perform PCR verification using primers P-up/ispH-395-down verify. The screening and verification were correct, and they were sent for sequencing, and the strains with correct sequencing were named G1H3, G1H4, and G1H14. The primers used in the case are shown in Table 1, and the constructed strains are shown in Table 2.
(三)采用上述(一)、(二)所述方法,用ispH-3、ispH-4和ispH-14的ispH的人工调控元件分别调控ispG-4和ispG-11中ispH基因,得到重组大肠杆菌G4H3、G4H4、G4H14、G11H3、G11H4和G11H14。所用引物见表1,所构建菌株见表2。(3) Using the methods described in (1) and (2) above, use the ispH artificial regulatory elements of ispH-3, ispH-4 and ispH-14 to regulate the ispH gene in ispG-4 and ispG-11 respectively, and obtain the recombinant large intestine Bacteria G4H3, G4H4, G4H14, G11H3, G11H4 and G11H14. The primers used are shown in Table 1, and the constructed strains are shown in Table 2.
2、重组大肠杆菌G1H3、G1H4、G1H14、G4H3、G4H4、G4H14、G11H3、G11H4和G11H14的β-胡萝卜素测定2. Determination of β-carotene in recombinant Escherichia coli G1H3, G1H4, G1H14, G4H3, G4H4, G4H14, G11H3, G11H4 and G11H14
将重组大肠杆菌G1H3、G1H4、G1H14、G4H3、G4H4、G4H14、G11H3、G11H4和G11H14按照实施例1的方法进行发酵培养,测定β-胡萝卜素产量,同时以CAR005为对照,计算β-胡萝卜素相对产量。结果如图3所示。Recombinant Escherichia coli G1H3, G1H4, G1H14, G4H3, G4H4, G4H14, G11H3, G11H4 and G11H14 were fermented and cultured according to the method in Example 1, and the yield of β-carotene was measured. Yield. The result is shown in Figure 3.
结果表明,G1H3、G1H4、G1H14中B-胡萝卜素产量分别为CAR005的0.16、0.47、0.55倍,即在ispG表达量高时(G1H3、G1H4、G1H14中ispG表达量是CAR005的75.8倍),β-胡萝卜素的产量随着ispH基因表达量提高而提高;G4H3、G4H4、G4H14中B-胡萝卜素产量分别为CAR005的0.57、1.70、1.76倍(G4H3、G4H4、G4H14中ispG表达量是CAR005的10.84倍),G11H3、G11H4和G11H14中B-胡萝卜素产量分别为CAR005的0.93、1.66、1.72倍(G11H3、G11H4和G11H14中ispG表达量是CAR005的5.09倍);在ispG表达量低时,β-胡萝卜素产量随着ispH的表达量增加而增加,当ispH表达量增加到一定程度,则β-胡萝卜素产量不再增加。并且各菌株的细胞生长和β-胡萝卜素产量趋势相同。The results showed that the production of B-carotene in G1H3, G1H4, and G1H14 was 0.16, 0.47, and 0.55 times that of CAR005, respectively. The production of -carotene increases with the increase of ispH gene expression; the production of B-carotene in G4H3, G4H4, and G4H14 is 0.57, 1.70, and 1.76 times that of CAR005, respectively (the expression of ispG in G4H3, G4H4, and G4H14 is 10.84 times that of CAR005 times), the production of B-carotene in G11H3, G11H4 and G11H14 was 0.93, 1.66 and 1.72 times that of CAR005, respectively (the expression of ispG in G11H3, G11H4 and G11H14 was 5.09 times that of CAR005); when the expression of ispG was low, β-carotene The production of carotene increases with the expression of ispH, and when the expression of ispH increases to a certain extent, the production of β-carotene no longer increases. And the trend of cell growth and β-carotene production of each strain was the same.
将β-胡萝卜素产量最高菌株G4H14命名为CAR015。The strain G4H14 with the highest β-carotene production was named CAR015.
CAR015于2016年8月19日保藏于中国微生物菌种保藏管理委员会普通微生物中心(简称CGMCC,地址:北京市朝阳区北辰西路1号院3号,中国科学院微生物研究所,邮编100101)保藏号为CGMCC No.12884,分类命名号为大肠埃希氏菌(Escherichia coli)。CAR015 was deposited on August 19, 2016 in the General Microbiology Center of China Committee for Culture Collection of Microorganisms (CGMCC for short, address: No. 3, Yard 1, Beichen West Road, Chaoyang District, Beijing, Institute of Microbiology, Chinese Academy of Sciences, Zip Code 100101) It is CGMCC No.12884, and its classification name is Escherichia coli.
实施例2、ispG和ispH组合调控番茄红素产量Example 2. The combination of ispG and ispH regulates the production of lycopene
上述实施例1中看出ispG和ispH组合调控提高β-胡萝卜素产量实验中,β-胡萝卜素产量最高的组合为G4H14,即mRSL-4::ispG和mRSL-14::ispH中相应启动子组合,可以有效提高ispG和ispH表达,那是否对所有的萜类化合物都有同样的效果。In the above example 1, it can be seen that in the experiment of increasing the production of β-carotene by the combination regulation of ispG and ispH, the combination with the highest production of β-carotene is G4H14, that is, the corresponding promoters in mRSL-4::ispG and mRSL-14::ispH Combination, can effectively increase the expression of ispG and ispH, whether it has the same effect on all terpenoids.
本实施例,用mRSL-4::ispG和mRSL-14::ispH组合调控番茄红素。In this example, the combination of mRSL-4::ispG and mRSL-14::ispH is used to regulate lycopene.
一、调控LYC010中ispH基因1. Regulation of ispH gene in LYC010
重组大肠杆菌LYC013为将出发菌LYC010基因组中的ispH基因前插入用于启动ispH基因表达的mRSL-14::ispH(序列32)。Recombinant Escherichia coli LYC013 is the mRSL-14::ispH (sequence 32) in which the ispH gene in the genome of the starting strain LYC010 is pre-inserted for initiating the expression of the ispH gene.
上述替换通过两步法调控ispH基因,构建LYC013菌株,具体步骤如下。The above replacement regulates the ispH gene through a two-step method to construct the LYC013 strain, and the specific steps are as follows.
(一)以pXZ-CS质粒为模板,ispH-cat-up和ispH-cat–down为引物,PCR得到3000bp左右的DNA片段I;DpnI处理后,将DNA片段I电转至带有pKD46的大肠杆菌LYC010中。取200μl转化的菌液涂在含有氯霉素和氨苄的LB平板上,30℃过夜培养后,分别在含有氯霉素氨苄的LB平板和含有卡那霉素的LB平板上筛选,得到在卡那霉素LB平板上不长,氯霉素氨苄LB平板上长的克隆,使用引物cat-up和ispH-395-down进菌落PCR验证,结果重组菌正确,该重组菌为ispH基因前带有cat-sacB的大肠杆菌LYC010,该菌可用于第二步同源重组。(1) Using the pXZ-CS plasmid as a template, ispH-cat-up and ispH-cat–down as primers, a DNA fragment I of about 3000 bp was obtained by PCR; after DpnI treatment, the DNA fragment I was electrotransferred into Escherichia coli with pKD46 LYC010. Take 200 μl of the transformed bacteria solution and spread it on the LB plate containing chloramphenicol and ampicillin, after culturing overnight at 30°C, screen it on the LB plate containing chloramphenicol and ampicillin and the LB plate containing kanamycin respectively to obtain the It does not grow on the Namycin LB plate, and the clone that grows on the Chloramphenicol-Ampicillin LB plate was verified by colony PCR using primers cat-up and ispH-395-down. The result was that the recombinant bacteria were correct, and the recombinant bacteria were pre-ispH genes. Escherichia coli LYC010 of cat-sacB, which can be used for the second step of homologous recombination.
(二)以ispH-14的基因组DNA为模板,扩增引物为ispH-440-up/ispH-395-down,PCR扩增得到940bp左右的DNA片段II;这个片段包括相应调控元件及上下游400bp左右的同源臂,将这条片段电转至步骤(一)得到的含pKD46的菌株中。将转化菌液转入50ml无盐LB+10%surcose培养基中,37℃、250rpm震荡培养24h后,在无盐LB+6%surcose平板上划线,41℃过夜培养,去除pKD46质粒。分别在含有氯霉素的LB平板和不含抗生素的LB平板上筛选,得到在含氯霉素的LB平板上不长的克隆,进行PCR验证,使用引物P-up/ispH-395-down进行验证。筛选验证正确,送去测序,测序正确的菌株命名为LYC013。所述案例中所用引物见表1,构建菌株见表2。(2) Using the genomic DNA of ispH-14 as a template, the amplification primers are ispH-440-up/ispH-395-down, and a DNA fragment II of about 940bp is obtained by PCR amplification; this fragment includes corresponding regulatory elements and upstream and downstream 400bp Left and right homology arms, electrotransform this fragment into the strain containing pKD46 obtained in step (1). Transfer the transformed bacteria solution into 50ml of salt-free LB+10% surcose medium, culture at 37°C and 250rpm for 24 hours with shaking, then streak on a salt-free LB+6%surcose plate, and culture overnight at 41°C to remove the pKD46 plasmid. Screen on LB plates containing chloramphenicol and LB plates without antibiotics respectively, and obtain clones that do not grow on LB plates containing chloramphenicol, and perform PCR verification using primers P-up/ispH-395-down verify. The screening verification was correct, and it was sent for sequencing, and the strain with correct sequencing was named LYC013. The primers used in the case are shown in Table 1, and the constructed strains are shown in Table 2.
二、调控LYC010和LYC013中ispG基因2. Regulation of the ispG gene in LYC010 and LYC013
LYC011为将出发菌LYC010基因组中的ispG基因前插入用于启动ispG基因表达的mRSL调控元件mRSL-1::ispG(序列21)。LYC011 is the mRSL-1::ispG regulatory element mRSL-1::ispG (SEQ ID NO: 21 ), which is inserted in front of the ispG gene in the genome of the starting strain LYC010 to initiate the expression of the ispG gene.
LYC012为将出发菌LYC010基因组中的ispG基因前插入用于启动ispG基因表达的mRSL调控元件mRSL-4::ispG(序列23)。LYC012 is the mRSL regulatory element mRSL-4::ispG (SEQ ID NO: 23) that is inserted in front of the ispG gene in the genome of the starting strain LYC010 to initiate the expression of the ispG gene.
LYC014为将出发菌LYC010基因组中的ispG基因前插入用于启动ispG基因表达的mRSL调控元件mRSL-1::ispG(序列21),且将出发菌LYC010基因组中的ispH基因前插入用于启动ispH基因表达的mRSL-14::ispH(序列32)。LYC014 is the mRSL regulatory element mRSL-1::ispG (sequence 21) that inserts the ispG gene in the genome of the starting bacteria LYC010 to start the expression of the ispG gene, and inserts the ispH gene in the genome of the starting bacteria LYC010 to start ispH Gene expression of mRSL-14::ispH (SEQ ID NO: 32).
LYC015为将出发菌LYC010基因组中的ispG基因前插入用于启动ispG基因表达的mRSL调控元件mRSL-4::ispG(序列23),且将出发菌LYC010基因组中的ispH基因前插入用于启动ispH基因表达的mRSL-14::ispH(序列32)。LYC015 is the mRSL regulatory element mRSL-4::ispG (sequence 23) that inserts the ispG gene in the genome of the starting bacteria LYC010 to start the expression of the ispG gene, and inserts the ispH gene in the genome of the starting bacteria LYC010 to start ispH Gene expression of mRSL-14::ispH (SEQ ID NO: 32).
上述各菌株用ispG-1、ispG-4的ispG的人工调控元件(分别为序列21和序列23),分别从LYC010和LYC013出发,两步法调控ispG基因,构建LYC011、LYC012、LYC014、LYC015菌株,具体步骤如下。The artificial regulatory elements of ispG of ispG-1 and ispG-4 (sequence 21 and sequence 23, respectively) were used in each of the above strains to start from LYC010 and LYC013, respectively, to regulate the ispG gene in two steps, and construct LYC011, LYC012, LYC014, and LYC015 strains ,Specific steps are as follows.
(一)以pXZ-CS质粒为模板,ispG-cat-up和ispG-cat-down为引物,PCR得到3000bp左右的DNA片段I;DpnI处理后,将DNA片段I分别电转至带有pKD46的大肠杆菌LYC010、LYC013中。取200μl转化的菌液涂在含有氯霉素和氨苄的LB平板上,30℃过夜培养后,分别在含有氯霉素氨苄的LB平板和含有卡那霉素的LB平板上筛选,得到在卡那霉素LB平板上不长,氯霉素氨苄LB平板上长的克隆,使用引物cat-up和ispG-305-down进菌落PCR验证,结果重组菌正确,该重组菌为ispG基因前带有cat-sacB的大肠杆菌LYC010、LYC013,用于第二步同源重组。(1) Using the pXZ-CS plasmid as a template, ispG-cat-up and ispG-cat-down as primers, PCR obtained a DNA fragment I of about 3000 bp; after DpnI treatment, the DNA fragment I was electrotransferred to the large intestine with pKD46 respectively Bacillus LYC010, LYC013. Take 200 μl of the transformed bacteria solution and spread it on the LB plate containing chloramphenicol and ampicillin, after culturing overnight at 30°C, screen it on the LB plate containing chloramphenicol and ampicillin and the LB plate containing kanamycin respectively to obtain the It does not grow on the Namycin LB plate, but the clone that grows on the Chloramphenicol Ampicillin LB plate was verified by colony PCR using primers cat-up and ispG-305-down. The result was that the recombinant bacteria were correct. Escherichia coli LYC010 and LYC013 of cat-sacB for the second step of homologous recombination.
(二)以ispG-1、ispG-4的基因组DNA为模板,扩增引物为ispG-471-up/ispG-305-down,PCR扩增得到770bp左右的DNA片段II;这个片段包括相应调控元件及上下游约400bp左右的同源臂,将这条片段电转至步骤(一)得到的含pKD46的菌株中。将转化菌液转入50ml无盐LB+10%surcose培养基中,37℃、250rpm震荡培养24h后,在无盐LB+6%surcose平板上划线,41℃过夜培养,去除pKD46质粒。分别在含有氯霉素的LB平板和不含抗生素的LB平板上筛选,得到在含氯霉素的LB平板上不长的克隆,进行PCR验证,使用引物P-up/ispG-305-down进行验证。筛选验证正确,送去测序,测序正确的菌株命名为LYC011、LYC012、LYC014、LYC015。所述案例中所用引物见表1,构建菌株见表2。(2) Using the genomic DNA of ispG-1 and ispG-4 as a template, the amplification primers are ispG-471-up/ispG-305-down, and PCR amplification obtains a DNA fragment II of about 770bp; this fragment includes the corresponding regulatory elements And the homology arm of about 400bp upstream and downstream, this fragment was electrotransformed into the strain containing pKD46 obtained in step (1). Transfer the transformed bacteria solution into 50ml of salt-free LB+10% surcose medium, culture at 37°C and 250rpm for 24 hours with shaking, then streak on a salt-free LB+6%surcose plate, and culture overnight at 41°C to remove the pKD46 plasmid. Screen on LB plates containing chloramphenicol and LB plates without antibiotics respectively, and obtain clones that do not grow on LB plates containing chloramphenicol, and perform PCR verification using primers P-up/ispG-305-down verify. The screening and verification were correct, and they were sent for sequencing. The strains with correct sequencing were named LYC011, LYC012, LYC014, and LYC015. The primers used in the case are shown in Table 1, and the constructed strains are shown in Table 2.
ispG-1为将大肠杆菌中CAR005基因组中的ispG基因的启动子替换为表2所示的mRSL-1::ispG(调控元件mRSL-1::ispG序列见序列21)。ispG-1 replaces the promoter of the ispG gene in the CAR005 genome of Escherichia coli with mRSL-1::ispG shown in Table 2 (see sequence 21 for the sequence of the regulatory element mRSL-1::ispG).
ispG-4将大肠杆菌中CAR005基因组中的ispG基因的启动子替换为表2所示的mRSL-4::ispG(调控元件mRSL-4::ispG序列见序列23)。ispG-4 replaces the promoter of the ispG gene in the CAR005 genome of Escherichia coli with mRSL-4::ispG shown in Table 2 (see sequence 23 for the sequence of the regulatory element mRSL-4::ispG).
三、重组大肠杆菌LYC010、LYC011、LYC012、LYC014、LYC015的番茄红素测定。3. Determination of lycopene in recombinant Escherichia coli LYC010, LYC011, LYC012, LYC014, LYC015.
将重组大肠杆菌LYC011、LYC012、LYC014、LYC015和LYC010挑单菌落于4ml的LB培养基的试管中,37℃250rpm过夜培养24小时;然后按照体积百分含量1%的接种量,将过夜培养的种子液转接到含10ml LB培养基的小摇瓶中(100ml),37℃、250rpm避光培养24h后,取样测定番茄红素产量。以LYC010为对照。Recombinant Escherichia coli LYC011, LYC012, LYC014, LYC015 and LYC010 single colonies were placed in 4ml test tubes of LB medium, and cultivated overnight at 250rpm at 37°C for 24 hours; The seed solution was transferred to a small shake flask (100 ml) containing 10 ml of LB medium, and cultured at 37° C. and 250 rpm in the dark for 24 hours, then samples were taken to determine the lycopene production. Take LYC010 as the control.
测定方法如下:The determination method is as follows:
取0.5ml培养的菌液于14000rpm离心3min,无菌水清洗后,用1ml丙酮悬浮沉淀,在55℃黑暗条件下萃取15分钟,然后将样品在14000rpm下离心10分钟,上清呈红色,而菌株经丙酮萃取后由红色变为白色,将含有番茄红素的上清经0.45μm的微孔滤膜过滤后,用HPLC进行含量测定。Take 0.5ml of the cultured bacteria solution and centrifuge at 14000rpm for 3min, wash with sterile water, suspend the precipitate with 1ml of acetone, extract at 55°C for 15 minutes in the dark, then centrifuge the sample at 14000rpm for 10 minutes, the supernatant is red, while The strain changed from red to white after being extracted with acetone, and the supernatant containing lycopene was filtered through a 0.45 μm microporous membrane, and the content was determined by HPLC.
检测条件:VWD检测器,Symmetry C18色谱柱(250mm×4.6mm,5μm),流动相为甲醇:乙腈:二氯甲烷(21:21:8),流速1.0mL/min,柱温30℃,检测波长480nm,测定时间为20min。每个待测样品分别有3个平行样,实验结果取自3个平行的均值。或者用Symmetry C18色谱柱(100mm×4.6mm,5μm),流动相为甲醇:乙腈:二氯甲烷(21:21:8),流速1.2mL/min,测定10min。Detection conditions: VWD detector, Symmetry C18 chromatographic column (250mm×4.6mm, 5μm), mobile phase is methanol: acetonitrile: dichloromethane (21:21:8), flow rate 1.0mL/min, column temperature 30°C, detection The wavelength is 480nm, and the measurement time is 20min. Each sample to be tested has 3 parallel samples, and the experimental results are obtained from the average of the 3 parallel samples. Or use a Symmetry C18 chromatographic column (100mm×4.6mm, 5μm), the mobile phase is methanol: acetonitrile: dichloromethane (21:21:8), the flow rate is 1.2mL/min, and the measurement takes 10min.
番茄红素标准品购自美国sigma公司(Cat.No.L9879)。经HPLC检验,样品中的出峰时间与标准品中番茄红素的出峰时间相同(出峰时间为11.3min)。每个待测样品分别有3个平行样,实验结果取三个平行的平均值。The standard lycopene was purchased from Sigma, USA (Cat.No.L9879). Tested by HPLC, the peak time in the sample is the same as that of lycopene in the standard (the peak time is 11.3 min). Each sample to be tested has three parallel samples, and the experimental results take the average value of the three parallel samples.
结果如图4所示,单独高表达ispG基因的LYC011和LYC012菌株,其生长和番茄红素产量都收到适当抑制,细胞量分别是出发菌株LYC010的76%和91%,番茄红素产量分别为LYC010的12%和40%;在LYC011和LYC012基础上组合调控ispH后得到LYC014和LYC015,细胞生长恢复,且番茄红素产量明显提高,番茄红素产量分别为出发菌株(LYC010)的7.97倍和4.43倍,产量最高菌株LYC015的番茄红素产量为44.38mg/L,单位细胞干重产量为27.97mg/g DCW,单位细胞产量是LYC010的1.82倍。The results are shown in Figure 4. The growth and lycopene production of LYC011 and LYC012 strains with high expression of ispG gene alone were properly inhibited, and the cell mass was 76% and 91% of that of the starting strain LYC010, respectively, and the lycopene production was respectively 12% and 40% of LYC010; on the basis of LYC011 and LYC012, LYC014 and LYC015 were obtained after combined regulation of ispH, cell growth was restored, and lycopene production was significantly increased, and the lycopene production was 7.97 times that of the starting strain (LYC010), respectively and 4.43 times, the lycopene yield of the strain LYC015 with the highest yield was 44.38mg/L, the yield per unit cell dry weight was 27.97mg/g DCW, and the yield per unit cell was 1.82 times that of LYC010.
实施例3、LYC023菌株构建及番茄红素产量测定Example 3, LYC023 strain construction and lycopene yield determination
LYC015为将出发菌LYC010基因组中的ispG基因前插入用于启动ispG基因表达的mRSL调控元件mRSL-4::ispG(序列23),且将出发菌LYC010基因组中的ispH基因前插入用于启动ispH基因表达的mRSL-14::ispH(序列32)。LYC015 is the mRSL regulatory element mRSL-4::ispG (sequence 23) that inserts the ispG gene in the genome of the starting bacteria LYC010 to start the expression of the ispG gene, and inserts the ispH gene in the genome of the starting bacteria LYC010 to start ispH Gene expression of mRSL-14::ispH (SEQ ID NO: 32).
LYC015菌株中crt操纵子的启动子是组成型人工调控元件M1-93,将组成型启动子更换成诱导型启动子trc启动子,本启动子由IPTG诱导。本实施案例研究组成型启动子和诱导型启动子对番茄红素产量的影响。The promoter of the crt operon in the LYC015 strain is a constitutive artificial regulatory element M1-93, and the constitutive promoter is replaced with an inducible promoter trc promoter, which is induced by IPTG. This implementation case studies the effects of constitutive and inducible promoters on lycopene production.
一、将LYC015菌株中crt操纵子启动子更换成诱导型启动子1. Replace the crt operon promoter in the LYC015 strain with an inducible promoter
LYC023为将出发菌LYC010基因组中的ispG基因前插入用于启动ispG基因表达的mRSL调控元件mRSL-4::ispG(序列23),且将出发菌LYC010基因组中的ispH基因前插入用于启动ispH基因表达的mRSL-14::ispH(序列32),且将LYC010基因组中crt操纵子的启动子替换为含有诱导型启动子Trc启动子和lacI的DNA分子(序列33),得到的重组菌。LYC023 is the mRSL regulatory element mRSL-4::ispG (sequence 23) that inserts the ispG gene in the genome of the starting bacteria LYC010 to start the expression of the ispG gene, and inserts the ispH gene in the genome of the starting bacteria LYC010 to start the ispH Gene expressed mRSL-14::ispH (SEQ ID NO: 32), and the promoter of the crt operon in the LYC010 genome was replaced with a DNA molecule (SEQ ID NO: 33) containing an inducible promoter Trc promoter and lacI to obtain a recombinant bacterium.
从LYC015出发,两步法调控crt操纵子,构建LYC023菌株,具体步骤如下。Starting from LYC015, the crt operon was regulated in two steps to construct LYC023 strain, the specific steps are as follows.
(一)以pXZ-CS质粒为模板,ldhA-cat-up和crtE-cat–down为引物,PCR得到3000bp左右的DNA片段I;DpnI处理后,将DNA片段I电转至带有pKD46的大肠杆菌LYC015中。取500μl转化的菌液涂在含有氯霉素和氨苄的LB平板上,30℃过夜培养后,分别在含有氯霉素氨苄的LB平板和含有卡那霉素的LB平板上筛选,得到在卡那霉素LB平板上不长,氯霉素氨苄LB平板上长的克隆,使用引物cat-up和crtE-340-down进菌落PCR验证,结果重组菌正确,该重组菌为crt操纵子前带有cat-sacB的大肠杆菌,该菌可用于第二步同源重组。(1) Using the pXZ-CS plasmid as a template, ldhA-cat-up and crtE-cat–down as primers, a DNA fragment I of about 3000 bp was obtained by PCR; after DpnI treatment, the DNA fragment I was electrotransferred into Escherichia coli with pKD46 LYC015. Take 500 μl of the transformed bacteria solution and spread it on the LB plate containing chloramphenicol and ampicillin, after culturing overnight at 30°C, screen on the LB plate containing chloramphenicol and ampicillin and the LB plate containing kanamycin respectively, and obtain the It does not grow on the Namycin LB plate, but the clone that grows on the Chloramphenicol Ampicillin LB plate is verified by PCR with primers cat-up and crtE-340-down, and the result is that the recombinant bacteria are correct, and the recombinant bacteria are the proband of the crt operon Escherichia coli with cat-sacB, which can be used for the second step of homologous recombination.
(二)以QL002菌株(Zhao J,Li Q,Sun T,et al.Engineering central metabolicmodules of Escherichia coli for improving beta-carotene production.Metabolicengineering 2013;17:42-50.CAR001和CAR005D都出自这篇文章)的总DNA为模板,扩增引物为ldhA-up/crtE-340-down,PCR扩增得到2340bp左右的DNA片段II;这个片段包括Trc启动子和lacI序列及上下游400bp左右的同源臂(Trc启动子和lacI序列见序列33),将这条片段电转至步骤(一)得到的含pKD46的菌株中。将转化菌液转入50ml无盐LB+10%surcose培养基中,37℃、250rpm震荡培养24h后,在无盐LB+6%surcose平板上划线,41℃过夜培养,去除pKD46质粒。分别在含有氯霉素的LB平板和不含抗生素的LB平板上筛选,得到在含氯霉素的LB平板上不长的克隆,进行PCR验证,使用引物ldhA-up/crtE-340-down进行验证。筛选验证正确,送去测序,测序正确的菌株命名为LYC023。所述案例中所用引物见表1,构建菌株见表2。(2) Take QL002 strain (Zhao J, Li Q, Sun T, et al. Engineering central metabolic modules of Escherichia coli for improving beta-carotene production. Metabolicengineering 2013; 17:42-50. Both CAR001 and CAR005D are from this article) The total DNA is used as a template, and the amplification primers are ldhA-up/crtE-340-down, and PCR amplification obtains about 2340bp DNA fragment II; this fragment includes Trc promoter and lacI sequence and about 400bp upstream and downstream homologous arms ( See sequence 33 for the Trc promoter and lacI sequence), and electrotransfer this fragment into the strain containing pKD46 obtained in step (1). Transfer the transformed bacteria solution into 50ml of salt-free LB+10% surcose medium, culture at 37°C and 250rpm for 24 hours with shaking, then streak on a salt-free LB+6%surcose plate, and culture overnight at 41°C to remove the pKD46 plasmid. Screen on LB plates containing chloramphenicol and LB plates without antibiotics respectively, and obtain clones that do not grow on LB plates containing chloramphenicol, and perform PCR verification using primers ldhA-up/crtE-340-down verify. The screening verification was correct, and it was sent for sequencing, and the strain with correct sequencing was named LYC023. The primers used in the case are shown in Table 1, and the constructed strains are shown in Table 2.
二、重组大肠杆菌LYC015和LYC023的番茄红素测定。2. Determination of lycopene in recombinant Escherichia coli LYC015 and LYC023.
将重组大肠杆菌LYC015和LYC023按照实施例2的方法进行发酵培养,并将过夜培养的种子液转接到含10ml发酵培养基的小摇瓶中(100ml),37℃、250rpm避光培养4h后,用1mM的IPTG诱导crt操纵子表达,培养24小时后,取一定量的菌测定番茄红素产量。结果如表3所示。Recombinant Escherichia coli LYC015 and LYC023 were fermented and cultured according to the method of Example 2, and the overnight cultured seed liquid was transferred to a small shake flask (100ml) containing 10ml of fermentation medium, and cultured at 37°C and 250rpm in the dark for 4h 1mM IPTG was used to induce the expression of the crt operon, and after 24 hours of culture, a certain amount of bacteria was taken to measure the lycopene production. The results are shown in Table 3.
表3为诱导表达crt操纵子及glpD调控对番茄红素产量影响Table 3 is the effect of induced expression of crt operon and regulation of glpD on lycopene production
如表3所示,LYC023生长略好与LYC015,OD600是LYC015的1.06倍,产量和单位产量略有降低,分别是LYC015的76%和72%,但是菌体更稳定。As shown in Table 3, LYC023 grew slightly better than LYC015, OD600 was 1.06 times that of LYC015, and the yield and unit yield were slightly lower, respectively 76% and 72% of LYC015, but the cells were more stable.
实施案例4、LYC029菌株构建及番茄红素产量测定Implementation case 4. Construction of LYC029 strain and determination of lycopene yield
一.M1-46人工调控元件调控LYC023的glpD基因1. The M1-46 artificial regulatory element regulates the glpD gene of LYC023
重组菌LYC029为将出发菌LYC010基因组中的ispG基因前插入用于启动ispG基因表达的mRSL调控元件mRSL-4::ispG(序列23),且将出发菌LYC010基因组中的ispH基因前插入用于启动ispH基因表达的mRSL-14::ispH(序列32),且将LYC010基因组中crt操纵子的启动子替换为含有诱导型启动子Trc启动子和lacI的DNA分子(序列33),且将LYC010基因组中glpD基因的启动子替换成人工调控元件M1-46,得到的重组菌。The recombinant bacterium LYC029 is the mRSL regulatory element mRSL-4::ispG (sequence 23) that will be used to start the mRSL regulatory element mRSL-4::ispG (sequence 23) in the ispG gene in the genome of the starting bacteria LYC010 genome, and the ispH gene in the genome of the starting bacteria LYC010 will be inserted before for mRSL-14::ispH (SEQ ID NO: 32) that initiates ispH gene expression, and the promoter of the crt operon in the LYC010 genome is replaced with a DNA molecule (SEQ ID NO: 33) containing an inducible promoter Trc promoter and lacI, and the LYC010 The promoter of the glpD gene in the genome is replaced with an artificial regulatory element M1-46 to obtain a recombinant bacterium.
glpD基因的启动子序列见序列34,所更换的人工调控元件M1-46序列见序列35。See SEQ ID NO: 34 for the promoter sequence of the glpD gene, and see SEQ ID NO: 35 for the sequence of the replaced artificial regulatory element M1-46.
用两步同源重组的方法,插入人工调控元件,具体如下:Using the method of two-step homologous recombination, artificial regulatory elements are inserted, as follows:
(一)以pXZ-CS质粒为模板,glpD-cat-up和glpD-cat–down为引物,PCR得到3000bp左右的DNA片段I;DpnI处理后,将DNA片段I电转至带有pKD46的大肠杆菌LYC023中。取200μl转化的菌液涂在含有氯霉素和氨苄的LB平板上,30℃过夜培养后,分别在含有氯霉素氨苄的LB平板和含有卡那霉素的LB平板上筛选,得到在卡那霉素LB平板上不长,氯霉素氨苄LB平板上长的克隆,使用引物cat-up和glpD-373-I-r进菌落PCR验证,结果重组菌正确,该重组菌为glpD基因前带有cat-sacB的大肠杆菌LYC023,该菌可用于第二步同源重组。(1) Using the pXZ-CS plasmid as a template, glpD-cat-up and glpD-cat–down as primers, a DNA fragment I of about 3000 bp was obtained by PCR; after DpnI treatment, the DNA fragment I was electrotransferred into Escherichia coli with pKD46 LYC023. Take 200 μl of the transformed bacteria solution and spread it on the LB plate containing chloramphenicol and ampicillin, after culturing overnight at 30°C, screen it on the LB plate containing chloramphenicol and ampicillin and the LB plate containing kanamycin respectively to obtain the It does not grow on the Namycin LB plate but grows on the Chloramphenicol Ampicillin LB plate. Use primers cat-up and glpD-373-I-r to enter the colony PCR to verify that the recombinant bacteria are correct. The recombinant bacteria are preceded by the glpD gene. Escherichia coli LYC023 of cat-sacB, which can be used for the second step of homologous recombination.
(二)以M1-46的基因组DNA为模板,扩增引物为glpD-p-up/glpD-RBS-down,PCR扩增得到200bp左右的DNA片段II;这个片段包括相应调控元件及glpD的起始密码子上下游50bp左右的同源臂,将这条片段电转至步骤(一)得到的含pKD46的菌株中。将转化菌液转入50ml无盐LB+10%surcose培养基中,37℃、250rpm震荡培养24h后,在无盐LB+6%surcose平板上划线,41℃过夜培养,去除pKD46质粒。分别在含有氯霉素的LB平板和不含抗生素的LB平板上筛选,得到在含氯霉素的LB平板上不长的克隆,进行PCR验证,使用引物P-up/glpD-373-I-r进行验证。筛选验证正确,送去测序,测序正确的菌株命名为LYC029。所述案例中所用引物见表1,构建菌株见表2。(2) Using the genomic DNA of M1-46 as a template, the amplification primers are glpD-p-up/glpD-RBS-down, and the DNA fragment II of about 200bp is amplified by PCR; this fragment includes the corresponding regulatory elements and the origin of glpD The homology arm of about 50bp upstream and downstream of the initiation codon was electrotransformed into the strain containing pKD46 obtained in step (1). Transfer the transformed bacteria solution into 50ml of salt-free LB+10% surcose medium, culture at 37°C and 250rpm for 24 hours with shaking, then streak on a salt-free LB+6%surcose plate, and culture overnight at 41°C to remove the pKD46 plasmid. Screen on the LB plate containing chloramphenicol and the LB plate without antibiotics, and obtain the clones that do not grow on the LB plate containing chloramphenicol, and perform PCR verification, using primers P-up/glpD-373-I-r verify. The screening verification was correct, and it was sent for sequencing, and the strain with correct sequencing was named LYC029. The primers used in the case are shown in Table 1, and the constructed strains are shown in Table 2.
二、重组大肠杆菌LYC023和LYC029的番茄红素测定。2. Determination of lycopene in recombinant Escherichia coli LYC023 and LYC029.
将重组大肠杆菌LYC023和LYC029按照实施例2的方法进行发酵培养,并将过夜培养的种子液转接到含10ml发酵培养基的小摇瓶中(100ml),37℃、250rpm避光培养4h后,用1mM的IPTG诱导crt操纵子表达,培养24小时后,取一定量的菌测定番茄红素产量。结果如表3所示。Recombinant Escherichia coli LYC023 and LYC029 were fermented and cultured according to the method of Example 2, and the overnight cultured seed liquid was transferred to a small shaker flask (100ml) containing 10ml of fermentation medium, and cultured at 37°C and 250rpm in the dark for 4h 1mM IPTG was used to induce the expression of the crt operon, and after 24 hours of culture, a certain amount of bacteria was taken to measure the lycopene production. The results are shown in Table 3.
如表3所示,LYC023基础上调控glpD后,细胞生长和番茄红素产量都有提高,生长和产量分别调了22%和7%。As shown in Table 3, after regulating glpD on the basis of LYC023, both cell growth and lycopene production were improved, and the growth and production were adjusted by 22% and 7%, respectively.
LYC029于2016年8月19日保藏于中国微生物菌种保藏管理委员会普通微生物中心(简称CGMCC,地址:北京市朝阳区北辰西路1号院3号,中国科学院微生物研究所,邮编100101)保藏号为CGMCC No.12883,分类命名为大肠埃希氏菌(Escherichia coli)。LYC029 was deposited on August 19, 2016 in the General Microbiology Center of China Committee for Culture Collection of Microorganisms (CGMCC for short, address: No. 3, Yard 1, Beichen West Road, Chaoyang District, Beijing, Institute of Microbiology, Chinese Academy of Sciences, Zip Code 100101) It is CGMCC No.12883, and the classification is named as Escherichia coli (Escherichia coli).
实施例5、重组大肠杆菌LYC023和LYC029的番茄红素高密度发酵Example 5, Lycopene High Density Fermentation of Recombinant Escherichia coli LYC023 and LYC029
将重组大肠杆菌LYC023和LYC029在7L发酵罐(Labfors 4;InforsBiotechnoligyCo.Ltd.)中进行高密度发酵。方法如下:Recombinant Escherichia coli LYC023 and LYC029 were subjected to high-density fermentation in a 7L fermenter (Labfors 4; Infors Biotechnology Co. Ltd.). Methods as below:
工艺流程如图6所示,具体如下:The process flow is shown in Figure 6, specifically as follows:
1.从-80℃冰箱中取番茄红素菌种,在LB平板上划线,放置于37℃培养箱中15h。1. Take the lycopene strain from the -80°C refrigerator, streak it on the LB plate, and place it in a 37°C incubator for 15 hours.
2.挑取单菌落接种到含有120mlLB培养基的三角瓶中,置于37℃摇床,250rpm培养致OD600为3.0-4.0,得到的菌液即为高密度发酵的种子液。。2. Pick a single colony and inoculate it into a Erlenmeyer flask containing 120ml of LB medium, place it on a shaker at 37°C, and cultivate it at 250rpm until the OD 600 is 3.0-4.0, and the obtained bacterial liquid is the seed liquid for high-density fermentation. .
3.将制备的种子液接种到5L发酵罐中,培养温度37℃培养,pH为7.0、溶氧恒定在20%,将溶氧与搅拌和通气级联,通过仪器的智控系统调节转速和通气将溶解氧维持在20%。初始培养基中碳源耗尽后溶氧会突然升高,此时开启补料,通过DO-STAT法调整补料速率将溶氧维持在合适的范围。3. Inoculate the prepared seed solution into a 5L fermenter, culture at 37°C, pH 7.0, dissolved oxygen at 20%, cascade dissolved oxygen with stirring and ventilation, and adjust the speed and temperature through the intelligent control system of the instrument Aeration maintained dissolved oxygen at 20%. After the carbon source in the initial medium is exhausted, the dissolved oxygen will suddenly rise. At this time, the feeding is started, and the feeding rate is adjusted by the DO-STAT method to maintain the dissolved oxygen in an appropriate range.
4.当菌体OD长到90左右时加入0.1mM IPTG诱导。培养48小时发酵结束。4. Add 0.1mM IPTG to induce when the cell OD grows to about 90. Cultivate 48 hours and ferment and finish.
按照实施例2方法,取不同时间点的发酵液测定细胞番茄红素产量和OD600。According to the method in Example 2, the fermentation broth at different time points was taken to measure the cell lycopene production and OD 600 .
结果如图5所示,LYC023培养48小时,菌体OD600为344,番茄红素产量为3.14g/l,单位产量28.3mg/g(图5A)。LYC029培养48小时,菌体OD600为420,番茄红素产量为4.64g/l,较LYC023提高47.8%,单位产量34.2mg/g,较LYC023提高20.8%(图5B)。The results are shown in Figure 5. After 48 hours of culture in LYC023, the OD 600 of the cells was 344, the yield of lycopene was 3.14 g/l, and the unit yield was 28.3 mg/g (Figure 5A). LYC029 was cultured for 48 hours, the OD 600 of the bacteria was 420, the yield of lycopene was 4.64g/l, which was 47.8% higher than that of LYC023, and the unit yield was 34.2mg/g, which was 20.8% higher than that of LYC023 (Figure 5B).
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610864886.3A CN106434506B (en) | 2016-09-29 | 2016-09-29 | Construction method and application of a recombinant bacterium producing lycopene |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610864886.3A CN106434506B (en) | 2016-09-29 | 2016-09-29 | Construction method and application of a recombinant bacterium producing lycopene |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106434506A true CN106434506A (en) | 2017-02-22 |
CN106434506B CN106434506B (en) | 2019-12-31 |
Family
ID=58170224
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610864886.3A Active CN106434506B (en) | 2016-09-29 | 2016-09-29 | Construction method and application of a recombinant bacterium producing lycopene |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106434506B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108588106A (en) * | 2018-05-08 | 2018-09-28 | 华东理工大学 | A kind of lycopene superior strain, preparation method and application |
CN109929786A (en) * | 2017-12-15 | 2019-06-25 | 中国科学院天津工业生物技术研究所 | The Escherichia coli of fermentation method production tyrosine and its construction method and application |
CN112479799A (en) * | 2020-12-07 | 2021-03-12 | 中国科学院天津工业生物技术研究所 | Method for separating and extracting lycopene from fermentation liquor |
CN112852694A (en) * | 2020-10-26 | 2021-05-28 | 中国科学院天津工业生物技术研究所 | Construction and application of astaxanthin synthetic strain |
CN114921465A (en) * | 2022-04-11 | 2022-08-19 | 中国农业科学院生物技术研究所 | Regulatory element CsiZ and application thereof in improving terpenoid synthesis yield |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103740633A (en) * | 2014-01-22 | 2014-04-23 | 中国科学院天津工业生物技术研究所 | Recombinant bacteria strain for producing lycopene and application of recombinant bacteria strain |
-
2016
- 2016-09-29 CN CN201610864886.3A patent/CN106434506B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103740633A (en) * | 2014-01-22 | 2014-04-23 | 中国科学院天津工业生物技术研究所 | Recombinant bacteria strain for producing lycopene and application of recombinant bacteria strain |
Non-Patent Citations (2)
Title |
---|
JIAO LU: "Combinatorial modulation of galP and glk gene expression for improved alternative glucose utilization", 《APPL MICROBIOL BIOTECHNOL》 * |
赵婧: "多个调控元件调控萜类合成途径基因表达提高β-胡萝卜素的生产", 《生物工程学报》 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109929786A (en) * | 2017-12-15 | 2019-06-25 | 中国科学院天津工业生物技术研究所 | The Escherichia coli of fermentation method production tyrosine and its construction method and application |
CN109929786B (en) * | 2017-12-15 | 2022-05-10 | 中国科学院天津工业生物技术研究所 | Escherichia coli for producing tyrosine by fermentation method and construction method and application thereof |
CN108588106A (en) * | 2018-05-08 | 2018-09-28 | 华东理工大学 | A kind of lycopene superior strain, preparation method and application |
CN108588106B (en) * | 2018-05-08 | 2022-03-11 | 华东理工大学 | Lycopene high-yield strain, preparation method and application thereof |
CN112852694A (en) * | 2020-10-26 | 2021-05-28 | 中国科学院天津工业生物技术研究所 | Construction and application of astaxanthin synthetic strain |
CN112479799A (en) * | 2020-12-07 | 2021-03-12 | 中国科学院天津工业生物技术研究所 | Method for separating and extracting lycopene from fermentation liquor |
CN112479799B (en) * | 2020-12-07 | 2023-06-27 | 中国科学院天津工业生物技术研究所 | Method for separating and extracting lycopene from fermentation liquor |
CN114921465A (en) * | 2022-04-11 | 2022-08-19 | 中国农业科学院生物技术研究所 | Regulatory element CsiZ and application thereof in improving terpenoid synthesis yield |
CN114921465B (en) * | 2022-04-11 | 2023-12-01 | 中国农业科学院生物技术研究所 | Regulatory element CsiZ and application thereof in improvement of synthetic yield of terpenoid |
Also Published As
Publication number | Publication date |
---|---|
CN106434506B (en) | 2019-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103740633B (en) | Recombinant bacterium and the application thereof of Lyeopene are produced in one strain | |
CN106434506B (en) | Construction method and application of a recombinant bacterium producing lycopene | |
CN103087972B (en) | Recombinant microorganism for generating terpenoid and construction method thereof | |
Liu et al. | Convergent engineering of syntrophic Escherichia coli coculture for efficient production of glycosides | |
US20130302862A1 (en) | Fermentation method for producing co-enzyme q10 | |
CN113549588B (en) | Genetically engineered bacteria for producing 5-hydroxytryptophan and its construction method and application | |
CN111690690B (en) | Saccharomyces cerevisiae for producing farnesene | |
CN106967665B (en) | A kind of method of exogenous adding antioxidant liquid fermentation Monascus low-yield citrinin | |
CN112961878B (en) | Application of a gene of Lactobacillus plantarum in biogenesis of folic acid | |
CN104004678A (en) | Construction of corynebacterium glutamicum engineering bacteria for high-yielding production of L-valine and method for fermentation production of L-valine | |
CN106434507B (en) | Recombinant microorganisms producing β-carotene, construction method and application | |
CN101586133B (en) | Abamectin batch fermentation optimizing process | |
CN106635945A (en) | Recombinant strain and preparation method thereof and method for producing L-threonine | |
CN109055417A (en) | A kind of recombinant microorganism, preparation method and its application in production Co-Q10 | |
CN112322549B (en) | A strain capable of efficiently transforming vitamin D3 into its active form and its application | |
CN102835253A (en) | Optimization process for factory production of hypsizygus marmoreus by adopting liquid strains | |
CN111304138B (en) | Recombinant escherichia coli for producing beta-carotene and construction method and application thereof | |
CN108998460B (en) | A kind of biological production method of salidroside | |
WO2020103853A1 (en) | Dicarboxylic acid transporter for increasing oil yield of mucor circinelloides | |
CN110408609A (en) | A kind of compound mutation breeding method of high yield β-farnesene mutant strain | |
KR20200051311A (en) | Mutant Strain with Limonene Production Ability | |
CN117778419B (en) | A kind of Inonotus obliquus C2H2 type transcription factor IoZFP2 and its application | |
CN114350688B (en) | Application of guaA gene, plasmid and strain in expressing siderophilin from nitrogen-fixing bacteria | |
CN104630355B (en) | A kind of rapid screening produces the method for gentiopicrin restructuring yeast strains | |
CN119351234B (en) | A Schizochytrium strain producing astaxanthin and DHA and its application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |