CN106397368A - Fatty alcohol-polyoxyethylene ether glycidyl ether and preparation method thereof - Google Patents
Fatty alcohol-polyoxyethylene ether glycidyl ether and preparation method thereof Download PDFInfo
- Publication number
- CN106397368A CN106397368A CN201610790474.XA CN201610790474A CN106397368A CN 106397368 A CN106397368 A CN 106397368A CN 201610790474 A CN201610790474 A CN 201610790474A CN 106397368 A CN106397368 A CN 106397368A
- Authority
- CN
- China
- Prior art keywords
- preparation
- aeo
- glycidol ether
- product
- fatty alcohol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 31
- 229940051841 polyoxyethylene ether Drugs 0.000 title abstract 5
- 229920000056 polyoxyethylene ether Polymers 0.000 title abstract 5
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 title abstract 3
- 238000006243 chemical reaction Methods 0.000 claims abstract description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000003513 alkali Substances 0.000 claims abstract description 17
- LRWZZZWJMFNZIK-UHFFFAOYSA-N 2-chloro-3-methyloxirane Chemical compound CC1OC1Cl LRWZZZWJMFNZIK-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000003112 inhibitor Substances 0.000 claims abstract description 11
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 11
- 230000018044 dehydration Effects 0.000 claims abstract description 4
- 238000006297 dehydration reaction Methods 0.000 claims abstract description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 64
- 239000000047 product Substances 0.000 claims description 54
- 238000000034 method Methods 0.000 claims description 37
- 229920000570 polyether Polymers 0.000 claims description 31
- CTKINSOISVBQLD-UHFFFAOYSA-N Glycidol Chemical compound OCC1CO1 CTKINSOISVBQLD-UHFFFAOYSA-N 0.000 claims description 28
- 239000003463 adsorbent Substances 0.000 claims description 23
- 239000000391 magnesium silicate Substances 0.000 claims description 19
- 229910052919 magnesium silicate Inorganic materials 0.000 claims description 19
- 235000019792 magnesium silicate Nutrition 0.000 claims description 19
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 18
- 239000012043 crude product Substances 0.000 claims description 18
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 12
- 239000002253 acid Substances 0.000 claims description 11
- 239000003054 catalyst Substances 0.000 claims description 11
- XWGJFPHUCFXLBL-UHFFFAOYSA-M rongalite Chemical compound [Na+].OCS([O-])=O XWGJFPHUCFXLBL-UHFFFAOYSA-M 0.000 claims description 10
- 238000003756 stirring Methods 0.000 claims description 10
- 238000005292 vacuum distillation Methods 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 9
- JRMUNVKIHCOMHV-UHFFFAOYSA-M tetrabutylammonium bromide Chemical compound [Br-].CCCC[N+](CCCC)(CCCC)CCCC JRMUNVKIHCOMHV-UHFFFAOYSA-M 0.000 claims description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 6
- 239000000843 powder Substances 0.000 claims description 6
- 238000007670 refining Methods 0.000 claims description 6
- 238000010521 absorption reaction Methods 0.000 claims description 5
- 150000002191 fatty alcohols Chemical class 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 5
- 150000003242 quaternary ammonium salts Chemical class 0.000 claims description 5
- 238000012216 screening Methods 0.000 claims description 5
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 claims description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 4
- LQNUZADURLCDLV-UHFFFAOYSA-N nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1 LQNUZADURLCDLV-UHFFFAOYSA-N 0.000 claims description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 claims description 4
- 238000000746 purification Methods 0.000 claims description 4
- 238000007363 ring formation reaction Methods 0.000 claims description 4
- NHGXDBSUJJNIRV-UHFFFAOYSA-M tetrabutylammonium chloride Chemical compound [Cl-].CCCC[N+](CCCC)(CCCC)CCCC NHGXDBSUJJNIRV-UHFFFAOYSA-M 0.000 claims description 4
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium chloride Substances Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 claims description 3
- 238000010612 desalination reaction Methods 0.000 claims description 3
- 239000004033 plastic Substances 0.000 claims description 3
- 229920003023 plastic Polymers 0.000 claims description 3
- 229910000104 sodium hydride Inorganic materials 0.000 claims description 3
- 229940005561 1,4-benzoquinone Drugs 0.000 claims description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 2
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 claims description 2
- 230000001476 alcoholic effect Effects 0.000 claims description 2
- 239000007864 aqueous solution Substances 0.000 claims description 2
- 239000012298 atmosphere Substances 0.000 claims description 2
- AJSHDAOMUKXVDC-UHFFFAOYSA-N butan-1-amine;sulfuric acid Chemical compound CCCC[NH3+].OS([O-])(=O)=O AJSHDAOMUKXVDC-UHFFFAOYSA-N 0.000 claims description 2
- SAJLIOLJORWJIO-UHFFFAOYSA-N hydroxymethanesulfinic acid;sodium Chemical compound [Na].OCS(O)=O SAJLIOLJORWJIO-UHFFFAOYSA-N 0.000 claims description 2
- 238000009413 insulation Methods 0.000 claims description 2
- ZJTLZYDQJHKRMQ-UHFFFAOYSA-N menadiol Chemical compound C1=CC=CC2=C(O)C(C)=CC(O)=C21 ZJTLZYDQJHKRMQ-UHFFFAOYSA-N 0.000 claims description 2
- NWVVVBRKAWDGAB-UHFFFAOYSA-N p-methoxyphenol Chemical compound COC1=CC=C(O)C=C1 NWVVVBRKAWDGAB-UHFFFAOYSA-N 0.000 claims description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 claims description 2
- 239000000376 reactant Substances 0.000 claims description 2
- 230000035484 reaction time Effects 0.000 claims description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 2
- 239000012312 sodium hydride Substances 0.000 claims description 2
- 239000000243 solution Substances 0.000 claims description 2
- YMBCJWGVCUEGHA-UHFFFAOYSA-M tetraethylammonium chloride Chemical compound [Cl-].CC[N+](CC)(CC)CC YMBCJWGVCUEGHA-UHFFFAOYSA-M 0.000 claims description 2
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 claims 2
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical group [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 claims 2
- XRCRJFOGPCJKPF-UHFFFAOYSA-N 2-butylbenzene-1,4-diol Chemical compound CCCCC1=CC(O)=CC=C1O XRCRJFOGPCJKPF-UHFFFAOYSA-N 0.000 claims 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims 1
- XKBGEWXEAPTVCK-UHFFFAOYSA-M methyltrioctylammonium chloride Chemical compound [Cl-].CCCCCCCC[N+](C)(CCCCCCCC)CCCCCCCC XKBGEWXEAPTVCK-UHFFFAOYSA-M 0.000 claims 1
- 239000008247 solid mixture Substances 0.000 claims 1
- RKHXQBLJXBGEKF-UHFFFAOYSA-M tetrabutylphosphanium;bromide Chemical compound [Br-].CCCC[P+](CCCC)(CCCC)CCCC RKHXQBLJXBGEKF-UHFFFAOYSA-M 0.000 claims 1
- 239000004593 Epoxy Substances 0.000 abstract description 21
- 239000007787 solid Substances 0.000 abstract description 11
- 238000001914 filtration Methods 0.000 abstract description 9
- 239000003444 phase transfer catalyst Substances 0.000 abstract description 6
- 239000002994 raw material Substances 0.000 abstract description 6
- 239000007788 liquid Substances 0.000 abstract description 5
- 238000011084 recovery Methods 0.000 abstract description 4
- 238000001179 sorption measurement Methods 0.000 abstract description 3
- 230000003247 decreasing effect Effects 0.000 abstract description 2
- 238000004821 distillation Methods 0.000 abstract description 2
- 239000012847 fine chemical Substances 0.000 abstract description 2
- VJOUUGUSJOHNRQ-UHFFFAOYSA-N OC[Na] Chemical compound OC[Na] VJOUUGUSJOHNRQ-UHFFFAOYSA-N 0.000 abstract 1
- 239000006096 absorbing agent Substances 0.000 abstract 1
- 238000003889 chemical engineering Methods 0.000 abstract 1
- DOUHZFSGSXMPIE-UHFFFAOYSA-N hydroxidooxidosulfur(.) Chemical compound [O]SO DOUHZFSGSXMPIE-UHFFFAOYSA-N 0.000 abstract 1
- ZADYMNAVLSWLEQ-UHFFFAOYSA-N magnesium;oxygen(2-);silicon(4+) Chemical class [O-2].[O-2].[O-2].[Mg+2].[Si+4] ZADYMNAVLSWLEQ-UHFFFAOYSA-N 0.000 description 32
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 14
- 239000002932 luster Substances 0.000 description 13
- 238000012805 post-processing Methods 0.000 description 13
- 230000008569 process Effects 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 6
- CLBRCZAHAHECKY-UHFFFAOYSA-N [Co].[Pt] Chemical compound [Co].[Pt] CLBRCZAHAHECKY-UHFFFAOYSA-N 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 150000002924 oxiranes Chemical class 0.000 description 5
- -1 polyoxy Polymers 0.000 description 5
- 230000001681 protective effect Effects 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000004737 colorimetric analysis Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 230000008929 regeneration Effects 0.000 description 4
- 238000011069 regeneration method Methods 0.000 description 4
- 238000007142 ring opening reaction Methods 0.000 description 4
- 238000007086 side reaction Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 239000004094 surface-active agent Substances 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical group C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 2
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical group 0.000 description 2
- XXROGKLTLUQVRX-UHFFFAOYSA-N allyl alcohol Chemical compound OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 description 2
- 238000004061 bleaching Methods 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 2
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 2
- 239000013067 intermediate product Substances 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- 230000010148 water-pollination Effects 0.000 description 2
- 235000016068 Berberis vulgaris Nutrition 0.000 description 1
- 241000335053 Beta vulgaris Species 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- BAVYZALUXZFZLV-UHFFFAOYSA-O Methylammonium ion Chemical compound [NH3+]C BAVYZALUXZFZLV-UHFFFAOYSA-O 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229910008046 SnC14 Inorganic materials 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- BQODPTQLXVVEJG-UHFFFAOYSA-N [O].C=C Chemical group [O].C=C BQODPTQLXVVEJG-UHFFFAOYSA-N 0.000 description 1
- 238000012644 addition polymerization Methods 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 238000006392 deoxygenation reaction Methods 0.000 description 1
- 229960001484 edetic acid Drugs 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- SBGKURINHGJRFN-UHFFFAOYSA-N hydroxymethanesulfinic acid Chemical compound OCS(O)=O SBGKURINHGJRFN-UHFFFAOYSA-N 0.000 description 1
- 230000015784 hyperosmotic salinity response Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- MRDKYAYDMCRFIT-UHFFFAOYSA-N oxalic acid;phosphoric acid Chemical compound OP(O)(O)=O.OC(=O)C(O)=O MRDKYAYDMCRFIT-UHFFFAOYSA-N 0.000 description 1
- 125000006353 oxyethylene group Chemical group 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- 239000004597 plastic additive Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000012264 purified product Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000010092 rubber production Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- 239000002594 sorbent Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- BGNXCDMCOKJUMV-UHFFFAOYSA-N t-BHQ Natural products CC(C)(C)C1=CC(O)=CC=C1O BGNXCDMCOKJUMV-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D303/00—Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
- C07D303/02—Compounds containing oxirane rings
- C07D303/12—Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D301/00—Preparation of oxiranes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/30—Post-polymerisation treatment, e.g. recovery, purification, drying
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/32—Polymers modified by chemical after-treatment
- C08G65/329—Polymers modified by chemical after-treatment with organic compounds
- C08G65/337—Polymers modified by chemical after-treatment with organic compounds containing other elements
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- General Chemical & Material Sciences (AREA)
- Epoxy Compounds (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
The invention relates to fatty alcohol-polyoxyethylene ether glycidyl ether and a preparation method thereof and belongs to the technical field of fine chemical engineering. With fatty alcohol-polyoxyethylene ether and epoxy chloropropane being raw materials, the fatty alcohol-polyoxyethylene ether, a phase-transfer catalyst, alkali and a polymerization inhibitor are evenly mixed in a reaction kettle, then ECH is added, reaction is carried out for some time at certain temperature, solids are removed through filtering, liquid is subjected to reduced pressure distillation and recovery to be reactive ECH, the temperature is decreased to room temperature after completion, an absorbing agent, hydroxymethyl sodium sulfinate and water are added, adsorption and decoloring are carried out for some time at the temperature, heat-preserved dehydration is carried out for 1 h under the conditions of 110 DEG C and 0.098 Mpa, and then the finished product is obtained through filtering at the temperature of 80 DEG C. The preparation method is applied to preparation of the fatty alcohol-polyoxyethylene ether glycidyl ether, and has the advantages that the color of the product is light, and an epoxy value is guaranteed.
Description
Technical field
The present invention relates to a kind of AEO glycidol ether and preparation method thereof, belong to fine chemical technology
Field.
Background technology
AEO glycidol ether, with fatty alcohol as initiator, epoxy addition obtains fatty alcohol polyoxy second
Alkene ether, then obtains AEO glycidol ether product by epoxy radicals end-blocking, and its molecular structure feature is:Point
It is APEO chain in the middle part of subchain, it has good flexibility and hydrophily, one end is alkyl carbon chain, has lipophile, separately
One end is epoxy radicals, has the good active group of reactivity, and structural formula is as follows:
Non-ionic oxyethylene chain is introduced surfactant, the solubility property of surfactant can be improved, acceptable
Increase resistance to ion stability, the performance that can make surfactant by oxygen ethylene unit number in Molecular regulator is more preferably.Fatty alcohol
First pass through epoxy addition and obtain AEO, then obtain AEO glycidol with epoxy radicals end-blocking
Ether, this product reactivity worth and hydrophily are all improved.AEO glycidol ether by with dimethylamine, chlorine
The reaction such as sodium acetate can obtain beet alkali ampholytic surface active agent;AEO glycidol ether and sodium sulfite
Carry out sulfonating reaction and can obtain fatty alcohol-ether sodium sulfate anion surfactant, it has good salt tolerance, excellent because having
Good antidecomposition ability and dispersiveness and be widely used;Formed for paint and coatings industry by addition, hydrolysis
Various reagents;It also can be used as additive, solvent, catalyst in epoxy resin, chemical fibre, plastics and rubber production simultaneously
And chain-transferring agent;Additionally, it still synthesizes a lot of industrial products, such as antistatic additive, emulsifying agent, plastic additive, cosmetics etc.
Important intermediate.
At present, producing alkyl capped polyether method both at home and abroad mainly divides one-step method and two-step method, ring-opening reaction and closed loop anti-
Referred to as one-step method should be carried out simultaneously, typically make polyethers and ECH in the presence of a phase transfer catalyst using alkali, through single step reaction
Obtain product, alkali is ring opening catalyst and closed loop removing hcl reaction reagent;Ring-opening reaction and ring-closure reaction substep enter
Row is referred to as two-step method, in acidic catalyst (H2SO4、HCl、HClO4、BF3·O(CH2CH3)2、SnC14Deng) catalysis under, polyethers
First be etherified open loop with ECH and obtain chloropharin ether intermediate product, then carried out with alkali remove hydrogen chloride closed loop to final product.One step
Method is few with respect to two-step process, total yield of products is high, process is simple;The multiple ECH of the easy addition of two-step method ring-opening reaction, forms neat
Polymers, intermediate product converts thoroughly in ring-closure reaction, causes final products epoxide number relatively low, water or solvent in ring-closure reaction
Participation will increase post-processing difficulty.
One-step method principle is as follows:
Two-step method principle is as follows:
Wherein:R is aliphatic alcohol polyethenoxy base;
M is alkali metal.
Under normal pressure aerobic conditions, polyethers (ROH) is exposed in strong alkali environment and is susceptible to multiple side reactions, generates some aldehyde
Ketone and have color class material, ECH autohemagglutination also can produce colour substance, and this will affect quality, the color of itself and downstream product
Pool and application performance.
The epoxy radicals end-blocking product boiling point of small molecule is relatively low, can obtain the preferable product of purity by vacuum distillation, such as specially
The process for purification that sharp CN100999507 announces.
During document JAOCS 78,423 429 (April 2001) synthesizing epoxy base end-blocking octanol, every 132g alcohol needs to use
250ml n-hexane washing extraction organic phase carrys out purified product, and solvent also needs to remove by vacuum distillation.
It can be seen that above-mentioned process for purification not only needs using a large amount of organic solvents, and product epoxy radicals may also be deposited
Destroy certain, and the usual molecular weight of polyethers product is big, boiling point high it is impossible to obtain the high color of purity simply by vacuum distillation
The good end-blocking product in pool.Patent CN104387576A discloses can be high by the one-step method acquisition low ending ratio of color and luster using NaH
The method of epoxy radicals end-blocking allyl alcohol polyether, but H can be produced using NaH2There is explosion danger, be not suitable for industrial production.
For general polyethers post processing, when using adsorbent adsorption bleaching, it is required to add the pH value to polyethers for the acid
It is adjusted so as to carry out refinement treatment under mildly acidic conditions, but to the sour more difficult control of accurate addition, can be to reality
Bring the inconvenience of operation in production, and to the polyethers with epoxy radicals end-blocking, acid also can make active epoxy bond that open loop occurs,
Thus affecting the ending ratio quality of product.
It is thus desirable to exploitation can obtain low color, epoxy bond be had the post processing process for refining of certain protection to obtain Gao Pin
Matter product, to meet the market demand with this.
Shortcoming in order to overcome above-mentioned prior art develop a kind of preparation of AEO glycidol ether and
Its post-processing approach, compares compared with technique, and the present invention prepares AEO glycidol using one-step method
Ether crude product, by adding polymerization inhibitor in end capping reaction, on the one hand can reduce and lead to product color by epoxychloropropane autohemagglutination
Too deep problem, on the other hand it is also possible to reduce being polymerized between autohemagglutination and product and the epoxychloropropane between product epoxy radicals
The yield being led to reduces and the high problem of product viscosity.By crude product after solids removed by filtration, using modified magnesium silicate and hydroxyl
Methyl sulfinic acid sodium mixture makes technological operation for adsorbent and decolorising agent it is not necessary to outer acid adding is adjusted to polyethers crude product pH value
Simply, and epoxy bond can also be played a protective role, by decolour post processing obtain color and luster be less than 60 (platinum-cobalt method), produce
The AEO glycidol ether that product ending ratio is more than 90%.
Based on this, make the application.
Content of the invention
In the presence of overcoming existing AEO glycidol ether preparation and its post processing subtractive process
Drawbacks described above, the present invention provide a kind of preparation method of AEO glycidol ether, the method be conducive to drop
Low product color, plays certain protective role to product epoxide number, and preparation and its aftertreatment technology are simple.
For achieving the above object, the technical scheme that the present invention takes is as follows:
A kind of preparation method of AEO glycidol ether, with AEO and epoxy chloropropionate
Alkane (ECH) is raw material, and AEO, phase transfer catalyst, alkali and polymerization inhibitor are mixed in a kettle., then
Slowly add ECH, at a certain temperature reaction a period of time, solids removed by filtration, will be unreacted for liquid pressure-reducing Distillation recovery
ECH, reduces the temperature to room temperature after terminating, add adsorbent, sodium hydroxymethanesulfinate, water, at a temperature of one section of adsorption bleaching when
Between, then insulation dehydration 1h under 110 DEG C, -0.098Mpa, is then filtrated to get finished product at 80 DEG C.
Mainly comprise the following steps that:
(1) to addition polymerization ether, phase transfer catalyst, alkali, polymerization inhibitor in reactor, stir, be then slowly added into ECH,
Reaction a period of time, obtain end capped polyether crude product;
(2) crude product in step (1) is filtered after desalination, vacuum distillation reclaims epoxychloropropane, after being down to room temperature, adds
Adsorbent, sodium hydroxymethanesulfinate, water, are refining to obtain qualified finished product.
Further, as preferred:
In step (1), entering the polyethers in reactor and the mol ratio of ECH is 1:The mol ratio of 1-10, polyethers and alkali is
1:1-4, reaction time 1-10h, reaction temperature 30-60 DEG C.It is furthermore preferred that described alkali selects NaOH, potassium hydroxide, first
The mixture of one or more of sodium alkoxide, sodium carbonate, potassium carbonate or sodium hydride etc. material, or a kind of this material or several material
Mixture aqueous solution or alcoholic solution, most preferred alkali selects solid sodium hydroxide.
In step (1), polymerization inhibitor addition is the 0.1-0.5% of polyether quality, and para hydroxybenzene first selected by described polymerization inhibitor
The mixture of one or more of ether, 2- TBHQ, methylnaphthohydroquinone, 1,4-benzoquinone, nitrobenzene etc. material, preferably
It is MEHQ.
In step (1), from quaternary ammonium salt catalyst as the catalyst reacting, the consumption of quaternary ammonium salt catalyst is to close
The 0.3-3% of the reactant quality of ring reaction.It is furthermore preferred that described quaternary ammonium salt catalyst select tetra-n-butyl ammonium bromide,
Etamon chloride, benzyltriethylammoinium chloride, TBAB, tetrabutylammonium chloride, 4-butyl ammonium hydrogen sulfate or three are pungent
The mixture of one or more of methyl ammonium material, most preferably TBAB.
In step (2), the addition of adsorbent is the 0.5-5% of polyethers crude product quality, and sodium hydroxymethanesulfinate is polyethers
The 0.08-0.5% of crude product quality, water is the 1-10% of polyethers thick quality product;
In step (2), purification condition is 65-90 DEG C of thermostatic absorption 30-120min, is incubated under 110 DEG C, -0.098Mpa
Dehydration 1h, is then filtrated to get finished product at 80 DEG C.
In step (2), described adsorbent is modified magnesium silicate adsorbent.
Described is obtained by the following method through modified magnesium silicate adsorbent:
By AlCl3Powder, magnesium silicate, acid and suitable quantity of water mix modulation and squeeze into has plastic pug, 80-90
Hot submersion 12-24h in DEG C oil bath, is then squeezed into bar, 90-110 DEG C of drying, 300-600 DEG C of air atmosphere by extruder
Lower roasting 1-3h, screening is obtained 100-200 mesh adsorbent.
Described Al2O3Powder quality is the 1.0-5.0% of magnesium silicate, and acid is sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid oxalic acid or acetic acid
One or more of material mixed acid in any proportion, most preferably hydrochloric acid, the addition of acid is magnesium silicate quality
1-10%.
, with fatty polyoxyethylene esters and epoxychloropropane as raw material, using one-step synthesis method, synthesis technique is simple for the present invention,
Side reaction is few, by using modified magnesium silicate and sodium hydroxymethanesulfinate collectively as post processing treating adsorbent, not only makes
Product color is decreased obviously, and product epoxy bond is played a protective role.Present invention application AEO is shunk
The preparation of glycerine and its post processing, synthesis technique is practical simple, convenient post-treatment, and adsorbent magnesium silicate can be reused, energy
While obtaining higher ending ratio (> 90%) simultaneously, give product high reaction activity compared with low color (< 60), also ensure that into
The condition index of product.
The operation principle of the present invention and having the beneficial effect that:
1) present invention adopts one-step method to obtain AEO glycidol ether, and reaction condition is gentle, controllability
High, side reaction is few, and under aerobic conditions, AEO can occur peroxidating and from oxygen with oxygen under conditions of alkali
The side reactions such as change, generate some aldoketoneses and have color class material, and this will affect product sole mass, color and luster and downstream product should
Use performance.It is not necessary to deoxygenation or other specially treateds are done to raw material and course of reaction in the present invention, preparation work will be greatly simplified
Skill.
2) using modified magnesium silicate and sodium hydroxymethanesulfinate as post processing treating adsorbent and decolorising agent, can obtain
The high-quality product that color and luster is less than 60 (platinum-cobalt colorimetric methods), ending ratio is more than 90%, product quality can foreign enterprise's product refer to shoulder to shoulder
Mark.
3) use the magnesium silicate processing to polyethers crude product refining together with sodium hydroxymethanesulfinate, not only can effectively drop
Low product color, but also certain protective role is played to the epoxy radicals of product.
4) reaction condition of the present invention is gentle, controlled, and sorbent preparation method is simply it is not necessary to outer acid adding is entered to polyethers crude product
Row neutralization, it is to avoid the complexity of operation and uncertainty.
5) magnesium silicate by reclaiming, can regenerate, and reuse, not only increased economic benefits, and decrease solid
The generation of waste, serves Environmental Role.
6) in reacting, excessive epoxychloropropane can be reclaimed by vacuum distillation, can be continuing with by processing.
7) reaction does not need to add water or other organic solvent, meets green chemical industry requirement, decreases solvent recovery
Energy consumption.
8) react for closed-loop operation, it is to avoid volatile epoxychloropropane damages to workman, reduces production process
Environmental pollution, greatly improve production operation environment.
Specific embodiment
A kind of preparation method of the present embodiment AEO glycidol ether, with AEO and
Epoxychloropropane is raw material, prepares end capped polyether crude product through one-step method, using modified magnesium silicate and methylol sulfinic acid
, as the refined adsorbent of post processing and decolorising agent, its synthesis basic line is as follows for sodium:
Mainly comprise the following steps that:
(1) prepare:Add AEO, phase transfer catalyst, alkali, polymerization inhibitor in reactor, stir,
It is then slowly added into ECH, reaction a period of time, obtain end capped polyether crude product;
(2) refine:Crude product in step (1) is filtered after desalination, vacuum distillation reclaims epoxychloropropane, after being down to room temperature,
Add adsorbent, sodium hydroxymethanesulfinate, water, be refining to obtain qualified finished product.
Wherein, AEO has below general formula:
AEO glycidol ether has below general formula:
Used in the present invention, raw material all can be obtained using the conventional method in this area, it would however also be possible to employ commercially available prod.
The reaction principle of the present invention is as follows:
Wherein:R is aliphatic alcohol polyethenoxy base;
M is alkali metal;
PTC is phase transfer catalyst.
The present invention adopts GB1664-1981 (platinum-cobalt colorimetric method) methods described to measure product color, using GBT1677-
1981 methods describeds measure product epoxide number, and the ending ratio in embodiment and yield are defined as follows:
Wherein, VO1:Product epoxide number after AEO end-blocking;VO0:AEO 100% envelope
Theoretical epoxy value during end;Epoxide number is the quality of the oxygen in 100g sample epoxide epoxy group group.
Below by way of specific embodiment, the invention will be further described, but following examples should not be construed as to this
The restriction that bright scope of the claims is made.Wherein embodiment 1-1,1-2,1-3 are to produce modified magnesium silicate, embodiment
2-1,2-2,2-3,2-4 be prepare epoxy radicals end-blocking AEO crude product, and using embodiment 1-1,1-2,
It is refined that magnesium silicate system of producing in 1-3 carries out post processing to polyethers crude product.
Embodiment 1-1,1-2 and the preparation that 1-3 is modified magnesium silicate.
Embodiment 1-1
By 1.0gAlCl3, 100g magnesium silicate powders, plus 5.6g concentrated hydrochloric acid and appropriate water squeezes mixing and is bonded to semi-moist shape
It is most suitable, hot submersion 24h in 80-90 DEG C of oil bath pan that bar can be smoothly squeezed into, and then extrudes in single screw extrusion machine
Strip, then dries at 110 DEG C, roasting 2h in 450 DEG C of air atmospheres, and screening obtains the silicic acid that 100-200 mesh was processed
Magnesium adsorbent.
Embodiment 1-2
By 3.0gAlCl3, 100g magnesium silicate powders, plus 16g concentrated hydrochloric acid and appropriate water squeezes mixing and is bonded to semi-moist shape
It is most suitable, hot submersion 24h in 80-90 DEG C of oil bath pan that bar can be smoothly squeezed into, and then extrudes in single screw extrusion machine
Strip, then dries at 110 DEG C, roasting 2h in 450 DEG C of air atmospheres, and screening obtains the silicic acid that 100-200 mesh was processed
Magnesium adsorbent.
Embodiment 1-3
By 5.0gAlCl3, 100g magnesium silicate powders, plus 27.8g concentrated hydrochloric acid and appropriate water squeeze mixing be bonded to semi-moist
It is most suitable, hot submersion 24h in 80-90 DEG C of oil bath pan that shape can smoothly be squeezed into bar, then squeezes in single screw extrusion machine
It is pressed into strip, then dries at 110 DEG C, roasting 2h in 450 DEG C of air atmospheres, screening obtains the silicon that 100-200 mesh was processed
Sour magnesium adsorbent.
Embodiment 2-1,2-2,2-3,2-4 are the preparation of AEO and are post-processed using modified magnesium silicate
Refined.
Embodiment 2-1
By 2mol 1028g butanol APEO (n=3, m=10), 3mol NaOH, 10g TBAB, 1g resistance
Poly- agent, slowly 3mol ECH is added in 2.5L reactor, controls temperature to be less than 40 DEG C, then it is anti-to be warmed up to 40 DEG C of stirrings
Answer 5h, solids removed by filtration, vacuum distillation reclaims excessive ECH, is cooled to room temperature.
Plus the modified magnesium silicate of 10g embodiment 2,2g sodium hydroxymethanesulfinate, 50g water, in above-mentioned polyethers, stir,
Be warmed up to 75 DEG C absorption 90min, then in -0.098MPa vacuum condition 110 DEG C dehydrate 1h, be cooled to 80 DEG C and be filtered to remove
Solid, obtains light Huang transparency liquid, color and luster 38, ending ratio 96%.
Embodiment 2-2
By 2mol 954g laruyl alcohol alcohol APEO (n=12, m=7), 3mol NaOH, 10g TBAB,
1g polymerization inhibitor, slowly 3mol ECH is added in 2.5L reactor, controls temperature to be less than 40 DEG C, then is warmed up to 40 DEG C and stirs
Mix reaction 5h, solids removed by filtration, vacuum distillation reclaims excessive ECH, is cooled to room temperature.
Plus the modified magnesium silicate of 10g embodiment 1-2,2g sodium hydroxymethanesulfinate, 50g water are in above-mentioned polyethers, stirring is all
Even, be warmed up to 75 DEG C absorption 90min, then in -0.098MPa vacuum condition 110 DEG C dehydrate 1h, be cooled to 80 DEG C of filtrations
Remove solid, obtain light Huang transparency liquid, color and luster 36, ending ratio 93%.
Embodiment 2-3
Method is the modified magnesium silicate using the preparation of embodiment 1-1 fully according to the difference of embodiment 2-2, and products obtained therefrom seals
End rate 96%, color and luster 46.
Embodiment 2-4
Method is the modified magnesium silicate using the preparation of embodiment 1-3, products obtained therefrom fully according to embodiment 2-2, difference
Ending ratio 94%, color and luster 35.
By embodiment 2-2,2-3,2-4 it can be seen that different quality AlCl3With the magnesium silicate of hydrochloric Acid Modification to product matter
Amount has certain impact, but all can reach ending ratio > 90%, color and luster < 60.
Embodiment 3-1 is magnesium silicate recovery and reusing and recycling.
Embodiment 3-1
Embodiment 2-2 post processing filter residue is added water stirring, is then filtrated to get magnesium silicate, then in 110 DEG C of drying, in
Roasting 2h in 450 DEG C of air atmospheres, is recycled regeneration magnesium silicate.
Fully according to embodiment 2-2, difference is using reclaiming magnesium silicate method, products obtained therefrom ending ratio 94%,
Color and luster 42.
Above-mentioned magnesium silicate is carried out regeneration process again, and apply and post-process refined in, a regeneration time can be obtained
Number and the tables of data of its performance.
The end product quality table of comparisons under table 1 different technology conditions
Regeneration times | Ending ratio/% | Color and luster (platinum-cobalt colorimetric method) |
1 | 94 | 42 |
2 | 94 | 45 |
3 | 94 | 53 |
Modified magnesium silicate be can be seen that after repeating to regenerate 3 times by data in table, product color still < 60, ending ratio
> 90%.
Comparative example 1
By 2mol 954g laruyl alcohol alcohol APEO (n=12, m=7), 3mol NaOH, 10g TBAB,
Slowly 3mol ECH is added in 2.5L reactor, controls temperature to be less than 40 DEG C, then be warmed up to 40 DEG C of stirring reactions 5h,
Solids removed by filtration, vacuum distillation reclaims excessive ECH, is cooled to room temperature.
Phosphorate acid in above-mentioned polyethers, adjust pH value to faintly acid, then plus the commercially available magnesium silicate of 10g, 2g activated carbon, 50g water,
Stir, be warmed up to 75 DEG C absorption 90min, then in -0.098MPa vacuum condition 110 DEG C dehydrate 1h, be cooled to 80
DEG C solids removed by filtration, obtains brown yellow transparent liquid, color and luster 500, ending ratio 87%.
By embodiment 2-2 and comparative example 1 it can be seen that preparing according to document mode, and using after conventional polyether
Process process for refining, product color is very deep, and ending ratio is also little, illustrates that the present invention not only can effectively reduce product color
Pool moreover it is possible to play a protective role to epoxy bond, improve product quality.
According to above example and comparative example, a comparison form can be obtained, as shown in table 2.
The end product quality table of comparisons under table 2 different technology conditions
Ending ratio/% | Color and luster (platinum-cobalt colorimetric method) | |
Embodiment 2-1 | 96 | 38 |
Embodiment 2-2 | 93 | 36 |
Embodiment 2-3 | 96 | 46 |
Embodiment 2-4 | 94 | 35 |
Comparative example 1 | 87 | 500 |
Be can be seen that present invention application AEO glycidol by the various embodiments described above and the table of comparisons
Preparation and its post processing, synthesis technique is practical simple, convenient post-treatment, and adsorbent magnesium silicate can be reused, and can obtain simultaneously
While obtaining higher ending ratio (> 93%), give product high reaction activity compared with low color (< 46), also ensure that the product of finished product
Phase index.
Above content be preferred embodiment with reference to the invention provided technical scheme is made detailed further
Describe in detail bright it is impossible to assert that the invention is embodied as being confined to these explanations above-mentioned, the affiliated technology for the invention
For the those of ordinary skill in field, without departing from the concept of the premise of the invention, some simple deductions can also be made
Or replace, all should be considered as belonging to the protection domain of the invention.
Claims (10)
1. a kind of preparation method of AEO glycidol ether it is characterised in that:Fatty alcohol is added in reactor
APEO, catalyst, alkali, polymerization inhibitor, stir, and add epoxychloropropane, reaction finishes, and obtains end capped polyether thick
Product;End capped polyether crude product is filtered after desalination, vacuum distillation reclaims epoxychloropropane, after being down to room temperature, adds adsorbent, hydroxyl
Methyl sulfinic acid sodium, water, are refining to obtain finished product.
2. as claimed in claim 1 a kind of preparation method of AEO glycidol ether it is characterised in that:Fat
The mol ratio of fat alcohol APEO and epoxychloropropane is 1:The mol ratio of 1-10, AEO and alkali is 1:1-
4, reaction time 1-10h, reaction temperature 30-60 DEG C.
3. as claimed in claim 1 a kind of preparation method of AEO glycidol ether it is characterised in that:Institute
The alkali stated selects the mixing of one or more of NaOH, potassium hydroxide, sodium methoxide, sodium carbonate, potassium carbonate, sodium hydride
Thing, this alkali is solid mixture, the aqueous solution or the alcoholic solution of one or more.
4. as claimed in claim 1 a kind of preparation method of AEO glycidol ether it is characterised in that:Institute
The polymerization inhibitor addition stated is the 0.1-0.5% of AEO quality, and polymerization inhibitor selects MEHQ, uncle 2-
The mixture of one or more of butylhydroquinone, methylnaphthohydroquinone, 1,4-benzoquinone, nitrobenzene material.
5. as claimed in claim 1 a kind of preparation method of AEO glycidol ether it is characterised in that:Institute
Quaternary ammonium salt catalyst selected by the catalyst stated, and consumption is the 0.3-3% of the reactant quality of ring-closure reaction.
6. as claimed in claim 5 a kind of preparation method of AEO glycidol ether it is characterised in that:Institute
The quaternary ammonium salt catalyst stated selects tetra-n-butyl ammonium bromide, etamon chloride, benzyltriethylammoinium chloride, tetrabutyl phosphonium bromide
The mixture of one or more of ammonium, tetrabutylammonium chloride, 4-butyl ammonium hydrogen sulfate or tri-n-octyl methyl ammonium chloride material.
7. as claimed in claim 1 a kind of preparation method of AEO glycidol ether it is characterised in that:Institute
The addition of the adsorbent stated is the 0.5-5% of end capped polyether crude product quality, and sodium hydroxymethanesulfinate is end capped polyether crude product matter
The 0.08-0.5% of amount, water is the 1-10% of end capped polyether crude product quality.
8. as claimed in claim 1 a kind of preparation method of AEO glycidol ether it is characterised in that:Institute
The purification condition stated is 65-90 DEG C of thermostatic absorption 30-120min, and insulation dehydration 1h under 110 DEG C, -0.098Mpa, then 80
DEG C it is filtrated to get finished product.
9. the preparation method of a kind of AEO glycidol ether as described in claim 1 or 7, its feature exists
In described adsorbent is modified magnesium silicate adsorbent, and its preparation method is:By AlCl3Powder, magnesium silicate, acid and water mixing
Homogeneous modulation squeezes into has plastic pug, after hot submersion 12-24h in 80-90 DEG C of oil bath, dries in 90-110 DEG C,
Roasting 1-3h under 300-600 DEG C of air atmosphere again, screening is obtained 100-200 mesh adsorbent.
10. method as claimed in claim 1 preparation AEO glycidol ether it is characterised in that:Fatty alcohol
APEO glycidol ether has below general formula:
Wherein, 3 < n < 22,1<m<20.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610790474.XA CN106397368B (en) | 2016-08-31 | 2016-08-31 | A kind of fatty alcohol polyoxyethylene ether glycidol ether and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610790474.XA CN106397368B (en) | 2016-08-31 | 2016-08-31 | A kind of fatty alcohol polyoxyethylene ether glycidol ether and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106397368A true CN106397368A (en) | 2017-02-15 |
CN106397368B CN106397368B (en) | 2018-11-02 |
Family
ID=58001141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610790474.XA Active CN106397368B (en) | 2016-08-31 | 2016-08-31 | A kind of fatty alcohol polyoxyethylene ether glycidol ether and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106397368B (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107793378A (en) * | 2017-11-27 | 2018-03-13 | 湖北绿色家园材料技术股份有限公司 | A kind of novel method for synthesizing of glycerin triglycidyl ether |
CN108299638A (en) * | 2017-12-29 | 2018-07-20 | 浙江皇马科技股份有限公司 | A kind of synthetic method of allyl alcohol polyethenoxy ether carboxylic acid ethylene oxidic ester |
CN110358073A (en) * | 2018-03-26 | 2019-10-22 | 中国石油化工股份有限公司 | A kind of poly- two glycerin ether of aliphatic alcohol polyethenoxy and preparation method thereof |
CN113637154A (en) * | 2021-10-18 | 2021-11-12 | 常熟耐素生物材料科技有限公司 | Nonionic polyether type high-molecular surfactant and preparation method and application thereof |
CN113956462A (en) * | 2021-10-21 | 2022-01-21 | 万华化学集团股份有限公司 | A kind of preparation method of low aldehyde content polyether polyol |
CN114149578A (en) * | 2021-12-29 | 2022-03-08 | 滨化集团股份有限公司 | Method for removing potassium and sodium ions in polyether polyol |
CN114702371A (en) * | 2022-03-29 | 2022-07-05 | 浙江皇马科技股份有限公司 | Preparation method of etherate of C8-10-alkyl alcohol and oxyethylpropoxy monophenyl ether |
CN114934392A (en) * | 2022-03-23 | 2022-08-23 | 宜兴市事成织物后整理有限公司 | Compound finishing agent for water and oil repellent treatment of pure cotton knitted fabric and preparation method thereof |
CN115850683A (en) * | 2023-02-24 | 2023-03-28 | 山东尚正新材料科技股份有限公司 | Preparation process of refined polyether suitable for textile auxiliary |
CN116082627A (en) * | 2022-12-30 | 2023-05-09 | 江苏奥克化学有限公司 | A kind of epoxy-terminated fatty alcohol polyether, the capping method of fatty alcohol polyether |
CN118812821A (en) * | 2024-09-18 | 2024-10-22 | 化学与精细化工广东省实验室 | A kind of terminal allyl epoxy polyether and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08119955A (en) * | 1994-10-26 | 1996-05-14 | Kyoeisha Chem Co Ltd | Epoxy-based reactive diluent |
CN103483577A (en) * | 2013-08-13 | 2014-01-01 | 浙江绿科安化学有限公司 | Preparation method of glycidyl terminated allyl alcohol polyoxyethylene ether |
-
2016
- 2016-08-31 CN CN201610790474.XA patent/CN106397368B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08119955A (en) * | 1994-10-26 | 1996-05-14 | Kyoeisha Chem Co Ltd | Epoxy-based reactive diluent |
CN103483577A (en) * | 2013-08-13 | 2014-01-01 | 浙江绿科安化学有限公司 | Preparation method of glycidyl terminated allyl alcohol polyoxyethylene ether |
Non-Patent Citations (2)
Title |
---|
张颖等: "聚氧乙烯型阳离子表面活性剂合成与表面性质的研究", 《日用化学工业》 * |
王雷雷等: "脂肪醇聚氧乙烯醚基三阳离子季铵盐的合成及其性能", 《日用化学工业》 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107793378A (en) * | 2017-11-27 | 2018-03-13 | 湖北绿色家园材料技术股份有限公司 | A kind of novel method for synthesizing of glycerin triglycidyl ether |
CN108299638A (en) * | 2017-12-29 | 2018-07-20 | 浙江皇马科技股份有限公司 | A kind of synthetic method of allyl alcohol polyethenoxy ether carboxylic acid ethylene oxidic ester |
CN108299638B (en) * | 2017-12-29 | 2020-04-28 | 浙江皇马科技股份有限公司 | Synthesis method of allyl alcohol polyoxyethylene ether carboxylic glycidyl ester |
CN110358073A (en) * | 2018-03-26 | 2019-10-22 | 中国石油化工股份有限公司 | A kind of poly- two glycerin ether of aliphatic alcohol polyethenoxy and preparation method thereof |
CN113637154A (en) * | 2021-10-18 | 2021-11-12 | 常熟耐素生物材料科技有限公司 | Nonionic polyether type high-molecular surfactant and preparation method and application thereof |
CN113956462B (en) * | 2021-10-21 | 2023-07-14 | 万华化学集团股份有限公司 | Preparation method of polyether polyol with low aldehyde content |
CN113956462A (en) * | 2021-10-21 | 2022-01-21 | 万华化学集团股份有限公司 | A kind of preparation method of low aldehyde content polyether polyol |
CN114149578A (en) * | 2021-12-29 | 2022-03-08 | 滨化集团股份有限公司 | Method for removing potassium and sodium ions in polyether polyol |
CN114934392A (en) * | 2022-03-23 | 2022-08-23 | 宜兴市事成织物后整理有限公司 | Compound finishing agent for water and oil repellent treatment of pure cotton knitted fabric and preparation method thereof |
CN114702371A (en) * | 2022-03-29 | 2022-07-05 | 浙江皇马科技股份有限公司 | Preparation method of etherate of C8-10-alkyl alcohol and oxyethylpropoxy monophenyl ether |
CN114702371B (en) * | 2022-03-29 | 2023-08-08 | 浙江皇马科技股份有限公司 | Preparation method of etherate of C8-10-alkyl alcohol and oxyethyl propoxy monophenyl ether |
CN116082627A (en) * | 2022-12-30 | 2023-05-09 | 江苏奥克化学有限公司 | A kind of epoxy-terminated fatty alcohol polyether, the capping method of fatty alcohol polyether |
CN115850683A (en) * | 2023-02-24 | 2023-03-28 | 山东尚正新材料科技股份有限公司 | Preparation process of refined polyether suitable for textile auxiliary |
CN118812821A (en) * | 2024-09-18 | 2024-10-22 | 化学与精细化工广东省实验室 | A kind of terminal allyl epoxy polyether and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN106397368B (en) | 2018-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106397368A (en) | Fatty alcohol-polyoxyethylene ether glycidyl ether and preparation method thereof | |
CN108067012B (en) | A kind of extractant for extracting and rectifying methanol and dimethyl carbonate azeotrope and its use and treatment method | |
CN105330836B (en) | A kind of synthetic method of epoxy terminated allyl alcohol polyethenoxy ether | |
KR102126236B1 (en) | Method for producing dioctylterephthalate and antifreeze simultaneously by using polyethyleneterephthalate | |
CN101659733A (en) | Synthesis method of light chroma C9 petroleum resin | |
CN103435642B (en) | Production method of trioctyl phosphate | |
CN104557554A (en) | Method for continuously producing dimethyl carbonate and co-producing 1, 2-propylene glycol by virtue of transesterification method | |
CN104592166B (en) | A kind of Supported on Zeolite process for catalytic synthesis of glycidyl allyl ether | |
CN102229523B (en) | Preparation method of 3-chloro-1,2-propanediol | |
CN105452230B (en) | For manufacturing the method for epoxy monomer and epoxides | |
CN103204992B (en) | Method for preparing low-viscosity high-boiling silicone oil from raw material of chlorosilane high boiling residue | |
CN104844455A (en) | Method used for catalyzed synthesis of tert-butyl acrylate | |
CN102875371A (en) | Method for synthesizing cyclohexyl acetate from cyclohexene | |
CN102826961A (en) | Cycling treatment method for waste acid produced in production of hydroquinone | |
CN101434539B (en) | Preparation of benzyl acetate | |
CN104592167A (en) | Method for preparing phenyl glycidyl ether | |
CN106633065A (en) | New production technology for organic silicon high-boiling silicone oil and apparatus therefor | |
CN103524344B (en) | A kind of preparation method of ethoxylation (2) 1,6 hexanediol diacrylate | |
CN102952004A (en) | Technology for separating ethylene glycol monomethyl ether and water by use of continuous azeotropic distillation method | |
CN102627551B (en) | A kind of isomerization method of rosin resin acid promoted by solid superacid | |
CN105439850A (en) | Method for synthesizing triethylene glycol di-2-ethylhexoate | |
CN104529774B (en) | The preparation method of a kind of tributyl citrate | |
CN208776607U (en) | Acetic acid refining and azeotrope regeneration device in polyvinyl alcohol mother liquor recovery unit | |
CN104557790A (en) | Environment-friendly method for separating plant bisphenol glycidyl ether and recovering industrial salt | |
CN115850033B (en) | Synthesis method of guaiacol |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |