CN106411311B - Output circuit - Google Patents
Output circuit Download PDFInfo
- Publication number
- CN106411311B CN106411311B CN201510461108.5A CN201510461108A CN106411311B CN 106411311 B CN106411311 B CN 106411311B CN 201510461108 A CN201510461108 A CN 201510461108A CN 106411311 B CN106411311 B CN 106411311B
- Authority
- CN
- China
- Prior art keywords
- transistor
- source
- voltage
- drain
- coupled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Logic Circuits (AREA)
Abstract
本发明公开了一种输出电路,包括:一输出开关,包含一栅极、一漏极及一阱极,该输出开关的该漏极耦接至一外部I/O总线;一阱控制电路,具有一阱极耦接至该输出开关的该阱极,以维持该输出开关的一阱电压不低于一第一电压及一第二电压的较大者;一栅控制电路,耦接至该输出开关的该栅极及该漏极,并耦接至该外部I/O总线,该栅控制电路可截止该输出开关,以在以下情况时避免电流从外部I/O总线流过该输出开关:该输出电路的一操作电压不被施加至该输出开关;及来自一外部装置的一总线电压是出现在该外部I/O总线上。
The present invention discloses an output circuit, comprising: an output switch, including a gate, a drain and a well, the drain of the output switch being coupled to an external I/O bus; a well control circuit, having a well coupled to the well of the output switch, to maintain a well voltage of the output switch not lower than the larger of a first voltage and a second voltage; a gate control circuit, coupled to the gate and the drain of the output switch and coupled to the external I/O bus, the gate control circuit being able to cut off the output switch to prevent current from flowing through the output switch from the external I/O bus in the following situations: an operating voltage of the output circuit is not applied to the output switch; and a bus voltage from an external device is present on the external I/O bus.
Description
技术领域technical field
本发明是有关于一种用于积体半导体电路装置的输出缓冲电路,且特别是有关于一种当装置被关闭电源时避免电流回流的输出缓冲电路。The present invention relates to an output buffer circuit for an integrated semiconductor circuit device, and more particularly to an output buffer circuit that prevents current backflow when the device is powered off.
背景技术Background technique
输出缓冲电路通常是实现于半导体积电路中,例如是存储器电路与逻辑电路,以将讯号传送与放大至另一装置的输入缓冲电路。此处使用的芯片也可称为半导体集成电路。芯片可共享外部I/O总线,经由此I/O总线芯片可透过耦接至I/O总线的对应输入及输出缓冲电路而相互通讯。Output buffer circuits are usually implemented in semiconductor integrated circuits, such as memory circuits and logic circuits, to transmit and amplify signals to the input buffer circuits of another device. A chip as used here may also be called a semiconductor integrated circuit. The chips can share an external I/O bus through which the chips can communicate with each other through corresponding input and output buffer circuits coupled to the I/O bus.
图1绘示传统系统100的方块图,其中芯片A 102与芯片B 104共享外部I/O总线。芯片A 102与芯片B 104分别包含输出缓冲电路106与108,及分别包含输入缓冲电路110与112。芯片A 102的输出缓冲电路106包含pMOS晶体管114与nMOS晶体管116。pMOS晶体管114包含拉升(Pull-Up,PU)栅极118、漏极120、源极122与阱极123。阱极123被耦接至源极122,源极122接收电压VDD。nMOS晶体管116包含拉低(Pull-Down,PD)栅极124、漏极126及源极128。nMOS晶体管116的漏极126被耦接至pMOS晶体管114的源极120。芯片A 102的输入缓冲电路110包含pMOS晶体管130及nMOS晶体管132。pMOS晶体管130包含栅极134、漏极136、源极138与阱极139。阱极139被耦接至源极138,源极138被耦接以接收电压VDD。nMOS晶体管132包含栅极140、漏极142及源极148。nMOS晶体管132的漏极142被耦接至pMOS晶体管130的漏极136。FIG. 1 shows a block diagram of a conventional system 100 in which chip A 102 and chip B 104 share an external I/O bus. Chip A 102 and chip B 104 include output buffer circuits 106 and 108, respectively, and input buffer circuits 110 and 112, respectively. The output buffer circuit 106 of the chip A 102 includes a pMOS transistor 114 and an nMOS transistor 116 . The pMOS transistor 114 includes a pull-up (Pull-Up, PU) gate 118 , a drain 120 , a source 122 and a well 123 . The well 123 is coupled to the source 122 , and the source 122 receives the voltage VDD. The nMOS transistor 116 includes a pull-down (Pull-Down, PD) gate 124 , a drain 126 and a source 128 . The drain 126 of the nMOS transistor 116 is coupled to the source 120 of the pMOS transistor 114 . The input buffer circuit 110 of chip A 102 includes a pMOS transistor 130 and an nMOS transistor 132 . The pMOS transistor 130 includes a gate 134 , a drain 136 , a source 138 and a well 139 . The well 139 is coupled to the source 138 , and the source 138 is coupled to receive the voltage VDD. The nMOS transistor 132 includes a gate 140 , a drain 142 and a source 148 . The drain 142 of the nMOS transistor 132 is coupled to the drain 136 of the pMOS transistor 130 .
芯片B 104的输出缓冲电路108包含pMOS晶体管150及nMOS晶体管152。pMOS晶体管包含PU栅极154、漏极156、源极158及阱极159。阱极159被耦接至源极158,源极158接收电压VDD。nMOS晶体管152包含PD栅极160、漏极162及源极164,源极164被耦接至pMOS晶体管150的漏极156。芯片B 104的输入缓冲电路112包含pMOS晶体管166与nMOS晶体管168。pMOS晶体管166包含极栅170、漏极172、源极174及阱极175。阱极175被耦接至源极174,源极174接收电压VDD。nMOS晶体管168包含栅极176、漏极178及源极180。nMOS晶体管168的漏极178被耦接至pMOS晶体管166的漏极172。The output buffer circuit 108 of chip B 104 includes a pMOS transistor 150 and an nMOS transistor 152 . The pMOS transistor includes a PU gate 154 , a drain 156 , a source 158 and a well 159 . The well 159 is coupled to the source 158 , and the source 158 receives the voltage VDD. The nMOS transistor 152 includes a PD gate 160 , a drain 162 and a source 164 coupled to the drain 156 of the pMOS transistor 150 . The input buffer circuit 112 of chip B 104 includes a pMOS transistor 166 and an nMOS transistor 168 . The pMOS transistor 166 includes a gate 170 , a drain 172 , a source 174 and a well 175 . The well 175 is coupled to the source 174 , and the source 174 receives the voltage VDD. nMOS transistor 168 includes a gate 176 , a drain 178 and a source 180 . Drain 178 of nMOS transistor 168 is coupled to drain 172 of pMOS transistor 166 .
外部I/O总线182耦接芯片A 102与芯片B 104。以芯片A 102而言,外部I/O总线182被耦接至pMOS晶体管114的漏极120、nMOS晶体管116的漏极126、pMOS晶体管130的栅极134与nMOS晶体管132的栅极140。以芯片B 104而言,外部I/O总线182被耦接至pMOS晶体管150的漏极156、nMOS晶体管152的漏极162、pMOS晶体管166的栅极170与nMOS晶体管168的栅极176。通过耦接外部I/O总线182于芯片A 102与芯片B 104之间,来自芯片A 102的数据讯号可传送至芯片B 104。更详细地,芯片A 102的输出缓冲电路106经由I/O总线182传送数据讯号至芯片B 104的输入缓冲电路112。相仿地,数据讯号可从芯片B 104传送至芯片A 102。The external I/O bus 182 couples chip A 102 and chip B 104 . For the chip A 102 , the external I/O bus 182 is coupled to the drain 120 of the pMOS transistor 114 , the drain 126 of the nMOS transistor 116 , the gate 134 of the pMOS transistor 130 and the gate 140 of the nMOS transistor 132 . For chip B 104 , external I/O bus 182 is coupled to drain 156 of pMOS transistor 150 , drain 162 of nMOS transistor 152 , gate 170 of pMOS transistor 166 , and gate 176 of nMOS transistor 168 . Data signals from chip A 102 can be transmitted to chip B 104 by coupling external I/O bus 182 between chip A 102 and chip B 104 . In more detail, the output buffer circuit 106 of the chip A 102 transmits the data signal to the input buffer circuit 112 of the chip B 104 via the I/O bus 182 . Similarly, data signals may be sent from chip B 104 to chip A 102 .
发明内容Contents of the invention
根据本发明的第一方面,提出一种输出电路,包括:一输出开关,包含一栅极、一漏极及一阱极,该输出开关的该漏极耦接至一外部I/O总线;一阱控制电路,具有一阱极耦接至该输出开关的该阱极,以维持该输出开关的一阱电压不低于一第一电压及一第二电压的较大者;及一栅控制电路,耦接至该输出开关的该栅极及该漏极,并耦接至该外部I/O总线,该栅控制电路被操作以截止该输出开关,以避免在以下情况时有电流从外部I/O总线流过该输出开关:该输出电路的一操作电压不被施加至该输出开关;及来自一外部装置的一总线电压是出现在该外部I/O总线上。According to a first aspect of the present invention, an output circuit is provided, comprising: an output switch including a gate, a drain and a well, the drain of the output switch being coupled to an external I/O bus; a well control circuit having a well coupled to the well of the output switch to maintain a well voltage of the output switch not lower than the greater of a first voltage and a second voltage; and a gate control a circuit, coupled to the gate and the drain of the output switch, and coupled to the external I/O bus, the gate control circuit is operated to turn off the output switch to avoid current flow from the outside when The I/O bus flows through the output switch: an operating voltage of the output circuit is not applied to the output switch; and a bus voltage from an external device is present on the external I/O bus.
根据本发明的第二方面,提出一种输出电路,包括:一输出开关,于启动时操作以供应一数据讯号至一外部I/O总线,该输出开关包含一栅极、一漏极及一阱极;一阱控制电路,具有一阱极耦接至该输出开关的该阱极,以维持该输出开关的一阱电压不低于一第一电压及一第二电压的较大者,其中该第一电压是该输出电路的一操作电压减去D1;该第二电压是该外部I/O总线的总线电压减去D2;及D1及D2各为正数值或零;一输入开关,耦接至该输出开关的该栅极;一栅极控制电路,耦接至该输出开关的该栅极及该漏极、该外部I/O总线及该输入开关;一偏压产生器,耦接至该输入开关的一栅极,以维持一偏压大于该输出电路的该操作电压及该输入开关的一阈值电压之和;以及一电压放电电路,耦接至该偏压产生器、该阱控制电路及该输入开关的该栅极,以在该输出电路的该操作电压降低时,对该偏压产生器所产生的该偏压进行放电。According to a second aspect of the present invention, an output circuit is provided, comprising: an output switch operated to supply a data signal to an external I/O bus when activated, the output switch comprising a gate, a drain and a well; a well control circuit having a well coupled to the well of the output switch to maintain a well voltage of the output switch not lower than the larger of a first voltage and a second voltage, wherein The first voltage is an operating voltage of the output circuit minus D1; the second voltage is the bus voltage of the external I/O bus minus D2; and D1 and D2 are each positive or zero; an input switch, coupled connected to the gate of the output switch; a gate control circuit coupled to the gate and the drain of the output switch, the external I/O bus and the input switch; a bias generator coupled to to a gate of the input switch to maintain a bias greater than the sum of the operating voltage of the output circuit and a threshold voltage of the input switch; and a voltage discharge circuit coupled to the bias generator, the well The control circuit and the gate of the input switch discharge the bias voltage generated by the bias voltage generator when the operating voltage of the output circuit decreases.
根据本发明的第三方面,提出一种输出电路,包括:一输出开关,于启动时操作以供应一数据讯号至一外部I/O总线,该输出开关包含一栅极、一源/漏极及一阱极;一阱控制电路,具有一阱极耦接至该输出开关的该阱极,以维持该输出开关的一阱电压不低于一第一电压及一第二电压的较大者,其中该第一电压是该输出电路的一操作电压减去D1;该第二电压是该外部I/O总线的总线电压减去D2;及D1及D2各为正数值或零;一输入开关,耦接于该输出开关的该源/漏极与该外部I/O总线之间,并操作以从该I/O总线与该输出开关断开(disconnect);一偏压产生器,耦接至该输入开关的一栅极,以维持一偏压大于该输出电路的该操作电压及该输入开关的一阈值电压之和;以及一电压放电电路,耦接至该偏压产生器、该阱控制电路及该输入开关的该栅极,以在该输出电路的该操作电压降低时,对该偏压产生器所产生的该偏压进行放电。According to a third aspect of the present invention, an output circuit is provided, comprising: an output switch operated to supply a data signal to an external I/O bus when activated, the output switch comprising a gate, a source/drain and a well; a well control circuit having a well coupled to the well of the output switch to maintain a well voltage of the output switch not lower than the larger of a first voltage and a second voltage , wherein the first voltage is an operating voltage of the output circuit minus D1; the second voltage is the bus voltage of the external I/O bus minus D2; and D1 and D2 are each positive values or zero; an input switch , coupled between the source/drain of the output switch and the external I/O bus, and operated to disconnect (disconnect) from the I/O bus and the output switch; a bias generator, coupled to a gate of the input switch to maintain a bias greater than the sum of the operating voltage of the output circuit and a threshold voltage of the input switch; and a voltage discharge circuit coupled to the bias generator, the well The control circuit and the gate of the input switch discharge the bias voltage generated by the bias voltage generator when the operating voltage of the output circuit decreases.
为了对本发明的上述及其他方面有更佳的了解,下文特举较佳实施例,并配合所附图式,作详细说明如下:In order to have a better understanding of the above-mentioned and other aspects of the present invention, the preferred embodiments are specifically cited below, together with the attached drawings, and are described in detail as follows:
附图说明Description of drawings
所附图式合并参照为说明书的一部分,并绘示依据本发明的实施例,而与说明内容共享于说明本发明的原理。The accompanying drawings are incorporated by reference as a part of the description, and illustrate embodiments according to the present invention, and are shared with the description to explain the principle of the present invention.
图1绘示多个芯片共享一共同外部I/O总线的传统系统的方块图。FIG. 1 is a block diagram of a conventional system in which multiple chips share a common external I/O bus.
图2A绘示依照本发明范例性实施例的输出缓冲电路的架构示意图。FIG. 2A is a schematic diagram illustrating the architecture of an output buffer circuit according to an exemplary embodiment of the present invention.
图2B绘示依照本发明范例性实施例的以VIO模式实现的输出缓冲电路的另一架构示意图。FIG. 2B is a schematic diagram illustrating another architecture of an output buffer circuit implemented in a VIO mode according to an exemplary embodiment of the present invention.
图3绘示第一实施例的范例性电路图。FIG. 3 shows an exemplary circuit diagram of the first embodiment.
图4A-图4C绘示依照本发明范例性实施例的阱控制元件的电路图。4A-4C are circuit diagrams of a well control device according to an exemplary embodiment of the present invention.
图5A-图5B绘示依照本发明范例性实施例的阱控制元件的另一架构示意图。5A-5B are schematic diagrams illustrating another structure of a well control device according to an exemplary embodiment of the present invention.
图6绘示依照本发明范例性实施例的架构的电路图。FIG. 6 is a circuit diagram illustrating an architecture according to an exemplary embodiment of the present invention.
图7绘示依照本发明范例性实施例的架构的电路图。FIG. 7 is a circuit diagram illustrating an architecture according to an exemplary embodiment of the present invention.
【符号说明】【Symbol Description】
100:系统100: system
102:芯片A102: Chip A
104:芯片B104: Chip B
106、108、200、300、600、700:输出缓冲电路106, 108, 200, 300, 600, 700: output buffer circuit
110、112:输入缓冲电路110, 112: Input buffer circuit
114、130、150、166、202、302、320、322、402、439、440、602、608、620、640、702、730:pMOS晶体管114, 130, 150, 166, 202, 302, 320, 322, 402, 439, 440, 602, 608, 620, 640, 702, 730: pMOS transistors
116、132、152、168、318、404、422、424、606、638、706、728:nMOS晶体管116, 132, 152, 168, 318, 404, 422, 424, 606, 638, 706, 728: nMOS transistors
118、124、134、140、154、160、170、176、208、308、319、324、332、406、414、426、432、442、450、614、624、630、642、648、712、720、732、738:栅极118, 124, 134, 140, 154, 160, 170, 176, 208, 308, 319, 324, 332, 406, 414, 426, 432, 442, 450, 614, 624, 630, 642, 648, 712, 720, 732, 738: gate
120、126、136、142、156、162、172、178、210、310、321、326、334、408、416、428、434、444、452、616、626、632、644、650、714、722、734、740:漏极120, 126, 136, 142, 156, 162, 172, 178, 210, 310, 321, 326, 334, 408, 416, 428, 434, 444, 452, 616, 626, 632, 644, 650, 714, 722, 734, 740: drain
122、128、138、148、158、164、174、180、212、312、323、328、336、410、418、430、436、446、454、618、628、634、646、652、716、724、736、742:源极122, 128, 138, 148, 158, 164, 174, 180, 212, 312, 323, 328, 336, 410, 418, 430, 436, 446, 454, 618, 628, 634, 646, 652, 716, 724, 736, 742: source
123、139、159、175、214、313、330、338、412、420、438、448、456、636、654、718、744:阱极123, 139, 159, 175, 214, 313, 330, 338, 412, 420, 438, 448, 456, 636, 654, 718, 744: Well electrode
182、215、622、726:外部I/O总线182, 215, 622, 726: External I/O bus
204、304:栅控制电路204, 304: gate control circuit
206、306、400A、400B、400C、500A、500B、500C、604、704:阱控制电路206, 306, 400A, 400B, 400C, 500A, 500B, 500C, 604, 704: well control circuit
216:电平移位电路216: Level shift circuit
225:内部电路225: Internal circuit
610、708:偏压产生器610, 708: Bias generator
612、710:电压放电电路612, 710: voltage discharge circuit
Vout、VDD、VIO:电压Vout, VDD, VIO: voltage
Data:数据讯号Data: data signal
具体实施方式Detailed ways
将参照本发明实施例作详细说明,此些实施范例将配合图式作说明。以下描述将参照所附图式,图式中相同或相仿的元件除了另予定义外,是代表相同或相仿的元件。以下范例性实施例的描述中所呈现的实作并不代表本发明所有实作,而仅代表依照所附权利要求范围的本发明的相关方面而实现的系统与方法范例。The details will be described with reference to the embodiments of the present invention, and these implementation examples will be described with reference to the drawings. The following description will refer to the accompanying drawings, and the same or similar elements in the drawings represent the same or similar elements unless otherwise defined. The implementations presented in the following description of the exemplary embodiments do not represent all implementations of the invention, but merely represent examples of systems and methods implemented in accordance with relevant aspects of the invention within the scope of the appended claims.
在范例性实施例中,提供一种输出缓冲电路,包含输出开关、栅控制电路及阱控制电路。输出缓冲电路是经由输出开关耦接至外部I/O总线。In an exemplary embodiment, an output buffer circuit including an output switch, a gate control circuit and a well control circuit is provided. The output buffer circuit is coupled to the external I/O bus via the output switch.
更详细地,在范例性实施例中,在电路操作电压未施加至该输出开关时,输出缓冲电路避免电流从外部I/O总线流过该输出开关。输出缓冲电路是使得来自外部I/O总线的总线电压耦接至阱控制电路与栅控制电路。In more detail, in an exemplary embodiment, the output buffer circuit prevents current from flowing through the output switch from the external I/O bus when the circuit operating voltage is not applied to the output switch. The output buffer circuit is such that the bus voltage from the external I/O bus is coupled to the sink control circuit and the gate control circuit.
图2A绘示依照本发明范例性实施例的输出缓冲电路200的架构示意图。输出缓冲电路200包含输出开关例如是pMOS晶体管202、栅控制电路204及阱控制电路206。栅控制电路204被耦接至内部电路225以接收数据。pMOS晶体管202包含栅极208、漏极210、源极212及阱极214。漏极210被耦接至栅控制电路204。漏极210是更耦接至外部I/O总线215。I/O总线215具有总线电压。源极212接收电路操作电压VDD(亦即,内部电压225与输出缓冲电路200的操作电压)。pMOS晶体管202的栅极208被耦接至栅控制电路204。阱控制电路206被耦接至pMOS晶体管202的阱极214。FIG. 2A is a schematic structural diagram of an output buffer circuit 200 according to an exemplary embodiment of the present invention. The output buffer circuit 200 includes an output switch such as a pMOS transistor 202 , a gate control circuit 204 and a well control circuit 206 . Gate control circuit 204 is coupled to internal circuit 225 for receiving data. The pMOS transistor 202 includes a gate 208 , a drain 210 , a source 212 and a well 214 . The drain 210 is coupled to the gate control circuit 204 . The drain 210 is further coupled to an external I/O bus 215 . I/O bus 215 has a bus voltage. The source 212 receives the circuit operating voltage VDD (ie, the internal voltage 225 and the operating voltage of the output buffer circuit 200 ). The gate 208 of the pMOS transistor 202 is coupled to the gate control circuit 204 . Well control circuit 206 is coupled to well 214 of pMOS transistor 202 .
图2B绘示依照本发明范例性实施例的输出缓冲电路220的另一架构示意图。输出缓冲电路220的元件是相同于输出缓冲电路200的元件并标示相同的参考数字,元件说明不再重述。输出缓冲电路220的源极212接收电压VIO。电压VIO是输出缓冲电路220的操作电压。电压VIO可不同于内部电路操作电压VDD。源极212被耦接至栅控制电路204及电平移位电路216。电平移位电路216接收电平为内部电路操作电压VDD的一数据讯号,并将电平从VDD改变至VIO,故VIO提供此数据讯号至外部I/O总线215。以依方式,内部电路操作电压VDD是与输出缓冲操作电压VIO隔离。在一实施例中,电平移位电路216降低数据讯号的电压,藉以在VDD>VIO时降低外部I/O总线215的耗能。FIG. 2B is a schematic diagram of another architecture of the output buffer circuit 220 according to an exemplary embodiment of the present invention. The components of the output buffer circuit 220 are the same as those of the output buffer circuit 200 and denoted by the same reference numerals, and the description of the components will not be repeated. The source 212 of the output buffer circuit 220 receives the voltage VIO. The voltage VIO is the operating voltage of the output buffer circuit 220 . The voltage VIO may be different from the internal circuit operating voltage VDD. The source 212 is coupled to the gate control circuit 204 and the level shift circuit 216 . The level shift circuit 216 receives a data signal whose level is the internal circuit operating voltage VDD, and changes the level from VDD to VIO, so that VIO provides the data signal to the external I/O bus 215 . In this manner, the internal circuit operating voltage VDD is isolated from the output buffer operating voltage VIO. In one embodiment, the level shift circuit 216 lowers the voltage of the data signal, so as to reduce the power consumption of the external I/O bus 215 when VDD>VIO.
有关图3-图7所述的实施例电路具有相仿于图2A的输出缓冲电路的架构,其中只有内部电路操作电压VDD被提供至输出缓冲电路200的pMOS晶体管202、栅控制电路204及阱控制电路206。然而,具有通常知识者应知有关图3-图7所述的实施例电路具有相仿于图2B的架构,具中内部电路操作电压VDD是首先由电平移位电路216移位而成为VIO,而VIO(非VDD)被提供至输出缓冲电路220的pMOS晶体管202、栅控制电路204及阱控制电路206。当有关图3-图7所述的实施例电路具有相仿于图2B的架构时,在装置被关闭电源时(亦即电路关闭模式),VDD与VIO亦为关闭。The embodiment circuits described with respect to FIGS. 3-7 have a structure similar to that of the output buffer circuit of FIG. 2A, wherein only the internal circuit operating voltage VDD is provided to the pMOS transistor 202, the gate control circuit 204, and the well control of the output buffer circuit 200. circuit 206. However, those with ordinary knowledge should know that the embodiment circuits described in FIG. 3-FIG. 7 have a structure similar to FIG. VIO (not VDD) is provided to the pMOS transistor 202 of the output buffer circuit 220 , the gate control circuit 204 and the well control circuit 206 . When the circuit of the embodiment described in relation to FIGS. 3-7 has a structure similar to that of FIG. 2B , when the device is powered off (that is, the circuit is off mode), VDD and VIO are also off.
外部I/O总线215的驱动来源是动态地改变。有时外部I/O总线215是由pMOS晶体管202的输出所驱动。有时外部I/O总线215是由其他耦接至外部I/O总线215的芯片的输出所驱动。有时外部I/O总线215并不被驱动,亦即外部I/O总线215是浮接。不论外部I/O总线215的驱动来源为何,总是会有一个有限电压电平的电压在外部I/O总线215上,例如是零电压。因此,出现在外部I/O总线215上的电压是被称为”总线电压”。The driving source of the external I/O bus 215 is changed dynamically. Sometimes external I/O bus 215 is driven by the output of pMOS transistor 202 . Sometimes the external I/O bus 215 is driven by the output of other chips coupled to the external I/O bus 215 . Sometimes the external I/O bus 215 is not driven, that is, the external I/O bus 215 is floating. Regardless of the driving source of the external I/O bus 215, there is always a finite voltage level on the external I/O bus 215, such as zero voltage. Accordingly, the voltage appearing on the external I/O bus 215 is referred to as the "bus voltage."
再次参照图2A,在芯片电源关闭时,输出缓冲电路200是避免电流从外部I/O总线215回流至芯片内。pMOS晶体管202的漏极210被耦接至外部I/O总线215,以提供外部I/O总线215的总线电压至pMOS晶体管202的漏极210。外部I/O总线215是更耦接至栅控制电路204。栅控制电路204对应于外部I/O总线215的总线电压而操作。栅控制电路204的范例性架构是如下说明。耦接至pMOS晶体管202的阱极214的阱控制电路206,是维持阱极214上的电压而不低于一第一电压及一第二电压的较大者,以避免pMOS晶体管202中的漏电流。第一电压是内部电路操作电压VDD减去D1,其中D1为正数值或零。第二电压是外部I/O总线215的总线电压减去D2,D2各为正数值或零。D1及D2可相等或不同。在此架构中,pMOS晶体管202在芯片电源关闭时(VDD=0)及芯片被开启电源(VDD=1.8V)时可被完全截止。因此,截止pMOS晶体管202及维持阱电压可避免电流回流。Referring again to FIG. 2A , when the power of the chip is turned off, the output buffer circuit 200 prevents current from flowing back into the chip from the external I/O bus 215 . The drain 210 of the pMOS transistor 202 is coupled to the external I/O bus 215 to provide the bus voltage of the external I/O bus 215 to the drain 210 of the pMOS transistor 202 . The external I/O bus 215 is further coupled to the gate control circuit 204 . The gate control circuit 204 operates corresponding to the bus voltage of the external I/O bus 215 . An exemplary architecture of the gate control circuit 204 is as follows. The well control circuit 206 coupled to the well 214 of the pMOS transistor 202 maintains the voltage on the well 214 not lower than the larger of a first voltage and a second voltage, so as to avoid leakage in the pMOS transistor 202 current. The first voltage is the internal circuit operating voltage VDD minus D1, wherein D1 is a positive value or zero. The second voltage is the bus voltage of the external I/O bus 215 minus D2, each of which is a positive value or zero. D1 and D2 can be equal or different. In this architecture, the pMOS transistor 202 can be completely turned off when the chip is powered off (VDD=0) and when the chip is powered on (VDD=1.8V). Therefore, turning off pMOS transistor 202 and maintaining the well voltage prevents current backflow.
请参照图2B,输出缓冲电路220被配置以在芯片电源关闭时避免电流从外部I/O总线215回流至芯片内,并配置以转换芯片的电路操作电压VDD为外部I/O总线215的电压。pMOS晶体管202的漏极210被耦接至外部I/O总线215,以提供外部I/O总线215的总线电压至pMOS晶体管202的漏极210。外部I/O总线215被耦接至栅控制电路204。栅控制电路204对应于外部I/O总线215的总线电压而操作。耦接至pMOS晶体管202的阱极214的阱控制电路206,是维持阱极214上的电压而不低于一第二电压及一第三电压的较大者,以避免pMOS晶体管202中的漏电流。第二电压是外部I/O总线215的总线电压减去D2,D2各为正数值或零。第三电压是输出缓冲电路220的操作电压VIO减去D3,其中D3为正数值或零。D2及D3可相等或不同。再者,输出缓冲电路220的电平移位电路216降低数据讯号VDD的电压至VIO的I/O电压,藉以降低外部I/O总线215的电压。依此方式,输出缓冲电路220在芯片被关闭电源模式中避免外部I/O总线215的电流回流,并在开启电源模式中隔离内部电路操作电压VDD与输出缓冲操作电压VIO。Please refer to FIG. 2B, the output buffer circuit 220 is configured to prevent current from flowing back into the chip from the external I/O bus 215 when the chip power is turned off, and is configured to convert the circuit operating voltage VDD of the chip to the voltage of the external I/O bus 215 . The drain 210 of the pMOS transistor 202 is coupled to the external I/O bus 215 to provide the bus voltage of the external I/O bus 215 to the drain 210 of the pMOS transistor 202 . External I/O bus 215 is coupled to gate control circuit 204 . The gate control circuit 204 operates corresponding to the bus voltage of the external I/O bus 215 . The well control circuit 206 coupled to the well 214 of the pMOS transistor 202 maintains the voltage on the well 214 not lower than the larger of a second voltage and a third voltage, so as to avoid leakage in the pMOS transistor 202 current. The second voltage is the bus voltage of the external I/O bus 215 minus D2, each of which is a positive value or zero. The third voltage is the operating voltage VIO of the output buffer circuit 220 minus D3, wherein D3 is a positive value or zero. D2 and D3 can be equal or different. Moreover, the level shift circuit 216 of the output buffer circuit 220 reduces the voltage of the data signal VDD to the I/O voltage of VIO, thereby reducing the voltage of the external I/O bus 215 . In this way, the output buffer circuit 220 prevents the current backflow of the external I/O bus 215 in the power-off mode of the chip, and isolates the internal circuit operating voltage VDD from the output buffer operating voltage VIO in the power-on mode.
图3绘示前述实施例的输出缓冲电路300的范例性电路图。输出缓冲电路300是输出缓冲电路200的范例性实作。请参照图3,输出缓冲电路300包含输出开关(例如是pMOS晶体管MP 302)、栅控制电路304及阱控制电路306,分别对应至输出缓冲电路200(图2A)的pMOS晶体管202、栅控制电路204及阱控制电路206。pMOS晶体管MP 302包含拉升(Pull-Up,PU)栅极308、漏极310、源极312及阱极313。漏极310被耦接至外部I/O总线314,外部I/O总线314具有总线电压Vout。pMOS晶体管MP 302的PU栅极308、漏极310、源极312及阱极313分别对应至pMOS晶体管202(图2A)的栅极208、漏极210、源极212及阱极214。源极312被耦接以接收VDD。栅控制电路304耦接至pMOS晶体管302的PU栅极308。栅控制电路304包含输入开关以避免电流回流至芯片内,例如是耦接至pMOS晶体管MP 302的PU栅极308的nMOS晶体管MN1318、第一pMOS晶体管MP1 320及第二pMOS晶体管MP2 322。nMOS晶体管MN1 318包含栅极319、漏极321及源极323。栅极319被耦接以接收VDD。漏极321被耦接以接收数据讯号0或1。第一pMOS晶体管MP1 320包含栅极324、漏极326、源极328及阱极330。栅极324被耦接以接收总线电压Vout。漏极326被耦接至pMOS晶体管MP 302的PU栅极308与nMOS晶体管MN1 318的源极323。第一pMOS晶体管MP1 320的源极328被耦接以接收电压VDD。第二pMOS晶体管322包含栅极332、漏极334、源极336及阱极338。栅极332被耦接以接收VDD。漏极334被耦接至pMOS晶体管MP 302的PU栅极308、第一pMOS晶体管MP1 320的漏极326及nMOS晶体管MN1 318的源极323。第二pMOS晶体管MP2 322的源极336被耦接以接收总线电压Vout。第一pMOS晶体管MP1 320及第二pMOS晶体管MP2 322的阱极330与338耦接在一起。阱控制电路306被耦接至pMOS晶体管MP 302的阱极313。第一pMOS晶体管MP1及第二pMOS晶体管MP2的阱极330及338也耦接至阱控制电路306。在一些实施例中,pMOS晶体管302的阱极313、第一pMOS晶体管MP1320及第二pMOS晶体管MP2 322的阱极330与338,分别可耦接至不同的阱控制电路。阱控制电路306的范例性架构如下所述。FIG. 3 is an exemplary circuit diagram of the output buffer circuit 300 of the foregoing embodiment. The output buffer circuit 300 is an exemplary implementation of the output buffer circuit 200 . Please refer to FIG. 3 , the output buffer circuit 300 includes an output switch (such as a pMOS transistor MP 302 ), a gate control circuit 304 and a well control circuit 306, respectively corresponding to the pMOS transistor 202 and the gate control circuit of the output buffer circuit 200 ( FIG. 2A ). 204 and well control circuit 206. The pMOS transistor MP 302 includes a pull-up (Pull-Up, PU) gate 308 , a drain 310 , a source 312 and a well 313 . The drain 310 is coupled to an external I/O bus 314 having a bus voltage Vout. The PU gate 308 , drain 310 , source 312 and well 313 of the pMOS transistor MP 302 correspond to the gate 208 , drain 210 , source 212 and well 214 of the pMOS transistor 202 ( FIG. 2A ), respectively. Source 312 is coupled to receive VDD. Gate control circuit 304 is coupled to PU gate 308 of pMOS transistor 302 . The gate control circuit 304 includes input switches such as nMOS transistor MN1 318 coupled to the PU gate 308 of the pMOS transistor MP 302 , a first pMOS transistor MP1 320 and a second pMOS transistor MP2 322 to prevent current backflow into the chip. The nMOS transistor MN1 318 includes a gate 319 , a drain 321 and a source 323 . Gate 319 is coupled to receive VDD. The drain 321 is coupled to receive a data signal 0 or 1. The first pMOS transistor MP1 320 includes a gate 324 , a drain 326 , a source 328 and a well 330 . The gate 324 is coupled to receive the bus voltage Vout. The drain 326 is coupled to the PU gate 308 of the pMOS transistor MP 302 and the source 323 of the nMOS transistor MN1 318 . The source 328 of the first pMOS transistor MP1 320 is coupled to receive the voltage VDD. The second pMOS transistor 322 includes a gate 332 , a drain 334 , a source 336 and a well 338 . Gate 332 is coupled to receive VDD. The drain 334 is coupled to the PU gate 308 of the pMOS transistor MP 302 , the drain 326 of the first pMOS transistor MP1 320 and the source 323 of the nMOS transistor MN1 318 . The source 336 of the second pMOS transistor MP2 322 is coupled to receive the bus voltage Vout. The wells 330 and 338 of the first pMOS transistor MP1 320 and the second pMOS transistor MP2 322 are coupled together. The well control circuit 306 is coupled to the well 313 of the pMOS transistor MP 302 . The well electrodes 330 and 338 of the first pMOS transistor MP1 and the second pMOS transistor MP2 are also coupled to the well control circuit 306 . In some embodiments, the well 313 of the pMOS transistor 302 , the wells 330 and 338 of the first pMOS transistor MP1 320 and the second pMOS transistor MP2 322 can be respectively coupled to different well control circuits. An exemplary architecture of the well control circuit 306 is described below.
如图2A及图2B所示,阱控制电路206被耦接以控制pMOS晶体管202的阱极214的电压。在图3中,阱控制电路被耦接以分别控制pMOS晶体管302、320、322的阱极313、330及338的电压。图4A-图4C绘示依照本发明范例性实施例的阱控制电路400A-400C的电路图。在图4A-图4C中,各范例性阱控制电路被配置以控制阱极电压,以使阱控制电路所耦接的pMOS晶体管可在适当时机被有效截止。为了有效截止各个pMOS晶体管,当pMOS晶体管的栅极接收电压VDD时,阱电压应不小于漏极及源极上的电压的最大值。若阱电压小于漏极及源极上的电压的最大值,pMOS晶体管可能产生漏电流。As shown in FIGS. 2A and 2B , the well control circuit 206 is coupled to control the voltage of the well 214 of the pMOS transistor 202 . In FIG. 3 , the well control circuit is coupled to control the voltages of the wells 313 , 330 and 338 of the pMOS transistors 302 , 320 and 322 , respectively. 4A-4C illustrate circuit diagrams of well control circuits 400A- 400C according to exemplary embodiments of the present invention. In FIGS. 4A-4C , each exemplary well control circuit is configured to control the well voltage so that the pMOS transistor coupled to the well control circuit can be effectively turned off at an appropriate time. In order to effectively turn off each pMOS transistor, when the gate of the pMOS transistor receives voltage VDD, the well voltage should not be less than the maximum value of the voltage on the drain and source. If the well voltage is less than the maximum value of the voltage on the drain and source, the pMOS transistor may generate a leakage current.
参照图4A,阱控制电路400A包含串联耦接的第一pMOS晶体管402及第二pMOS晶体管404。第一pMOS晶体管402包含栅极406、漏极408、源极410及阱极412。第二pMOS晶体管404包含栅极414、漏极416、源极418及阱极420。第一pMOS晶体管402的栅极406被耦接以接收总线电压Vout。第一pMOS晶体管402的漏极408被耦接至第二pMOS晶体管404的漏极416。源极410被耦接以接收VDD。第一pMOS晶体管402的阱极412被耦接至第二pMOS晶体管404阱极420,并耦接至漏极408与416。第二pMOS晶体管404的栅极414被耦接以接收VDD,而源极418被耦接以接收Vout。Referring to FIG. 4A , well control circuit 400A includes a first pMOS transistor 402 and a second pMOS transistor 404 coupled in series. The first pMOS transistor 402 includes a gate 406 , a drain 408 , a source 410 and a well 412 . The second pMOS transistor 404 includes a gate 414 , a drain 416 , a source 418 and a well 420 . The gate 406 of the first pMOS transistor 402 is coupled to receive the bus voltage Vout. The drain 408 of the first pMOS transistor 402 is coupled to the drain 416 of the second pMOS transistor 404 . The source 410 is coupled to receive VDD. The well 412 of the first pMOS transistor 402 is coupled to the well 420 of the second pMOS transistor 404 and is coupled to the drains 408 and 416 . The gate 414 of the second pMOS transistor 404 is coupled to receive VDD, and the source 418 is coupled to receive Vout.
为了方便说明,当VDD为高时,VDD被提供为电路操作电压(如1.8V或3.0V)。当VDD为低时,VDD被提供为0V。相仿地,当Vout为高时,Vout被提供为VDD或VIO,分别代表电路操作电压或如由电平移位电路216所提供的降低后的电压。当Vout为低时,Vout被提供为0V。For convenience of illustration, when VDD is high, VDD is provided as a circuit operating voltage (eg, 1.8V or 3.0V). When VDD is low, VDD is supplied as 0V. Similarly, when Vout is high, Vout is provided as VDD or VIO, respectively representing the circuit operating voltage or a reduced voltage as provided by the level shift circuit 216 . When Vout is low, Vout is provided as 0V.
在阱控制电路400A的操作期间,当VDD及Vout为高时,阱极412及420上的电压为VDD-Vdiode,其中Vdiode为各pMOS晶体管402、404的源极与漏极中所形成的PN结的导通电压。当Vout为低而VDD为高时,阱极412与420上的电压为VDD。当Vout为高而VDD为低时,阱极412与420上的电压为Vout。当Vout与VDD皆为低时,阱极412与420上的电压为浮接地,此电压相对于低的Vout与低的VDD而言是高的。以此架构,当VDD≠Vout,阱控制电路所耦接的pMOS晶体管(如pMOS晶体管202、302、320、322)并不会出现漏电流,故可完全截止。当VDD=Vout时,阱电压为VDD-Vdiode,此电压足以抑制漏电流。During operation of the well control circuit 400A, when VDD and Vout are high, the voltage on the wells 412 and 420 is VDD-Vdiode, where Vdiode is the PN formed in the source and drain of each pMOS transistor 402, 404 junction turn-on voltage. When Vout is low and VDD is high, the voltage on wells 412 and 420 is VDD. When Vout is high and VDD is low, the voltage on wells 412 and 420 is Vout. When both Vout and VDD are low, the voltage on wells 412 and 420 is floating ground, which is high relative to low Vout and low VDD. With this structure, when VDD≠Vout, the pMOS transistors (such as pMOS transistors 202 , 302 , 320 , 322 ) coupled to the well control circuit will not leak current, so they can be completely turned off. When VDD=Vout, the well voltage is VDD-Vdiode, which is sufficient to suppress the leakage current.
请参照图4B,阱控制电路400B包含串联耦接的第一nMOS晶体管422与第二nMOS晶体管424。第一nMOS晶体管422包含栅极426、漏极428与源极430。第二nMOS晶体管424包含栅极432、漏极434与源极436。栅极426与432是分别耦接至漏极428与434。源极430与436被耦接在一起并耦接至阱极438。第一nMOS晶体管422的漏极428被耦接以接收VDD,第二nMOS晶体管424的漏极434被耦接以接收Vout。Referring to FIG. 4B , the well control circuit 400B includes a first nMOS transistor 422 and a second nMOS transistor 424 coupled in series. The first nMOS transistor 422 includes a gate 426 , a drain 428 and a source 430 . The second nMOS transistor 424 includes a gate 432 , a drain 434 and a source 436 . Gates 426 and 432 are coupled to drains 428 and 434, respectively. Sources 430 and 436 are coupled together and to well 438 . The drain 428 of the first nMOS transistor 422 is coupled to receive VDD, and the drain 434 of the second nMOS transistor 424 is coupled to receive Vout.
在阱控制电路400B的操作期间,当VDD及Vout为高时,阱极438上的电压等于以下两电压的最大者:VDD减去第一nMOS晶体管422的阈值电压Vt422(即VDD-Vt422)及VDD减去第二nMOS晶体管424的阈值电压Vt424(即VDD-Vt424)。跨在第一nMOS晶体管422或第二nMOS晶体管424的电压降Vtn产生在电流流过第一nMOS晶体管422或第二nMOS晶体管424之时,并导致阱电压VDD-Vtn。当Vout为低而VDD为高时,源极430与436上的电压为VDD-Vt422。当Vout为高而VDD为低时,源极430与436上的电压为VDD-Vt424。当Vout与VDD皆为低时,源极430与436上的电压为浮接地,此电压高于低的Vout与低的VDD。以此架构,当VDD=Vout,阱控制电路所耦接的pMOS晶体管(如pMOS晶体管202、302、320、322)并不会出现漏电流,故可完全截止。当VDD≠Vout时,阱电压为VDD-Vtn,此电压足以抑制漏电流。During operation of the well control circuit 400B, when VDD and Vout are high, the voltage on the well 438 is equal to the maximum of the following two voltages: VDD minus the threshold voltage Vt422 of the first nMOS transistor 422 (ie, VDD−Vt422) and VDD minus the threshold voltage Vt424 of the second nMOS transistor 424 (ie, VDD−Vt424). A voltage drop Vtn across the first nMOS transistor 422 or the second nMOS transistor 424 occurs when current flows through the first nMOS transistor 422 or the second nMOS transistor 424 and results in a well voltage VDD-Vtn. When Vout is low and VDD is high, the voltage on the sources 430 and 436 is VDD-Vt422. When Vout is high and VDD is low, the voltage on the sources 430 and 436 is VDD-Vt424. When both Vout and VDD are low, the voltage on sources 430 and 436 is floating ground, which is higher than the low Vout and low VDD. With this structure, when VDD=Vout, the pMOS transistors (such as pMOS transistors 202 , 302 , 320 , 322 ) coupled to the well control circuit will not leak current, so they can be completely turned off. When VDD≠Vout, the well voltage is VDD-Vtn, which is sufficient to suppress the leakage current.
请参照图4C,阱控制电路400C包含串联耦接的第一pMOS晶体管439与第二pMOS晶体管440。第一pMOS晶体管439包含栅极442、漏极444、源极446与阱极448。第二pMOS晶体管440包含栅极450、漏极452、源极454与阱极456。第一pMOS晶体管439的漏极444被耦接至第二pMOS晶体管440的漏极452。第一pMOS晶体管439及第二pMOS晶体管440的栅极442与450耦接至彼此、耦接至漏极444与452与耦接至阱极448与456。第一pMOS晶体管439的源极446被耦接以接收VDD,第二pMOS晶体管440的源极454被耦接以接收Vout。Referring to FIG. 4C , the well control circuit 400C includes a first pMOS transistor 439 and a second pMOS transistor 440 coupled in series. The first pMOS transistor 439 includes a gate 442 , a drain 444 , a source 446 and a well 448 . The second pMOS transistor 440 includes a gate 450 , a drain 452 , a source 454 and a well 456 . The drain 444 of the first pMOS transistor 439 is coupled to the drain 452 of the second pMOS transistor 440 . The gates 442 and 450 of the first pMOS transistor 439 and the second pMOS transistor 440 are coupled to each other, to the drains 444 and 452 and to the wells 448 and 456 . The source 446 of the first pMOS transistor 439 is coupled to receive VDD, and the source 454 of the second pMOS transistor 440 is coupled to receive Vout.
在阱控制电路400C的操作期间,当VDD及Vout为高时,漏极428与434上的电压是VDD-Vtp或VDD-Vdiode的较高者。在电流流过第一pMOS晶体管439或第二pMOS晶体管440之时,阱电压为VDD-Vtp,且产生相等于第一pMOS晶体管439与第二pMOS晶体管440的电压降Vtp。当Vout为低而VDD为高时,漏极444与454上的电压为VDD-Vtp或VDD-Vdiode的较高者。当Vout为高而VDD为低时,源极444与454上的电压为VDD-Vtp或VDD-Vdioe的较高者。当Vout与VDD皆为低时,源极444与454上的电压为浮接地,此电压相对于低的Vout与低的VDD而言是高的。以此架构,当VDD=Vout,阱控制电路所耦接的pMOS晶体管(如pMOS晶体管202、302、320、322)并不会出现漏电流,故可完全截止。当VDD≠Vout时,阱电压为VDD-Vtp或VDD-Vdiode,此电压足以抑制漏电流。During operation of well control circuit 400C, when VDD and Vout are high, the voltage on drains 428 and 434 is the higher of VDD-Vtp or VDD-Vdiode. When the current flows through the first pMOS transistor 439 or the second pMOS transistor 440 , the well voltage is VDD−Vtp, and a voltage drop Vtp equal to the first pMOS transistor 439 and the second pMOS transistor 440 is generated. When Vout is low and VDD is high, the voltage on drains 444 and 454 is the higher of VDD-Vtp or VDD-Vdiode. When Vout is high and VDD is low, the voltage on sources 444 and 454 is the higher of VDD-Vtp or VDD-Vdioe. When both Vout and VDD are low, the voltage on sources 444 and 454 is floating ground, which is high relative to low Vout and low VDD. With this structure, when VDD=Vout, the pMOS transistors (such as pMOS transistors 202 , 302 , 320 , 322 ) coupled to the well control circuit will not leak current, so they can be completely turned off. When VDD≠Vout, the well voltage is VDD-Vtp or VDD-Vdiode, which is sufficient to suppress the leakage current.
图5A-图5B绘示依照本发明范例性实施例的阱控制电路206或306的多个替代架构示意图。图5A及图5B绘示多个平行组合的阱控制电路400A、400B及400C。平行配置此些阱控制电路400A、400B及400C(图4A-图4C)允许在VDD=Vout及VDD≠Vout时控制阱电压。图5A标阱控制电路500A,通过平行耦接阱控制电路400A及400B而被形成。第一nMOS晶体管422的漏极428被耦接至第一pMOS晶体管402的源极410。第二nMOS晶体管424的漏极434被耦接至第二pMOS晶体管524的源极418。第一nMOS晶体管422的源极430被耦接至第二nMOS晶体管424的源极436,源极436耦接至第一pMOS晶体管402的漏极408及阱极412与第二pMOS晶体管404的漏极416及阱极420。5A-5B illustrate various alternative architecture diagrams of the well control circuit 206 or 306 according to an exemplary embodiment of the present invention. 5A and 5B illustrate a plurality of well control circuits 400A, 400B and 400C combined in parallel. Configuring such well control circuits 400A, 400B, and 400C in parallel (FIGS. 4A-4C) allows control of the well voltage when VDD=Vout and VDD≠Vout. The well control circuit 500A of FIG. 5A is formed by coupling the well control circuits 400A and 400B in parallel. The drain 428 of the first nMOS transistor 422 is coupled to the source 410 of the first pMOS transistor 402 . The drain 434 of the second nMOS transistor 424 is coupled to the source 418 of the second pMOS transistor 524 . The source 430 of the first nMOS transistor 422 is coupled to the source 436 of the second nMOS transistor 424, and the source 436 is coupled to the drain 408 and the well 412 of the first pMOS transistor 402 and the drain of the second pMOS transistor 404. electrode 416 and well electrode 420 .
图5B绘示阱控制电路500B通过并联耦接的阱控制电路400A、400B与400C而形成。第一nMOS晶体管422的漏极428被耦接至第一pMOS晶体管402的源极410。第二nMOS晶体管424的漏极434被耦接至第二pMOS晶体管404的源极418。第一nMOS晶体管422的源极430被耦接至第二nMOS晶体管424的源极436,源极436耦接至第一pMOS晶体管402的漏极408及阱极412与第二pMOS晶体管404的漏极416与阱极420。第一pMOS晶体管439的栅极422与第二pMOS晶体管440的栅极450被分别耦接至第一pMOS晶体管439及第二pMOS晶体管440的阱极448与456及漏极444与452,第一nMOS晶体管422的源极430及第二nMOS晶体管424的源极436被耦接至第一pMOS晶体管402及第二pMOS晶体管404的漏极408与416及阱极412与420。第一pMOS晶体管439的源极446被耦接至第一nMOS晶体管422的漏极428及第一pMOS晶体管402的源极410。第二pMOS晶体管402的源极454被耦接至第二nMOS晶体管424的漏极434及第二pMOS晶体管404的源极418。FIG. 5B shows a well control circuit 500B formed by coupling well control circuits 400A, 400B, and 400C in parallel. The drain 428 of the first nMOS transistor 422 is coupled to the source 410 of the first pMOS transistor 402 . The drain 434 of the second nMOS transistor 424 is coupled to the source 418 of the second pMOS transistor 404 . The source 430 of the first nMOS transistor 422 is coupled to the source 436 of the second nMOS transistor 424, and the source 436 is coupled to the drain 408 and the well 412 of the first pMOS transistor 402 and the drain of the second pMOS transistor 404. pole 416 and well pole 420 . The gate 422 of the first pMOS transistor 439 and the gate 450 of the second pMOS transistor 440 are respectively coupled to the wells 448 and 456 and the drains 444 and 452 of the first pMOS transistor 439 and the second pMOS transistor 440, the first The source 430 of the nMOS transistor 422 and the source 436 of the second nMOS transistor 424 are coupled to the drains 408 and 416 and the wells 412 and 420 of the first pMOS transistor 402 and the second pMOS transistor 404 . The source 446 of the first pMOS transistor 439 is coupled to the drain 428 of the first nMOS transistor 422 and the source 410 of the first pMOS transistor 402 . The source 454 of the second pMOS transistor 402 is coupled to the drain 434 of the second nMOS transistor 424 and the source 418 of the second pMOS transistor 404 .
请再次参照图3,在范例性实施例中,输出缓冲电路300是配置以在芯片电源关闭时避免电流流回芯片内。输出缓冲电路300的多种不同操作例子是于下考虑。在第一例子中,电路操作电压VDD是1.8V,数据讯号(Data)是1.8V,I/O总线314上的电压Vout是1.8V。在此例子中,当外部I/O总线314上的总线电压Vout是1.8V时,阱控制电路306维持1.8V的电压在pMOS晶体管MP 302的阱极313与栅控制电路304的第一pMOS晶体管MP1 320及第二pMOS晶体管MP2 322各别的阱极330与338。第一pMOS晶体管MP1 320及第二pMOS晶体管MP2 322是皆截止,使得分别提供在源极328与336上的VDD与Vout皆无法分别施加至漏极326与334。因此,在源极328与336上的VDD与Vout皆无法施加至PU栅极308。反之,栅极PU 308接收数据讯号VDD减去nMOS晶体管MN1 318的阈值电压Vtn,VDD-Vtn。由于VDD-Vtn是小于电路操作电压VDD与Vout的较大者,故pMOS晶体管MP 302可能有漏电流。然而,此漏电流随着时间终止。如此,pMOS晶体管MP 302会被截止。Please refer to FIG. 3 again. In an exemplary embodiment, the output buffer circuit 300 is configured to prevent current from flowing back into the chip when the chip power is turned off. A number of different operational examples of the output buffer circuit 300 are considered below. In the first example, the circuit operating voltage VDD is 1.8V, the data signal (Data) is 1.8V, and the voltage Vout on the I/O bus 314 is 1.8V. In this example, when the bus voltage Vout on the external I/O bus 314 is 1.8V, the well control circuit 306 maintains a voltage of 1.8V between the well 313 of the pMOS transistor MP 302 and the first pMOS transistor of the gate control circuit 304. Wells 330 and 338 of MP1 320 and second pMOS transistor MP2 322 respectively. Both the first pMOS transistor MP1 320 and the second pMOS transistor MP2 322 are turned off, so that neither VDD nor Vout provided on the sources 328 and 336 respectively can be applied to the drains 326 and 334 respectively. Therefore, neither VDD nor Vout on sources 328 and 336 can be applied to PU gate 308 . On the contrary, the gate PU 308 receives the data signal VDD minus the threshold voltage Vtn of the nMOS transistor MN1 318 , VDD−Vtn. Since VDD-Vtn is less than the larger of the circuit operating voltages VDD and Vout, the pMOS transistor MP 302 may have a leakage current. However, this leakage current terminates over time. Thus, the pMOS transistor MP 302 is turned off.
在第二例子中,电路操作电压VDD为1.8V,数据讯号(Data)是1.8V,I/O总线314上的电压Vout是0V。在此例子中,当外部I/O总线314上的总线电压Vout是0V时,第一pMOS晶体管MP1 320因栅极324上的电压为0V而导通,使得PU栅极308接收来自第一pMOS晶体管MP1320的源极328的电压VDD。第二pMOS晶体管MP2 322是截止,使得在源极336上的Vout无法送至源极334,故不会被pMOS晶体管MP 302的PU栅极308所接收。因此,在通过nMOS晶体管MN1318后,数据讯号VDD的电压值会减少nMOS晶体管318的阈值电压Vtn,而成为VDD-Vtn,然而会接着被充电至VDD,因为VDD是从第一pMOS晶体管MP1 320的源极328而被接收。当pMOS晶体管302的PU栅极308接收VDD时,pMOS晶体管302是截止。In the second example, the circuit operating voltage VDD is 1.8V, the data signal (Data) is 1.8V, and the voltage Vout on the I/O bus 314 is 0V. In this example, when the bus voltage Vout on the external I/O bus 314 is 0V, the first pMOS transistor MP1 320 is turned on because the voltage on the gate 324 is 0V, so that the PU gate 308 receives The voltage VDD of the source 328 of the transistor MP1 320 . The second pMOS transistor MP2 322 is turned off, so that the Vout on the source 336 cannot be sent to the source 334 and thus will not be received by the PU gate 308 of the pMOS transistor MP 302 . Therefore, after passing through the nMOS transistor MN1318, the voltage value of the data signal VDD will decrease the threshold voltage Vtn of the nMOS transistor 318 to become VDD-Vtn, and then be charged to VDD, because VDD is obtained from the first pMOS transistor MP1 320 Source 328 is received. When the PU gate 308 of the pMOS transistor 302 receives VDD, the pMOS transistor 302 is off.
在第三例子中,电路操作电压VDD为1.8V,数据讯号(Data)是0V,I/O总线314上的电压Vout是从0V增加至1.8V。在此例子中,当I/O总线314上的电压是0V时,施加在pMOS晶体管MP 302的PU栅极308上的电压为0V。第二pMOS晶体管MP2 322是被截止。第一pMOS晶体管MP1 320初始在Vout等于0V时是被导通。如此,第一pMOS晶体管MP1 320的源极328上的电压VDD与nMOS晶体管MN1 318接收的数据讯号的0V,是「冲突」。然而,相较nMOS晶体管MN1 318,pMOS晶体管MP1 320的尺寸较小且具有较小的驱动电流,确保PU栅极308所接收的电压为来自nMOS晶体管MN1 318的数据讯号0V。在Vout增加至1.8V后,第一pMOS晶体管MP1 320截止,而0V的电压是由PU栅极308接收,从而导通pMOS晶体管MP 302。pMOS晶体管MP 302的源极312上的VDD接着被施加至外部I/O总线314。In the third example, the circuit operating voltage VDD is 1.8V, the data signal (Data) is 0V, and the voltage Vout on the I/O bus 314 increases from 0V to 1.8V. In this example, when the voltage on I/O bus 314 is 0V, the voltage applied to PU gate 308 of pMOS transistor MP 302 is 0V. The second pMOS transistor MP2 322 is turned off. The first pMOS transistor MP1 320 is initially turned on when Vout is equal to 0V. In this way, the voltage VDD on the source 328 of the first pMOS transistor MP1 320 "conflicts" with the 0V of the data signal received by the nMOS transistor MN1 318 . However, compared with the nMOS transistor MN1 318 , the pMOS transistor MP1 320 is smaller in size and has a lower driving current to ensure that the voltage received by the PU gate 308 is the data signal 0V from the nMOS transistor MN1 318 . After Vout increases to 1.8V, the first pMOS transistor MP1 320 is turned off, and the voltage of 0V is received by the PU gate 308 , thereby turning on the pMOS transistor MP 302 . VDD on source 312 of pMOS transistor MP 302 is then applied to external I/O bus 314 .
因此,在图3的范例性实施例中,当VDD为1.8V而数据讯号为1.8V时,pMOS晶体管MP302是截止。当VDD为1.8V而数据讯号为0V时,pMOS晶体管MP 302是导通。如此,当芯片启动时(VDD为1.8V),高的数据讯号截止pMOS晶体管MP 302,而避免电流回流。阱控制电路306维持能抑制漏电流的阱控制,并允许截止此些pMOS晶体管。Therefore, in the exemplary embodiment of FIG. 3, when VDD is 1.8V and the data signal is 1.8V, the pMOS transistor MP302 is turned off. When VDD is 1.8V and the data signal is 0V, the pMOS transistor MP 302 is turned on. In this way, when the chip starts up (VDD is 1.8V), the high data signal turns off the pMOS transistor MP 302 to avoid current backflow. Well control circuit 306 maintains well control that suppresses leakage current and allows such pMOS transistors to be turned off.
在第四例子中,电路操作电压VDD是0V,I/O总线314上的电压Vout是1.8V。在此例子中,当总线电压Vout是1.8V时,阱极313接收来自阱控制电路306的Vout的1.8V。栅控制电路304的第一及第二pMOS晶体管320与322各自的阱极330与338也接收Vout的1.8V。第一pMOS晶体管320MP1是截止,因其栅极324接收Vout的1.8V。第二pMOS晶体管322MP2是导通,因其栅极332接收0V的VDD,第二pMOS晶体管322MP2大于MP1而提供较高的驱动力,例如MP1具有比MP2大的宽/长比。因此,来自pMOS晶体管322的源极336的Vout的1.8V被施加至pMOS晶体管MP 302的PU栅极308。PU栅极308上的Vout的1.8V使得pMOS晶体管MP 302截止,故避免电流从外部I/O总线314流入输出缓冲电路300。In the fourth example, the circuit operating voltage VDD is 0V and the voltage Vout on the I/O bus 314 is 1.8V. In this example, when the bus voltage Vout is 1.8V, the well 313 receives 1.8V of Vout from the well control circuit 306 . The respective wells 330 and 338 of the first and second pMOS transistors 320 and 322 of the gate control circuit 304 also receive 1.8V of Vout. The first pMOS transistor 320MP1 is off because its gate 324 receives 1.8V of Vout. The second pMOS transistor 322MP2 is turned on because its gate 332 receives VDD of 0V. The second pMOS transistor 322MP2 is larger than MP1 to provide a higher driving force. For example, MP1 has a larger width/length ratio than MP2. Thus, 1.8V from Vout of source 336 of pMOS transistor 322 is applied to PU gate 308 of pMOS transistor MP 302 . The 1.8V of Vout on PU gate 308 turns off pMOS transistor MP 302 , thus preventing current flow from external I/O bus 314 into output buffer circuit 300 .
在第五例子中,电路操作电压VDD为0V,I/O总线314上的电压Vout是0V。在此例子中,当总线电压是0V时,VDD等于0V。施加Vout的0V至第一pMOS晶体管MP1 320的栅极324及VDD的0V至第二pMOS晶体管MP2 322的栅极332,而导通两晶体管。第二pMOS晶体管MP2 322是足够大而允许PU栅极308上的电压可随(track)Vout而变化。PU栅极308接收来自源极328的VDD及来自源极336的Vout。在此例中,pMOS晶体管MP 302的PU栅极308、漏极310及源极312是处在0V。阱极313是浮接地而高于0V。因此,pMOS晶体管MP 302是截止,而避免在pMOS晶体管MP 302中有漏电流流动。再者,nMOS晶体管MN1 318避免在芯片电源关闭时的电流回流,因为nMOS晶体管MN1 318将在VDD为低时被截止。In the fifth example, the circuit operating voltage VDD is 0V and the voltage Vout on the I/O bus 314 is 0V. In this example, VDD is equal to 0V when the bus voltage is 0V. Applying 0V of Vout to the gate 324 of the first pMOS transistor MP1 320 and 0V of VDD to the gate 332 of the second pMOS transistor MP2 322 turns on both transistors. The second pMOS transistor MP2 322 is large enough to allow the voltage on the PU gate 308 to track Vout. PU gate 308 receives VDD from source 328 and Vout from source 336 . In this example, the PU gate 308, drain 310, and source 312 of pMOS transistor MP 302 are at 0V. The well 313 is floating grounded above 0V. Therefore, the pMOS transistor MP 302 is turned off, preventing leakage current from flowing in the pMOS transistor MP 302 . Furthermore, the nMOS transistor MN1 318 avoids current backflow when the chip power is turned off, because the nMOS transistor MN1 318 will be turned off when VDD is low.
因此,在图3的范例性实施例中,当VDD是0V而Vout是1.8V时,pMOS晶体管MP 302是截止。相仿地,当VDD是0V而Vout是0V时,pMOS晶体管MP 302是截止。以此方式,当芯片电源关闭时,阱控制电路306维持阱电压以抑制漏电流,并允许截止此些pMOS晶体管。Therefore, in the exemplary embodiment of FIG. 3, when VDD is 0V and Vout is 1.8V, the pMOS transistor MP 302 is off. Similarly, when VDD is 0V and Vout is 0V, pMOS transistor MP 302 is off. In this way, when chip power is turned off, well control circuit 306 maintains the well voltage to suppress leakage current and allow such pMOS transistors to be turned off.
在一范例性实施例中,图6所示,输出缓冲电路600是配置以允许数据讯号Data送达输出开关602且没有电压降。参照图6,输出缓冲电路600包含输出开关例如是pMOS晶体管MP 602、阱控制电路604及输入开关例如是nMOS晶体管MN1 606、栅控制电路例如是pMOS晶体管MP2 608、偏压产生器610及电压放电电路612。pMOS晶体管MP 602包含PU栅极614、漏极616、源极618及阱极620。pMOS晶体管MP 602的漏极616耦接至外部I/O总线622。源极618耦接至电路操作电压VDD。阱控制电路604耦接至pMOS晶体管MP 602的阱极620。阱控制电路604可如图4A-图4C及图5A及图5B所述的任一方式而被配置。In an exemplary embodiment, as shown in FIG. 6 , the output buffer circuit 600 is configured to allow the data signal Data to reach the output switch 602 without voltage drop. 6, the output buffer circuit 600 includes an output switch such as a pMOS transistor MP 602, a well control circuit 604 and an input switch such as an nMOS transistor MN1 606, a gate control circuit such as a pMOS transistor MP2 608, a bias generator 610 and a voltage discharge circuit 612. The pMOS transistor MP 602 includes a PU gate 614 , a drain 616 , a source 618 and a well 620 . The drain 616 of the pMOS transistor MP 602 is coupled to the external I/O bus 622 . The source 618 is coupled to the circuit operating voltage VDD. The well control circuit 604 is coupled to the well 620 of the pMOS transistor MP 602 . The well control circuit 604 can be configured in any of the ways described in FIGS. 4A-4C and FIGS. 5A and 5B .
nMOS晶体管MN1 606被耦接至pMOS晶体管MP 602的PU栅极614。nMOS晶体管MN1606包含栅极624、漏极626及源极628。pMOS晶体管MP2 608包含栅极630、漏极632、源极634及阱极636。pMOS晶体管MP2 608的漏极632被耦接至pMOS晶体管MP 602的PU栅极614,并耦接至nMOS晶体管MNI 606的源极628。源极634被耦接以接收Vout。pMOS晶体管MP2 608的阱极636被耦接至阱控制电路604。在一些实施例中,pMOS晶体管MP2 608的阱极636及pMOS晶体管602的阱极620被耦接至不同的阱控制电路。The nMOS transistor MN1 606 is coupled to the PU gate 614 of the pMOS transistor MP 602 . nMOS transistor MN1606 includes a gate 624 , a drain 626 and a source 628 . The pMOS transistor MP2 608 includes a gate 630 , a drain 632 , a source 634 and a well 636 . The drain 632 of pMOS transistor MP2 608 is coupled to the PU gate 614 of pMOS transistor MP 602 and to the source 628 of nMOS transistor MNI 606 . The source 634 is coupled to receive Vout. The well 636 of the pMOS transistor MP2 608 is coupled to the well control circuit 604 . In some embodiments, the well 636 of pMOS transistor MP2 608 and the well 620 of pMOS transistor 602 are coupled to different well control circuits.
电压放电电路612包含串联耦接的nMOS晶体管638与pMOS晶体管640。nMOS晶体管638包含栅极642、漏极644及源极646。栅极642耦接至外部I/O总线622并接收Vout。pMOS晶体管640包含栅极648、漏极650、源极652及阱极654。栅极648及漏极650被耦接以接收电路操作电压VDD。电压放电电路612被耦接至偏压产生器610及nMOS晶体管MN1 606的栅极624。pMOS晶体管MP 602的阱极620、pMOS晶体管MP2 608的阱极636及pMOS晶体管640的阱极654被耦接至阱控制电路604。在一些实施例中,pMOS晶体管MP 602的阱极620、pMOS晶体管MP2608的阱极636及pMOS晶体管640的阱极654被耦接至不同的控制电路。The voltage discharge circuit 612 includes an nMOS transistor 638 and a pMOS transistor 640 coupled in series. The nMOS transistor 638 includes a gate 642 , a drain 644 and a source 646 . Gate 642 is coupled to external I/O bus 622 and receives Vout. The pMOS transistor 640 includes a gate 648 , a drain 650 , a source 652 and a well 654 . The gate 648 and the drain 650 are coupled to receive the circuit operating voltage VDD. The voltage discharge circuit 612 is coupled to the bias generator 610 and the gate 624 of the nMOS transistor MN1 606 . The well 620 of pMOS transistor MP 602 , the well 636 of pMOS transistor MP2 608 and the well 654 of pMOS transistor 640 are coupled to the well control circuit 604 . In some embodiments, the well 620 of pMOS transistor MP 602 , the well 636 of pMOS transistor MP2 608 and the well 654 of pMOS transistor 640 are coupled to different control circuits.
在范例性实施例中,输出缓冲电路600(图6)避免在芯片电源关闭时电流回流至芯片之中。请参照图6,当芯片电源关闭时,VDD为0V。当外部I/O总线622上的总线电压Vout为1.8V时,Vout被施加至pMOS晶体管602的漏极616,并耦接至pMOS晶体管MP2 608的源极634。在pMOS晶体管MP2 608的栅极上的VDD是0V,使得pMOS晶体管MP2 608导通,而源极634上的Vout被施加至pMOS晶体管602的PU栅极614。施加至PU栅极614的Vout截止pMOS晶体管MP602。因此,来自外部I/O总线622的电流不会流入外部缓冲电路。相仿地,当外部I/O总线622上的总线电压Vout是低(例如0V)而芯片电源关闭时,VDD等于0V。施加VDD的0V至栅极630而导通pMOS晶体管MP2 608,使得pMOS晶体管MP2 608的源极634上的电压被施加在pMOS晶体管MP 602的PU栅极614上。在此例中,pMOS晶体管MP 602的栅极614、漏极616及源极618上的电压是等于0V。阱极620是浮接地。由于阱极620(浮接地)上的电压是从阱控制电路604而接收,并高于漏极616与源极618上的电压,故而避免漏电流流经pMOS晶体管602。因此,电流不会从外部I/O总线622流入输出缓冲电路600。再者,在VDD为0V时,nMOS晶体管MN1 606是被截止,故nMOS晶体管MN1 606避免在芯片电源关闭时有电流流回至芯片中。另一方面,当VDD为1.8V时,偏压产生器610供应的偏压Vbias大于VDD及nMOS晶体管606的阈值电压Vtn之和。这允许全幅数据讯号(VDD)通过nMOS晶体管而不会有电压降。电压放电电路612包含串联耦接的nMOS晶体管638及pMOS晶体管640以在偏压产生器610因芯片被关闭电源而出现电压降时,对电压进行放电。In an exemplary embodiment, the output buffer circuit 600 ( FIG. 6 ) prevents current from flowing back into the chip when the chip is powered off. Please refer to Figure 6, when the chip power is off, VDD is 0V. When the bus voltage Vout on the external I/O bus 622 is 1.8V, Vout is applied to the drain 616 of the pMOS transistor 602 and coupled to the source 634 of the pMOS transistor MP2 608 . VDD on the gate of pMOS transistor MP2 608 is 0V, making pMOS transistor MP2 608 on, while Vout on source 634 is applied to PU gate 614 of pMOS transistor 602 . Vout applied to PU gate 614 turns off pMOS transistor MP602. Therefore, current from the external I/O bus 622 does not flow into the external buffer circuit. Similarly, when the bus voltage Vout on the external I/O bus 622 is low (eg, 0V) and the chip power is off, VDD is equal to 0V. Applying 0V of VDD to the gate 630 turns on the pMOS transistor MP2 608 such that the voltage on the source 634 of the pMOS transistor MP2 608 is applied to the PU gate 614 of the pMOS transistor MP 602 . In this example, the voltage on the gate 614, drain 616 and source 618 of pMOS transistor MP 602 is equal to 0V. The well 620 is a floating ground. Since the voltage on the well 620 (floating ground) is received from the well control circuit 604 and is higher than the voltages on the drain 616 and source 618 , leakage current is prevented from flowing through the pMOS transistor 602 . Therefore, current does not flow into the output buffer circuit 600 from the external I/O bus 622 . Furthermore, when VDD is 0V, the nMOS transistor MN1 606 is turned off, so the nMOS transistor MN1 606 prevents current from flowing back into the chip when the chip power is turned off. On the other hand, when VDD is 1.8V, the bias voltage Vbias supplied by the bias generator 610 is greater than the sum of VDD and the threshold voltage Vtn of the nMOS transistor 606 . This allows the full scale data signal (VDD) to pass through the nMOS transistor without voltage drop. The voltage discharge circuit 612 includes an nMOS transistor 638 and a pMOS transistor 640 coupled in series to discharge the voltage when there is a voltage drop in the bias voltage generator 610 due to the chip being powered off.
在一范例性实施例中,如图7所示,输出缓冲电路700是被配置以避免来自外部I/O总线的电流流入芯片中。请参照图7,输出缓冲电路700包含输出开关例如是pMOS晶体管MP702、阱控制电路704、输入开关例如是nMOS晶体管MN2 706、偏压产生器708及电压放电电路710。pMOS晶体管MP 702包含PU栅极712、漏极714、源极716及阱极718。源极716耦接以接收电路操作电压VDD。阱控制电路704耦接至阱极718。阱控制电路704可如图4A-图4C及图5A及图5B所述的任一方式而被配置。nMOS晶体管MN2 706包含栅极720、漏极722及源极724。nMOS晶体管MN2 706被耦接于pMOS晶体管MP 702的漏极714及外部I/O总线726之间。偏压产生器708被耦接至nMOS晶体管MN2 706的栅极720。电压放电电路710包含串联耦接的nMOS晶体管728及pMOS晶体管730。nMOS晶体管728包含栅极732、漏极734及源极736。栅极732耦接至外部I/O总线726。pMOS晶体管730包含栅极738、漏极740、源极742及阱极744。栅极738及源极742接收VDD。pMOS晶体管730的阱极744及pMOS晶体管702的阱极718被耦接至阱控制电路704。阱控制电路704可如图4A-图4C及图5A及图5B所述的任一方式而被配置。电压放电电路710被耦接至偏压产生器708及nMOS晶体管706的栅极720。In an exemplary embodiment, as shown in FIG. 7 , the output buffer circuit 700 is configured to prevent the current from the external I/O bus from flowing into the chip. Referring to FIG. 7 , the output buffer circuit 700 includes an output switch such as a pMOS transistor MP702 , a well control circuit 704 , an input switch such as an nMOS transistor MN2 706 , a bias voltage generator 708 and a voltage discharge circuit 710 . The pMOS transistor MP 702 includes a PU gate 712 , a drain 714 , a source 716 and a well 718 . The source 716 is coupled to receive the circuit operating voltage VDD. Well control circuit 704 is coupled to well 718 . The well control circuit 704 can be configured in any of the ways described in FIGS. 4A-4C and FIGS. 5A and 5B . nMOS transistor MN2 706 includes a gate 720 , a drain 722 and a source 724 . The nMOS transistor MN2 706 is coupled between the drain 714 of the pMOS transistor MP 702 and the external I/O bus 726 . The bias voltage generator 708 is coupled to the gate 720 of the nMOS transistor MN2 706 . The voltage discharge circuit 710 includes an nMOS transistor 728 and a pMOS transistor 730 coupled in series. The nMOS transistor 728 includes a gate 732 , a drain 734 and a source 736 . Gate 732 is coupled to external I/O bus 726 . The pMOS transistor 730 includes a gate 738 , a drain 740 , a source 742 and a well 744 . Gate 738 and source 742 receive VDD. Well 744 of pMOS transistor 730 and well 718 of pMOS transistor 702 are coupled to well control circuit 704 . The well control circuit 704 can be configured in any of the ways described in FIGS. 4A-4C and FIGS. 5A and 5B . The voltage discharge circuit 710 is coupled to the bias voltage generator 708 and the gate 720 of the nMOS transistor 706 .
在一范例性实施例中,输出缓冲电路700是被配置以避免在芯片电源关闭时有电流流入芯片中。请参照图7,当芯片电源关闭时,VDD是0V。阱控制电路704避免此些nMOS晶体管中的漏电流,并允许截止pMOS晶体管702、730。当外部I/O总线726上的总线电压Vout是1.8V时,总线电压Vout被施加至nMOS晶体管MN2 706的源极724。当芯片电源关闭时,偏压产生器708是被截止。因此,nMOS晶体管MN2 706的栅极720上的电压是0V,故nMOS晶体管706MN2是截止。因此,来自外部I/O总线726的电流不会流入输出缓冲电路。当外部I/O总线726上的电压是0V而芯片电源关闭时,nMOS晶体管MN2 706是被截止。因此,电流不会从外部I/O总线726流入输出缓冲电路700。当芯片被开启电源(VDD是1.8V),偏压产生器708供应的偏压Vbias大于VDD及nMOS晶体管706的闽值电压Vtn之和。这允许来自外部I/O总线726的全幅电压通过nMOS晶体管MN2 706而不会有电压降。电压放电电路710包含串联耦接的nMOS晶体管728及pMOS晶体管730以在偏压产生器708因芯片被关闭电源而出现电压降时,对电压进行放电。In an exemplary embodiment, the output buffer circuit 700 is configured to prevent current from flowing into the chip when the chip is powered off. Please refer to Figure 7, when the chip power is off, VDD is 0V. Well control circuit 704 avoids leakage current in such nMOS transistors and allows pMOS transistors 702, 730 to be turned off. When the bus voltage Vout on the external I/O bus 726 is 1.8V, the bus voltage Vout is applied to the source 724 of the nMOS transistor MN2 706 . When the chip power is turned off, the bias voltage generator 708 is turned off. Therefore, the voltage on the gate 720 of nMOS transistor MN2 706 is 0V, so nMOS transistor 706MN2 is off. Therefore, current from the external I/O bus 726 does not flow into the output buffer circuit. When the voltage on the external I/O bus 726 is 0V and the chip power is off, the nMOS transistor MN2 706 is turned off. Therefore, current does not flow into the output buffer circuit 700 from the external I/O bus 726 . When the chip is powered on (VDD is 1.8V), the bias voltage Vbias supplied by the bias generator 708 is greater than the sum of VDD and the threshold voltage Vtn of the nMOS transistor 706 . This allows the full scale voltage from external I/O bus 726 to pass through nMOS transistor MN2 706 without voltage drop. The voltage discharge circuit 710 includes an nMOS transistor 728 and a pMOS transistor 730 coupled in series to discharge the voltage when the voltage drop occurs in the bias voltage generator 708 due to the chip being powered off.
本发明实施例对于具有通常知识者而言,在参照此处所揭露的本发明实作内容,当可思及其他实施例。此应用旨在涵盖任何有关一般原则而对本发明所作的变异、使用及适应,并包含背离本发明却于已知技艺中为已知或惯用的实例。说明书及范例仅用于范例性的说明,本发明的保护范围当视随附的权利要求范围所界定的为准。For those who have ordinary knowledge of the embodiments of the present invention, other embodiments can be conceived with reference to the implementation content of the present invention disclosed herein. This application is intended to cover any variations, uses, and adaptations of the invention pertaining to the general principles, including departures from the invention which come to be known or customary in the art. The specification and examples are only for exemplary illustrations, and the protection scope of the present invention should be defined by the scope of the appended claims.
综上所述,虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明。本发明所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰。因此,本发明的保护范围当视随附的权利要求范围所界定的为准。To sum up, although the present invention has been disclosed as above with preferred embodiments, it is not intended to limit the present invention. Those skilled in the art of the present invention can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be defined by the appended claims.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510461108.5A CN106411311B (en) | 2015-07-31 | 2015-07-31 | Output circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510461108.5A CN106411311B (en) | 2015-07-31 | 2015-07-31 | Output circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106411311A CN106411311A (en) | 2017-02-15 |
CN106411311B true CN106411311B (en) | 2019-10-01 |
Family
ID=58007404
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510461108.5A Active CN106411311B (en) | 2015-07-31 | 2015-07-31 | Output circuit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106411311B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6351158B1 (en) * | 1999-11-19 | 2002-02-26 | Intersil Americas Inc. | Floating gate circuit for backwards driven MOS output driver |
CN1701511A (en) * | 2003-05-28 | 2005-11-23 | 富士通株式会社 | Semiconductor device |
CN1855724A (en) * | 2005-04-28 | 2006-11-01 | 恩益禧电子股份有限公司 | Buffer circuit |
CN1921313A (en) * | 2003-11-05 | 2007-02-28 | 中芯国际集成电路制造(上海)有限公司 | Grid electrode control circuit of up-draw transistor for high-voltage input |
CN101552605A (en) * | 2009-05-19 | 2009-10-07 | 北京时代民芯科技有限公司 | An interface circuit capable of tolerating high voltage input |
-
2015
- 2015-07-31 CN CN201510461108.5A patent/CN106411311B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6351158B1 (en) * | 1999-11-19 | 2002-02-26 | Intersil Americas Inc. | Floating gate circuit for backwards driven MOS output driver |
CN1701511A (en) * | 2003-05-28 | 2005-11-23 | 富士通株式会社 | Semiconductor device |
CN1921313A (en) * | 2003-11-05 | 2007-02-28 | 中芯国际集成电路制造(上海)有限公司 | Grid electrode control circuit of up-draw transistor for high-voltage input |
CN1855724A (en) * | 2005-04-28 | 2006-11-01 | 恩益禧电子股份有限公司 | Buffer circuit |
CN101552605A (en) * | 2009-05-19 | 2009-10-07 | 北京时代民芯科技有限公司 | An interface circuit capable of tolerating high voltage input |
Also Published As
Publication number | Publication date |
---|---|
CN106411311A (en) | 2017-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7205820B1 (en) | Systems and methods for translation of signal levels across voltage domains | |
US9257973B1 (en) | Supply-state-enabled level shifter interface circuit and method | |
US8493125B2 (en) | Level shift circuit | |
US8395870B2 (en) | Input/output circuit | |
US7908499B2 (en) | Semiconductor integrated circuit comprising master-slave flip-flop and combinational circuit with pseudo-power supply lines | |
US7486127B2 (en) | Transistor switch with integral body connection to prevent latchup | |
TWI415388B (en) | Level shift circuit without high voltage stress of trasistors and operating at low voltages | |
JP5203791B2 (en) | Level shift circuit | |
US10367505B2 (en) | Low power general purpose input/output level shifting driver | |
US10164637B2 (en) | Level shifter for voltage conversion | |
CN103269217B (en) | Output buffer | |
JP5421075B2 (en) | Input circuit | |
CN107251434B (en) | Output driver with reverse power supply prevention | |
CN101547004B (en) | And gate circuit | |
CN207083070U (en) | electronic device | |
CN106411311B (en) | Output circuit | |
US10367482B2 (en) | Schmitt trigger circuit | |
JP5071077B2 (en) | Output circuit and semiconductor device | |
KR102034903B1 (en) | Cmos inverter circuit device | |
US20210105009A1 (en) | Semiconductor integrated circuit device and level shifter circuit | |
TWI590586B (en) | Output circuit | |
US10601405B2 (en) | Buffer circuit | |
US8593184B2 (en) | Buffer circuit with regulating function and regulating circuit thereof | |
CN108155901B (en) | Parameter drift resistance inverter | |
JP6398285B2 (en) | Output circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |