CN106375041A - Portable device for extracting characteristic parameters of wireless communication channel - Google Patents
Portable device for extracting characteristic parameters of wireless communication channel Download PDFInfo
- Publication number
- CN106375041A CN106375041A CN201610717096.2A CN201610717096A CN106375041A CN 106375041 A CN106375041 A CN 106375041A CN 201610717096 A CN201610717096 A CN 201610717096A CN 106375041 A CN106375041 A CN 106375041A
- Authority
- CN
- China
- Prior art keywords
- module
- signal
- primary treatment
- communication channel
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004891 communication Methods 0.000 title claims abstract description 109
- 238000012545 processing Methods 0.000 claims abstract description 101
- 230000007613 environmental effect Effects 0.000 claims abstract description 59
- 238000000605 extraction Methods 0.000 claims abstract description 11
- 238000006243 chemical reaction Methods 0.000 claims description 40
- 238000002955 isolation Methods 0.000 claims description 23
- 230000015654 memory Effects 0.000 claims description 20
- 238000001914 filtration Methods 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 10
- 230000009466 transformation Effects 0.000 claims description 9
- 230000003139 buffering effect Effects 0.000 claims description 7
- 230000008447 perception Effects 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 7
- 230000009471 action Effects 0.000 claims description 6
- 230000006870 function Effects 0.000 claims description 6
- 239000005441 aurora Substances 0.000 claims description 5
- 238000012937 correction Methods 0.000 claims description 5
- 230000008878 coupling Effects 0.000 claims description 3
- 238000010168 coupling process Methods 0.000 claims description 3
- 238000005859 coupling reaction Methods 0.000 claims description 3
- 239000013307 optical fiber Substances 0.000 claims description 3
- 238000003860 storage Methods 0.000 claims description 3
- 238000011221 initial treatment Methods 0.000 claims 30
- 230000002457 bidirectional effect Effects 0.000 claims 1
- 238000011282 treatment Methods 0.000 claims 1
- 238000001228 spectrum Methods 0.000 abstract description 5
- 230000002123 temporal effect Effects 0.000 abstract description 4
- 230000010354 integration Effects 0.000 abstract description 3
- 238000011156 evaluation Methods 0.000 abstract description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 230000003542 behavioural effect Effects 0.000 description 4
- 238000012216 screening Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000001149 cognitive effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000013475 authorization Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
技术领域technical field
本发明涉及无线通信技术领域,尤其是一种用于无线通信信道特征参数提取的便携式装置。The invention relates to the technical field of wireless communication, in particular to a portable device for extracting characteristic parameters of wireless communication channels.
背景技术Background technique
近年来“互联网”和“物联网”的广泛应用,刺激无线通信产业以惊人的速度快速发展,以移动通信为载体的可视化应用迅猛增长,使得频带资源愈来愈紧张和宝贵,与此同时,认知无线技术具有使用方式灵活、频谱利用率高以及不通过授权就可以使用频谱的特点受到广泛关注,而认知无线电最显著的能力则为对无线信道和电磁环境的感知。收发装置之间电磁链路所形成的无线信道与所处环境密切相关,不同电磁环境下的无线信道的特征亦不相同。因此,提取无线信道中的差异化的特征,尤其是在特定场景或不同区域内无线信道的差异化特征,并给出科学的数学描述,对认识和把握无线环境时空变化的统计规律,最终保持流畅通讯和避免用户干扰有着重要的意义。In recent years, the wide application of "Internet" and "Internet of Things" has stimulated the rapid development of the wireless communication industry at an astonishing speed, and the rapid growth of visualization applications based on mobile communication has made frequency band resources more and more tense and precious. At the same time, Cognitive wireless technology has attracted widespread attention due to its flexible use, high spectrum utilization, and the ability to use spectrum without authorization. The most notable capability of cognitive radio is the perception of wireless channels and electromagnetic environments. The wireless channel formed by the electromagnetic link between the transceiver devices is closely related to the environment, and the characteristics of the wireless channel in different electromagnetic environments are also different. Therefore, extracting the differentiated features in wireless channels, especially in specific scenarios or in different areas, and giving a scientific mathematical description, will help to understand and grasp the statistical laws of temporal and spatial changes in the wireless environment, and ultimately maintain Smooth communication and avoiding user interference are of great importance.
无线通信信道特征参数被数字接收机接收并提取,这些信号均为非合作信号,其数目、带宽、位置都具有未知性,且时变特性显著;现代通信和电力电子技术的空前发展,无线信道所处的电磁环境日趋复杂。因此,用于信道特征参数提取的前端装置或接收机需具备大带宽、高精度、高灵敏度、大动态范围、多信号并行实时处理能力,从而实现侦测频带内信号的全概率接收和识别。The characteristic parameters of the wireless communication channel are received and extracted by the digital receiver. These signals are all non-cooperative signals, their number, bandwidth, and location are unknown, and their time-varying characteristics are significant; The electromagnetic environment we live in is becoming more and more complex. Therefore, the front-end device or receiver used for channel characteristic parameter extraction needs to have large bandwidth, high precision, high sensitivity, large dynamic range, and multi-signal parallel real-time processing capabilities, so as to achieve full probability reception and identification of signals in the detection frequency band.
FPGA具有高速并行、资源丰富、设计可灵活重构等优点,同时,多核DSP芯片技术的无论是工艺还是运算能力均取得了空前发展,以FPGA和DSP为基础的多级数据处理和识别的系统架构,因其集成度高、信号处理任务分配均衡等优势,在通信、电子、航天等领域得到了广泛的应用。相对于传统以计算机为核心的庞大体系架构以及应用受限的问题,设计和研制具有强大数据处理功能的无线通信信道特征参数提取的便携式装备,根据获取的时空变化统计规律来调整无线通信信道相关参数(比如载波频率、带宽和发射功率等),进而提高频谱利用率,对复杂电磁环境下通信网络的优化生产有着重要意义。FPGA has the advantages of high-speed parallelism, rich resources, and flexible design reconfiguration. At the same time, multi-core DSP chip technology has achieved unprecedented development in terms of technology and computing power. The multi-level data processing and recognition system based on FPGA and DSP Architecture, because of its advantages of high integration and balanced distribution of signal processing tasks, has been widely used in communication, electronics, aerospace and other fields. Compared with the traditional computer-centered huge system architecture and limited application, design and develop portable equipment for extracting wireless communication channel characteristic parameters with powerful data processing functions, and adjust the wireless communication channel correlation according to the obtained statistical laws of temporal and spatial changes. Parameters (such as carrier frequency, bandwidth, and transmission power, etc.), thereby improving spectrum utilization, are of great significance to the optimal production of communication networks in complex electromagnetic environments.
发明内容Contents of the invention
本发明要解决的技术问题是,克服传统以计算机为核心的集成方案体积庞大、应用受限的问题,提供一种以FPGA和DSP为基础的多级信号处理和识别的系统架构,构建成可用于无线通信信道特征参数提取的便携式装置,用于分析无线通信信道中时空变化的统计规律,进而优化通信参数和提升频谱利用率。The technical problem to be solved by the present invention is to overcome the problems of bulky and limited application of traditional computer-based integrated solutions, and provide a multi-level signal processing and identification system architecture based on FPGA and DSP, which can be constructed into a usable It is a portable device for extracting characteristic parameters of wireless communication channels, which is used to analyze the statistical laws of temporal and spatial changes in wireless communication channels, thereby optimizing communication parameters and improving spectrum utilization.
本发明解决其技术问题所采用的技术方案是:The technical solution adopted by the present invention to solve its technical problems is:
用于无线通信信道特征参数提取的便携式装置,包括初级处理模块、次级识别模块、无线信号采集模块和环境传感模块;无线信号采集模块与初级处理模块双向连接,环境传感模块与初级处理模块双向连接,初级处理模块与次级识别模块双向连接;A portable device for extracting characteristic parameters of a wireless communication channel, including a primary processing module, a secondary identification module, a wireless signal acquisition module and an environmental sensing module; the wireless signal acquisition module is bidirectionally connected to the primary processing module, and the environmental sensing module is connected to the primary processing module The modules are bidirectionally connected, and the primary processing module and the secondary identification module are bidirectionally connected;
所述无线信号采集模块,用于完成无线通信信道的空间电磁信号的耦合、下变频和模数转换;并向初级处理模块传送经下变频和模数转换后的数字化空间电磁信号;The wireless signal acquisition module is used to complete the coupling, down-conversion and analog-to-digital conversion of the space electromagnetic signal of the wireless communication channel; and transmit the digitized space electromagnetic signal after down-conversion and analog-to-digital conversion to the primary processing module;
所述环境传感模块,用于完成本发明实施过程中所述便携式装置所在空间区域的环境参量的变换和感知,典型的环境参量包括气压、温度、湿度、海拔以及GPS经度纬度信息;并向初级处理模块U1传送经变换和感知后的数字化环境参量;The environmental sensing module is used to complete the transformation and perception of the environmental parameters of the space area where the portable device is located during the implementation of the present invention. Typical environmental parameters include air pressure, temperature, humidity, altitude, and GPS longitude and latitude information; The primary processing module U1 transmits the converted and sensed digitized environmental parameters;
所述初级处理模块,用于完成无线信号采集模块和环境传感模块所收集数字化信号(即无线信号采集模块传送过来的经下变频和模数转换后的数字化空间电磁信号、由环境传感模块传送过来的经变换和感知后的数字化环境参量)的接收和初级处理,典型的初级处理包括信号滤波、信息筛选、参数标定与修正;同时,初级处理模块对环境传感模块中的环境传感器进行初始化配置;初级处理模块对无线信号采集模块中的模数转换器进行行为逻辑控制;The primary processing module is used to complete the digitized signal collected by the wireless signal acquisition module and the environmental sensing module (that is, the digitized space electromagnetic signal transmitted by the wireless signal acquisition module after down-conversion and analog-to-digital conversion, and the digital signal transmitted by the environmental sensing module The reception and primary processing of the transformed and perceived digital environmental parameters transmitted over, typical primary processing includes signal filtering, information screening, parameter calibration and correction; at the same time, the primary processing module carries out environmental sensor in the environmental sensing module Initialization configuration; the primary processing module performs behavioral logic control on the analog-to-digital converter in the wireless signal acquisition module;
所述次级识别模块,用于接收来自初级处理模块的数据包,并对所述数据包进行参数估计和信息识别;同时将识别的关键特征信息反馈给初级处理模块,进而使得初级处理模块适时地做出诸如调整滤波窗函数或者精细分选信息的动作;识别的典型关键特征信息包括:信号的中心频率、信号强度、噪声水平、调制格式等。The secondary identification module is used to receive the data packet from the primary processing module, and perform parameter estimation and information identification on the data packet; at the same time, it feeds back the identified key feature information to the primary processing module, so that the primary processing module timely Actions such as adjusting the filter window function or finely sorting information can be done in a timely manner; the typical key feature information identified includes: the center frequency of the signal, signal strength, noise level, modulation format, etc.
本发明之用于无线通信信道特征参数提取的便携式装置和外界具有如下连接关系:无线信号采集模块和环境传感模块均分别与无线通信信道连接,次级识别模块和后级理解模块双向连接。The portable device for extracting characteristic parameters of the wireless communication channel of the present invention has the following connection relationship with the outside world: the wireless signal acquisition module and the environment sensing module are respectively connected to the wireless communication channel, and the secondary identification module and the subsequent understanding module are bidirectionally connected.
本发明之用于无线通信信道特征参数提取的便携式装置具有如下信号拓扑关系:无线通信信道的原始环境参量S1输入环境传感模块,经过变换和感知后得到数字化环境参量S3再送入初级处理模块;无线通信信道的原始空间电磁信号S2输入无线信号采集模块,经过下变频和模数转换后得到数字化空间电磁信号S4再送入初级处理模块;初级处理模块对两路数字化后的信号S3和S4进行所述典型初级处理后得到第一处理信号,第一处理信号、S3以及S4被封装成第一数据包S5尔后送入次级识别模块;次级处理模块对数据包S5进行所述参数估计和信息识别得到第二处理信号,第二处理信号、S3以及S4被封装成第二数据包S6尔后送入后级理解模块;反向地,初级处理模块能够对环境传感模块中的环境传感器进行初始化配置,也可对无线信号采集模块中的模数转换器进行行为逻辑控制;为了调整和优化初级处理模块的性能,次级识别模块可将识别的关键特征信息反馈给初级处理模块;为了调整和优化次级处理模块的性能,后级理解模块可将理解的关键特征信息反馈给次级处理模块;从而构成数据处理链路的闭环。The portable device for extracting characteristic parameters of the wireless communication channel of the present invention has the following signal topology relationship: the original environmental parameter S1 of the wireless communication channel is input into the environmental sensing module, and the digitized environmental parameter S3 obtained after transformation and sensing is sent to the primary processing module; The original space electromagnetic signal S2 of the wireless communication channel is input to the wireless signal acquisition module, and the digitized space electromagnetic signal S4 is obtained after down-conversion and analog-to-digital conversion, and then sent to the primary processing module; the primary processing module processes the two digitized signals S3 and S4. After the typical primary processing, the first processed signal is obtained, the first processed signal, S3 and S4 are packaged into the first data packet S5 and then sent to the secondary identification module; the secondary processing module performs the parameter estimation and information on the data packet S5 The second processing signal is identified, and the second processing signal, S3 and S4 are encapsulated into a second data packet S6 and then sent to the subsequent understanding module; conversely, the primary processing module can initialize the environmental sensor in the environmental sensing module configuration, and can also perform behavioral logic control on the analog-to-digital converter in the wireless signal acquisition module; in order to adjust and optimize the performance of the primary processing module, the secondary identification module can feed back the identified key feature information to the primary processing module; in order to adjust and Optimize the performance of the secondary processing module, and the subsequent understanding module can feed back the key feature information understood to the secondary processing module; thus forming a closed loop of the data processing link.
后级理解模块可具体表现为嵌入式设备、工控机或服务器等带数据存储和信息处理的硬件设备和软件总成。The post-level comprehension module can be embodied as a hardware device and software assembly with data storage and information processing, such as an embedded device, an industrial computer or a server.
初级处理内核以IP CORE(Intellectual Property,知识产权核)的形式集成于FPGA片内,主要由以下片内资源构成:DSP48E slices(DSP48E单元)、LUTs (Look-upTables,查找表)、 DB-RAM(Dual-port RAM Blocks,双口RAM)、 FIFO(First Input FirstOutput先入先出队列)以及SM(Share Memories,共享存储器。The primary processing core is integrated in the FPGA chip in the form of IP CORE (Intellectual Property, intellectual property core), mainly composed of the following on-chip resources: DSP48E slices (DSP48E unit), LUTs (Look-upTables, look-up table), DB-RAM (Dual-port RAM Blocks, dual-port RAM), FIFO (First Input First Output queue) and SM (Share Memories, shared memory.
次级识别内核以函数库的形式集成于DSP片内,主要由以下片内资源构成:MDB(Mult-Data Bus,多数据总线)、ALU(Arithmetic Logic Unit,算术逻辑单元)、PM(Parallel Multiplier,并行乘法器)以及OC-RAM(On-chip RAM,片内存储器)。The secondary recognition kernel is integrated in the DSP chip in the form of a function library, mainly composed of the following on-chip resources: MDB (Mult-Data Bus, multiple data bus), ALU (Arithmetic Logic Unit, arithmetic logic unit), PM (Parallel Multiplier , parallel multiplier) and OC-RAM (On-chip RAM, on-chip memory).
优选的,在上述用于无线通信信道特征参数提取的便携式装置中,所述无线信号采集模块包括阵列天线、下变频器和模数转换器。阵列天线、下变频器和模数转换器依次连接;无线信号采集模块通过阵列天线与无线通信信道相连。Preferably, in the above-mentioned portable device for extracting characteristic parameters of wireless communication channels, the wireless signal acquisition module includes an array antenna, a down-converter and an analog-to-digital converter. The array antenna, the down-converter and the analog-to-digital converter are connected in sequence; the wireless signal acquisition module is connected with the wireless communication channel through the array antenna.
所述阵列天线,完成无线通信信道中的电磁信号的接收;The array antenna completes the reception of electromagnetic signals in the wireless communication channel;
所述下变频器,完成空间电磁信号的下变频,将射频信号变换到中频;The down-converter completes the down-conversion of the space electromagnetic signal and converts the radio frequency signal to an intermediate frequency;
所述模数转换器,完成变换后中频信号的模数转换,具有多通道高速并行的特性,能够适应具有快时变、大带宽特点的无线通信信道的特征参数的高速高精度采集。The analog-to-digital converter completes the analog-to-digital conversion of the converted intermediate frequency signal, has the characteristics of multi-channel high-speed parallelism, and can adapt to the high-speed and high-precision collection of characteristic parameters of wireless communication channels with fast time-varying and large bandwidth characteristics.
优选的,在上述用于无线通信信道特征参数提取的便携式装置中,所述环境传感模块包括环境传感器网络、信号隔离电路和MCU(单片机)。环境传感器网络、信号隔离电路和MCU(单片机)依次连接;无线通信信道通过环境传感器网络与无线通信信道相连。Preferably, in the above-mentioned portable device for extracting characteristic parameters of wireless communication channels, the environment sensing module includes an environment sensor network, a signal isolation circuit and an MCU (single-chip microcomputer). The environmental sensor network, signal isolation circuit and MCU (single chip microcomputer) are connected in sequence; the wireless communication channel is connected with the wireless communication channel through the environmental sensor network.
所述环境传感器网络,完成本发明之便携式装置所在空间区域无线通信信道的环境参量的感应和转换;The environmental sensor network completes the induction and conversion of the environmental parameters of the wireless communication channel in the space area where the portable device of the present invention is located;
所述信号隔离电路,完成环境传感器网络和MCU(单片机)的电气隔离,用于确保所涉及的便携式装置在复杂电磁环境中的使用安全,隔离方式一般采取光电隔离、变压器隔离以及互感器隔离等方式;The signal isolation circuit completes the electrical isolation between the environmental sensor network and the MCU (single-chip microcomputer), and is used to ensure the safety of the portable devices involved in the complex electromagnetic environment. The isolation methods generally adopt photoelectric isolation, transformer isolation, and transformer isolation, etc. Way;
所述MCU(单片机),完成隔离后的环境参量的模数转换和缓存,并将各类环境参量依照USB(通用串行总线)或UART(通用异步收发传输器)协议的帧格式封装成数据包。The MCU (single-chip microcomputer) completes the analog-to-digital conversion and buffering of the isolated environmental parameters, and encapsulates various environmental parameters into data according to the frame format of the USB (Universal Serial Bus) or UART (Universal Asynchronous Receiver Transmitter) protocol Bag.
优选的,在上述用于无线通信信道特征参数提取的便携式装置中,所述初级处理模块以FPGA器件为核心,包括信号采集器、码制变换器、初级处理内核、双口RAM、串行通讯接口、MicroBlaze以及DDR3-I,信号采集器、码制变换器、初级处理内核、双口RAM、串行通讯接口和MicroBlaze均以IP CORE(Intellectual Property Core)的形式,实现于FPGA片内。信号采集器、码制变换器、初级处理内核和串行通讯接口依次连接,初级处理内核与双口RAM双向连接;Preferably, in the above-mentioned portable device for wireless communication channel feature parameter extraction, the primary processing module takes FPGA device as the core, including signal collector, code system converter, primary processing core, dual-port RAM, serial communication The interface, MicroBlaze and DDR3-I, signal collector, code converter, primary processing core, dual-port RAM, serial communication interface and MicroBlaze are all realized in the FPGA chip in the form of IP CORE (Intellectual Property Core). The signal collector, the code system converter, the primary processing core and the serial communication interface are connected in sequence, and the primary processing core is bidirectionally connected with the dual-port RAM;
所述信号采集器,完成来自模数转换器的并行数字信号的采集和缓存,并通过时序逻辑来控制ADC诸如片内高斯滤波器是否启用、数据输出码制选择等芯片行为;The signal collector completes the acquisition and buffering of parallel digital signals from the analog-to-digital converter, and controls ADC chip behaviors such as whether the on-chip Gaussian filter is enabled, data output code system selection, etc. through sequential logic;
所述码制变换器,完成信号采集器采集的原始数据的码制变换,比如格雷码、自然码等码制形式间的数据变换;The code system converter completes the code system conversion of the original data collected by the signal collector, such as data conversion between code systems such as Gray code and natural code;
所述初级处理内核,完成码制变换后数字信号的初级处理,诸如信号滤波和信息筛选等;同时完成来自串行通讯接口的环境参量的滤波、标定与修正;The primary processing core completes the primary processing of the digital signal after code system conversion, such as signal filtering and information screening, etc.; simultaneously completes the filtering, calibration and correction of the environmental parameters from the serial communication interface;
所述双口RAM,作为初级处理模块和次级识别模块之间的数据桥梁。双口RAM设有A数据端口和B数据端口。对于FPGA片内,初级处理内核将需要转发的数据从A数据端口存储至双口RAM;对于FPGA片外,双口RAM可作为存储型设备被外界处理器从B数据端口寻址和访问;对应地,初级处理模块和次级识别模块采取EMFI(External Memory Interface:外部存储器接口)进行数据通讯;The dual-port RAM serves as a data bridge between the primary processing module and the secondary identification module. The dual-port RAM has an A data port and a B data port. For the FPGA chip, the primary processing core stores the data to be forwarded from the A data port to the dual-port RAM; for the FPGA chip, the dual-port RAM can be addressed and accessed by the external processor from the B data port as a storage device; Ground, the primary processing module and the secondary identification module use EMFI (External Memory Interface: external memory interface) for data communication;
所述串行通讯接口,完成MCU(单片机)上传环境参量数据包的解析;同时可以通过USB或UART接口配置MCU;The serial communication interface completes the analysis of the environmental parameter data package uploaded by the MCU (single-chip microcomputer); at the same time, the MCU can be configured through the USB or UART interface;
所述MicroBlaze是Xilinx公司的32位软核处理器,通过PLB(Processor Local Bus:处理器局部总线)完成所述信号采集、码制变换、初级处理内核、双口RAM、串行通讯接口和DDR3-I的控制;所述MicroBlaze为PLB总线的主节点;所述信号采集器、码制变换器、初级处理内核、双口RAM以及串行通讯接口为PLB总线的从节点;Described MicroBlaze is 32 soft-core processors of Xilinx Company, completes described signal collection, code system transformation, primary processing core, dual-port RAM, serial communication interface and DDR3 by PLB (Processor Local Bus: processor local bus) -1 control; said MicroBlaze is the master node of the PLB bus; said signal collector, code system converter, primary processing core, dual-port RAM and serial communication interface are the slave nodes of the PLB bus;
所述DDR3-I,提供1GB的内存空间,用于适应初级处理内核的信号初级处理过程中对内存的大规模消耗;亦可为信号采集器提供数据缓存空间;同时可用于适应FPGA和DSP之间的数据吞吐率。The DDR3-I provides 1GB of memory space, which is used to adapt to the large-scale consumption of memory during the signal primary processing of the primary processing core; it can also provide data buffer space for the signal collector; it can also be used to adapt to FPGA and DSP. data throughput rate.
优选的,在上述用于无线通信信道特征参数提取的便携式装置中,所述次级识别模块以DSP器件为核心,包括FIFO、次级识别内核、高速通讯接口以及DDR3-II。FIFO U21、次级识别内核U22、高速通讯接口U23依次双向连接。FIFO、次级识别内核和高速通讯接口均封装于DSP器件内。Preferably, in the above-mentioned portable device for extracting characteristic parameters of wireless communication channels, the secondary identification module takes DSP device as the core, including FIFO, secondary identification core, high-speed communication interface and DDR3-II. The FIFO U21, the secondary identification core U22, and the high-speed communication interface U23 are bidirectionally connected in sequence. FIFO, secondary recognition core and high-speed communication interface are all encapsulated in DSP device.
所述FIFO,作为先入先出队列(First Input First Output),完成与双口RAM之间数据流的双向缓冲;The FIFO, as a first-in-first-out queue (First Input First Output), completes the two-way buffering of the data flow with the dual-port RAM;
所述次级识别内核,完成空间电磁信号的中心频率、信号强度、噪声水平、调制格式等典型信息的计算和求解,并对无线通信信道进行参数估计和信息识别;The secondary identification kernel completes the calculation and solution of typical information such as the center frequency, signal strength, noise level, and modulation format of the space electromagnetic signal, and performs parameter estimation and information identification on the wireless communication channel;
所述高速通讯接口,作为所述次级识别模块和后级理解模块之间的数据桥梁,完成本发明之无线通信信道特征参数提取的便携式装置和外界的后级理解模块间的高速数据通讯,不失一般性地,可选择Ethernet(以太网),亦可为Aurora(极光)的光纤通讯方式;The high-speed communication interface, as a data bridge between the secondary identification module and the subsequent understanding module, completes the high-speed data communication between the portable device for extracting the characteristic parameters of the wireless communication channel of the present invention and the external subsequent understanding module, Without loss of generality, Ethernet (Ethernet) can be selected, or Aurora (Aurora) optical fiber communication method;
所述DDR3-II,提供1GB的内存空间,用于适应次级识别内核的信号次级识别过程中对内存的大规模消耗;同时可用于适应DSP和后级理解模块之间的数据吞吐率。The DDR3-II provides 1GB of memory space, which is used to adapt to the large-scale consumption of memory during the signal secondary recognition process of the secondary recognition core; at the same time, it can be used to adapt to the data throughput rate between the DSP and the subsequent understanding module.
上述技术方案具有如下有益效果:The above technical scheme has the following beneficial effects:
(1)相对于传统以计算机为核心的庞大体系架构,本发明属于以FPGA和DSP为核心的便携式装置,集成度更高、应用更加灵活;(1) Compared with the traditional huge system architecture with computer as the core, the present invention is a portable device with FPGA and DSP as the core, with higher integration and more flexible application;
(2)采用了信号处理(以FPGA为载体)、识别(以DSP为载体)和理解(以传统计算机为载体)的三级数字化结构,能够适应大瞬时带宽、快时变无线通信下海量特征参数的高精度、全概率的接收、提取和评估;(2) It adopts a three-level digital structure of signal processing (with FPGA as the carrier), identification (with DSP as the carrier) and understanding (with traditional computer as the carrier), which can adapt to the massive characteristics of large instantaneous bandwidth and fast time-varying wireless communication High-precision, full-probability reception, extraction and evaluation of parameters;
(3)所采用的FPGA和多核DSP资源丰富、数据处理能力卓越,对空间电磁信号和环境参数在数据规模最大的数据层进行了滤波、筛选等预处理,除提升了整个系统的电磁兼容外,使得第三级也即后级理解模块的数据处理压力显著降低,其表现形式相对灵活(可采用嵌入式设备、工控机或服务器)。(3) The adopted FPGA and multi-core DSP are rich in resources and have excellent data processing capabilities. The space electromagnetic signals and environmental parameters are filtered and screened at the data layer with the largest data scale. In addition to improving the electromagnetic compatibility of the entire system , so that the data processing pressure of the third-level, that is, the post-level comprehension module is significantly reduced, and its form of expression is relatively flexible (embedded devices, industrial computers or servers can be used).
附图说明Description of drawings
图1为本发明一实施例便携式装置的结构示意图;FIG. 1 is a schematic structural diagram of a portable device according to an embodiment of the present invention;
图2为图1所示实施例便携式装置的详细结构图。FIG. 2 is a detailed structural diagram of the portable device of the embodiment shown in FIG. 1 .
具体实施方式detailed description
下面将结合本发明的附图,对本发明技术方案进行清楚、完整地描述,显然,所采集描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions of the present invention will be clearly and completely described below in conjunction with the accompanying drawings of the present invention. Obviously, the collected and described embodiments are only some of the embodiments of the present invention, not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
参照图1,本发明之用于无线通信信道特征参数提取的便携式装置包括初级处理模块U1、次级识别模块U2、无线信号采集模块U3和环境传感模块U4;无线信号采集模块U3与初级处理模块U1双向连接,环境传感模块U4与初级处理模块U1双向连接,初级处理模块U1与次级识别模块U2双向连接;With reference to Fig. 1, the portable device that is used for wireless communication channel feature parameter extraction of the present invention comprises primary processing module U1, secondary identification module U2, wireless signal acquisition module U3 and environment sensing module U4; Wireless signal acquisition module U3 and primary processing The module U1 is bidirectionally connected, the environmental sensing module U4 is bidirectionally connected to the primary processing module U1, and the primary processing module U1 is bidirectionally connected to the secondary identification module U2;
无线信号采集模块U3用于完成无线通信信道U5的空间电磁信号的接收、下变频和模数转换,并向初级处理模块U1传送经下变频和模数转换后的数字化空间电磁信号;The wireless signal acquisition module U3 is used to complete the reception, down-conversion and analog-to-digital conversion of the space electromagnetic signal of the wireless communication channel U5, and transmit the digitized space electromagnetic signal after down-conversion and analog-to-digital conversion to the primary processing module U1;
环境传感模块U4用于完成本发明实施过程中所述便携式装置所在空间区域的环境参量的变换和感知,典型的环境参量包括气压、温度、湿度、海拔以及GPS经度纬度信息;并向初级处理模块U1传送经变换和感知后的数字化环境参量;The environmental sensing module U4 is used to complete the conversion and perception of the environmental parameters of the space area where the portable device is located during the implementation of the present invention. Typical environmental parameters include air pressure, temperature, humidity, altitude and GPS longitude and latitude information; Module U1 transmits the transformed and sensed digitized environmental parameters;
初级处理模块U1用于完成无线信号采集模块U3和环境传感模块U4所收集数字化信号(即无线信号采集模块U3传送过来的经下变频和模数转换后的数字化空间电磁信号、由环境传感模块U4传送过来的经变换和感知后的数字化环境参量)的接收和初级处理,典型的初级处理包括信号滤波、信息筛选、参数标定与修正等;同时,初级处理模块U1对环境传感模块U4中的环境传感器进行初始化配置;初级处理模块U1对无线信号采集模块U3中所述模数转换器无线信号采集模块U3中的模数转换器进行行为逻辑控制;The primary processing module U1 is used to complete the digitized signal collected by the wireless signal acquisition module U3 and the environmental sensing module U4 (that is, the digitized spatial electromagnetic signal transmitted by the wireless signal acquisition module U3 after down-conversion and analog-to-digital conversion, and the environmental sensor The transformed and sensed digitized environmental parameters transmitted by the module U4) are received and primary processed, and typical primary processing includes signal filtering, information screening, parameter calibration and correction, etc. The environmental sensor in the wireless signal acquisition module U3 performs initial configuration; the primary processing module U1 performs behavioral logic control on the analog-to-digital converter in the wireless signal acquisition module U3 of the analog-to-digital converter;
初级处理模块U1接收无线信号采集模块U3和环境传感模块U4的数字化信号,经初级处理后,以数据包的形式向次级识别模块U2传送;The primary processing module U1 receives the digitized signals of the wireless signal acquisition module U3 and the environment sensing module U4, and after primary processing, sends them to the secondary identification module U2 in the form of data packets;
次级识别模块U2接收来自初级处理模块U1的数据包,进行参数估计和信息识别;同时将识别的关键特征信息反馈给初级处理模块U1,进而使得初级处理模块U1适时地做出诸如调整滤波窗函数或者精细分选信息等动作;识别的关键特征信息包括:信号的中心频率、信号强度、噪声水平、调制格式等。The secondary identification module U2 receives the data packets from the primary processing module U1, and performs parameter estimation and information identification; at the same time, it feeds back the identified key feature information to the primary processing module U1, so that the primary processing module U1 can make timely adjustments such as adjusting the filter window. Function or fine sorting information and other actions; the key feature information for identification includes: signal center frequency, signal strength, noise level, modulation format, etc.
本发明之用于无线通信信道特征参数提取的便携式装置和外界具有如下连接关系:无线信号采集模块U3和环境传感模块U4均分别与无线通信信道U5连接,次级识别模块U2和后级理解模块U6双向连接。The portable device used for extracting the characteristic parameters of the wireless communication channel of the present invention has the following connection relationship with the outside world: the wireless signal acquisition module U3 and the environment sensing module U4 are respectively connected to the wireless communication channel U5, and the secondary identification module U2 and the subsequent level understand Module U6 is bidirectionally connected.
本发明之用于无线通信信道特征参数提取的便携式装置具有如下信号拓扑关系:无线通信信道U5的原始环境参量S1输入环境传感模块U4,经过变换和感知后得到数字化环境参量S3再送入初级处理模块U1;无线通信信道U5的原始空间电磁信号S2输入无线信号采集模块U3,经过下变频和模数转换后得到数字化空间电磁信号S4再送入初级处理模块U1;初级处理模块U1对两路数字化后的信号S3和S4进行所述典型初级处理后得到第一处理信号,第一处理信号、S3以及S4被封装成第一数据包S5尔后送入次级识别模块U2;次级处理模块U2对数据包S5进行所述参数估计和信息识别得到第二处理信号,第二处理信号、S3以及S4被封装成第二数据包S6尔后送入后级理解模块U6;反向地,初级处理模块U1能够对环境传感模块U4中的环境传感器进行初始化配置,也可对无线信号采集模块U3中的模数转换器进行行为逻辑控制;为了调整和优化初级处理模块U1的性能,次级识别模块U2可将识别的关键特征信息反馈给初级处理模块U1;为了调整和优化次级处理模块U2的性能,后级理解模块U6可将理解的关键特征信息反馈给次级处理模块U2;从而构成数据处理链路的闭环。The portable device used for extracting characteristic parameters of the wireless communication channel of the present invention has the following signal topology relationship: the original environmental parameter S1 of the wireless communication channel U5 is input into the environmental sensing module U4, and the digitized environmental parameter S3 obtained after transformation and sensing is sent to the primary processing Module U1; the original space electromagnetic signal S2 of the wireless communication channel U5 is input to the wireless signal acquisition module U3, and the digitized space electromagnetic signal S4 is obtained after down-conversion and analog-to-digital conversion, and then sent to the primary processing module U1; the primary processing module U1 digitizes the two channels The signals S3 and S4 are subjected to the typical primary processing to obtain the first processed signal, the first processed signal, S3 and S4 are encapsulated into the first data packet S5 and then sent to the secondary identification module U2; the secondary processing module U2 for the data Packet S5 performs the parameter estimation and information identification to obtain the second processed signal, the second processed signal, S3 and S4 are encapsulated into the second data packet S6 and then sent to the subsequent understanding module U6; conversely, the primary processing module U1 can Initialize the configuration of the environmental sensor in the environmental sensing module U4, and also perform behavioral logic control on the analog-to-digital converter in the wireless signal acquisition module U3; in order to adjust and optimize the performance of the primary processing module U1, the secondary identification module U2 can Feedback the identified key feature information to the primary processing module U1; in order to adjust and optimize the performance of the secondary processing module U2, the subsequent understanding module U6 can feed back the understood key feature information to the secondary processing module U2; thus forming a data processing chain closed loop of the road.
参照图2,本发明之用于无线通信信道特征参数提取的便携式装置中所述初级处理模块U1、次级识别模块U2、无线信号采集模块U3和环境传感模块U4可更进一步的进行如下实施:Referring to Fig. 2, the primary processing module U1, the secondary identification module U2, the wireless signal acquisition module U3 and the environment sensing module U4 in the portable device for extracting the characteristic parameters of the wireless communication channel of the present invention can be further implemented as follows :
(1)无线信号采集模块U3包括阵列天线U31、下变频器U32和模数转换器U33;阵列天线U31、下变频器U32和模数转换器U33依次连接;无线信号采集模块U3通过阵列天线U31与无线通信信道U5相连。(1) The wireless signal acquisition module U3 includes an array antenna U31, a down-converter U32 and an analog-to-digital converter U33; the array antenna U31, a down-converter U32 and an analog-to-digital converter U33 are connected in sequence; the wireless signal acquisition module U3 passes through the array antenna U31 It is connected with the wireless communication channel U5.
阵列天线U31,完成无线通信信道U5中的电磁信号的接收;The array antenna U31 completes the reception of the electromagnetic signal in the wireless communication channel U5;
下变频器U32,完成空间电磁信号的下变频,将射频信号变换到中频;The down converter U32 completes the down conversion of the space electromagnetic signal and converts the radio frequency signal to an intermediate frequency;
模数转换器U33,完成变换后中频信号的模数转换,具有多通道高速并行的特性,能够适应具有快时变、大带宽特点的无线通信信道的特征参数的高速高精度采集。The analog-to-digital converter U33 completes the analog-to-digital conversion of the converted intermediate frequency signal, has the characteristics of multi-channel high-speed parallelism, and can adapt to the high-speed and high-precision collection of characteristic parameters of wireless communication channels with fast time-varying and large bandwidth characteristics.
(2)环境传感模块U4包括环境传感器网络U41、信号隔离电路U42和MCU(单片机)U43;环境传感器网络U41、信号隔离电路U42和MCU(单片机)U43依次连接;无线通信信道U5通过环境传感器网络U41与无线通信信道U5相连。(2) Environmental sensing module U4 includes environmental sensor network U41, signal isolation circuit U42 and MCU (single-chip microcomputer) U43; environmental sensor network U41, signal isolation circuit U42 and MCU (single-chip microcomputer) U43 are connected in sequence; wireless communication channel U5 passes through environmental sensor The network U41 is connected to the wireless communication channel U5.
环境传感器网络U41,完成无线通信信道U5所在空间区域的环境参量的感应和转换;The environmental sensor network U41 completes the induction and conversion of the environmental parameters of the space area where the wireless communication channel U5 is located;
信号隔离电路U42,完成环境传感器网络U41和MCU(单片机)U43的电气隔离,用于确保所涉及的便携式装置在复杂电磁环境中的使用安全,隔离方式一般采取光电隔离、变压器隔离以及互感器隔离等方式;The signal isolation circuit U42 completes the electrical isolation between the environmental sensor network U41 and the MCU (single-chip microcomputer) U43, and is used to ensure the safety of the portable devices involved in the complex electromagnetic environment. The isolation methods generally adopt photoelectric isolation, transformer isolation and transformer isolation etc.;
MCU(单片机)U43,完成隔离后的环境参量的模数转换和缓存,并将各类环境参量依照USB(通用串行总线)或UART(通用异步收发传输器)协议的帧格式封装成数据包。MCU (single-chip microcomputer) U43 completes the analog-to-digital conversion and buffering of the isolated environmental parameters, and encapsulates various environmental parameters into data packets according to the frame format of the USB (Universal Serial Bus) or UART (Universal Asynchronous Receiver Transmitter) protocol .
(3)初级处理模块U1以FPGA器件为核心,包括信号采集器U11、码制变换器U12、初级处理内核U13、双口RAM U14、串行通讯接口U15、MicroBlaze U16以及DDR3-I U17,其中除DDR3-I U17外的各功能单元(即信号采集器U11、码制变换器U12、初级处理内核U13、双口RAM U14、串行通讯接口U15和MicroBlaze U16)均以IP CORE(Intellectual PropertyCore)的形式,实现于FPGA片内;信号采集器U11、码制变换器U12、初级处理内核U13和串行通讯接口U15依次连接,初级处理内核U13与双口RAM U14双向连接;(3) Primary processing module U1 takes FPGA device as the core, including signal collector U11, code system converter U12, primary processing core U13, dual-port RAM U14, serial communication interface U15, MicroBlaze U16 and DDR3-I U17, among which All functional units except DDR3-I U17 (i.e. signal collector U11, code system converter U12, primary processing core U13, dual-port RAM U14, serial communication interface U15 and MicroBlaze U16) all use IP CORE (Intellectual Property Core) in the form of FPGA chip; signal collector U11, code system converter U12, primary processing core U13 and serial communication interface U15 are sequentially connected, and primary processing core U13 is bidirectionally connected with dual-port RAM U14;
信号采集器U11,完成来自模数转换器U33的并行数字信号的采集和缓存,并通过严格的时序逻辑来控制ADC诸如片内高斯滤波器是否启用、数据输出码制选择等芯片行为;The signal collector U11 completes the acquisition and buffering of parallel digital signals from the analog-to-digital converter U33, and controls the chip behavior of the ADC such as whether the on-chip Gaussian filter is enabled, data output code system selection, etc. through strict timing logic;
码制变换器U12,完成信号采集U11驱动层原始数据的码制变换,比如格雷码、自然码等码制形式间的数据变换;The code system converter U12 completes the code system conversion of the original data of the driver layer of the signal acquisition U11, such as data conversion between code systems such as Gray code and natural code;
初级处理内核U13,完成码制变换后数字信号的初级处理,诸如信号滤波和信息筛选等;同时完成来自串行通讯接口U15的环境参量的滤波、标定与修正;The primary processing core U13 completes the primary processing of the digital signal after code system conversion, such as signal filtering and information screening, etc.; at the same time completes the filtering, calibration and correction of the environmental parameters from the serial communication interface U15;
双口RAM U14,作为初级处理模块U1和次级识别模块U2之间的数据桥梁。双口RAM14设有A数据端口和B数据端口。对于FPGA片内,初级处理内核U13将需要转发的数据从A数据端口存储至双口RAM U14;对于FPGA片外,双口RAM U14可作为存储型设备被外界处理器从B数据端口寻址和访问;对应地,初级处理模块U1和次级识别模块U2采取EMFI(ExternalMemory Interface:外部存储器接口)进行数据通讯;The dual-port RAM U14 serves as a data bridge between the primary processing module U1 and the secondary identification module U2. The dual-port RAM 14 is provided with an A data port and a B data port. For the FPGA chip, the primary processing core U13 stores the data that needs to be forwarded from the A data port to the dual-port RAM U14; for the FPGA chip, the dual-port RAM U14 can be used as a storage device and can be addressed by the external processor from the B data port and Access; Correspondingly, the primary processing module U1 and the secondary identification module U2 adopt EMFI (ExternalMemory Interface: external memory interface) for data communication;
串行通讯接口U15,完成MCU(单片机)U43上传环境参量数据包的解析;同时可以通过USB或UART接口配置MCU;The serial communication interface U15 completes the analysis of the environmental parameter data package uploaded by the MCU (single chip microcomputer) U43; at the same time, the MCU can be configured through the USB or UART interface;
MicroBlaze U16是Xilinx公司的32位软核处理器,通过PLB(Processor Local Bus:处理器局部总线)完成信号采集器U11、码制变换器U12、初级处理内核U13、双口RAM U14、串行通讯接口U15和DDR3-I U17的控制;标注‘■’的功能单元为PLB总线的主节点(BusMaster);标注‘●’的功能单元为PLB总线的从节点(Bus Slave);MicroBlaze U16 is a 32-bit soft-core processor of Xilinx Company, through PLB (Processor Local Bus: Processor Local Bus) to complete the signal collector U11, code system converter U12, primary processing core U13, dual-port RAM U14, serial communication Control of interface U15 and DDR3-I U17; the functional unit marked with '■' is the master node (BusMaster) of the PLB bus; the functional unit marked with '●' is the slave node of the PLB bus (Bus Slave);
DDR3-I U17,提供1GB的内存空间,用于适应初级处理内核U13的信号初级处理过程中对内存的大规模消耗;亦可为信号采集器U11提供数据缓存空间;同时可用于适应FPGA和DSP之间的数据吞吐率;DDR3-I U17, providing 1GB of memory space, used to adapt to the large-scale consumption of memory during the signal primary processing of the primary processing core U13; it can also provide data buffer space for the signal collector U11; it can also be used to adapt to FPGA and DSP The data throughput rate between;
(4)次级识别模块U2以DSP器件为核心,包括FIFO U21、次级识别内核U22、高速通讯接口U23以及DDR3-II U24;FIFO U21、次级识别内核U22、高速通讯接口U23依次双向连接。FIFO 21、次级识别内核U22和高速通讯接口U23均封装于DSP器件内。(4) The secondary identification module U2 takes the DSP device as the core, including FIFO U21, secondary identification core U22, high-speed communication interface U23 and DDR3-II U24; FIFO U21, secondary identification core U22, and high-speed communication interface U23 are connected bidirectionally in sequence . FIFO 21, secondary identification core U22 and high-speed communication interface U23 are all packaged in the DSP device.
FIFO U21,作为先入先出队列(First Input First Output),完成与双口RAM U14之间数据流的双向缓冲;FIFO U21, as a first-in-first-out queue (First Input First Output), completes the two-way buffering of the data flow between the dual-port RAM U14;
次级识别内核U22,完成空间电磁信号的中心频率、信号强度、噪声水平、调制格式等典型信息的计算和求解,并对无线通信信道进行参数估计和信息识别;The secondary identification kernel U22 completes the calculation and solution of typical information such as the center frequency, signal strength, noise level, and modulation format of the space electromagnetic signal, and performs parameter estimation and information identification on the wireless communication channel;
高速通讯接口U23,作为次级识别模块U2和后级理解模块U6之间的数据桥梁,完成本发明之无线通信信道特征参数提取的便携式装置和外界的后级理解模块U6间的高速数据通讯,可选择Ethernet(以太网),亦可为Aurora(极光)的光纤通讯方式。The high-speed communication interface U23, as a data bridge between the secondary identification module U2 and the subsequent understanding module U6, completes the high-speed data communication between the portable device for extracting the characteristic parameters of the wireless communication channel of the present invention and the external subsequent understanding module U6, Ethernet (Ethernet) can be selected, and Aurora (Aurora) optical fiber communication method can also be selected.
DDR3-II U24,提供1GB的内存空间,用于适应次级识别内核U22的信号次级识别过程中对内存的大规模消耗;同时可用于适应DSP和后级理解模块U6之间的数据吞吐率。DDR3-II U24, providing 1GB of memory space, used to adapt to the large-scale consumption of memory during the signal secondary recognition process of the secondary recognition core U22; at the same time, it can be used to adapt to the data throughput between DSP and the subsequent understanding module U6 .
初级处理内核以IP CORE(Intellectual Property,知识产权核)的形式集成于FPGA片内,主要由以下片内资源构成:DSP48E slices(DSP48E单元)、LUTs (Look-upTables,查找表)、 DB-RAM(Dual-port RAM Blocks,双口RAM)、 FIFO(First Input FirstOutput先入先出队列)以及SM(Share Memories,共享存储器。The primary processing core is integrated in the FPGA chip in the form of IP CORE (Intellectual Property, intellectual property core), mainly composed of the following on-chip resources: DSP48E slices (DSP48E unit), LUTs (Look-upTables, look-up table), DB-RAM (Dual-port RAM Blocks, dual-port RAM), FIFO (First Input First Output queue) and SM (Share Memories, shared memory.
次级识别内核以函数库的形式集成于DSP片内,主要由以下片内资源构成:MDB(Mult-Data Bus,多数据总线)、ALU(Arithmetic Logic Unit,算术逻辑单元)、PM(Parallel Multiplier,并行乘法器)以及OC-RAM(On-chip RAM,片内存储器)。The secondary recognition kernel is integrated in the DSP chip in the form of a function library, mainly composed of the following on-chip resources: MDB (Mult-Data Bus, multiple data bus), ALU (Arithmetic Logic Unit, arithmetic logic unit), PM (Parallel Multiplier , parallel multiplier) and OC-RAM (On-chip RAM, on-chip memory).
本发明之用于无线通信信道特征参数提取的便携式装置,充分发挥了FPGA和DSP的数据处理优势,采用了信号处理、识别和理解的三级数字化结构,有效的降低了硬件资源消耗,形成本发明之便携式装置,可用于复杂电磁环境下对信号总数、带宽以及位置均未知且时变的信道特征参数进行高精度、全概率的接收和提取。The portable device used for extracting characteristic parameters of wireless communication channels of the present invention fully utilizes the data processing advantages of FPGA and DSP, adopts a three-level digital structure of signal processing, identification and understanding, effectively reduces hardware resource consumption, and forms a cost-effective The invented portable device can be used to receive and extract high-precision and full-probability channel characteristic parameters whose total number, bandwidth and location are unknown and time-varying in a complex electromagnetic environment.
以上对本发明的一种优选具体实施方式作了详细介绍。所述具体实施方式只是用于帮助理解本发明的核心思想。应当指出,对于本技术领域的技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也属于本发明权利要求的保护范围。A preferred embodiment of the present invention has been introduced in detail above. The specific embodiments are only used to help understand the core idea of the present invention. It should be pointed out that for those skilled in the art, without departing from the principle of the present invention, some improvements and modifications can be made to the present invention, and these improvements and modifications also belong to the protection scope of the claims of the present invention.
Claims (5)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610717096.2A CN106375041B (en) | 2016-08-25 | 2016-08-25 | Mancarried device for radio communication channel characteristic parameter extraction |
PCT/CN2016/102121 WO2018035947A1 (en) | 2016-08-25 | 2016-10-14 | Portable apparatus for extracting characteristic parameter of wireless communication channel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610717096.2A CN106375041B (en) | 2016-08-25 | 2016-08-25 | Mancarried device for radio communication channel characteristic parameter extraction |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106375041A true CN106375041A (en) | 2017-02-01 |
CN106375041B CN106375041B (en) | 2018-10-23 |
Family
ID=57878193
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610717096.2A Active CN106375041B (en) | 2016-08-25 | 2016-08-25 | Mancarried device for radio communication channel characteristic parameter extraction |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106375041B (en) |
WO (1) | WO2018035947A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109787926A (en) * | 2018-12-24 | 2019-05-21 | 合肥工业大学 | A kind of digital signal modulation mode recognition methods |
CN114611559A (en) * | 2022-03-17 | 2022-06-10 | 北京工业大学 | Digital wireless signal analysis system |
CN116126230A (en) * | 2022-12-21 | 2023-05-16 | 工业互联网创新中心(上海)有限公司 | A system for hierarchical storage and migration of industrial real-time data |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111740753B (en) * | 2020-05-15 | 2022-01-14 | 苏州霞军通讯有限公司 | Network communication signal acquisition system |
CN114826849B (en) * | 2022-03-19 | 2024-09-10 | 西安电子科技大学 | DSP local reconstruction method and system for communication signal identification processing |
CN117939453B (en) * | 2024-03-21 | 2024-06-21 | 北京优诺信创科技有限公司 | Electromagnetic environment monitoring method and system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10190508A (en) * | 1996-12-27 | 1998-07-21 | Toyo Commun Equip Co Ltd | Receiver |
CN101170317A (en) * | 2006-10-26 | 2008-04-30 | 中兴通讯股份有限公司 | A multi-level mixing detection method and its device |
CN103716262A (en) * | 2012-10-09 | 2014-04-09 | 王晓安 | Channel estimation by time-domain parameter extraction |
CN104052555A (en) * | 2014-06-19 | 2014-09-17 | 北京交通大学 | A Method for Estimating Multipath Parameters of Wireless Channel in OFDM System |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006238270A (en) * | 2005-02-28 | 2006-09-07 | Toshiba Corp | Information processor |
KR101544371B1 (en) * | 2009-08-07 | 2015-08-17 | 삼성전자주식회사 | Portable terminal reflecting user situation and its operation method |
US8606254B2 (en) * | 2009-10-30 | 2013-12-10 | Blackberry Limited | Method and system for receiver adaptation based on knowledge of wireless propagation environments |
CN101871970A (en) * | 2010-06-02 | 2010-10-27 | 中兴通讯股份有限公司 | Wireless terminal and signal scanning method thereof |
KR101472702B1 (en) * | 2011-02-21 | 2014-12-12 | 엠파이어 테크놀로지 디벨롭먼트 엘엘씨 | Using out-band information to improve wireless communications |
CN105207726B (en) * | 2015-04-09 | 2018-11-27 | 北京交通大学 | wireless channel comprehensive test device |
-
2016
- 2016-08-25 CN CN201610717096.2A patent/CN106375041B/en active Active
- 2016-10-14 WO PCT/CN2016/102121 patent/WO2018035947A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10190508A (en) * | 1996-12-27 | 1998-07-21 | Toyo Commun Equip Co Ltd | Receiver |
CN101170317A (en) * | 2006-10-26 | 2008-04-30 | 中兴通讯股份有限公司 | A multi-level mixing detection method and its device |
CN103716262A (en) * | 2012-10-09 | 2014-04-09 | 王晓安 | Channel estimation by time-domain parameter extraction |
CN104052555A (en) * | 2014-06-19 | 2014-09-17 | 北京交通大学 | A Method for Estimating Multipath Parameters of Wireless Channel in OFDM System |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109787926A (en) * | 2018-12-24 | 2019-05-21 | 合肥工业大学 | A kind of digital signal modulation mode recognition methods |
CN114611559A (en) * | 2022-03-17 | 2022-06-10 | 北京工业大学 | Digital wireless signal analysis system |
CN114611559B (en) * | 2022-03-17 | 2024-04-26 | 北京工业大学 | Digital wireless signal analysis system |
CN116126230A (en) * | 2022-12-21 | 2023-05-16 | 工业互联网创新中心(上海)有限公司 | A system for hierarchical storage and migration of industrial real-time data |
Also Published As
Publication number | Publication date |
---|---|
WO2018035947A1 (en) | 2018-03-01 |
CN106375041B (en) | 2018-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106375041B (en) | Mancarried device for radio communication channel characteristic parameter extraction | |
CN201750562U (en) | A device for interconnecting wireless sensor networks with the Internet and mobile communication networks | |
Gao et al. | Federated learning based on CTC for heterogeneous internet of things | |
CN111478960A (en) | Data acquisition and edge calculation system based on edge calculation | |
CN110049294A (en) | Based on the aloof from politics and material pursuits image frame grabber of Zynq high and processing system | |
CN106209693A (en) | High Speed Data Collection Method based on network-on-chip | |
CN110650134B (en) | Signal processing method and device, electronic equipment and storage medium | |
CN108134782A (en) | A kind of method based on 10,000,000,000 network transmission high-bandwidth video of FCoE protocol realizations | |
CN106021025A (en) | Oversampling data clock recovery FPGA realizing system and method | |
CN209402499U (en) | A device based on FPGA to realize Ethernet transmission of multi-channel DAC information | |
CN102852842A (en) | Chassis fan control system based on FPGA (Field Programmable Gate Array) and control method thereof | |
CN109818983A (en) | A Cognitive Anti-jamming Method for ZigBee and WiFi Networking Communication | |
CN105681688A (en) | Method for realizing infrared machine core of gige vision interface based on FPGA | |
CN209330136U (en) | An Ethernet transmission device for collecting multi-channel ADC information based on FPGA | |
CN106330209B (en) | It is a kind of based on FPGA front-end digital makeup set | |
CN213069575U (en) | Internal processing host, external processing host and control system data transmission system | |
CN209057232U (en) | Semantics-based IoT Smart Gateway | |
CN204795392U (en) | Found equipment of different structure information structure ization of special equipment | |
CN109274607B (en) | Hundred/giga self-adaptive Ethernet-over-Ethernet physical layer implementation circuit | |
Nsunza et al. | Design and implementation of a low-cost software defined wireless network testbed for smart home | |
Manikanta et al. | Performance in denser networks using IoT adaptive configurations | |
CN205014991U (en) | Take intelligent sensor device of security function | |
CN204859408U (en) | An Embedded Network Video Data Acquisition and Transmission System | |
CN107105047A (en) | A kind of information sensor | |
CN215898017U (en) | Underwater monitoring system based on wireless sensor network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |