CN106409997A - LED chip and formation method thereof - Google Patents
LED chip and formation method thereof Download PDFInfo
- Publication number
- CN106409997A CN106409997A CN201611037504.6A CN201611037504A CN106409997A CN 106409997 A CN106409997 A CN 106409997A CN 201611037504 A CN201611037504 A CN 201611037504A CN 106409997 A CN106409997 A CN 106409997A
- Authority
- CN
- China
- Prior art keywords
- layer
- substrate
- semiconductor layer
- led chip
- bonding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 82
- 230000015572 biosynthetic process Effects 0.000 title description 3
- 239000004065 semiconductor Substances 0.000 claims abstract description 198
- 239000000758 substrate Substances 0.000 claims abstract description 159
- 239000000463 material Substances 0.000 claims description 103
- 230000008569 process Effects 0.000 claims description 45
- 239000004020 conductor Substances 0.000 claims description 16
- 238000005530 etching Methods 0.000 claims description 15
- 229910052697 platinum Inorganic materials 0.000 claims description 15
- 229910052719 titanium Inorganic materials 0.000 claims description 15
- 238000002161 passivation Methods 0.000 claims description 14
- 238000002955 isolation Methods 0.000 claims description 11
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 8
- 229910052804 chromium Inorganic materials 0.000 claims description 7
- 229910052737 gold Inorganic materials 0.000 claims description 7
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 229910052738 indium Inorganic materials 0.000 claims description 5
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims description 4
- 230000000149 penetrating effect Effects 0.000 claims description 4
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 4
- 229910001887 tin oxide Inorganic materials 0.000 claims description 4
- 239000011787 zinc oxide Substances 0.000 claims description 4
- 238000004806 packaging method and process Methods 0.000 abstract description 18
- 239000010410 layer Substances 0.000 description 596
- 238000010586 diagram Methods 0.000 description 12
- 229910002601 GaN Inorganic materials 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 238000007788 roughening Methods 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical group [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 7
- 229910010271 silicon carbide Inorganic materials 0.000 description 7
- 230000009286 beneficial effect Effects 0.000 description 6
- 229910052581 Si3N4 Inorganic materials 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 5
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 5
- 229910052814 silicon oxide Inorganic materials 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 230000017525 heat dissipation Effects 0.000 description 4
- 229910052594 sapphire Inorganic materials 0.000 description 4
- 239000010980 sapphire Substances 0.000 description 4
- 229910000679 solder Inorganic materials 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000005496 eutectics Effects 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical group [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- 238000001505 atmospheric-pressure chemical vapour deposition Methods 0.000 description 1
- 238000000231 atomic layer deposition Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/018—Bonding of wafers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
- H10H20/831—Electrodes characterised by their shape
- H10H20/8312—Electrodes characterised by their shape extending at least partially through the bodies
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/858—Means for heat extraction or cooling
- H10H20/8581—Means for heat extraction or cooling characterised by their material
Landscapes
- Led Device Packages (AREA)
- Led Devices (AREA)
Abstract
一种LED芯片及其形成方法,方法包括:提供第一衬底,第一衬底上有由下到上包括第一半导体层、有源层和第二半导体层的前端结构,前端结构有第一区和第二区;在第一区形成贯穿第二半导体层和有源层的凹槽;在凹槽周围第一区第二半导体层顶部表面形成连接导电层;形成覆盖连接导电层及凹槽侧壁且暴露凹槽底部的第一半导体层和第二区第二半导体层顶部表面的绝缘层;进行键合处理,使绝缘层、凹槽底部的第一半导体层及第二区第二半导体层通过键合体和第二衬底结合;之后去除第一衬底;刻蚀第二区和部分第一区的前端结构,分别对应露出部分的键合体和连接导电层;在连接导电层和键合体表面形成电极层。该方法能降低LED芯片板上芯片封装复杂度。
An LED chip and its forming method, the method includes: providing a first substrate, on the first substrate there is a front-end structure including a first semiconductor layer, an active layer and a second semiconductor layer from bottom to top, the front-end structure has a first The first area and the second area; forming a groove through the second semiconductor layer and the active layer in the first area; forming a connecting conductive layer on the top surface of the second semiconductor layer in the first area around the groove; forming a covering connecting conductive layer and a concave groove side wall and expose the first semiconductor layer at the bottom of the groove and the insulating layer on the top surface of the second semiconductor layer in the second region; perform bonding treatment to make the insulating layer, the first semiconductor layer at the bottom of the groove and the second region second The semiconductor layer is combined with the second substrate through the bonding body; then the first substrate is removed; the front-end structure of the second region and part of the first region is etched, corresponding to the exposed part of the bonding body and the connecting conductive layer; after connecting the conductive layer and An electrode layer is formed on the surface of the bonding body. The method can reduce the complexity of LED chip on-board chip packaging.
Description
技术领域technical field
本发明涉及半导体制造领域,尤其涉及一种LED芯片及其形成方法。The invention relates to the field of semiconductor manufacturing, in particular to an LED chip and a forming method thereof.
背景技术Background technique
发光二极管(Light Emitting Diode,简称LED)是一种半导体发光器件。发光二极管具有耗能低、体积小、寿命长、稳定性好、响应快和发光波长稳定等光电性能。目前,发光二极管在照明、家电、显示屏、指示灯领域具有广泛的应用。A light emitting diode (Light Emitting Diode, referred to as LED) is a semiconductor light emitting device. Light-emitting diodes have photoelectric properties such as low energy consumption, small size, long life, good stability, fast response, and stable emission wavelength. At present, light-emitting diodes are widely used in the fields of lighting, home appliances, display screens, and indicator lights.
LED芯片的结构包括正装结构、倒装结构和垂直结构。The structure of the LED chip includes a positive structure, a flip structure and a vertical structure.
正装结构LED的有源区发出的光经由P型GaN层和透明电极出射。然而,正装结构LED有两个明显缺点:电流横向流过N型GaN层,导致电流拥挤,局部发热量高,限制了驱动电流;正装结构LED采用蓝宝石衬底,而蓝宝石衬底的导热性差,严重阻碍散热。The light emitted by the active area of the front-mounted structure LED exits through the P-type GaN layer and the transparent electrode. However, there are two obvious disadvantages in front-mount LEDs: the current flows laterally through the N-type GaN layer, resulting in current congestion and high local heat generation, which limits the driving current; front-mount LEDs use sapphire substrates, which have poor thermal conductivity. Seriously hinder heat dissipation.
倒装结构LED利用共晶焊接将大尺寸LED芯片与硅底板焊接在一起。倒装结构LED在散热效果上有了很大的改善,但是通常的倒装结构LED的电流仍然是横向流过N型GaN层,电流拥挤的现象仍然存在。Flip-chip structure LEDs use eutectic bonding to weld large-size LED chips and silicon substrates together. The heat dissipation effect of the flip-chip LED has been greatly improved, but the current of the usual flip-chip LED still flows laterally through the N-type GaN layer, and the phenomenon of current crowding still exists.
垂直结构LED可以有效的解决正装结构LED的两个缺点。具体的,垂直结构LED采用高热导衬底,如硅、锗或Cu取代蓝宝石衬底,在很大程度上提高了散热能力;垂直结构LED的两个电极分别在LED芯片的两侧,通过N型电极,使得电流几乎全部垂直流过LED芯片,横向电流极少,因此有效的避免正装结构LED电流拥挤问题。The vertical structure LED can effectively solve the two shortcomings of the vertical structure LED. Specifically, the vertical structure LED uses a high thermal conductivity substrate, such as silicon, germanium or Cu to replace the sapphire substrate, which greatly improves the heat dissipation capability; the two electrodes of the vertical structure LED are respectively on both sides of the LED chip, through the N Type electrodes, so that almost all the current flows vertically through the LED chip, and the lateral current is very small, so it can effectively avoid the current crowding problem of the front-mounted structure LED.
然而,现有技术形成的LED芯片提高了对LED芯片的板上芯片(COB)封装的工艺复杂度。However, the LED chips formed in the prior art increase the process complexity of chip-on-board (COB) packaging of the LED chips.
发明内容Contents of the invention
本发明解决的问题是提供一种LED芯片及其形成方法,以利于降低LED芯片板上芯片封装的工艺复杂度。The problem to be solved by the present invention is to provide an LED chip and a forming method thereof, so as to reduce the process complexity of chip-on-board packaging of the LED chip.
为解决上述问题,本发明提供一种LED芯片的形成方法,包括:提供第一衬底,所述第一衬底上具有前端结构,所述前端结构包括第一半导体层、位于第一半导体层上的有源层、以及位于有源层上的第二半导体层,所述前端结构具有第一区和第二区;在第一区形成贯穿第二半导体层和有源层的凹槽;在凹槽周围的第一区第二半导体层的顶部表面形成连接导电层;形成覆盖连接导电层以及凹槽侧壁的绝缘层,所述绝缘层暴露出凹槽底部的第一半导体层和第二区第二半导体层的顶部表面;进行所述键合处理,使绝缘层、凹槽底部的第一半导体层、以及第二区第二半导体层通过键合体和第二衬底结合,所述键合体填充满凹槽且覆盖绝缘层和第二区第二半导体层的顶部表面;进行键合处理后,去除第一衬底;去除第一衬底后,刻蚀部分第一区的前端结构,暴露出部分连接导电层,刻蚀第二区的前端结构,暴露出部分键合体;在暴露出的连接导电层表面和键合体表面分别形成电极层。In order to solve the above problems, the present invention provides a method for forming an LED chip, comprising: providing a first substrate with a front-end structure on the first substrate, and the front-end structure includes a first semiconductor layer and is located on the first semiconductor layer. The active layer on the active layer and the second semiconductor layer on the active layer, the front-end structure has a first region and a second region; a groove penetrating through the second semiconductor layer and the active layer is formed in the first region; The top surface of the first region and the second semiconductor layer around the groove forms a connecting conductive layer; an insulating layer covering the connecting conductive layer and the sidewall of the groove is formed, and the insulating layer exposes the first semiconductor layer and the second semiconductor layer at the bottom of the groove. The top surface of the second semiconductor layer in the region; performing the bonding process, so that the insulating layer, the first semiconductor layer at the bottom of the groove, and the second semiconductor layer in the second region are combined with the second substrate through the bonding body, and the bond The composite fills the groove and covers the insulating layer and the top surface of the second semiconductor layer in the second region; after performing bonding treatment, removing the first substrate; after removing the first substrate, etching part of the front-end structure of the first region, exposing part of the connecting conductive layer, etching the front-end structure of the second region, exposing part of the bonding body; forming electrode layers on the exposed connecting conductive layer surface and the bonding body surface respectively.
可选的,所述连接导电层包括一层或多层层叠的叠层组层,所述叠层组层包括第一材料层和位于第一材料层表面的第二材料层,所述第一材料层位于所述凹槽周围的第一区第二半导体层的顶部表面。Optionally, the connecting conductive layer includes one or more stacked stacked layers, and the stacked stack includes a first material layer and a second material layer located on the surface of the first material layer, the first The material layer is located on the top surface of the second semiconductor layer in the first region around the groove.
可选的,所述第一材料层的材料为TiW;所述第二材料层的材料为Pt或Ti。Optionally, the material of the first material layer is TiW; the material of the second material layer is Pt or Ti.
可选的,进行所述键合处理的方法包括:在绝缘层表面、凹槽底部的第一半导体层表面、以及第二区第二半导体层的顶部表面形成第一键合层;提供第二衬底;在第二衬底表面形成第二键合层;将所述第一键合层和第二键合层进行键合,使第一键合层和第二键合层形成所述键合体。Optionally, the method for performing the bonding treatment includes: forming a first bonding layer on the surface of the insulating layer, the surface of the first semiconductor layer at the bottom of the groove, and the top surface of the second semiconductor layer in the second region; providing a second substrate; forming a second bonding layer on the surface of the second substrate; bonding the first bonding layer and the second bonding layer so that the first bonding layer and the second bonding layer form the bond fit.
可选的,所述第二衬底为绝缘导热衬底,所述绝缘导热衬底的热导率在45W/(m·K)以上;或者所述第二衬底为导电衬底;当所述第二衬底为导电衬底时,所述LED芯片的形成方法还包括:在进行所述键合处理的过程中,使所述键合体通过隔离层和第二衬底结合。Optionally, the second substrate is an insulating and thermally conductive substrate, and the thermal conductivity of the insulating and thermally conductive substrate is above 45W/(m·K); or the second substrate is a conductive substrate; when the When the second substrate is a conductive substrate, the method for forming the LED chip further includes: during the bonding process, combining the bonding body with the second substrate through an isolation layer.
可选的,所述绝缘导热衬底的材料为SiC或AlN。Optionally, the material of the insulating and heat-conducting substrate is SiC or AlN.
可选的,还包括:在形成所述连接导电层之前,在所述凹槽周围的第一区第二半导体层的部分顶部表面形成反射层;所述连接导电层覆盖所述反射层和反射层周围的第一区部分第二半导体层的顶部表面。Optionally, it also includes: before forming the connecting conductive layer, forming a reflective layer on a part of the top surface of the second semiconductor layer in the first region around the groove; the connecting conductive layer covers the reflective layer and the reflective layer. The first region of the layer surrounds the top surface of the second semiconductor layer.
可选的,还包括:在形成所述反射层之前,在所述凹槽周围的第一区第二半导体层的部分顶部表面形成欧姆接触层,所述欧姆接触层的电导率大于第二半导体层的电导率且小于所述反射层的电导率;所述反射层覆盖所述欧姆接触层。Optionally, it also includes: before forming the reflective layer, forming an ohmic contact layer on a part of the top surface of the second semiconductor layer in the first region around the groove, the conductivity of the ohmic contact layer is greater than that of the second semiconductor layer. The electrical conductivity of the layer is smaller than the electrical conductivity of the reflective layer; the reflective layer covers the ohmic contact layer.
可选的,还包括:去除所述第一衬底后且在刻蚀第二区和部分第一区的前端结构之前,对所述第一半导体层的表面进行粗化处理;刻蚀第二区和部分第一区的前端结构之后,在前端结构表面、绝缘层表面以及部分暴露出的部分键合体表面形成钝化层,且所述钝化层暴露出部分连接导电层表面;形成所述钝化层后,形成所述电极层。Optionally, it also includes: after removing the first substrate and before etching the second region and part of the front-end structure of the first region, roughening the surface of the first semiconductor layer; etching the second After the front-end structure of the region and part of the first region, a passivation layer is formed on the surface of the front-end structure, the surface of the insulating layer, and the surface of a part of the bonding body that is partially exposed, and the passivation layer exposes a part of the surface of the connecting conductive layer; forming the After the passivation layer, the electrode layer is formed.
本发明还提供一种LED芯片,包括:第二衬底;位于第二衬底上的键合体,所述键合体包括位于第二衬底表面的基体和位于基体表面的凸起;位于凸起侧壁、以及部分基体表面的绝缘层;位于部分绝缘层表面的连接导电层,且所述连接导电层位于基体上;位于部分连接导电层上的第二半导体层和位于第二半导体层表面的有源层,所述凸起和凸起侧壁的绝缘层贯穿所述第二半导体层和有源层;位于第二半导体层、有源层、凸起以及凸起侧壁的绝缘层表面的第一半导体层;分别位于暴露出的连接导电层表面和键合体表面的电极层。The present invention also provides an LED chip, comprising: a second substrate; a bonding body on the second substrate, the bonding body includes a base on the surface of the second substrate and a protrusion on the surface of the base; The insulating layer on the side wall and part of the surface of the substrate; the connecting conductive layer on the surface of part of the insulating layer, and the connecting conductive layer is located on the substrate; the second semiconductor layer on the part of the connecting conductive layer and the connecting conductive layer on the surface of the second semiconductor layer Active layer, the insulating layer of the protrusion and the protrusion sidewall runs through the second semiconductor layer and the active layer; The first semiconductor layer; the electrode layer respectively located on the exposed surface of the connecting conductive layer and the surface of the bonding body.
可选的,所述连接导电层包括一层或多层层叠的叠层组层,所述叠层组层包括第二材料层和位于第二材料层表面的第一材料层,所述第二材料层位于部分绝缘层表面,且所述第二材料层位于基体上。Optionally, the connecting conductive layer includes one or more laminated layer groups, the layer layer includes a second material layer and a first material layer located on the surface of the second material layer, the second material layer The material layer is located on part of the surface of the insulating layer, and the second material layer is located on the base.
可选的,所述第一材料层的材料为TiW;所述第二材料层的材料为Pt或Ti。Optionally, the material of the first material layer is TiW; the material of the second material layer is Pt or Ti.
可选的,所述第二衬底为绝缘导热衬底,所述绝缘导热衬底的热导率在45W/(m·K)以上;或者所述第二衬底为导电衬底;当所述第二衬底为导电衬底时,所述LED芯片还包括:位于第二衬底和键合体之间的隔离层。Optionally, the second substrate is an insulating and thermally conductive substrate, and the thermal conductivity of the insulating and thermally conductive substrate is above 45W/(m·K); or the second substrate is a conductive substrate; when the When the second substrate is a conductive substrate, the LED chip further includes: an isolation layer between the second substrate and the bonding body.
可选的,所述绝缘导热衬底的材料为SiC或AlN。Optionally, the material of the insulating and heat-conducting substrate is SiC or AlN.
可选的,还包括:位于第二半导体层和连接导电层之间的反射层。Optionally, it further includes: a reflective layer located between the second semiconductor layer and the connecting conductive layer.
可选的,还包括:位于反射层和第二半导体层之间的欧姆接触层,所述欧姆接触层的电导率大于第二半导体层的电导率且小于所述反射层的电导率。Optionally, it further includes: an ohmic contact layer located between the reflective layer and the second semiconductor layer, the electrical conductivity of the ohmic contact layer is greater than the electrical conductivity of the second semiconductor layer and lower than the electrical conductivity of the reflective layer.
可选的,所述欧姆接触层的材料为透明导电材料。Optionally, the material of the ohmic contact layer is a transparent conductive material.
可选的,所述透明导电材料为氧化铟锡、掺氟氧化锡或掺铝氧化锌。Optionally, the transparent conductive material is indium tin oxide, fluorine-doped tin oxide or aluminum-doped zinc oxide.
可选的,所述键合体的材料为Au、Cu、In、Ti、Pt、Cr、Ge、Ni中的任意一种或多种组合。Optionally, the material of the bonding body is any one or a combination of Au, Cu, In, Ti, Pt, Cr, Ge, Ni.
与现有技术相比,本发明的技术方案具有以下优点:Compared with the prior art, the technical solution of the present invention has the following advantages:
本发明技术方案提供的LED芯片的形成方法中,形成覆盖连接导电层以及凹槽侧壁的绝缘层,所述绝缘层暴露出凹槽底部的第一半导体层和第二区第二半导体层的顶部表面;去除第一衬底并刻蚀第二区和部分第一区的前端结构后,分别对应暴露出部分键合体和部分连接导电层;在暴露出的连接导电层表面和键合体表面分别形成电极层,所述电极层用于连接外部电压源。连接导电层表面的电极层通过连接导电层电学连接第二半导体层,键合体表面的电极层通过键合体电学连接第一半导体层,而第一半导体层通过有源层和第二半导体层电学连接。因此LED芯片中的电流依次流经连接导电层表面的电极层、连接导电层、第二半导体层、有源层、第一半导体层、键合体、键合体表面的电极层。由于外部电压源无需通过第二衬底和键合体将电压施加在第一半导体层上,因此LED芯片中的电流无需流经第二衬底,第一半导体层无需通过键合体和第二衬底进行电学连接。使得对第二衬底的材料要求不再限于导电材料,利于降低LED芯片板上芯片封装的工艺复杂度。In the method for forming the LED chip provided by the technical solution of the present invention, an insulating layer covering the connecting conductive layer and the sidewall of the groove is formed, and the insulating layer exposes the first semiconductor layer at the bottom of the groove and the second semiconductor layer in the second region. The top surface; after removing the first substrate and etching the second region and part of the front-end structure of the first region, a part of the bonding body and a part of the connecting conductive layer are respectively exposed; on the exposed connecting conductive layer surface and the bonding body surface respectively An electrode layer is formed for connection to an external voltage source. The electrode layer on the surface of the connecting conductive layer is electrically connected to the second semiconductor layer through the connecting conductive layer, the electrode layer on the surface of the bonding body is electrically connected to the first semiconductor layer through the bonding body, and the first semiconductor layer is electrically connected to the second semiconductor layer through the active layer . Therefore, the current in the LED chip flows sequentially through the electrode layer connected to the surface of the conductive layer, the connected conductive layer, the second semiconductor layer, the active layer, the first semiconductor layer, the bonding body, and the electrode layer on the surface of the bonding body. Since the external voltage source does not need to apply voltage to the first semiconductor layer through the second substrate and the bonding body, the current in the LED chip does not need to flow through the second substrate, and the first semiconductor layer does not need to pass through the bonding body and the second substrate. Make electrical connections. The material requirements for the second substrate are no longer limited to conductive materials, which is beneficial to reduce the process complexity of LED chip-on-chip packaging.
本发明技术方案提供的LED芯片中,绝缘层位于凸起侧壁、以及部分基体表面;连接导电层位于部分绝缘层表面,且所述连接导电层位于基体上,电极层分别位于暴露出的连接导电层表面和键合体表面,所述电极层用于连接外部电压源。连接导电层表面的电极层通过连接导电层电学连接第二半导体层,键合体表面的电极层通过键合体电学连接第一半导体层,而第一半导体层通过有源层和第二半导体层电学连接。因此LED芯片中的电流依次流经连接导电层表面的电极层、连接导电层、第二半导体层、有源层、第一半导体层、键合体、键合体表面的电极层。由于外部电压源无需通过第二衬底和键合体将电压施加在第一半导体层上,因此LED芯片中的电流无需流经第二衬底,第一半导体层无需通过键合体和第二衬底进行电学连接。使得对第二衬底的材料要求不再限于导电材料,利于降低LED芯片板上芯片封装的工艺复杂度。In the LED chip provided by the technical solution of the present invention, the insulating layer is located on the raised side wall and part of the substrate surface; the connecting conductive layer is located on part of the insulating layer surface, and the connecting conductive layer is located on the substrate, and the electrode layers are respectively located on the exposed connection The surface of the conductive layer and the surface of the bonding body, the electrode layer is used to connect to an external voltage source. The electrode layer on the surface of the connecting conductive layer is electrically connected to the second semiconductor layer through the connecting conductive layer, the electrode layer on the surface of the bonding body is electrically connected to the first semiconductor layer through the bonding body, and the first semiconductor layer is electrically connected to the second semiconductor layer through the active layer . Therefore, the current in the LED chip flows sequentially through the electrode layer connected to the surface of the conductive layer, the connected conductive layer, the second semiconductor layer, the active layer, the first semiconductor layer, the bonding body, and the electrode layer on the surface of the bonding body. Since the external voltage source does not need to apply voltage to the first semiconductor layer through the second substrate and the bonding body, the current in the LED chip does not need to flow through the second substrate, and the first semiconductor layer does not need to pass through the bonding body and the second substrate. Make electrical connections. The material requirements for the second substrate are no longer limited to conductive materials, which is beneficial to reduce the process complexity of LED chip-on-chip packaging.
附图说明Description of drawings
图1是一种LED芯片的结构示意图;Fig. 1 is a structural schematic diagram of an LED chip;
图2至图16是本发明一实施例中LED芯片形成过程的结构示意图。2 to 16 are structural schematic diagrams of the LED chip formation process in an embodiment of the present invention.
具体实施方式detailed description
正如背景技术所述,现有技术形成的LED芯片的电学性能有待提高。As mentioned in the background art, the electrical performance of LED chips formed in the prior art needs to be improved.
图1是一种LED芯片的结构示意图,LED芯片包括:键合衬底100;位于键合衬底100上的键合层110;位于键合层110上的第一电极层120;位于第一电极层120侧壁、以及键合层110上的绝缘层130;位于绝缘层130上的第一半导体层140、位于第一半导体层140上的有源层150,所述第一电极层120和第一电极层120侧壁的绝缘层130贯穿所述第一半导体层140和有源层150;位于有源层150、绝缘层130和第一电极层120上的第二半导体层160;贯穿所述第二半导体层160、有源层150和第一电极层120的第二电极层170,第二电极层170和第一半导体层140电学连接。Fig. 1 is a structural diagram of an LED chip, the LED chip includes: a bonding substrate 100; a bonding layer 110 located on the bonding substrate 100; a first electrode layer 120 located on the bonding layer 110; The sidewall of the electrode layer 120, and the insulating layer 130 on the bonding layer 110; the first semiconductor layer 140 on the insulating layer 130, the active layer 150 on the first semiconductor layer 140, the first electrode layer 120 and The insulating layer 130 on the sidewall of the first electrode layer 120 runs through the first semiconductor layer 140 and the active layer 150; the second semiconductor layer 160 located on the active layer 150, the insulating layer 130 and the first electrode layer 120; The second semiconductor layer 160 , the active layer 150 and the second electrode layer 170 of the first electrode layer 120 are described above, and the second electrode layer 170 is electrically connected to the first semiconductor layer 140 .
然而,上述LED芯片的电学性能较差,经研究发现,原因在于:However, the electrical performance of the above-mentioned LED chip is poor, and it is found through research that the reasons are:
第二电极层170和第一半导体层140电学连接,第一电极层120两端分别与第二半导体层160和键合层110电学连接。因此LED芯片中的电流依次流经第二电极层170、第一半导体层140、有源层150、第二半导体层160、第一电极层120和键合层110。LED芯片工作时需要将第一电极层120通过键合体110和键合衬底100进行电学连接,使得第一电极层120能够和施加在键合衬底100上的外部电压源电学连接。故键合衬底100的材料需要为导电材料。因而导致提高了LED芯片板上芯片封装的工艺复杂度,具体表现为:当键合衬底100的材料需要为导电材料时,键合衬底100和封装基板相接触的区域中需要设置焊点,且所述焊点需要和封装基板中的总线进行电学连接,因此所述焊点和总线之间需要进行电路布线。因而导致增加了对LED芯片板上芯片封装的封装基板的布线复杂度。The second electrode layer 170 is electrically connected to the first semiconductor layer 140 , and both ends of the first electrode layer 120 are electrically connected to the second semiconductor layer 160 and the bonding layer 110 respectively. Therefore, the current in the LED chip flows through the second electrode layer 170 , the first semiconductor layer 140 , the active layer 150 , the second semiconductor layer 160 , the first electrode layer 120 and the bonding layer 110 in sequence. When the LED chip works, the first electrode layer 120 needs to be electrically connected to the bonding substrate 100 through the bonding body 110 , so that the first electrode layer 120 can be electrically connected to an external voltage source applied on the bonding substrate 100 . Therefore, the material of the bonding substrate 100 needs to be a conductive material. As a result, the process complexity of chip-on-chip packaging of LED chips is increased. Specifically, when the material of the bonding substrate 100 needs to be a conductive material, solder joints need to be provided in the area where the bonding substrate 100 and the packaging substrate are in contact. , and the solder joints need to be electrically connected to the bus in the packaging substrate, so circuit wiring needs to be performed between the solder joints and the bus. As a result, the wiring complexity of the packaging substrate for the chip-on-chip packaging of the LED chip is increased.
在此基础上,本发明提供一种LED芯片的形成方法,包括:提供第一衬底,所述第一衬底上具有前端结构,所述前端结构包括第一半导体层、位于第一半导体层上的有源层、以及位于有源层上的第二半导体层,所述前端结构具有第一区和第二区;在第一区形成贯穿第二半导体层和有源层的凹槽;在凹槽周围的第一区第二半导体层的顶部表面形成连接导电层;形成覆盖连接导电层以及凹槽侧壁的绝缘层,所述绝缘层暴露出凹槽底部的第一半导体层和第二区第二半导体层的顶部表面;进行所述键合处理,使绝缘层、凹槽底部的第一半导体层、以及第二区第二半导体层通过键合体和第二衬底结合,所述键合体填充满凹槽且覆盖绝缘层和第二区第二半导体层的顶部表面;进行键合处理后,去除第一衬底;去除第一衬底后,刻蚀部分第一区的前端结构,暴露出部分连接导电层,刻蚀第二区的前端结构,暴露出部分键合体;在暴露出的连接导电层表面和键合体表面分别形成电极层。On this basis, the present invention provides a method for forming an LED chip, comprising: providing a first substrate, on which there is a front-end structure, and the front-end structure includes a first semiconductor layer, located on the first semiconductor layer The active layer on the active layer and the second semiconductor layer on the active layer, the front-end structure has a first region and a second region; a groove penetrating through the second semiconductor layer and the active layer is formed in the first region; The top surface of the first region and the second semiconductor layer around the groove forms a connecting conductive layer; an insulating layer covering the connecting conductive layer and the sidewall of the groove is formed, and the insulating layer exposes the first semiconductor layer and the second semiconductor layer at the bottom of the groove. The top surface of the second semiconductor layer in the region; performing the bonding process, so that the insulating layer, the first semiconductor layer at the bottom of the groove, and the second semiconductor layer in the second region are combined with the second substrate through the bonding body, and the bond The composite fills the groove and covers the insulating layer and the top surface of the second semiconductor layer in the second region; after performing bonding treatment, removing the first substrate; after removing the first substrate, etching part of the front-end structure of the first region, exposing part of the connecting conductive layer, etching the front-end structure of the second region, exposing part of the bonding body; forming electrode layers on the exposed connecting conductive layer surface and the bonding body surface respectively.
所述方法中,形成覆盖连接导电层以及凹槽侧壁的绝缘层,所述绝缘层暴露出凹槽底部的第一半导体层和第二区第二半导体层的顶部表面;去除第一衬底并刻蚀第二区和部分第一区的前端结构后,分别对应暴露出部分键合体和部分连接导电层;在暴露出的连接导电层表面和键合体表面分别形成电极层,所述电极层用于连接外部电压源。连接导电层表面的电极层通过连接导电层电学连接第二半导体层,键合体表面的电极层通过键合体电学连接第一半导体层,而第一半导体层通过有源层和第二半导体层电学连接。因此LED芯片中的电流依次流经连接导电层表面的电极层、连接导电层、第二半导体层、有源层、第一半导体层、键合体、键合体表面的电极层。由于外部电压源无需通过第二衬底和键合体将电压施加在第一半导体层上,因此LED芯片中的电流无需流经第二衬底,第一半导体层无需通过键合体和第二衬底进行电学连接。使得对第二衬底的材料要求不再限于导电材料,利于降低LED芯片板上芯片封装的工艺复杂度。In the method, an insulating layer covering the connecting conductive layer and the sidewall of the groove is formed, and the insulating layer exposes the first semiconductor layer at the bottom of the groove and the top surface of the second semiconductor layer in the second region; the first substrate is removed And after etching the front-end structure of the second area and part of the first area, a part of the bonding body and a part of the connecting conductive layer are respectively exposed; electrode layers are respectively formed on the exposed connecting conductive layer surface and the bonding body surface, and the electrode layer For connection to an external voltage source. The electrode layer on the surface of the connecting conductive layer is electrically connected to the second semiconductor layer through the connecting conductive layer, the electrode layer on the surface of the bonding body is electrically connected to the first semiconductor layer through the bonding body, and the first semiconductor layer is electrically connected to the second semiconductor layer through the active layer . Therefore, the current in the LED chip flows sequentially through the electrode layer connected to the surface of the conductive layer, the connected conductive layer, the second semiconductor layer, the active layer, the first semiconductor layer, the bonding body, and the electrode layer on the surface of the bonding body. Since the external voltage source does not need to apply voltage to the first semiconductor layer through the second substrate and the bonding body, the current in the LED chip does not need to flow through the second substrate, and the first semiconductor layer does not need to pass through the bonding body and the second substrate. Make electrical connections. The material requirements for the second substrate are no longer limited to conductive materials, which is beneficial to reduce the process complexity of LED chip-on-chip packaging.
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and advantages of the present invention more comprehensible, specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.
图2至图15是本发明一实施例中LED芯片形成过程的结构示意图。2 to 15 are schematic structural views of the LED chip formation process in an embodiment of the present invention.
参考图2,提供第一衬底200,所述第一衬底200上具有前端结构,所述前端结构包括第一半导体层201、位于第一半导体层201上的有源层202、以及位于有源层202上的第二半导体层203,所述前端结构具有第一区和第二区。Referring to FIG. 2 , a first substrate 200 is provided, and a front-end structure is provided on the first substrate 200, and the front-end structure includes a first semiconductor layer 201, an active layer 202 on the first semiconductor layer 201, and an active layer on the first semiconductor layer 201. The second semiconductor layer 203 on the source layer 202, the front-end structure has a first region and a second region.
本实施例中,所述第一衬底200的材料为蓝宝石。在其它实施例中,所述第一衬底的材料为氮化镓、硅、或碳化硅。In this embodiment, the material of the first substrate 200 is sapphire. In other embodiments, the material of the first substrate is gallium nitride, silicon, or silicon carbide.
所述第一半导体层201和导电类型和第二半导体层203的导电类型相反。The conductivity type of the first semiconductor layer 201 is opposite to that of the second semiconductor layer 203 .
本实施例中,以所述第一半导体层201的导电类型为N型,第二半导体层203的导电类型为P型为示例进行说明。In this embodiment, description is made by taking an example in which the conductivity type of the first semiconductor layer 201 is N type and the conductivity type of the second semiconductor layer 203 is P type.
本实施例中,第一半导体层201的材料为N型GaN,第二半导体层203的材料为P型GaN。本实施例中,所述有源层202为量子阱层。所述量子阱层的作用包括:提高电子和空穴的复合效率,以提高LED芯片的发光效率。In this embodiment, the material of the first semiconductor layer 201 is N-type GaN, and the material of the second semiconductor layer 203 is P-type GaN. In this embodiment, the active layer 202 is a quantum well layer. The function of the quantum well layer includes: improving the recombination efficiency of electrons and holes, so as to improve the luminous efficiency of the LED chip.
所述量子阱层为多量子阱层或单量子阱层。The quantum well layer is a multiple quantum well layer or a single quantum well layer.
形成所述第一半导体层201、有源层202和第二半导体层203的工艺包括外延生长工艺。The process of forming the first semiconductor layer 201 , the active layer 202 and the second semiconductor layer 203 includes an epitaxial growth process.
本实施例中,还在所述第一半导体层201和第一衬底200之间形成有缓冲层。所述缓冲层的材料包括未掺杂的GaN。所述缓冲层的作用包括:避免第一半导体层201的晶格产生较大的畸变。在其它实施例中,未形成缓冲层。In this embodiment, a buffer layer is further formed between the first semiconductor layer 201 and the first substrate 200 . The material of the buffer layer includes undoped GaN. The function of the buffer layer includes: avoiding large distortion of the crystal lattice of the first semiconductor layer 201 . In other embodiments, no buffer layer is formed.
结合参考图3和图4,图4为在图3基础上朝向第二半导体层203的俯视图,图3为沿图4中切割线A-A1的剖面图,在第一区形成贯穿第二半导体层203和有源层202的凹槽210。Referring to FIG. 3 and FIG. 4 together, FIG. 4 is a top view towards the second semiconductor layer 203 on the basis of FIG. 3 , and FIG. 3 is a cross-sectional view along the cutting line A-A1 in FIG. 4 , forming a penetrating second semiconductor layer in the first region. layer 203 and the groove 210 of the active layer 202 .
形成所述凹槽210的方法包括:在所述第二半导体层203上形成图形化的掩膜层,所述图形化的掩膜层定义凹槽210的位置;以所述图形化的掩膜层为掩膜,采用各向异性刻蚀工艺刻蚀第一区的第二半导体层203和有源层202直至暴露出第一半导体层201,从而在第一区形成贯穿第二半导体层203和有源层202的凹槽210。The method for forming the groove 210 includes: forming a patterned mask layer on the second semiconductor layer 203, the patterned mask layer defines the position of the groove 210; The second semiconductor layer 203 and the active layer 202 in the first region are etched using an anisotropic etching process until the first semiconductor layer 201 is exposed, thereby forming The groove 210 of the active layer 202 .
所述凹槽210的数量为一个或多个。本实施例中,以所述凹槽210的数量为7个为示例进行说明。The number of the grooves 210 is one or more. In this embodiment, the number of the grooves 210 is 7 as an example for illustration.
本实施例中,相邻凹槽210之间的间距相等,优点为:使LED芯片中电流扩展更均匀。在其它实施例中,相邻凹槽210之间的间距不等。In this embodiment, the distances between adjacent grooves 210 are equal, which has the advantage of making the current spread in the LED chip more uniform. In other embodiments, the distance between adjacent grooves 210 is not equal.
在实际工艺中,根据实际需要设置凹槽210的具体排布。In an actual process, the specific arrangement of the grooves 210 is set according to actual needs.
接着,在凹槽210周围的第一区第二半导体层203的顶部表面形成连接导电层。Next, a connecting conductive layer is formed on the top surface of the second semiconductor layer 203 in the first region around the groove 210 .
本实施例中,在形成所述连接导电层之前,还包括:在所述凹槽210周围的第一区第二半导体层203的部分顶部表面形成欧姆接触层;在所述欧姆接触层表面形成反射层,所述欧姆接触层的电导率大于第二半导体层的电导率且小于所述反射层的电导率。形成所述连接导电层后,所述连接导电层覆盖所述反射层和反射层周围的第一区部分第二半导体层203的顶部表面。在其它实施例中,不形成欧姆接触层和反射层。In this embodiment, before forming the connecting conductive layer, it also includes: forming an ohmic contact layer on a part of the top surface of the second semiconductor layer 203 in the first region around the groove 210; forming an ohmic contact layer on the surface of the ohmic contact layer. A reflective layer, the electrical conductivity of the ohmic contact layer is greater than the electrical conductivity of the second semiconductor layer and lower than the electrical conductivity of the reflective layer. After the connection conductive layer is formed, the connection conductive layer covers the reflective layer and the top surface of the second semiconductor layer 203 in the first region around the reflective layer. In other embodiments, no ohmic contact layer and reflective layer are formed.
下面参考图5至图8具体介绍欧姆接触层、反射层和连接导电的形成方法。The methods for forming the ohmic contact layer, the reflective layer and the connection conduction are described in detail below with reference to FIGS. 5 to 8 .
结合参考图5和图6,图5为在图3基础上的示意图,图6为在图4基础上的示意图,在所述凹槽210周围的第一区第二半导体层203的部分顶部表面形成欧姆接触层220;在所述欧姆接触层220表面形成反射层221,所述欧姆接触层220的电导率大于第二半导体层203的电导率且小于所述反射层221的电导率。Referring to FIG. 5 and FIG. 6 in conjunction, FIG. 5 is a schematic diagram based on FIG. 3, and FIG. 6 is a schematic diagram based on FIG. Forming an ohmic contact layer 220 ; forming a reflective layer 221 on the surface of the ohmic contact layer 220 , the electrical conductivity of the ohmic contact layer 220 is greater than that of the second semiconductor layer 203 and less than that of the reflective layer 221 .
所述反射层221的作用包括:反射从有源层202向第二半导体层203发射的光,反射后的光从第一半导体层201射出,提高LED芯片的出光率。The function of the reflective layer 221 includes: reflecting the light emitted from the active layer 202 to the second semiconductor layer 203 , and the reflected light is emitted from the first semiconductor layer 201 to improve the light extraction rate of the LED chip.
所述反射层221的材料为Ni、Ag、Al中任意一种或几种组合。The reflective layer 221 is made of any one or a combination of Ni, Ag, and Al.
形成所述反射层221的方法包括蒸镀工艺或溅射工艺。The method of forming the reflective layer 221 includes evaporation process or sputtering process.
形成所述欧姆接触层220的方法包括蒸镀工艺或溅射工艺。The method of forming the ohmic contact layer 220 includes evaporation process or sputtering process.
所述欧姆接触层220的作用包括:The functions of the ohmic contact layer 220 include:
欧姆接触层220作为反射层221和第二半导体层203的中间层,使得反射层221和第二半导体层203之间的结合力增强;The ohmic contact layer 220 serves as an intermediate layer between the reflective layer 221 and the second semiconductor layer 203, so that the bonding force between the reflective layer 221 and the second semiconductor layer 203 is enhanced;
欧姆接触层220的电导率大于第二半导体层203的电导率且小于所述反射层221的电导率,使得反射层221和第二半导体层203之间的接触势垒降低;The conductivity of the ohmic contact layer 220 is greater than the conductivity of the second semiconductor layer 203 and smaller than the conductivity of the reflective layer 221, so that the contact barrier between the reflective layer 221 and the second semiconductor layer 203 is reduced;
欧姆接触层220的折射率小于第二半导体层203,欧姆接触层220和第二半导体层203之间的界面构成光的全反射界面;从有源层202射出的光进入第二半导体层203后,较多的光在欧姆接触层220和第二半导体层203之间的界面发生全反射,只有较少的光进入欧姆接触层220进而到达反射层221。进而降低反射层221对光线的吸收率,从而提高了欧姆接触层220和反射层221对光线的总反射率。The refractive index of the ohmic contact layer 220 is smaller than that of the second semiconductor layer 203, and the interface between the ohmic contact layer 220 and the second semiconductor layer 203 forms a total reflection interface of light; after the light emitted from the active layer 202 enters the second semiconductor layer 203 , more light is totally reflected at the interface between the ohmic contact layer 220 and the second semiconductor layer 203 , and only less light enters the ohmic contact layer 220 and then reaches the reflective layer 221 . Further, the light absorption rate of the reflection layer 221 is reduced, thereby increasing the total light reflection rate of the ohmic contact layer 220 and the reflection layer 221 .
本实施例中,所述欧姆接触层220的材料为透明导电材料,所述透明导电材料为氧化铟锡、掺氟氧化锡或掺铝氧化锌。In this embodiment, the material of the ohmic contact layer 220 is a transparent conductive material, and the transparent conductive material is indium tin oxide, fluorine-doped tin oxide or aluminum-doped zinc oxide.
本实施例中,所述欧姆接触层220的厚度为1nm~500nm,反射层221的厚度为10nm~500nm。在其它实施例中,可以根据工艺需要设置欧姆接触层和反射层的厚度。In this embodiment, the thickness of the ohmic contact layer 220 is 1 nm˜500 nm, and the thickness of the reflective layer 221 is 10 nm˜500 nm. In other embodiments, the thicknesses of the ohmic contact layer and the reflective layer can be set according to process requirements.
结合参考图7和图8,图7为在图5基础上的示意图,图8为在图6基础上的示意图,在凹槽210周围的第一区第二半导体层203的顶部表面形成连接导电层222。Referring to FIG. 7 and FIG. 8 in conjunction, FIG. 7 is a schematic diagram based on FIG. 5, and FIG. 8 is a schematic diagram based on FIG. Layer 222.
本实施例中,由于形成了欧姆接触层220和反射层221,因此所述连接导电层222覆盖所述反射层221和反射层221周围第一区的部分第二半导体层203的顶部表面。In this embodiment, since the ohmic contact layer 220 and the reflective layer 221 are formed, the connecting conductive layer 222 covers the reflective layer 221 and a part of the top surface of the second semiconductor layer 203 in the first region around the reflective layer 221 .
形成所述连接导电层222的方法包括蒸镀工艺或溅射工艺。The method of forming the connecting conductive layer 222 includes evaporation process or sputtering process.
本实施例中,所述连接导电层222的材料为金属,所述连接导电层222电学连接后续形成的电极层和第二半导体层203。In this embodiment, the material of the connecting conductive layer 222 is metal, and the connecting conductive layer 222 electrically connects the subsequently formed electrode layer and the second semiconductor layer 203 .
本实施例中,所述连接导电层222的作用包括:阻挡反射层221中金属原子的扩散,进而避免LED芯片产生漏电,保障LED芯片的可靠性。In this embodiment, the function of the connecting conductive layer 222 includes: blocking the diffusion of metal atoms in the reflective layer 221 , thereby avoiding leakage of LED chips and ensuring the reliability of the LED chips.
本实施例中,所述连接导电层222为叠层结构,所述连接导电层222包括一层或多层层叠的叠层组层,所述叠层组层包括第一材料层和位于第一材料层表面的第二材料层,所述第一材料层位于所述凹槽210周围的第一区第二半导体层203的部分顶部表面。In this embodiment, the connecting conductive layer 222 is a stacked layer structure, and the connecting conductive layer 222 includes one or more stacked stacked layers, and the stacked layer includes a first material layer and a layer located at the first A second material layer on the surface of the material layer, the first material layer is located on a part of the top surface of the second semiconductor layer 203 in the first region around the groove 210 .
具体的,第一材料层覆盖所述反射层221和反射层221周围第一区部分第二半导体层203的顶部表面。Specifically, the first material layer covers the reflective layer 221 and the top surface of the second semiconductor layer 203 in the first region around the reflective layer 221 .
本实施例中,所述第一材料层的材料为TiW;所述第二材料层的材料为Pt或Ti。In this embodiment, the material of the first material layer is TiW; the material of the second material layer is Pt or Ti.
所述第一材料层的厚度为50nm~200nm;所述第二材料层的厚度为20nm~100nm。在实际工艺中,可以根据实际情况选择第一材料层和第二材料层的厚度。The thickness of the first material layer is 50nm-200nm; the thickness of the second material layer is 20nm-100nm. In an actual process, the thicknesses of the first material layer and the second material layer can be selected according to actual conditions.
当所述连接导电层222为叠层结构时,对反射层221中金属原子扩散的阻挡能力较好,且改善膜层应力,从而改善连接导电层222和反射层221、以及连接导电层222和第二半导体层203的键合质量。When the connecting conductive layer 222 is a laminated structure, the barrier ability to the diffusion of metal atoms in the reflective layer 221 is better, and the stress of the film layer is improved, thereby improving the connection between the conductive layer 222 and the reflective layer 221, and the connection between the conductive layer 222 and the reflective layer 221. The bonding quality of the second semiconductor layer 203 .
所述叠层组层的层数为1~3层,使得形成叠层结构的成本较少,且使得叠层结构的性能较好。The number of layers of the laminated group is 1-3 layers, so that the cost of forming the laminated structure is low, and the performance of the laminated structure is better.
在其它实施例中,所述连接导电层为单层结构,相应的,连接导电层的材料为TiW、Pt或Ti。In other embodiments, the connecting conductive layer is a single-layer structure, and correspondingly, the material of the connecting conductive layer is TiW, Pt or Ti.
结合参考图9和图10,图9为在图7基础上的示意图,图10为在图8基础上的示意图,形成覆盖连接导电层222以及凹槽210侧壁的绝缘层230,所述绝缘层230暴露出凹槽210底部的第一半导体层201和第二区第二半导体层203的顶部表面。Referring to FIG. 9 and FIG. 10 in conjunction, FIG. 9 is a schematic diagram based on FIG. 7, and FIG. 10 is a schematic diagram based on FIG. The layer 230 exposes the top surfaces of the first semiconductor layer 201 and the second region second semiconductor layer 203 at the bottom of the groove 210 .
所述绝缘层230的作用包括:电学隔离后续形成的键合体与第二半导体层203、键合体和有源层202、以及键合体和连接导电层222。The functions of the insulating layer 230 include: electrically isolating the subsequently formed bonding body from the second semiconductor layer 203 , the bonding body and the active layer 202 , and the bonding body and the connecting conductive layer 222 .
所述绝缘层230的材料为氧化硅、氮化硅、氮氧化硅或氧化铝。The insulating layer 230 is made of silicon oxide, silicon nitride, silicon oxynitride or aluminum oxide.
形成所述绝缘层230的方法包括:在所述连接导电层222、暴露出的第二半导体层203的表面、以及凹槽210的侧壁和底部形成绝缘材料层;去除第二区第二半导体层203表面、以及凹槽210底部的连接导电层222,形成绝缘层230。The method for forming the insulating layer 230 includes: forming an insulating material layer on the connecting conductive layer 222, the exposed surface of the second semiconductor layer 203, and the sidewall and bottom of the groove 210; removing the second semiconductor layer in the second region The surface of the layer 203 and the connecting conductive layer 222 at the bottom of the groove 210 form an insulating layer 230 .
形成所述绝缘材料层的工艺为沉积工艺,如等离子体化学气相沉积工艺、原子层沉积工艺、亚大气压化学气相沉积工艺或低压化学气相沉积工艺。The process for forming the insulating material layer is a deposition process, such as plasma chemical vapor deposition process, atomic layer deposition process, sub-atmospheric pressure chemical vapor deposition process or low pressure chemical vapor deposition process.
去除第二区第二半导体层203表面、以及凹槽210底部的连接导电层222的工艺包括干刻工艺或湿刻蚀工艺。The process of removing the surface of the second semiconductor layer 203 in the second region and the connecting conductive layer 222 at the bottom of the groove 210 includes a dry etching process or a wet etching process.
结合参考图11和图12,图11为在图9基础上的示意图,图12为在图10基础上的示意图,进行键合处理,使绝缘层230、凹槽210底部的第一半导体层201、以及第二区第二半导体层203通过键合体240和第二衬底250结合,所述键合体240填充满凹槽210(参考图9和图10)且覆盖绝缘层230和第二区第二半导体层203的顶部表面。11 and FIG. 12 in combination, FIG. 11 is a schematic diagram based on FIG. 9, and FIG. 12 is a schematic diagram based on FIG. , and the second semiconductor layer 203 in the second region is combined with the second substrate 250 through the bonding body 240, and the bonding body 240 fills the groove 210 (see FIGS. 9 and 10) and covers the insulating layer 230 and the second region. The top surface of the second semiconductor layer 203 .
进行所述键合处理的方法包括:在绝缘层230表面、凹槽210底部的第一半导体层201表面、以及第二区第二半导体层203的顶部表面形成第一键合层(未图示);提供第二衬底250;在第二衬底250表面形成第二键合层(未图示);将所述第一键合层和第二键合层进行键合,使第一键合层和第二键合层形成所述键合体240。The method for performing the bonding treatment includes: forming a first bonding layer (not shown) on the surface of the insulating layer 230, the surface of the first semiconductor layer 201 at the bottom of the groove 210, and the top surface of the second semiconductor layer 203 in the second region. ); providing a second substrate 250; forming a second bonding layer (not shown) on the surface of the second substrate 250; bonding the first bonding layer and the second bonding layer so that the first bond The bonding layer and the second bonding layer form the bonding body 240.
所述第一键合层和第二键合层的材料为金属,如Au、Cu、In、Ti、Pt、Cr、Ge、Ni中的任意一种或多种组合。The material of the first bonding layer and the second bonding layer is metal, such as any one or a combination of Au, Cu, In, Ti, Pt, Cr, Ge, Ni.
将所述第一键合层和第二键合层进行键合的工艺为低温共晶键合或金属扩散(共熔晶)键合。The process of bonding the first bonding layer and the second bonding layer is low temperature eutectic bonding or metal diffusion (eutectic) bonding.
本实施例中,在将第一键合层和第二键合层进行键合的过程中,第一键合层和第二键合层形成熔融态,所述熔融态的第一键合层和第二键合层填充满凹槽210。将所述第一键合层和第二键合层进行键合后,第一键合层和第二键合层形成键合体240。In this embodiment, during the process of bonding the first bonding layer and the second bonding layer, the first bonding layer and the second bonding layer form a molten state, and the first bonding layer in the molten state and the second bonding layer fill the groove 210 . After the first bonding layer and the second bonding layer are bonded, the first bonding layer and the second bonding layer form a bonding body 240 .
相应的,所述键合体240的材料为金属,如Au、Cu、In、Ti、Pt、Cr、Ge、Ni中的任意一种或多种组合。Correspondingly, the material of the bonding body 240 is metal, such as any one or a combination of Au, Cu, In, Ti, Pt, Cr, Ge, Ni.
本实施例中,所述第二衬底250为绝缘导热衬底,所述绝缘导热衬底的热导率在45W/(m·K)以上,如60W/(m·K)、80W/(m·K)、100W/(m·K)、300W/(m·K)或500W/(m·K)。所述绝缘导热衬底的材料为SiC或AlN。In this embodiment, the second substrate 250 is an insulating and thermally conductive substrate, and the thermal conductivity of the insulating and thermally conductive substrate is above 45W/(m·K), such as 60W/(m·K), 80W/( m·K), 100W/(m·K), 300W/(m·K) or 500W/(m·K). The material of the insulating and heat-conducting substrate is SiC or AlN.
SiC或AlN的热导率大于蓝宝石的热导率,当所述绝缘导热衬底的材料为SiC或AlN时,第二衬底250的热导率较大,因此能够提高LED芯片的散热性能。The thermal conductivity of SiC or AlN is greater than that of sapphire. When the material of the insulating and thermally conductive substrate is SiC or AlN, the thermal conductivity of the second substrate 250 is relatively high, so the heat dissipation performance of the LED chip can be improved.
在其它实施例中,所述第二衬底250为导电衬底;当所述第二衬底250为导电衬底时,所述LED芯片的形成方法还包括:在进行键合处理的过程中,使所述键合体240通过隔离层和第二衬底250结合。In other embodiments, the second substrate 250 is a conductive substrate; when the second substrate 250 is a conductive substrate, the method for forming the LED chip further includes: during the bonding process , making the bonding body 240 bond with the second substrate 250 through the isolation layer.
进行所述键合处理的方法包括:在绝缘层230表面、凹槽210底部的第一半导体层201表面、以及第二区第二半导体层203的顶部表面形成第一键合层(未图示);提供第二衬底250;在第二衬底250表面形成隔离层;在所述隔离层表面形成第二键合层(未图示);将所述第一键合层和第二键合层进行键合,使第一键合层和第二键合层形成所述键合体240。The method for performing the bonding treatment includes: forming a first bonding layer (not shown) on the surface of the insulating layer 230, the surface of the first semiconductor layer 201 at the bottom of the groove 210, and the top surface of the second semiconductor layer 203 in the second region. ); providing a second substrate 250; forming an isolation layer on the surface of the second substrate 250; forming a second bonding layer (not shown) on the surface of the isolation layer; The bonding layer is bonded, so that the first bonding layer and the second bonding layer form the bonding body 240 .
本实施例中,第二衬底250的材料可以为导电衬底,也可以为绝缘导热衬底,因此第二衬底250选择范围较大,可以根据实际情况灵活选择。In this embodiment, the material of the second substrate 250 can be a conductive substrate, or an insulating and heat-conductive substrate. Therefore, the second substrate 250 can be selected in a wide range, and can be flexibly selected according to actual conditions.
所述隔离层的作用为电学隔离第二衬底250和键合体240,使LED芯片中的电流不流经第二衬底250。The function of the isolation layer is to electrically isolate the second substrate 250 and the bonding body 240 so that the current in the LED chip does not flow through the second substrate 250 .
所述隔离层的材料为氧化硅、氮化硅、氮氧化硅或氧化铝。The material of the isolation layer is silicon oxide, silicon nitride, silicon oxynitride or aluminum oxide.
参考图13,图13为在图11基础上的示意图,进行所述键合处理后,去除第一衬底200(参考图11和图12)。Referring to FIG. 13 , FIG. 13 is a schematic diagram based on FIG. 11 , after the bonding process, the first substrate 200 is removed (refer to FIGS. 11 and 12 ).
去除第一衬底200的工艺包括激光剥离工艺。The process of removing the first substrate 200 includes a laser lift-off process.
接着,刻蚀部分第一区前端结构,暴露出部分连接导电层,刻蚀第二区的前端结构,暴露出部分键合体。Next, etching part of the front-end structure of the first region to expose part of the connecting conductive layer, and etching the front-end structure of the second region to expose part of the bonding body.
本实施例中,还包括:在去除所述第一衬底200后且在刻蚀第二区和部分第一区的前端结构之前,对所述第一半导体层201的表面进行粗化处理。In this embodiment, it further includes: roughening the surface of the first semiconductor layer 201 after removing the first substrate 200 and before etching the second region and part of the front-end structure of the first region.
参考图14,对所述第一半导体层201的表面进行粗化处理。Referring to FIG. 14 , the surface of the first semiconductor layer 201 is roughened.
所述粗化处理的方法包括:采用粗化溶液对所述第一半导体层201的表面进行腐蚀。The roughening method includes: using a roughening solution to etch the surface of the first semiconductor layer 201 .
所述粗化溶液为氢氧化钾溶液或氢氧化钠溶液。The roughening solution is potassium hydroxide solution or sodium hydroxide solution.
所述粗化处理的作用包括:避免后续从有源层202射向第一半导体层201的光在第一半导体层201的表面发生全反射,从而提高出光率。The effect of the roughening treatment includes: avoiding the total reflection of the light emitted from the active layer 202 to the first semiconductor layer 201 on the surface of the first semiconductor layer 201 , thereby improving the light extraction rate.
需要说明的是,本实施例中,形成了缓冲层,还包括:在进行粗化处理之前,去除至少部分厚度的缓冲层;若去除全部的缓冲层,在对所述第一半导体层201的表面进行粗化处理的过程中,也对所述缓冲层进行粗化处理。It should be noted that, in this embodiment, the buffer layer is formed, which further includes: before performing the roughening treatment, removing at least part of the thickness of the buffer layer; if all the buffer layer is removed, after the first semiconductor layer 201 During the process of roughening the surface, the buffer layer is also roughened.
去除至少部分厚度的缓冲层的作用包括:将在去除第一衬底200过程中缓冲层受损的部分去除。The effect of removing at least part of the thickness of the buffer layer includes: removing a portion of the buffer layer that was damaged during the removal of the first substrate 200 .
接着,参考图15,刻蚀部分第一区前端结构,暴露出部分连接导电层260,刻蚀第二区的前端结构,暴露出部分键合体240。Next, referring to FIG. 15 , a portion of the front-end structure of the first region is etched to expose a portion of the connecting conductive layer 260 , and the front-end structure of the second region is etched to expose a portion of the bonding body 240 .
本实施例中,同时刻蚀第二区的前端结构和部分第一区前端结构。In this embodiment, the front-end structure of the second region and part of the front-end structure of the first region are etched simultaneously.
刻蚀第二区的前端结构和部分第一区前端结构的方法包括各向异性干刻工艺。The method for etching the front-end structure of the second region and part of the front-end structure of the first region includes an anisotropic dry etching process.
接着,参考图16,在前端结构表面、绝缘层230表面、以及部分暴露出的部分键合体240表面形成钝化层260,且所述钝化层260暴露出部分连接导电层222表面;形成所述钝化层260后,在暴露出的连接导电层222表面和键合体240表面分别形成电极层270。Next, referring to FIG. 16 , a passivation layer 260 is formed on the surface of the front end structure, the surface of the insulating layer 230 , and the surface of the part of the bonding body 240 that is partially exposed, and the passivation layer 260 exposes a part of the surface of the connecting conductive layer 222; After the passivation layer 260 is formed, an electrode layer 270 is respectively formed on the exposed surface of the connection conductive layer 222 and the surface of the bonding body 240 .
所述钝化层260的材料为氧化硅、氮化硅、氮氧化硅或氧化铝。The material of the passivation layer 260 is silicon oxide, silicon nitride, silicon oxynitride or aluminum oxide.
形成所述钝化层250的方法包括:在所述前端结构表面、绝缘层230表面、以及暴露出的连接导电层222表面和键合体240表面形成钝化材料层;图形化所述钝化材料层,形成所述钝化层250。The method for forming the passivation layer 250 includes: forming a passivation material layer on the surface of the front end structure, the surface of the insulating layer 230, and the exposed surface of the connecting conductive layer 222 and the surface of the bonding body 240; patterning the passivation material layer to form the passivation layer 250 .
所述电极层270用于连接外部电压源。The electrode layer 270 is used to connect to an external voltage source.
所述电极层270的材料为金属,如Cr、Pt、Au、Al、Ti中一种或任意几种的组合。The material of the electrode layer 270 is metal, such as one or any combination of Cr, Pt, Au, Al, Ti.
所述电极层270为单层结构或多层结构。The electrode layer 270 is a single-layer structure or a multi-layer structure.
本实施例中,所述电极层270为平面状。在其它实施例中,所述电极层270为导电插塞。In this embodiment, the electrode layer 270 is planar. In other embodiments, the electrode layer 270 is a conductive plug.
本实施例中,所述LED芯片中电流的扩展不依赖于电极层270,因此电极层270的面积的设计无需考虑对LED芯片中电流的扩展的影响。电极层270的面积选择的范围较大。In this embodiment, the expansion of the current in the LED chip does not depend on the electrode layer 270, so the design of the area of the electrode layer 270 does not need to consider the influence on the expansion of the current in the LED chip. The selection range of the area of the electrode layer 270 is relatively large.
连接导电层222表面的电极层270通过连接导电层222电学连接第二半导体层203,键合体240表面的电极层270通过键合体240电学连接第一半导体层201,而第一半导体层201通过有源层202和第二半导体层203电学连接。因此LED芯片中的电流依次流经连接导电层222的电极层270、连接导电层222、第二半导体层203、有源层202、第一半导体层201、键合体240、键合体240表面的电极层270。由于外部电压源无需通过第二衬底250和键合体240将电压施加在第一半导体层201上,因此LED芯片中的电流无需流经第二衬底250,第一半导体层201无需通过键合体240和第二衬底250进行电学连接。使得对第二衬底250的材料要求不再限于导电材料,利于降低LED芯片板上芯片封装的工艺复杂度。The electrode layer 270 on the surface of the connecting conductive layer 222 is electrically connected to the second semiconductor layer 203 through the connecting conductive layer 222, and the electrode layer 270 on the surface of the bonding body 240 is electrically connected to the first semiconductor layer 201 through the bonding body 240, and the first semiconductor layer 201 is electrically connected to the first semiconductor layer 201 through the bonding body 240. The source layer 202 and the second semiconductor layer 203 are electrically connected. Therefore, the current in the LED chip flows through the electrode layer 270 connecting the conductive layer 222, connecting the conductive layer 222, the second semiconductor layer 203, the active layer 202, the first semiconductor layer 201, the bonding body 240, and the electrode on the surface of the bonding body 240. Layer 270. Since the external voltage source does not need to apply voltage to the first semiconductor layer 201 through the second substrate 250 and the bonding body 240, the current in the LED chip does not need to flow through the second substrate 250, and the first semiconductor layer 201 does not need to pass through the bonding body. 240 and the second substrate 250 are electrically connected. The requirements for the material of the second substrate 250 are no longer limited to conductive materials, which is beneficial to reduce the process complexity of LED chip-on-chip packaging.
利于降低LED芯片板上芯片封装的工艺复杂度表现为:当第二衬底250的材料能够采用绝缘导热材料,第二衬底250和封装基板相接触的区域中无需设置和封装基板中的总线进行电学连接的焊点,第二衬底250仅需要固定在和封装基板相接触的区域。不同的LED芯片通过电极层270进行电学连接。这样能够降低了对LED芯片板上芯片封装的封装基板的布线复杂度。It is beneficial to reduce the process complexity of LED chip-on-chip packaging: when the material of the second substrate 250 can be an insulating and heat-conducting material, there is no need to set a bus in the contact area between the second substrate 250 and the packaging substrate. For solder joints for electrical connection, the second substrate 250 only needs to be fixed on the area that is in contact with the packaging substrate. Different LED chips are electrically connected through the electrode layer 270 . In this way, the wiring complexity of the packaging substrate for the chip-on-chip packaging of the LED chip can be reduced.
相应的,本实施例还提供一种采用上述方法形成的LED芯片,请继续参考图16,包括:第二衬底250;位于第二衬底250上的键合体240,所述键合体240包括位于第二衬底250表面的基体和位于基体表面的凸起;位于凸起侧壁、以及部分基体表面的绝缘层230;位于部分绝缘230层表面的连接导电层222,且所述连接导电层222位于基体上;位于部分连接导电层222上的第二半导体层203和位于第二半导体层203表面的有源层202,所述凸起和凸起侧壁的绝缘层230贯穿所述第二半导体层203和有源层202;位于第二半导体层203、有源层202、凸起以及凸起侧壁的绝缘层230表面的第一半导体层201;分别位于暴露出的连接导电层222表面和键合体240表面的电极层270。Correspondingly, this embodiment also provides an LED chip formed by the above method, please continue to refer to FIG. 16 , including: a second substrate 250; a bonding body 240 located on the second substrate 250, and the bonding body 240 includes The base on the surface of the second substrate 250 and the protrusion on the surface of the base; the insulating layer 230 located on the side wall of the protrusion and part of the surface of the base; the connecting conductive layer 222 located on the surface of part of the insulating layer 230, and the connecting conductive layer 222 is located on the substrate; the second semiconductor layer 203 located on part of the connecting conductive layer 222 and the active layer 202 located on the surface of the second semiconductor layer 203, the insulating layer 230 of the protrusion and the protrusion sidewall penetrates the second The semiconductor layer 203 and the active layer 202; the first semiconductor layer 201 located on the surface of the second semiconductor layer 203, the active layer 202, the protrusion and the insulating layer 230 of the protrusion sidewall; respectively located on the surface of the exposed connecting conductive layer 222 and the electrode layer 270 on the surface of the bonding body 240 .
所述第二衬底250为绝缘导热衬底,所述绝缘导热衬底的热导率在45W/(m·K)以上,如60W/(m·K)、80W/(m·K)、100W/(m·K)、300W/(m·K)或500W/(m·K);或者所述第二衬底250为导电衬底;当所述第二衬底250为导电衬底时,所述LED芯片还包括:位于第二衬底250和键合体240之间的隔离层(未图示)。The second substrate 250 is an insulating and thermally conductive substrate, and the thermal conductivity of the insulating and thermally conductive substrate is above 45W/(m·K), such as 60W/(m·K), 80W/(m·K), 100W/(m·K), 300W/(m·K) or 500W/(m·K); or the second substrate 250 is a conductive substrate; when the second substrate 250 is a conductive substrate , the LED chip further includes: an isolation layer (not shown) located between the second substrate 250 and the bonding body 240 .
所述隔离层的材料为氧化硅、氮化硅、氮氧化硅或氧化铝。The material of the isolation layer is silicon oxide, silicon nitride, silicon oxynitride or aluminum oxide.
所述绝缘导热衬底的材料为SiC或AlN。The material of the insulating and heat-conducting substrate is SiC or AlN.
所述键合体240的材料为Au、Cu、In、Ti、Pt、Cr、Ge、Ni中的任意一种或多种组合。The material of the bonding body 240 is any one or a combination of Au, Cu, In, Ti, Pt, Cr, Ge, Ni.
所述绝缘层230的材料为氧化硅、氮化硅、氮氧化硅或氧化铝。The insulating layer 230 is made of silicon oxide, silicon nitride, silicon oxynitride or aluminum oxide.
所述绝缘层230用于电学隔离键合体240和第二半导体层203、键合体240和有源层202、以及键合体240和连接导电层222。The insulating layer 230 is used to electrically isolate the bonding body 240 from the second semiconductor layer 203 , the bonding body 240 from the active layer 202 , and the bonding body 240 from the connecting conductive layer 222 .
所述连接导电层222的材料为金属,所述连接导电层222电学连接电极层270和第二半导体层203。The material of the connecting conductive layer 222 is metal, and the connecting conductive layer 222 electrically connects the electrode layer 270 and the second semiconductor layer 203 .
本实施例中,所述连接导电层222为叠层结构;所述连接导电层222包括一层或多层层叠的叠层组层,所述叠层组层包括第二材料层和位于第二材料层表面的第一材料层,所述第二材料层位于部分绝缘层230表面,且所述第二材料层位于基体上。In this embodiment, the connecting conductive layer 222 is a stacked layer structure; the connecting conductive layer 222 includes one or more stacked stacked layers, and the stacked layer includes a second material layer and is located on the second The first material layer on the surface of the material layer, the second material layer is located on a part of the surface of the insulating layer 230, and the second material layer is located on the base.
所述第一材料层的材料为TiW;所述第二材料层的材料为Pt或Ti。The material of the first material layer is TiW; the material of the second material layer is Pt or Ti.
所述第一材料层的厚度为50nm~200nm;所述第二材料层的厚度为20nm~100nm。在实际工艺中,可以根据实际情况选择第一材料层和第二材料层的厚度。The thickness of the first material layer is 50nm-200nm; the thickness of the second material layer is 20nm-100nm. In an actual process, the thicknesses of the first material layer and the second material layer can be selected according to actual conditions.
在其它实施例中,所述连接导电层为单层结构,相应的,所述连接导电层材料为TiW、Pt或Ti。In other embodiments, the connecting conductive layer has a single-layer structure, and correspondingly, the material of the connecting conductive layer is TiW, Pt or Ti.
所述LED芯片还包括:位于第二半导体层203和连接导电层222之间的反射层221;位于反射层221和第二半导体层203之间的欧姆接触层220,所述欧姆接触层220的电导率大于第二半导体层203的电导率且小于所述反射层221的电导率。The LED chip also includes: a reflective layer 221 located between the second semiconductor layer 203 and the connecting conductive layer 222; an ohmic contact layer 220 located between the reflective layer 221 and the second semiconductor layer 203, the ohmic contact layer 220 The conductivity is greater than that of the second semiconductor layer 203 and smaller than that of the reflective layer 221 .
所述反射层221的材料为Ni、Ag、Al中任意一种或几种组合。The reflective layer 221 is made of any one or a combination of Ni, Ag, and Al.
本实施例中,所述欧姆接触层220的材料为透明导电材料,所述透明导电材料为氧化铟锡、掺氟氧化锡或掺铝氧化锌。In this embodiment, the material of the ohmic contact layer 220 is a transparent conductive material, and the transparent conductive material is indium tin oxide, fluorine-doped tin oxide or aluminum-doped zinc oxide.
所述第一半导体层201的材料为N型GaN;所述第二半导体层203的材料为P型GaN;所述有源层202为量子阱层。The material of the first semiconductor layer 201 is N-type GaN; the material of the second semiconductor layer 203 is P-type GaN; the active layer 202 is a quantum well layer.
所述电极层270的材料为金属,如Cr、Pt、Au、Al、Ti中一种或任意几种的组合。所述电极层270用于连接外部电压源。The material of the electrode layer 270 is metal, such as one or any combination of Cr, Pt, Au, Al, Ti. The electrode layer 270 is used to connect to an external voltage source.
本实施例提供的LED芯片,连接导电层表面222的电极层270通过连接导电层222电学连接第二半导体层203,键合体240表面的电极层270通过键合体240电学连接第一半导体层201,而第一半导体层201通过有源层202和第二半导体层203电学连接。因此LED芯片中的电流依次流经连接导电层222表面的电极层270、连接导电层222、第二半导体层203、有源层202、第一半导体层201、键合体240、键合体240表面的电极层270。由于外部电压源无需通过第二衬底250和键合体240将电压施加在第一半导体层201上,因此LED芯片中的电流无需流经第二衬底250,第一半导体层201无需通过键合体240和第二衬底250进行电学连接。使得对第二衬底250的材料要求不再限于导电材料,利于降低LED芯片板上芯片封装的工艺复杂度。In the LED chip provided in this embodiment, the electrode layer 270 connected to the conductive layer surface 222 is electrically connected to the second semiconductor layer 203 through the connected conductive layer 222, and the electrode layer 270 on the surface of the bonding body 240 is electrically connected to the first semiconductor layer 201 through the bonding body 240. The first semiconductor layer 201 is electrically connected to the second semiconductor layer 203 through the active layer 202 . Therefore, the current in the LED chip flows through the electrode layer 270 connected to the surface of the conductive layer 222, the connected conductive layer 222, the second semiconductor layer 203, the active layer 202, the first semiconductor layer 201, the bonding body 240, and the surface of the bonding body 240. electrode layer 270 . Since the external voltage source does not need to apply voltage to the first semiconductor layer 201 through the second substrate 250 and the bonding body 240, the current in the LED chip does not need to flow through the second substrate 250, and the first semiconductor layer 201 does not need to pass through the bonding body. 240 and the second substrate 250 are electrically connected. The requirements for the material of the second substrate 250 are no longer limited to conductive materials, which is beneficial to reduce the process complexity of LED chip-on-chip packaging.
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention, so the protection scope of the present invention should be based on the scope defined in the claims.
Claims (19)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611037504.6A CN106409997A (en) | 2016-11-23 | 2016-11-23 | LED chip and formation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611037504.6A CN106409997A (en) | 2016-11-23 | 2016-11-23 | LED chip and formation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106409997A true CN106409997A (en) | 2017-02-15 |
Family
ID=58081578
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611037504.6A Pending CN106409997A (en) | 2016-11-23 | 2016-11-23 | LED chip and formation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106409997A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108847438A (en) * | 2018-03-30 | 2018-11-20 | 映瑞光电科技(上海)有限公司 | A kind of LED chip and its manufacturing method |
CN109791964A (en) * | 2018-10-11 | 2019-05-21 | 厦门市三安光电科技有限公司 | A kind of light-emitting diode chip for backlight unit and preparation method thereof |
CN109891610A (en) * | 2018-10-11 | 2019-06-14 | 厦门市三安光电科技有限公司 | A kind of light-emitting diode and preparation method thereof |
CN110021691A (en) * | 2019-04-03 | 2019-07-16 | 厦门市三安光电科技有限公司 | A kind of light emitting semiconductor device |
CN112382711A (en) * | 2020-10-19 | 2021-02-19 | 厦门三安光电有限公司 | Light emitting diode device and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100858322B1 (en) * | 2007-05-30 | 2008-09-11 | (주)웨이브스퀘어 | Method for manufacturing gallium nitride based LED device having vertical structure |
CN102412355A (en) * | 2010-09-17 | 2012-04-11 | Lg伊诺特有限公司 | Light emitting device |
CN104576872A (en) * | 2013-10-12 | 2015-04-29 | 山东浪潮华光光电子股份有限公司 | Semiconductor LED chip and manufacturing method thereof |
CN104733577A (en) * | 2015-03-30 | 2015-06-24 | 映瑞光电科技(上海)有限公司 | LED chip of perpendicular structure and manufacturing method thereof |
CN105702821A (en) * | 2016-03-29 | 2016-06-22 | 苏州晶湛半导体有限公司 | Semiconductor light-emitting device and manufacturing method thereof |
-
2016
- 2016-11-23 CN CN201611037504.6A patent/CN106409997A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100858322B1 (en) * | 2007-05-30 | 2008-09-11 | (주)웨이브스퀘어 | Method for manufacturing gallium nitride based LED device having vertical structure |
CN102412355A (en) * | 2010-09-17 | 2012-04-11 | Lg伊诺特有限公司 | Light emitting device |
CN104576872A (en) * | 2013-10-12 | 2015-04-29 | 山东浪潮华光光电子股份有限公司 | Semiconductor LED chip and manufacturing method thereof |
CN104733577A (en) * | 2015-03-30 | 2015-06-24 | 映瑞光电科技(上海)有限公司 | LED chip of perpendicular structure and manufacturing method thereof |
CN105702821A (en) * | 2016-03-29 | 2016-06-22 | 苏州晶湛半导体有限公司 | Semiconductor light-emitting device and manufacturing method thereof |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108847438A (en) * | 2018-03-30 | 2018-11-20 | 映瑞光电科技(上海)有限公司 | A kind of LED chip and its manufacturing method |
JP2021535584A (en) * | 2018-10-11 | 2021-12-16 | 廈門市三安光電科技有限公司Xiamen San’An Optoelectronics Technology Co., Ltd. | Light emitting diode device and its manufacturing method |
CN109791964A (en) * | 2018-10-11 | 2019-05-21 | 厦门市三安光电科技有限公司 | A kind of light-emitting diode chip for backlight unit and preparation method thereof |
CN109891610A (en) * | 2018-10-11 | 2019-06-14 | 厦门市三安光电科技有限公司 | A kind of light-emitting diode and preparation method thereof |
WO2020073295A1 (en) * | 2018-10-11 | 2020-04-16 | 厦门市三安光电科技有限公司 | Light-emitting diode element and manufacturing method therefor |
US12176459B2 (en) | 2018-10-11 | 2024-12-24 | Quanzhou Sanan Semiconductor Technology Co., Ltd. | Light-emitting diode chip and manufacturing method thereof |
US12119426B2 (en) | 2018-10-11 | 2024-10-15 | Quanzhou San'an Semiconductor Technology Co., Ltd. | Light emitting device and production method thereof |
JP7274511B2 (en) | 2018-10-11 | 2023-05-16 | 廈門市三安光電科技有限公司 | Light emitting diode device and manufacturing method thereof |
CN110021691A (en) * | 2019-04-03 | 2019-07-16 | 厦门市三安光电科技有限公司 | A kind of light emitting semiconductor device |
WO2020199746A1 (en) * | 2019-04-03 | 2020-10-08 | 厦门市三安光电科技有限公司 | Semiconductor light-emitting device |
CN111446343A (en) * | 2019-04-03 | 2020-07-24 | 厦门市三安光电科技有限公司 | Semiconductor light emitting device |
CN110021691B (en) * | 2019-04-03 | 2020-05-01 | 厦门市三安光电科技有限公司 | A semiconductor light-emitting device |
CN112382711A (en) * | 2020-10-19 | 2021-02-19 | 厦门三安光电有限公司 | Light emitting diode device and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9356213B2 (en) | Manufacturing method of a light-emitting device having a patterned substrate | |
CN110088922B (en) | A light-emitting diode chip structure and fabrication method thereof | |
CN108922950B (en) | High-brightness flip LED chip and manufacturing method thereof | |
TWI394290B (en) | Electroluminescent device and method of manufacturing same | |
CN101226972B (en) | Light emitting diode device and manufacturing method thereof | |
CN104103733B (en) | A kind of upside-down mounting LED chip and its manufacturing method | |
CN106409997A (en) | LED chip and formation method thereof | |
CN106981550B (en) | Easy-packaging easy-heat-dissipation inverted high-voltage LED chip | |
CN103066195A (en) | Inverted light emitting diode using graphene as thermal conductive layer | |
JP6133076B2 (en) | Semiconductor light emitting element and light emitting device | |
CN102332521A (en) | Gallium nitride-based light-emitting diode with point-like distributed N electrodes and preparation method thereof | |
WO2019024329A1 (en) | Ultraviolet led epitaxial chip flip structure and manufacturing method thereof | |
CN111106212A (en) | Deep ultraviolet light-emitting diode with vertical structure and preparation method thereof | |
JP2007103689A (en) | Semiconductor light emitting device | |
WO2018059541A1 (en) | Light-emitting diode chip | |
CN100483755C (en) | High power LED flip-chip and its manufacturing method | |
CN104037296A (en) | Light emitting element and manufacturing method thereof | |
CN210897328U (en) | LED chip and light-emitting module | |
CN115064628B (en) | Flip-chip light-emitting diode and light-emitting device | |
WO2020097792A1 (en) | Light-emitting diode | |
CN104993031B (en) | High pressure flip LED chips and its manufacture method | |
CN108336207B (en) | A kind of high reliability LED chip and preparation method thereof | |
CN106169528B (en) | A kind of light emitting diode construction and preparation method thereof | |
CN109728137A (en) | The method and light emitting diode (LED) chip with vertical structure of LED substrate transfer | |
JP2008226866A (en) | Gallium nitride based light-emitting diode element and light-emitting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170215 |