[go: up one dir, main page]

CN106373968A - 一种含碳素材料的光电转化装置 - Google Patents

一种含碳素材料的光电转化装置 Download PDF

Info

Publication number
CN106373968A
CN106373968A CN201610997037.5A CN201610997037A CN106373968A CN 106373968 A CN106373968 A CN 106373968A CN 201610997037 A CN201610997037 A CN 201610997037A CN 106373968 A CN106373968 A CN 106373968A
Authority
CN
China
Prior art keywords
electrode
antenna
photoelectric conversion
layer
conversion device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610997037.5A
Other languages
English (en)
Inventor
郭玮
颜璐洁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201610997037.5A priority Critical patent/CN106373968A/zh
Publication of CN106373968A publication Critical patent/CN106373968A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F19/00Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
    • H10F19/50Integrated devices comprising at least one photovoltaic cell and other types of semiconductor or solid-state components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F19/00Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
    • H10F19/70Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules comprising bypass diodes
    • H10F19/75Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules comprising bypass diodes the bypass diodes being integrated or directly associated with the photovoltaic cells, e.g. formed in or on the same substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Silicon Compounds (AREA)

Abstract

本发明公布了一种基于碳素材料的光电转化装置及其制备方法,该装置包括石墨烯天线和金属‑绝缘体‑金属(MIM)二极管。MIM二极管为两个电极中间夹一层无晶体形态的纳米级厚度的绝缘体的三明治结构,其中第二电极包含一层基于碳素材料的纳米薄膜。石墨烯薄膜天线能够对可见光或者太赫兹波进行共振吸收,形成交流电,在两个电极所加载的偏置电压的作用下,通过MIM二极管的电子隧穿效应转化为直流电输出。碳素材料的优异性能能够降低天线损耗,提高光电转化率及二极管的效率。

Description

一种含碳素材料的光电转化装置
技术领域
本发明涉及用于天线太阳电池、太赫兹探测器的光电转化装置,属于光电子学以及太赫兹技术领域。
背景技术
专利CN 1725520 A(金属式二极管和金属式三极管)、专利CN104966745A(一种基于硅基底的纳米整流天线)以及专利CN101627476A(金属-绝缘体-金属MIM装置及其制备方法)公开了一种金属-绝缘体-金属(MIM)结构的将交流电转化成直流电的整流装置。专利CN102983787B(一种天线太阳电池及其制备方法)公开了一种利用MIM装置对可见光进行共振吸收、整流并对外输出直流电的光电转化装置。
金属-绝缘体-金属(MIM)二极管是由两个金属电极之间夹一层纳米级薄的绝缘层构成,在平衡状态时绝缘层导带底和金属费米能级之间形成势垒,在偏置电压的作用下,达到能级的电子可从势垒一侧隧穿至另一侧,该过程单向不可逆。因此,MIM二极管可以将绝缘体一侧的交流电转化成直流电从另一侧输出,甚至可以实现太赫兹波段的整流,拥有十分广阔的应用前景。
目前现有技术,往往因转化效率很低而限制了其应用,主要由两个原因导致:一是由于高频下电磁波的趋肤效应等因素导致产生的交流电在天线上损耗很大,降低了光电转化效率;二是由于MIM二极管本身的制造工艺缺陷,使两个金属电极层厚度不均匀,导致有的区域大于平均自由路径,从而影响了隧穿的稳定性和可控性,降低了将交流电转化为到直流电的转化效率。
碳素材料,如石墨烯、石墨炔、碳纳米管膜等,普遍具有优异的导电性能。如石墨烯常温下具有极高的电子迁移率,在适当的载流子密度下,在受到电磁波辐射时会导致内部电子来回运动,形成震荡电流。石墨烯中电子的平均自由路径很大,可以突破对金属电极厚度的要求,提升隧穿效率。这些具有优异导电性的碳素材料都成为了可充当MIM中金属电极的潜在替代材料。
发明内容
本发明提供给了一种含碳素材料的MIM二极管耦合石墨烯薄膜天线的光电转化装置,包括:领结型的石墨烯天线以及置于其上的MIM二极管;MIM二极管包括第一电极、第二电极以及两电极之间所夹的纳米级厚度的绝缘体薄层,第二电极包含碳素材料薄膜层;石墨烯天线对可见光或者太赫兹波进行共振吸收,形成交流电,在两个电极所加载的偏置电压的作用下,通过MIM二极管的电子隧穿效应转化为直流电输出。
优选的,所述石墨烯天线的两个正三角形顶角相对放置,中间相连,整个天线一体加工成型,转移到介电材料衬底上,石墨烯采用单层或双层,天线总长度为5~20μm。衬底材料为SiO2、SiC、Si3N4、Al2O3、HfO2、Ta2O5、BN和类金刚石中的一种。
优选的,所述MIM二极管置于天线两个三角之间的连接带之上,接触面积为100nm2~1μm2。二极管包括第一电极、第二电极以及两电极之间所夹的纳米级厚度的绝缘体薄层。
优选的,所述第一电极材料包括Cr、Ti、Al、Ni和Ta中的一种,厚度为30~50nm。
优选的,所述第二电极包含的碳素材料薄膜层包括薄膜石墨烯、石墨炔或者自支撑碳纳米管膜的一种或几种。
优选的,第二电极可以只包含单独的碳素材料层,也可以同时包含碳素材料层和金属层;金属层材料包含Cr、Ti、Al、Ni和Ta中的一种,厚度为30~100nm,碳素材料层厚度为单层或者双层。
优选的,所述绝缘层为原子层沉积法(ALD)制得的无晶体形态的介电材料,包括Al2O3、HfO2、Ta2O5和SiO2中的一种,厚度为4~12nm。
优选的,在所述第一电极和第二电极之间加载直流偏置电压,第一电极加负电位,第二电极加正电位,电压大小为0.2~1V。
与现有技术相比,本发明通过使用石墨烯天线,充分利用了石墨烯在常温下具有超高的电子迁移率、并且电子在可见光或者太赫兹波等电磁波的激发下更易形成震荡电流的特性,大大降低高频下电磁波的趋肤效应等因素导致产生的交流电在天线上损耗,提高光电转化率。另一方面,通过使用碳素材料充当MIM二极管的第二电极,充分利用了碳素材料优异的导电性能,电子在碳素材料的平均自由路径大,可以克服金属层由于厚度不均导致的电子隧穿效应的不可控、不稳定等问题,提高二极管的整流效率。
附图说明
图1为本发明含碳素材料的光电转化装置的平面示意图
图2为本发明含碳素材料的光电转化装置的剖面示意图
元件标号说明
1 天线
2 MIM二极管
3 衬底
4 第一电极
5 第二电极碳素材料层
6 第二电极金属层
7 绝缘层
8 直流偏置电压
9 入射电磁波
具体实施方式
以下通过结合附图及具体实施方式对本发明做进一步说明。
本发明公布了一种基于碳素材料的光电转化装置,如图1所示,该装置包括领结型的石墨烯天线1以及置于其上的MIM二极管2。石墨烯天线1采用传统的领结形状,天线的两个正三角形顶角相对放置,张角60°,中间相连,MIM二极管2置于天线两个三角之间的连接带之上。整个天线一体加工成型,转移到介电材料衬底3上。天线总长度为L。
MIM二极管剖面图如图2所示,包括第一电极4、第二电极5、6以及两电极之间所夹的纳米级厚度的绝缘体薄层7。在所述第一电极和第二电极之间加载直流偏置电压8,第一电极加负电位,第二电极加正电位。当太赫兹波9辐射在石墨烯天线上时,天线内部电子被激发,来回运动形成震荡电流,在偏置电压8的作用下,MIM二极管2将所形成的震荡电流转化为直流信号输出至负载。
实施例1 用于太赫兹波探测器
一种基于碳素材料的光电转化装置,利用天线吸收太赫兹波,并通过MIM二极管将其转化为电流信号输出,用于太赫兹波探测器。
该装置包括传统的领结形状的石墨烯天线以及置于其上的改进的MIM二极管。石墨烯天线采用双层,总长度5 μm,两个正三角形顶角相对放置,张角60°,中间相连,一体成型,转移到介电材料衬底上。衬底材料为ALD法制备的HfO2。MIM二极管置于天线两个三角之间的连接带之上,接触面积为100 nm2
MIM二极管包括第一电极、第二电极以及两电极之间所夹的纳米级厚度的绝缘体薄层。第一电极材料为Ta,厚度为30 nm,采用磁控溅射法制得。绝缘层为电子束蒸镀法制得的无晶体形态的介电材料SiO2,厚度为5 nm。第二电极包含碳素材料和金属层;碳素材料层为双层厚度的石墨烯薄膜,采用CVD法制备;金属层为Ta,厚度为100 nm,采用磁控溅射法制得。在第一电极和第二电极之间加载0.3V的直流偏置电压,第一电极加负电位,第二电极加正电位。当太赫兹波辐射在石墨烯天线上时,天线内部电子被激发,来回运动形成震荡电流,在偏置电压的作用下,MIM二极管将所形成的震荡电流转化为直流信号输出至负载。
实施例2 用于太赫兹波探测器
所述第一电极材料优选为Al,厚度为30 nm,采用磁控溅射法制得。所述绝缘层为电子束蒸镀法制得的无晶体形态的介电材料SiO2,厚度为4 nm。所第二电极包含碳素材料和金属层;碳素材料层材料优选为石墨炔,厚度为单层,采用CVD法制备,金属层材料优选为Ti,厚度为100 nm,采用磁控溅射法制得。
其余条件如实施例1。
实施例3 用于天线太阳电池
一种基于碳素材料的光电转化装置,利用天线吸收可见光,并通过基于碳素材料的MIM二极管将其转化为直流电输出,用于天线太阳电池。
该装置包括传统的领结形状的石墨烯天线以及置于其上的改进的MIM二极管。石墨烯天线采用双层,总长度20 μm,两个正三角形顶角相对放置,张角60°,中间相连,一体成型,转移到介电材料衬底上。衬底材料为ALD法制备的HfO2
MIM二极管置于天线两个三角之间的连接带之上,接触面积为1 μm2。MIM二极管包括第一电极、第二电极以及两电极之间所夹的纳米级厚度的绝缘体薄层。第一电极材料为Al,厚度为30 nm,采用磁控溅射法制得。绝缘层为原子层沉积法(ALD)制得的无晶体形态的介电材料HfO2,厚度为5 nm。第二电极包含碳素材料和金属层;碳素材料层为双层厚度的石墨烯薄膜,采用CVD法制备;金属层为Ti,厚度100 nm,采用磁控溅射法制得。
在第一电极和第二电极之间加载0.8V的直流偏置电压,第一电极加负电位,第二电极加正电位。当可见光辐射在石墨烯天线上时,天线内部电子被激发,来回运动形成震荡电流,在偏置电压的作用下,MIM二极管将所形成的震荡电流转化为直流电输出至负载。
实施例4 用于天线太阳电池
所述第一电极材料优选为Cr,厚度为30 nm,采用磁控溅射法制得。所述绝缘层为原子层沉积法(ALD)制得的无晶体形态的介电材料Al2O3,厚度为4 nm。第二电极包含碳素材料和金属层;碳素材料层材料优选为独立自支撑的碳纳米管膜,厚度为5nm,金属层材料优选为Ti,厚度为100 nm,采用磁控溅射法制得。
其余条件如实施例3。

Claims (7)

1.一种光电转化装置,其特征在于,该装置包括:领结型的石墨烯天线以及置于其上的MIM二极管;MIM二极管包括第一电极、第二电极以及两电极之间所夹的绝缘体薄层,第二电极包含碳素材料薄膜层,该碳素材料可以为石墨烯、石墨炔或自支撑碳纳米管膜的一种或几种,厚度为单层或者双层;石墨烯薄膜天线对可见光或者太赫兹波进行共振吸收,形成交流电,在两个电极所加载的偏置电压的作用下,通过MIM二极管的电子隧穿效应转化为直流电输出。
2.根据权利要求1所述的一种光电转化装置的制备方法,其特征在于,所述领结形石墨烯天线的两个正三角形顶角相对放置,中间相连,整个天线一体加工成型,转移到介电材料衬底上,石墨烯采用单层或双层,天线总长度为5~20 μm;衬底材料为SiO2、SiC、Si3N4、Al2O3、HfO2、Ta2O5、BN和类金刚石中的一种。
3.根据权利要求1所述的一种光电转化装置的制备方法,其特征在于,所述MIM二极管置于天线两个三角之间的连接带之上,接触面积为100nm2~1μm2
4.根据权利要求1所述的一种光电转化装置的制备方法,其特征在于,所述第一电极材料包括Cr、Ti、Al、Ni和Ta中的一种,厚度为30~50nm。
5.根据权利要求1所述的一种光电转化装置的制备方法,其特征在于,所述第二电极可以由一层碳素材料层和一层金属层组成;金属层材料包含Cr、Ti、Al、Ni和Ta中的一种,厚度为30~100nm。
6.根据权利要求1所述的一种光电转化装置的制备方法,其特征在于,所述绝缘层为原子层沉积法(ALD)制得的无晶体形态的介电材料,包括Al2O3、HfO2、Ta2O5和SiO2中的一种,厚度为4~12nm。
7.根据权利要求1所述的一种光电转化装置的制备方法,其特征在于,在所述第一电极和第二电极之间加载直流偏置电压大小为0.2~1V,第一电极加负电位,第二电极加正电位。
CN201610997037.5A 2016-11-14 2016-11-14 一种含碳素材料的光电转化装置 Pending CN106373968A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610997037.5A CN106373968A (zh) 2016-11-14 2016-11-14 一种含碳素材料的光电转化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610997037.5A CN106373968A (zh) 2016-11-14 2016-11-14 一种含碳素材料的光电转化装置

Publications (1)

Publication Number Publication Date
CN106373968A true CN106373968A (zh) 2017-02-01

Family

ID=57893599

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610997037.5A Pending CN106373968A (zh) 2016-11-14 2016-11-14 一种含碳素材料的光电转化装置

Country Status (1)

Country Link
CN (1) CN106373968A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107394380A (zh) * 2017-07-17 2017-11-24 北京理工大学 一种用于光电转换的非共面光学纳米天线
EP3379645A1 (en) * 2017-03-22 2018-09-26 Vestel Elektronik Sanayi ve Ticaret A.S. Solar antenna comprising graphene, solar unit comprising multiple solar antennas and method for operating a solar unit
WO2020123920A1 (en) * 2018-12-13 2020-06-18 Massachusetts Institute Of Technology Current rectification based on noncentrosymmetric quantum materials
CN112802827A (zh) * 2019-11-14 2021-05-14 华为技术有限公司 像素结构和图像传感器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101211991A (zh) * 2007-12-25 2008-07-02 高杰 一种天线太阳能电池及其制备方法
CN101593759A (zh) * 2008-05-27 2009-12-02 伍彪 一种新型太阳能电池
US20130162333A1 (en) * 2011-12-23 2013-06-27 Nokia Corporation Apparatus and associated methods
CN103647150A (zh) * 2013-12-17 2014-03-19 上海电机学院 石墨烯太赫兹天线及其通信方法
CN104319471A (zh) * 2014-10-17 2015-01-28 哈尔滨工业大学深圳研究生院 可调谐的纳米天线及其制备方法
CN204577575U (zh) * 2015-03-30 2015-08-19 北京空间飞行器总体设计部 一种用于红外能量转换的纳米天线
CN105737975A (zh) * 2016-02-15 2016-07-06 欧阳征标 基于mim高灵敏度spp太赫兹探测器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101211991A (zh) * 2007-12-25 2008-07-02 高杰 一种天线太阳能电池及其制备方法
CN101593759A (zh) * 2008-05-27 2009-12-02 伍彪 一种新型太阳能电池
US20130162333A1 (en) * 2011-12-23 2013-06-27 Nokia Corporation Apparatus and associated methods
CN103647150A (zh) * 2013-12-17 2014-03-19 上海电机学院 石墨烯太赫兹天线及其通信方法
CN104319471A (zh) * 2014-10-17 2015-01-28 哈尔滨工业大学深圳研究生院 可调谐的纳米天线及其制备方法
CN204577575U (zh) * 2015-03-30 2015-08-19 北京空间飞行器总体设计部 一种用于红外能量转换的纳米天线
CN105737975A (zh) * 2016-02-15 2016-07-06 欧阳征标 基于mim高灵敏度spp太赫兹探测器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3379645A1 (en) * 2017-03-22 2018-09-26 Vestel Elektronik Sanayi ve Ticaret A.S. Solar antenna comprising graphene, solar unit comprising multiple solar antennas and method for operating a solar unit
CN107394380A (zh) * 2017-07-17 2017-11-24 北京理工大学 一种用于光电转换的非共面光学纳米天线
WO2020123920A1 (en) * 2018-12-13 2020-06-18 Massachusetts Institute Of Technology Current rectification based on noncentrosymmetric quantum materials
US11837873B2 (en) 2018-12-13 2023-12-05 Massachusetts Institute Of Technology Current rectification based on noncentrosymmetric quantum materials
CN112802827A (zh) * 2019-11-14 2021-05-14 华为技术有限公司 像素结构和图像传感器
CN112802827B (zh) * 2019-11-14 2024-03-01 华为技术有限公司 像素结构和图像传感器

Similar Documents

Publication Publication Date Title
Guo et al. Self-powered solar-blind photodetectors based on α/β phase junction of Ga 2 O 3
Wu et al. Integrated unit-cell-thin MXene and Schottky electric field into piezo-photocatalyst for enhanced photocarrier separation and hydrogen evolution
CN102067307B (zh) 单元件太阳能电池装置及体系
CN104798208B (zh) 在碳纳米管的定向阵列上形成的多层涂层
Liu et al. Recent progress of heterostructures based on two dimensional materials and wide bandgap semiconductors
CN111682088A (zh) 一种基于范德华异质结的隧穿型光电探测器及其制备方法
Li et al. High-performance Schottky solar cells using ZrS 2 nanobelt networks
CN106373968A (zh) 一种含碳素材料的光电转化装置
CN101313404A (zh) 使用纳米级共金属结构的用于太阳能转换的装置和方法
CN108963003B (zh) 太阳能电池
Han et al. High-performance phototransistors based on MnPSe3 and its hybrid structures with Au nanoparticles
Ghosh et al. Enhancing the photoelectrochemical hydrogen evolution reaction through nanoscrolling of two-dimensional material heterojunctions
US20110100440A1 (en) Optical Rectification Device and Method of Making Same
So et al. Ru‐doped TiO2 nanotubes: Improved performance in dye‐sensitized solar cells
TWI667191B (zh) 半導體器件
Shen et al. Cube-like anatase TiO2 mesocrystals as effective electron-transporting materials toward high-performance perovskite solar cells
CN104851935B (zh) 一种电场调控的石墨烯/磷化铟太阳电池及其制备方法
Wang et al. Nanostructured Al-ZnO/CdSe/Cu 2 O ETA solar cells on Al-ZnO film/quartz glass templates
CN110085700A (zh) 一种极化与量子点共调控的高光电响应探测器单元
KR102577127B1 (ko) 에너지 발전 응용을 위한 신규한 탄소 나노-구조체
Ashery et al. Tuned high dielectric constant, low dielectric loss tangent with positive and negative values for PPy/MWCNTs/TiO2/Al2O3/n-Si
Liau et al. Fabrication and characterization of Fe3+-doped titania semiconductor electrodes with p–n homojunction devices
CN104037324A (zh) 一种基于硫化镉纳米阵列的钙钛矿杂化太阳电池
CN101752434B (zh) 具有纳米钻石量子井的太阳能电池及其制造方法
Elangovan et al. Performance of dye-sensitized solar cells based on various sensitizers applied on TiO 2-Nb 2 O 5 core/shell photoanode structure

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170201