[go: up one dir, main page]

CN106354805A - Optimization method and system for searching and caching distribution storage system NoSQL - Google Patents

Optimization method and system for searching and caching distribution storage system NoSQL Download PDF

Info

Publication number
CN106354805A
CN106354805A CN201610744493.9A CN201610744493A CN106354805A CN 106354805 A CN106354805 A CN 106354805A CN 201610744493 A CN201610744493 A CN 201610744493A CN 106354805 A CN106354805 A CN 106354805A
Authority
CN
China
Prior art keywords
ssd
local
local ssd
target data
cache
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610744493.9A
Other languages
Chinese (zh)
Inventor
肖利民
钟巧灵
霍志胜
阮利
李书攀
臧媛媛
付利红
王培�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Space Star Technology Co Ltd
Original Assignee
Space Star Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Space Star Technology Co Ltd filed Critical Space Star Technology Co Ltd
Priority to CN201610744493.9A priority Critical patent/CN106354805A/en
Publication of CN106354805A publication Critical patent/CN106354805A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • G06F16/245Query processing
    • G06F16/2458Special types of queries, e.g. statistical queries, fuzzy queries or distributed queries
    • G06F16/2471Distributed queries
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/27Replication, distribution or synchronisation of data between databases or within a distributed database system; Distributed database system architectures therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/1097Protocols in which an application is distributed across nodes in the network for distributed storage of data in networks, e.g. transport arrangements for network file system [NFS], storage area networks [SAN] or network attached storage [NAS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Probability & Statistics with Applications (AREA)
  • Computational Linguistics (AREA)
  • Software Systems (AREA)
  • Mathematical Physics (AREA)
  • Fuzzy Systems (AREA)
  • Computing Systems (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Memory System Of A Hierarchy Structure (AREA)

Abstract

本发明提供了一种分布式存储系统NoSQL搜索缓存的优化方法及系统,所述方法包括:步骤S101,在HBase客户端中,预先设置本地SSD作为只读缓存;步骤S102,当HBase客户端读取目标数据时,判断目标数据是否位于所述本地SSD上,如果是,则进入步骤S104;如果否,则进入步骤S103;步骤S103,从HDFS集群中读取目标数据并缓存到所述本地SSD上;步骤S104,所述本地SSD返回所述目标数据。上述技术方案引入本地SSD提供只读缓存功能,充分发挥SSD的随机读取性能,在SSD中缓存相关文件,因访问的数据具有局部性,通过在SSD缓存的文件可以有效的减少读取HDFS的I/O数目,从而提高分布式存储系统的性能,达到提高数据搜索效率的等目的。

The present invention provides a method and system for optimizing the NoSQL search cache of a distributed storage system. The method includes: step S101, in the HBase client, pre-set the local SSD as a read-only cache; step S102, when the HBase client reads When getting the target data, judge whether the target data is located on the local SSD, if yes, then enter step S104; if not, then enter step S103; step S103, read the target data from the HDFS cluster and cache to the local SSD above; step S104, the local SSD returns the target data. The above technical solution introduces the local SSD to provide the read-only cache function, giving full play to the random read performance of the SSD, and caches related files in the SSD. Because the accessed data is local, the files cached in the SSD can effectively reduce the time to read HDFS. I/O number, thereby improving the performance of the distributed storage system, and achieving the purpose of improving the efficiency of data search.

Description

一种分布式存储系统NoSQL搜索缓存的优化方法和系统Method and system for optimizing NoSQL search cache in a distributed storage system

技术领域technical field

本发明属于计算机技术领域,尤其是涉及一种分布式存储系统NoSQL搜索缓存的优化方法和系统。The invention belongs to the technical field of computers, and in particular relates to an optimization method and system for a distributed storage system NoSQL search cache.

背景技术Background technique

单个分布式存储系统已无法满足现在大规模海量数据的存储、管理和搜索的需求。目前分布式存储系统和多数据中心存储是满足EB级数据存储需求的关键的技术途径。如何从大规模的数据集中快速地搜索满足用户要求的数据是当前跨数据中心存储系统亟待解决的问题,特别是SSD等新型存储介质的出现以其优良的性能对分布式存储系统的搜索带来深远的影响,因此为了提高搜索效率,需要突破基于SSD和负载局部性特征的搜索技术的瓶颈问题。A single distributed storage system can no longer meet the storage, management and search needs of large-scale massive data. At present, distributed storage system and multi-data center storage are the key technical approaches to meet the demand for EB-level data storage. How to quickly search for data that meets user requirements from a large-scale data set is an urgent problem to be solved in the current cross-data center storage system, especially the emergence of new storage media such as SSD and its excellent performance. Therefore, in order to improve the search efficiency, it is necessary to break through the bottleneck of the search technology based on SSD and load locality characteristics.

相对传统机械硬盘,固态硬盘SSD在性能上具有非常大的优势。SSD有极高的性能,非常适合要求较快响应时间和每秒读写次数高的请求。目前SSD在大规模存储系统中应用分为SSD分层存储技术和SSD缓存技术。SSD分层存储技术通过分层存储的方法能够存储系统的高吞吐量和低存取响应时间,但是采用分层技术的方法的困难是如何判定不同的存储数据和文件的价值从而获得良好的吞吐率和低时延,同时分层tier方法需要更多的SSD,也即需要更高的存储成本;SSD缓存技术是根据数据访问的时间局部性和空间局部性采用SSD作为存储系统的缓存技术。Compared with traditional mechanical hard drives, solid state drives (SSDs) have great advantages in terms of performance. SSD has extremely high performance and is very suitable for requests requiring fast response time and high read/write times per second. At present, the application of SSD in large-scale storage systems is divided into SSD hierarchical storage technology and SSD cache technology. SSD tiered storage technology can store high throughput and low access response time of the system through the tiered storage method, but the difficulty of using the tiered technology method is how to determine the value of different stored data and files to obtain good throughput At the same time, the layered tier method requires more SSDs, which means higher storage costs; SSD caching technology uses SSDs as the caching technology of the storage system according to the temporal locality and spatial locality of data access.

目前常见的以BigTable为代表的NoSQL存储系统,包括HBase、Cassandra等,底层采用LSM树的方式组织数据,数据写入不再更改。但是针对SSD的缓存存储等通用解决方案,并没有针对上层具体的负载特征建立具体的SSD缓存方法,也没有针对上述写一次读多次的NoSQL系统建立数据搜索的缓存方法,尤其是在跨数据中心环境中异地环境条件下对于分布式存储系统NoSQL的数据访问。对应的,导致其数据搜索效率较低,有较大的提供改进空间。At present, the common NoSQL storage systems represented by BigTable include HBase, Cassandra, etc. The bottom layer uses LSM tree to organize data, and the data writing will not change. However, for general solutions such as SSD cache storage, no specific SSD cache method has been established for the specific load characteristics of the upper layer, nor has a data search cache method been established for the above-mentioned NoSQL system that writes once and reads many times, especially in cross-data Data access to distributed storage system NoSQL under remote environment conditions in the central environment. Correspondingly, the data search efficiency is low, and there is a large room for improvement.

发明内容Contents of the invention

有鉴于此,本发明实施例提供一种分布式存储系统NoSQL搜索缓存的优化方法和系统,以解决现有技术没有针对上层具体的负载特征以及分布式存储系统NoSQL写一次读多次的特征的缓存方法导致数据搜索效率较低的技术问题,达到提高数据搜索效率的目的。In view of this, the embodiments of the present invention provide a distributed storage system NoSQL search cache optimization method and system to solve the problem that the prior art does not address the specific load characteristics of the upper layer and the characteristics of the distributed storage system NoSQL write once and read multiple times The caching method leads to the technical problem of low data search efficiency, and achieves the purpose of improving data search efficiency.

本发明提供的技术方案如下:The technical scheme provided by the invention is as follows:

一种分布式存储系统NoSQL搜索缓存的优化方法,包括:A method for optimizing NoSQL search cache in a distributed storage system, comprising:

步骤S101,在HBase客户端中,预先设置本地SSD作为只读缓存;Step S101, in the HBase client, pre-set the local SSD as a read-only cache;

步骤S102,当HBase客户端读取目标数据时,判断目标数据是否位于所述本地SSD上,如果是,则进入步骤S104;如果否,则进入步骤S103;Step S102, when the HBase client reads the target data, judge whether the target data is located on the local SSD, if yes, then enter step S104; if no, then enter step S103;

步骤S103,从HDFS集群中读取目标数据并缓存到所述本地SSD上;Step S103, read the target data from the HDFS cluster and cache it on the local SSD;

步骤S104,所述本地SSD返回所述目标数据。Step S104, the local SSD returns the target data.

较佳的,所述步骤S102之前,还包括:Preferably, before the step S102, it also includes:

HBase客户端将读取请求发送至对应的HRegionServe;The HBase client sends the read request to the corresponding HRegionServe;

HRegionServer根据接收到的读取请求,判断目标数据是否位于本地内存中,如果是,则从本地内存中返回所述目标数据,如果否,则进入步骤S102。The HRegionServer judges whether the target data is located in the local memory according to the received read request, if yes, returns the target data from the local memory, and if not, proceeds to step S102.

较佳的,所述步骤S104包括:Preferably, the step S104 includes:

所述本地SSD返回所述目标数据到所述本地内存,并且所述本地内存返回所述目标数据。The local SSD returns the target data to the local memory, and the local memory returns the target data.

较佳的,所述步骤S103之前,还包括:Preferably, before the step S103, it also includes:

判断所述本地SSD的剩余存储空间是否满足预设要求,如果是,则进入步骤S103;如果否,则执行替换算法,用读取的目标数据替换所述本地SSD中的已有数据。Judging whether the remaining storage space of the local SSD meets the preset requirements, if yes, proceed to step S103; if not, execute a replacement algorithm to replace existing data in the local SSD with the read target data.

较佳的,所述方法还包括:Preferably, the method also includes:

HBase客户端生成Compact操作请求,判断Compact操作请求对应的目标HFile文件是否位于所述本地SSD上,如果是,则执行Compact操作;如果否,则从HDFS集群中读取目标HFile文件缓存到所述本地SSD上并执行Compact操作,Compact操作完成后,将原HFile文件从本地SSD中删除,并将新生成的HFile文件写入HDFS集群以及缓存到本地SSD中。The HBase client generates a Compact operation request, judges whether the target HFile file corresponding to the Compact operation request is located on the local SSD, if yes, then executes the Compact operation; if not, then reads the target HFile file cache from the HDFS cluster to the described The Compact operation is performed on the local SSD. After the Compact operation is completed, the original HFile file is deleted from the local SSD, and the newly generated HFile file is written to the HDFS cluster and cached in the local SSD.

较佳的,所述方法还包括:Preferably, the method also includes:

HBase客户端生成Split操作请求,判断Split操作请求对应的目标HFile文件是否位于所述本地SSD上,如果是,则执行Split操作;如果否,则从HDFS集群中读取目标HFile文件缓存到所述本地SSD上并执行Split操作,Split操作完成后,将原HFile文件从本地SSD中删除。The HBase client generates a Split operation request, judges whether the target HFile file corresponding to the Split operation request is located on the local SSD, if yes, then executes the Split operation; if not, then reads the target HFile file cache from the HDFS cluster to the described The split operation is performed on the local SSD. After the split operation is completed, the original HFile file is deleted from the local SSD.

相应于上述方法,本发明还提供了一种分布式存储系统NoSQL搜索缓存的优化系统,包括:Corresponding to the above method, the present invention also provides an optimization system for a distributed storage system NoSQL search cache, including:

本地SSD,用于作为只读缓存设置在HBase客户端中;Local SSD for setting in HBase client as read-only cache;

第一判断模块,用于在HBase客户端读取目标数据时,判断目标数据是否位于所述本地SSD上;The first judging module is used to judge whether the target data is located on the local SSD when the HBase client reads the target data;

数据读取模块,用于在目标数据不位于所述本地SSD上时,从HDFS集群中读取目标数据并缓存到所述本地SSD上;A data reading module, for when the target data is not located on the local SSD, read the target data from the HDFS cluster and cache it on the local SSD;

数据返回模块,用于在目标数据位于所述本地SSD上时,从所述本地SSD返回所述目标数据。A data returning module, configured to return the target data from the local SSD when the target data is located on the local SSD.

较佳的,所述的系统,还包括:Preferably, the system further includes:

第二判断模块,用于判断所述本地SSD的剩余存储空间是否满足预设要求;A second judging module, configured to judge whether the remaining storage space of the local SSD meets a preset requirement;

替换模块,用于在所述本地SSD的剩余存储空间不满足预设要求时,执行替换算法,用读取的目标数据替换所述本地SSD中的已有数据。The replacement module is configured to execute a replacement algorithm when the remaining storage space of the local SSD does not meet the preset requirements, and replace the existing data in the local SSD with the read target data.

较佳的,所述的系统,还包括:Preferably, the system further includes:

Compact模块,用于当目标HFile文件位于所述本地SSD上时,执行Compact操作,将原HFile文件从本地SSD中删除,并将新生成的HFile文件写入HDFS集群以及缓存到本地SSD中。The Compact module is configured to perform a Compact operation when the target HFile file is located on the local SSD, delete the original HFile file from the local SSD, and write the newly generated HFile file into the HDFS cluster and cache it in the local SSD.

较佳的,所述的系统,还包括:Preferably, the system further includes:

Split模块,用于当目标HFile文件位于所述本地SSD上时,执行Split操作,将原HFile文件从本地SSD中删除。The Split module is configured to perform a Split operation when the target HFile file is located on the local SSD, and delete the original HFile file from the local SSD.

采用上述技术方案,本发明至少可取得下述技术效果:Adopt above-mentioned technical scheme, the present invention can obtain following technical effect at least:

本发明提供的技术方案,引入本地SSD提供只读缓存功能,充分发挥SSD的随机读取性能,在SSD中缓存相关文件,因访问的数据具有局部性,通过在SSD缓存的文件可以有效的减少读取HDFS的I/O数目,从而提高分布式存储系统的性能,达到提高数据搜索效率的等目的。The technical scheme provided by the present invention introduces a local SSD to provide a read-only cache function, fully exerts the random read performance of the SSD, and caches related files in the SSD. Because the accessed data has locality, the files cached in the SSD can effectively reduce Read the I/O number of HDFS, thereby improving the performance of the distributed storage system and achieving the purpose of improving the efficiency of data search.

上述技术方案在应用中,针对HBase采用LSM树的方式组织数据以及上层读数据多的负载,把本地SSD作为HBase集群的只读缓存功能,充分利用HBase本身的特点,尤其适用于上层遥感卫星等应用对于数据访问读多写少的负载特征。In the application of the above technical solution, in view of HBase using the LSM tree to organize data and the load of upper-level read data, the local SSD is used as the read-only cache function of the HBase cluster, making full use of the characteristics of HBase itself, especially suitable for upper-level remote sensing satellites, etc. The application has load characteristics of more reads and less writes for data access.

附图说明Description of drawings

图1为实施例一提供的分布式存储系统NoSQL搜索缓存的优化方法流程图;Fig. 1 is the flow chart of the method for optimizing the NoSQL search cache of the distributed storage system provided by Embodiment 1;

图2为实施例一提供的加入本地SSD后的分布式存储系统后HBase的HRregionServer架构示意图;FIG. 2 is a schematic diagram of the HRregionServer architecture of HBase after adding the distributed storage system after the local SSD provided by Embodiment 1;

图3为实施例二提供的Compact操作方法流程图;Fig. 3 is the flow chart of the Compact operation method provided by embodiment two;

图4为实施例三提供的Split操作方法流程图;Fig. 4 is the flow chart of the Split operation method that embodiment three provides;

图5为实施例四提供的分布式存储系统NoSQL搜索缓存的优化系统组成图。FIG. 5 is a system composition diagram of an optimized NoSQL search cache of a distributed storage system provided in Embodiment 4.

具体实施方式detailed description

为使本发明解决的技术问题、采用的技术方案和达到的技术效果更加清楚,下面将结合附图对本发明实施例的技术方案作进一步的详细描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the technical problems solved by the present invention, the technical solutions adopted and the technical effects achieved clearer, the technical solutions of the embodiments of the present invention will be further described in detail below in conjunction with the accompanying drawings. Obviously, the described embodiments are only the technical solutions of the present invention. Some, but not all, embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those skilled in the art without creative efforts fall within the protection scope of the present invention.

下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。需要说明的是,本发明以以下实施例为例对本发明的技术方案进行说明,但并非以此作为限制。本领域技术人员能够明了,本发明所提出的钱分布式存储系统NoSQL搜索缓存的优化方法和系统除用于分布式存储系统之外,还可以广泛应用于其他相同或相近领域中,并取得类似的技术效果。The technical solutions of the present invention will be further described below in conjunction with the accompanying drawings and through specific implementation methods. It should be noted that the present invention uses the following examples as examples to describe the technical solution of the present invention, but it is not limited thereto. Those skilled in the art can understand that the method and system for optimizing the NoSQL search cache of the distributed storage system proposed by the present invention can be widely used in other same or similar fields besides the distributed storage system, and achieve similar technical effect.

在跨数据中心环境条件下,底层的数据库系统采用的技术方案是HBase分布式存储系统,HBase是一个采用LSM的方式组织底层数据的存储系统,且跨数据中心环境条件下,遥感卫星等应用呈现数据访问局部性以及写入一次读取多次等特征。Under the cross-data center environment, the technical solution adopted by the underlying database system is the HBase distributed storage system. HBase is a storage system that uses LSM to organize the underlying data. Data access locality and features such as write once and read multiple times.

以下对实施例中用到的HBase存储系统相关技术术语进行说明:The technical terms related to the HBase storage system used in the embodiments are described below:

(1)HBase组件:在HBase存储系统中包括HMaster,HRegionServer和Client。其中HMaster负责HBase存储系统中数据表的创建、删除等操作。HRegionServer上存储具体表的数据,包括表的多个HRegion。(1) HBase components: HBase storage system includes HMaster, HRegionServer and Client. Among them, HMaster is responsible for creating and deleting data tables in the HBase storage system. The HRegionServer stores the data of a specific table, including multiple HRegions of the table.

(2)HRegion:每个表分成多个HRegion,每个HRegion包含多个Store,每个Store对应于一个列簇(column family),每个Store包含一个MemStore和多个StoreFile。(2) HRegion: Each table is divided into multiple HRegions, each HRegion contains multiple Stores, each Store corresponds to a column family, and each Store contains a MemStore and multiple StoreFiles.

(3)Compact和Split:在HBase系统运行过程中,会产生多个HFile文件,当HFile文件个数超过一定数目的时候,HBase集群会执行Compact。当HFile文件大小超过一定的阀值时执行Split操作。(3) Compact and Split: During the operation of the HBase system, multiple HFile files will be generated. When the number of HFile files exceeds a certain number, the HBase cluster will execute Compact. When the HFile file size exceeds a certain threshold, the Split operation is performed.

HBase存储系统的一个重要的特性是一旦HFile文件写入HDFS集群中时,HFile文件不再改变。An important feature of the HBase storage system is that once the HFile file is written into the HDFS cluster, the HFile file will not change.

实施例一:Embodiment one:

图1为是本实施例提供的分布式存储系统NoSQL搜索缓存的优化方法流程图。参考图1所示,该方法包括如下步骤:FIG. 1 is a flowchart of a method for optimizing a NoSQL search cache in a distributed storage system provided by this embodiment. Shown in Fig. 1 with reference to, this method comprises the steps:

步骤S101,在HBase客户端中,预先设置本地SSD作为只读缓存;Step S101, in the HBase client, pre-set the local SSD as a read-only cache;

如图2所示的HBase客户端(分布式存储系统集群)中设置本地SSD作为只读缓存后的架构示意图。其中本地SSD可以加入HRegionServer中。Figure 2 is a schematic diagram of the architecture after setting the local SSD as a read-only cache in the HBase client (distributed storage system cluster). Among them, local SSD can be added to HRegionServer.

步骤S102,当HBase客户端读取目标数据时,判断目标数据是否位于所述本地SSD上,如果是,则进入步骤S104;如果否,则进入步骤S103;Step S102, when the HBase client reads the target data, judge whether the target data is located on the local SSD, if yes, then enter step S104; if no, then enter step S103;

本步骤之前,HBase客户端根据需求产生Get/Scan操作请求,根据操作的目标数据,HBase客户端将Get/Scan等操作请求发送至对应的HRegionServe,HRegionServer根据接收到的读取请求,判断目标数据是否位于本地内存中,其中假设需要读取HFile文件,定位具体的HFile文件,判断所述HFile文件中的数据库是否在本地内存中,如果是,则从本地内存中返回所述目标数据,如果否,即对应的HFileBlock数据块不在本地内存中,则进入步骤S102。Before this step, the HBase client generates a Get/Scan operation request according to the requirement. According to the target data of the operation, the HBase client sends the Get/Scan operation request to the corresponding HRegionServer, and the HRegionServer judges the target data according to the received read request. Whether it is located in the local memory, assuming that the HFile file needs to be read, locate the specific HFile file, and judge whether the database in the HFile file is in the local memory, if yes, return the target data from the local memory, if not , that is, the corresponding HFileBlock data block is not in the local memory, then enter step S102.

步骤S103,从HDFS集群中读取目标数据并缓存到所述本地SSD上;Step S103, read the target data from the HDFS cluster and cache it on the local SSD;

其中,在步骤S103之前还可以包括:判断所述本地SSD的剩余存储空间是否满足预设要求,如果是,则进入步骤S103;如果否,则执行替换算法如LRU(Least Recently Used,最近最少使用)算法,用读取的目标数据替换所述本地SSD中的已有数据,如用读取到的HFile文件替换掉本地SSD中的旧HFile文件。Wherein, before step S103, it may also include: judging whether the remaining storage space of the local SSD meets the preset requirements, if yes, then enter step S103; if not, then perform a replacement algorithm such as LRU (Least Recently Used, least recently used ) algorithm, replace the existing data in the local SSD with the read target data, such as replacing the old HFile file in the local SSD with the read HFile file.

步骤S104,所述本地SSD返回所述目标数据。Step S104, the local SSD returns the target data.

对应的,所述步骤S104具体可以包括:所述本地SSD返回所述目标数据到所述本地内存,并且所述本地内存返回所述目标数据。Correspondingly, the step S104 may specifically include: the local SSD returns the target data to the local memory, and the local memory returns the target data.

此外,上述实施例中,当写入数据的时候可以直接写入到底层文件系统,在所述本地SSD中不进行缓存。In addition, in the above embodiment, when data is written, it can be directly written to the underlying file system, and no cache is performed in the local SSD.

在大规模海量数据环境下,通过NoSQL存储系统存储数据对于快速查找提出了低时延要求。而目前以BigTable为代表的NoSQL系统普遍采用LSM树的方式在组织半结构化数据,用于写入一次读多次的特征。In a large-scale massive data environment, storing data through a NoSQL storage system requires low latency for fast lookup. At present, NoSQL systems represented by BigTable generally use LSM trees to organize semi-structured data, which is used to write once and read multiple times.

而本实施例提供的技术方案,引入本地SSD提供只读缓存功能,充分发挥SSD的随机读取性能,在SSD中缓存相关文件,因访问的数据具有局部性,通过在SSD缓存的文件可以有效的减少读取HDFS的I/O数目,从而提高分布式存储系统的性能,达到提高数据搜索效率的等目的。The technical solution provided by this embodiment introduces a local SSD to provide a read-only cache function, fully utilizes the random read performance of the SSD, and caches related files in the SSD. Because the accessed data has locality, the files cached in the SSD can be effectively Reduce the number of I/Os for reading HDFS, thereby improving the performance of the distributed storage system and achieving the purpose of improving data search efficiency.

上述技术方案在应用中,针对HBase采用LSM树的方式组织数据以及上层读数据多的负载,把本地SSD作为HBase集群的只读缓存功能,充分利用HBase本身的特点,尤其适用于上层遥感卫星等应用对于数据访问读多写少的负载特征。In the application of the above technical solution, in view of HBase using the LSM tree to organize data and the load of upper-level read data, the local SSD is used as the read-only cache function of the HBase cluster, making full use of the characteristics of HBase itself, especially suitable for upper-level remote sensing satellites, etc. The application has load characteristics of more reads and less writes for data access.

实施例二:Embodiment two:

在HBase存储系统运行过程中,会产生多个HFile文件,当HFile文件个数超过一定数目的时候,HBase集群需要执行Compact操作,以减少HFile文件数目。本实施例在实施例一的分布式存储系统NoSQL搜索缓存的优化方法的基础上,提供了一种在HBase集群执行Compact操作方法,如图3所述为该方法的流程示意图,具体包括以下步骤:During the operation of the HBase storage system, multiple HFile files will be generated. When the number of HFile files exceeds a certain number, the HBase cluster needs to perform the Compact operation to reduce the number of HFile files. This embodiment provides a method for performing a Compact operation in an HBase cluster on the basis of the method for optimizing the NoSQL search cache of the distributed storage system in Embodiment 1. Figure 3 is a schematic flow diagram of the method, which specifically includes the following steps :

步骤S301,HBase客户端生成Compact操作请求;Step S301, the HBase client generates a Compact operation request;

步骤S302,判断Compact操作请求对应的目标HFile文件是否位于所述本地SSD上,如果是,则进入步骤S304;如果否,则进入步骤S303;Step S302, judging whether the target HFile file corresponding to the Compact operation request is located on the local SSD, if yes, then enter step S304; if no, then enter step S303;

步骤S303,从HDFS集群中读取目标HFile文件缓存到所述本地SSD上;Step S303, read the target HFile file from the HDFS cluster and cache it on the local SSD;

步骤S304,执行Compact操作;Step S304, performing a Compact operation;

步骤S305,Compact操作完成后,将原HFile文件从本地SSD中删除;Step S305, after the Compact operation is completed, the original HFile file is deleted from the local SSD;

步骤S306,将新生成的HFile文件写入HDFS集群以及缓存到本地SSD中。Step S306, write the newly generated HFile into the HDFS cluster and cache it in the local SSD.

通过本实施例提供的方法,可以在当HFile文件个数超过一定数目的时候,执行Compact操作,以减少HFile文件数目。Through the method provided in this embodiment, when the number of HFiles exceeds a certain number, the Compact operation can be performed to reduce the number of HFiles.

实施例三:Embodiment three:

在HBase存储系统运行过程中,会产生多个HFile文件,当HFile文件大小超过一定的阀值时,HBase集群需要执行Split操作以减小HFile文件大小。本实施例在实施例一的分布式存储系统NoSQL搜索缓存的优化方法的基础上,提供了一种在HBase集群执行Split操作方法,如图4所述为该方法的流程示意图,具体包括以下步骤:During the operation of the HBase storage system, multiple HFile files are generated. When the size of the HFile file exceeds a certain threshold, the HBase cluster needs to perform the Split operation to reduce the size of the HFile file. On the basis of the optimization method for the NoSQL search cache of the distributed storage system in Embodiment 1, this embodiment provides a method for executing the Split operation in the HBase cluster, as shown in Figure 4, which is a schematic flow diagram of the method, specifically including the following steps :

步骤S401,HBase客户端生成Split操作请求;Step S401, the HBase client generates a Split operation request;

步骤S402,判断Split操作请求对应的目标HFile文件是否位于所述本地SSD上,如果是,则进入步骤S304;如果否,则进入步骤S303;Step S402, judging whether the target HFile file corresponding to the Split operation request is located on the local SSD, if yes, then enter step S304; if no, then enter step S303;

步骤S403,从HDFS集群中读取目标HFile文件缓存到所述本地SSD上;Step S403, read the target HFile file from the HDFS cluster and cache it on the local SSD;

步骤S404,执行Split操作;Step S404, performing a Split operation;

步骤S405,Split操作完成后,将原HFile文件从本地SSD中删除。Step S405, after the Split operation is completed, the original HFile file is deleted from the local SSD.

通过本实施例提供的方法,可以在当HFile文件大小超过一定的阀值时,执行Split操作,以减小HFile文件大小。Through the method provided in this embodiment, when the size of the HFile exceeds a certain threshold, the Split operation can be performed to reduce the size of the HFile.

实施例四:Embodiment four:

相应于上述方法,本实施例还提供了一种分布式存储系统NoSQL搜索缓存的优化系统,如图5所示的该系统架构示意图,包括:Corresponding to the above method, this embodiment also provides a NoSQL search cache optimization system for a distributed storage system, as shown in Figure 5, a schematic diagram of the system architecture, including:

本地SSD501,用于作为只读缓存设置在HBase客户端中;Local SSD501, used as a read-only cache set in the HBase client;

第一判断模块502,用于在HBase客户端读取目标数据时,判断目标数据是否位于所述本地SSD上;The first judging module 502 is used to judge whether the target data is located on the local SSD when the HBase client reads the target data;

数据读取模块503,用于在目标数据不位于所述本地SSD上时,从HDFS集群中读取目标数据并缓存到所述本地SSD上;Data reading module 503, for when the target data is not located on the local SSD, read the target data from the HDFS cluster and cache it on the local SSD;

数据返回模块504,用于在目标数据位于所述本地SSD上时,从所述本地SSD返回所述目标数据。A data return module 504, configured to return the target data from the local SSD when the target data is located on the local SSD.

此外,所述系统,还可以包括:In addition, the system may also include:

第二判断模块,用于判断所述本地SSD的剩余存储空间是否满足预设要求;A second judging module, configured to judge whether the remaining storage space of the local SSD meets a preset requirement;

替换模块,用于在所述本地SSD的剩余存储空间不满足预设要求时,执行替换算法,如LRU(Least Recently Used,最近最少使用),用读取的目标数据替换所述本地SSD中的已有数据,如用读取到的HFile文件替换掉本地SSD中的旧HFile文件。A replacement module, configured to execute a replacement algorithm such as LRU (Least Recently Used) when the remaining storage space of the local SSD does not meet the preset requirements, and replace the data in the local SSD with the target data read. Existing data, such as replacing the old HFile file in the local SSD with the read HFile file.

在HBase存储系统运行过程中,会产生多个HFile文件,当HFile文件个数超过一定数目的时候,HBase集群需要执行Compact操作,以减少HFile文件数目。因此所述系统,还可以包括:During the operation of the HBase storage system, multiple HFile files will be generated. When the number of HFile files exceeds a certain number, the HBase cluster needs to perform the Compact operation to reduce the number of HFile files. Therefore, the system may also include:

Compact模块,用于当目标HFile文件位于所述本地SSD上时,执行Compact操作,将原HFile文件从本地SSD中删除,并将新生成的HFile文件写入HDFS集群以及缓存到本地SSD中。The Compact module is configured to perform a Compact operation when the target HFile file is located on the local SSD, delete the original HFile file from the local SSD, and write the newly generated HFile file into the HDFS cluster and cache it in the local SSD.

当HFile文件大小超过一定的阀值时,HBase集群需要执行Split操作以减小HFile文件大小。因此所述的系统,还可以包括:When the size of the HFile file exceeds a certain threshold, the HBase cluster needs to perform the Split operation to reduce the size of the HFile file. Therefore described system can also comprise:

Split模块,用于当目标HFile文件位于所述本地SSD上时,执行Split操作,将原HFile文件从本地SSD中删除。The Split module is configured to perform a Split operation when the target HFile file is located on the local SSD, and delete the original HFile file from the local SSD.

本实施例提供的技术方案,引入本地SSD提供只读缓存功能,充分发挥SSD的随机读取性能,在SSD中缓存相关文件,因访问的数据具有局部性,通过在SSD缓存的文件可以有效的减少读取HDFS的I/O数目,从而提高分布式存储系统的性能,达到提高数据搜索效率的等目的。The technical solution provided by this embodiment introduces a local SSD to provide a read-only cache function, fully utilizes the random read performance of the SSD, and caches related files in the SSD. Because the accessed data has locality, the files cached in the SSD can be effectively Reduce the number of I/Os for reading HDFS, thereby improving the performance of the distributed storage system and achieving the purpose of improving data search efficiency.

上述技术方案在应用中,针对HBase采用LSM树的方式组织数据以及上层读数据多的负载,把本地SSD作为HBase集群的只读缓存功能,充分利用HBase本身的特点,尤其适用于上层遥感卫星等应用对于数据访问读多写少的负载特征。In the application of the above technical solution, in view of HBase using the LSM tree to organize data and the load of upper-level read data, the local SSD is used as the read-only cache function of the HBase cluster, making full use of the characteristics of HBase itself, especially suitable for upper-level remote sensing satellites, etc. The application has load characteristics of more reads and less writes for data access.

本发明在软件上,操作系统优选为Linux系统,运行在Linux机群中提供文件IO服务的软件之上,如HDFS、GFS等分布式文件系统和HBase等NoSql分布式数据库系统,并且HDFS分布式文件系统配置多个DataNode。The present invention is on software, and the operating system is preferably a Linux system, running on the software that provides file IO services in the Linux cluster, such as distributed file systems such as HDFS and GFS and NoSql distributed database systems such as HBase, and HDFS distributed files The system configures multiple DataNodes.

以上实施例提供的技术方案中的全部或部分内容可以通过软件编程或专用硬件设备实现,其中软件程序存储在可读取的存储介质中,存储介质例如:计算机中的硬盘、光盘或软盘;专用硬件设备可以是ASIC、FPGA、SoC、或具有相应电路的IP Core。All or part of the content in the technical solutions provided by the above embodiments can be realized by software programming or special hardware equipment, wherein the software program is stored in a readable storage medium, the storage medium is for example: a hard disk, an optical disk or a floppy disk in a computer; The hardware device can be ASIC, FPGA, SoC, or IP Core with corresponding circuits.

注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。Note that the above are only preferred embodiments of the present invention and applied technical principles. Those skilled in the art will understand that the present invention is not limited to the specific embodiments described herein, and that various obvious changes, readjustments and substitutions can be made by those skilled in the art without departing from the protection scope of the present invention. Therefore, although the present invention has been described in detail through the above embodiments, the present invention is not limited to the above embodiments, and can also include more other equivalent embodiments without departing from the concept of the present invention, and the present invention The scope is determined by the scope of the appended claims.

Claims (10)

1.一种分布式存储系统NoSQL搜索缓存的优化方法,其特征在于,包括:1. an optimization method for distributed storage system NoSQL search cache, characterized in that, comprising: 步骤S101,在HBase客户端中,预先设置本地SSD作为只读缓存;Step S101, in the HBase client, pre-set the local SSD as a read-only cache; 步骤S102,当HBase客户端读取目标数据时,判断目标数据是否位于所述本地SSD上,如果是,则进入步骤S104;如果否,则进入步骤S103;Step S102, when the HBase client reads the target data, judge whether the target data is located on the local SSD, if yes, then enter step S104; if no, then enter step S103; 步骤S103,从HDFS集群中读取目标数据并缓存到所述本地SSD上;Step S103, read the target data from the HDFS cluster and cache it on the local SSD; 步骤S104,所述本地SSD返回所述目标数据。Step S104, the local SSD returns the target data. 2.如权利要求1所述的方法,其特征在于,所述步骤S102之前,还包括:2. The method according to claim 1, characterized in that, before the step S102, further comprising: HBase客户端将读取请求发送至对应的HRegionServe;The HBase client sends the read request to the corresponding HRegionServe; HRegionServer根据接收到的读取请求,判断目标数据是否位于本地内存中,如果是,则从本地内存中返回所述目标数据,如果否,则进入步骤S102。The HRegionServer judges whether the target data is located in the local memory according to the received read request, if yes, returns the target data from the local memory, and if not, proceeds to step S102. 3.如权利要求2所述的方法,其特征在于,所述步骤S104包括:3. The method according to claim 2, characterized in that the step S104 comprises: 所述本地SSD返回所述目标数据到所述本地内存,并且所述本地内存返回所述目标数据。The local SSD returns the target data to the local memory, and the local memory returns the target data. 4.如权利要求1所述的方法,其特征在于,所述步骤S103之前,还包括:4. The method according to claim 1, characterized in that, before the step S103, further comprising: 判断所述本地SSD的剩余存储空间是否满足预设要求,如果是,则进入步骤S103;如果否,则执行替换算法,用读取的目标数据替换所述本地SSD中的已有数据。Judging whether the remaining storage space of the local SSD meets the preset requirements, if yes, proceed to step S103; if not, execute a replacement algorithm to replace existing data in the local SSD with the read target data. 5.如权利要求1所述的方法,其特征在于,还包括:5. The method of claim 1, further comprising: HBase客户端生成Compact操作请求,判断Compact操作请求对应的目标HFile文件是否位于所述本地SSD上,如果是,则执行Compact操作;如果否,则从HDFS集群中读取目标HFile文件缓存到所述本地SSD上并执行Compact操作,Compact操作完成后,将原HFile文件从本地SSD中删除,并将新生成的HFile文件写入HDFS集群以及缓存到本地SSD中。The HBase client generates a Compact operation request, judges whether the target HFile file corresponding to the Compact operation request is located on the local SSD, if yes, then executes the Compact operation; if not, then reads the target HFile file cache from the HDFS cluster to the described The Compact operation is performed on the local SSD. After the Compact operation is completed, the original HFile file is deleted from the local SSD, and the newly generated HFile file is written to the HDFS cluster and cached in the local SSD. 6.如权利要求1所述的方法,其特征在于,还包括:6. The method of claim 1, further comprising: HBase客户端生成Split操作请求,判断Split操作请求对应的目标HFile文件是否位于所述本地SSD上,如果是,则执行Split操作;如果否,则从HDFS集群中读取目标HFile文件缓存到所述本地SSD上并执行Split操作,Split操作完成后,将原HFile文件从本地SSD中删除。The HBase client generates a Split operation request, judges whether the target HFile file corresponding to the Split operation request is located on the local SSD, if yes, then executes the Split operation; if not, then reads the target HFile file cache from the HDFS cluster to the described The split operation is performed on the local SSD. After the split operation is completed, the original HFile file is deleted from the local SSD. 7.一种分布式存储系统NoSQL搜索缓存的优化系统,其特征在于,包括:7. An optimization system for distributed storage system NoSQL search cache, characterized in that, comprising: 本地SSD,用于作为只读缓存设置在HBase客户端中;Local SSD for setting in HBase client as read-only cache; 第一判断模块,用于在HBase客户端读取目标数据时,判断目标数据是否位于所述本地SSD上;The first judging module is used to judge whether the target data is located on the local SSD when the HBase client reads the target data; 数据读取模块,用于在目标数据不位于所述本地SSD上时,从HDFS集群中读取目标数据并缓存到所述本地SSD上;A data reading module, for when the target data is not located on the local SSD, read the target data from the HDFS cluster and cache it on the local SSD; 数据返回模块,用于在目标数据位于所述本地SSD上时,从所述本地SSD返回所述目标数据。A data returning module, configured to return the target data from the local SSD when the target data is located on the local SSD. 8.如权利要求7所述的系统,其特征在于,还包括:8. The system of claim 7, further comprising: 第二判断模块,用于判断所述本地SSD的剩余存储空间是否满足预设要求;A second judging module, configured to judge whether the remaining storage space of the local SSD meets a preset requirement; 替换模块,用于在所述本地SSD的剩余存储空间不满足预设要求时,执行替换算法,用读取的目标数据替换所述本地SSD中的已有数据。The replacement module is configured to execute a replacement algorithm when the remaining storage space of the local SSD does not meet the preset requirements, and replace the existing data in the local SSD with the read target data. 9.如权利要求7所述的系统,其特征在于,还包括:9. The system of claim 7, further comprising: Compact模块,用于当目标HFile文件位于所述本地SSD上时,执行Compact操作,将原HFile文件从本地SSD中删除,并将新生成的HFile文件写入HDFS集群以及缓存到本地SSD中。The Compact module is configured to perform a Compact operation when the target HFile file is located on the local SSD, delete the original HFile file from the local SSD, and write the newly generated HFile file into the HDFS cluster and cache it in the local SSD. 10.如权利要求7所述的系统,其特征在于,还包括:10. The system of claim 7, further comprising: Split模块,用于当目标HFile文件位于所述本地SSD上时,执行Split操作,将原HFile文件从本地SSD中删除。The Split module is configured to perform a Split operation when the target HFile file is located on the local SSD, and delete the original HFile file from the local SSD.
CN201610744493.9A 2016-08-28 2016-08-28 Optimization method and system for searching and caching distribution storage system NoSQL Pending CN106354805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610744493.9A CN106354805A (en) 2016-08-28 2016-08-28 Optimization method and system for searching and caching distribution storage system NoSQL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610744493.9A CN106354805A (en) 2016-08-28 2016-08-28 Optimization method and system for searching and caching distribution storage system NoSQL

Publications (1)

Publication Number Publication Date
CN106354805A true CN106354805A (en) 2017-01-25

Family

ID=57856191

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610744493.9A Pending CN106354805A (en) 2016-08-28 2016-08-28 Optimization method and system for searching and caching distribution storage system NoSQL

Country Status (1)

Country Link
CN (1) CN106354805A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107122264A (en) * 2017-05-15 2017-09-01 成都优孚达信息技术有限公司 mass data disaster-tolerant backup method
CN107562385A (en) * 2017-09-13 2018-01-09 郑州云海信息技术有限公司 Distributed storage client reads the method, apparatus and equipment of data
CN107632784A (en) * 2017-09-14 2018-01-26 郑州云海信息技术有限公司 The caching method of a kind of storage medium and distributed memory system, device and equipment
CN107797771A (en) * 2017-11-16 2018-03-13 郑州云海信息技术有限公司 A kind of multipath storage optimization method and device
CN109491789A (en) * 2018-11-02 2019-03-19 浪潮电子信息产业股份有限公司 Distributed storage system service equalization processing method, device and equipment
CN109783032A (en) * 2019-01-24 2019-05-21 山东超越数控电子股份有限公司 A kind of distributed storage accelerating method and device based on Heterogeneous Computing
CN111274310A (en) * 2018-12-05 2020-06-12 中国移动通信集团山东有限公司 A distributed data cache method and system
CN111291040A (en) * 2018-12-10 2020-06-16 中国移动通信集团四川有限公司 Data processing method, device, equipment and medium
CN112764690A (en) * 2021-02-03 2021-05-07 北京同有飞骥科技股份有限公司 Distributed storage system
CN113835614A (en) * 2020-09-17 2021-12-24 北京焱融科技有限公司 A kind of SSD intelligent caching method and system based on distributed file storage client

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110173395A1 (en) * 2010-01-12 2011-07-14 International Business Machines Corporation Temperature-aware buffered caching for solid state storage
CN104267912A (en) * 2014-09-19 2015-01-07 北京联创信安科技有限公司 NAS (Network Attached Storage) accelerating method and system
CN105446665A (en) * 2015-12-18 2016-03-30 长城信息产业股份有限公司 Computer storage acceleration system and optimization method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110173395A1 (en) * 2010-01-12 2011-07-14 International Business Machines Corporation Temperature-aware buffered caching for solid state storage
CN104267912A (en) * 2014-09-19 2015-01-07 北京联创信安科技有限公司 NAS (Network Attached Storage) accelerating method and system
CN105446665A (en) * 2015-12-18 2016-03-30 长城信息产业股份有限公司 Computer storage acceleration system and optimization method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107122264A (en) * 2017-05-15 2017-09-01 成都优孚达信息技术有限公司 mass data disaster-tolerant backup method
CN107122264B (en) * 2017-05-15 2020-06-09 成都优孚达信息技术有限公司 Disaster-tolerant backup method for mass data
CN107562385A (en) * 2017-09-13 2018-01-09 郑州云海信息技术有限公司 Distributed storage client reads the method, apparatus and equipment of data
CN107632784A (en) * 2017-09-14 2018-01-26 郑州云海信息技术有限公司 The caching method of a kind of storage medium and distributed memory system, device and equipment
CN107797771A (en) * 2017-11-16 2018-03-13 郑州云海信息技术有限公司 A kind of multipath storage optimization method and device
CN109491789A (en) * 2018-11-02 2019-03-19 浪潮电子信息产业股份有限公司 Distributed storage system service equalization processing method, device and equipment
CN111274310A (en) * 2018-12-05 2020-06-12 中国移动通信集团山东有限公司 A distributed data cache method and system
CN111291040A (en) * 2018-12-10 2020-06-16 中国移动通信集团四川有限公司 Data processing method, device, equipment and medium
CN111291040B (en) * 2018-12-10 2022-10-18 中国移动通信集团四川有限公司 Data processing method, device, equipment and medium
CN109783032A (en) * 2019-01-24 2019-05-21 山东超越数控电子股份有限公司 A kind of distributed storage accelerating method and device based on Heterogeneous Computing
CN113835614A (en) * 2020-09-17 2021-12-24 北京焱融科技有限公司 A kind of SSD intelligent caching method and system based on distributed file storage client
CN112764690A (en) * 2021-02-03 2021-05-07 北京同有飞骥科技股份有限公司 Distributed storage system

Similar Documents

Publication Publication Date Title
US11099769B1 (en) Copying data without accessing the data
CN106354805A (en) Optimization method and system for searching and caching distribution storage system NoSQL
CN110825748B (en) High-performance and easily-expandable key value storage method by utilizing differentiated indexing mechanism
US11392544B2 (en) System and method for leveraging key-value storage to efficiently store data and metadata in a distributed file system
US8799601B1 (en) Techniques for managing deduplication based on recently written extents
US9996542B2 (en) Cache management in a computerized system
US9311252B2 (en) Hierarchical storage for LSM-based NoSQL stores
CN102662992B (en) Method and device for storing and accessing massive small files
WO2019085769A1 (en) Tiered data storage and tiered query method and apparatus
KR102437775B1 (en) Page cache device and method for efficient mapping
CN105095113B (en) A kind of buffer memory management method and system
CN105183839A (en) Hadoop-based storage optimizing method for small file hierachical indexing
US9182912B2 (en) Method to allow storage cache acceleration when the slow tier is on independent controller
CN104054071A (en) Method for accessing storage device and storage device
CN112860186A (en) Capacity expansion method for billion-level object storage bucket
CN109933564A (en) File system management method, device, terminal and medium for fast rollback based on linked list and N-ary tree structure
WO2022121274A1 (en) Metadata management method and apparatus in storage system, and storage system
CN104052824A (en) Distributed cache method and system
CN102073690B (en) Method for constructing memory database supporting historical Key information
CN104158863A (en) Cloud storage mechanism based on transaction-level whole-course high-speed buffer
Lv et al. Zonedstore: A concurrent zns-aware cache system for cloud data storage
US11789622B2 (en) Method, device and computer program product for storage management
US11586353B2 (en) Optimized access to high-speed storage device
US9864761B1 (en) Read optimization operations in a storage system
Mishra A survey of LSM-Tree based Indexes, Data Systems and KV-stores

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170125