[go: up one dir, main page]

CN106353033B - A kind of aero-engine centroid computing method - Google Patents

A kind of aero-engine centroid computing method Download PDF

Info

Publication number
CN106353033B
CN106353033B CN201611007353.XA CN201611007353A CN106353033B CN 106353033 B CN106353033 B CN 106353033B CN 201611007353 A CN201611007353 A CN 201611007353A CN 106353033 B CN106353033 B CN 106353033B
Authority
CN
China
Prior art keywords
coordinate system
relative
component
main
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611007353.XA
Other languages
Chinese (zh)
Other versions
CN106353033A (en
Inventor
金路
雷雨恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Kangda Huichuang Technology Co ltd
Original Assignee
Shenyang Jianzhu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Jianzhu University filed Critical Shenyang Jianzhu University
Priority to CN201611007353.XA priority Critical patent/CN106353033B/en
Publication of CN106353033A publication Critical patent/CN106353033A/en
Application granted granted Critical
Publication of CN106353033B publication Critical patent/CN106353033B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M1/00Testing static or dynamic balance of machines or structures
    • G01M1/12Static balancing; Determining position of centre of gravity
    • G01M1/122Determining position of centre of gravity

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开一种航空发动机质心计算方法;该方法具有计算精度高、普适性强、方便快捷等优点;本发明的技术方案是:一种航空发动机质心计算方法,主要包括以下步骤:a.建立部件局部坐标系相对于相对坐标系的变换矩阵;b.建立部件局部坐标系相对于主坐标系的变换矩阵;c.求取发动机质心;本发明用途:一、本发明够准确的计算发动机整机的质心参数,方便吊装和运输工装的设计及整机的装配等工作;二、本发明具有很强的普适性,可以计算任意一个部件的质心参数;三、本发明对于其它旋转类机械同样具有参考和借鉴意义。

The invention discloses a method for calculating the center of mass of an aero-engine; the method has the advantages of high calculation accuracy, strong universality, convenience and quickness; the technical solution of the invention is: a method for calculating the center of mass of an aero-engine, which mainly includes the following steps: a. Set up the transformation matrix of the component local coordinate system with respect to the relative coordinate system; b. set up the transformation matrix of the component local coordinate system with respect to the main coordinate system; The centroid parameter of the whole machine is convenient for the design of hoisting and transportation tooling and the assembly of the whole machine; two, the present invention has strong universality, and can calculate the centroid parameter of any part; three, the present invention is applicable to other rotating Machinery also has reference and reference significance.

Description

一种航空发动机质心计算方法A method for calculating the center of mass of an aeroengine

技术领域technical field

本发明涉及航空发动机领域,尤其涉及一种航空发动机质心的计算方法。The invention relates to the field of aero-engines, in particular to a method for calculating the centroid of an aero-engine.

背景技术Background technique

航空发动机质心是发动机的一个重要特征参数,是影响发动机吊装和运输设备设计等工作的一项重要技术指标。目前发动机质心的计算通常根据零部件的结构特点及安装的角向位置进行分类:将风扇、中介机匣、压气机、燃烧室、涡轮等具有轴对称特征且回转轴与发动机轴线重合的主机部件归为一类;将滑油箱、燃滑油散热器、转接齿轮箱等具有非轴对称特征且角向位置不固定的附件归为另一类。对于主机部件,可以借助Pro/E、UG等三维建模软件直接读出其质量特性数据,计算精度较高;但对于附件,则难度较大,由于附件数量多、结构复杂,附件的承制单位一般只提供一个简化的附件模型和一个包含局部坐标系的质量特性文件,因此单纯依靠三维软件是无法读取的。对于此类问题,目前采取的措施是首先将此类结构进行简化处理,将每个附件都视作一个质点进行分析,而质点位置的选取,随机性较强,人为误差较大。尽管多数附件的质量和体积都比较小,但由于发动机包含数十个附件,由附件带来的累计误差对发动机整体的影响不可忽视,目前尚缺少一种准确的发动机质心参数计算方法。The center of mass of an aero-engine is an important characteristic parameter of the engine, and an important technical index that affects the design of engine hoisting and transportation equipment. At present, the calculation of the center of mass of the engine is usually classified according to the structural characteristics of the parts and the angular position of the installation: the fan, the intermediate casing, the compressor, the combustion chamber, the turbine and other main components with axisymmetric characteristics and the axis of rotation coincide with the axis of the engine Classify them into one category; classify oil tanks, fuel oil radiators, transfer gearboxes and other accessories with non-axisymmetric features and angular positions that are not fixed into another category. For the host components, its mass characteristic data can be read directly with the help of 3D modeling software such as Pro/E and UG, and the calculation accuracy is high; but for the accessories, it is more difficult. Due to the large number and complex structure of the accessories, the manufacturing of the accessories The unit generally only provides a simplified accessory model and a mass characteristic file including the local coordinate system, so it cannot be read by relying solely on 3D software. For this kind of problem, the measures taken at present are to simplify the structure first, and analyze each attachment as a mass point, and the selection of the position of the mass point is relatively random and has a large human error. Although the mass and volume of most accessories are relatively small, since the engine contains dozens of accessories, the cumulative error brought by the accessories has a non-negligible impact on the overall engine. At present, there is still a lack of an accurate calculation method for the center of mass parameters of the engine.

发明内容Contents of the invention

本发明的目的是提出一种航空发动机质心计算方法,该方法具有计算精度高、普适性强、方便快捷等优点。The object of the present invention is to propose a method for calculating the center of mass of an aero-engine, which has the advantages of high calculation accuracy, strong universality, convenience and quickness, and the like.

为了实现上述发明的目的,本发明的技术方案是:In order to realize the purpose of the foregoing invention, the technical solution of the present invention is:

一种航空发动机质心计算方法,基于齐次坐标变换方法进行计算,主要包括以下步骤:A method for calculating the center of mass of an aeroengine is calculated based on a homogeneous coordinate transformation method, and mainly includes the following steps:

b.建立部件局部坐标系相对于相对坐标系的变换矩阵b. Establish the transformation matrix of the component local coordinate system relative to the relative coordinate system

a11.在发动机主安装节位置,建立发动机主坐标系;a11. Establish the main engine coordinate system at the position of the main engine installation section;

a12.根据部件质量特性文件,确定部件局部坐标系;a12. Determine the local coordinate system of the part according to the quality characteristic file of the part;

a13.过局部坐标系原点建立与主坐标系各轴同方向的相对坐标系;a13. Establish a relative coordinate system in the same direction as each axis of the main coordinate system through the origin of the local coordinate system;

a14.根据局部坐标系和相对坐标系,建立部件局部坐标系相对于相对坐标系的变换矩阵。a14. According to the local coordinate system and the relative coordinate system, establish the transformation matrix of the component local coordinate system relative to the relative coordinate system.

b.建立部件局部坐标系相对于主坐标系的变换矩阵b. Establish the transformation matrix of the component local coordinate system relative to the main coordinate system

b11.求取相对坐标系原点在主坐标系中的坐标;b11. Obtain the coordinates of the origin of the relative coordinate system in the main coordinate system;

b12.建立部件相对坐标系相对于主坐标系的变换矩阵;b12. Establish the transformation matrix of the component relative coordinate system relative to the main coordinate system;

b13.建立部件局部坐标系相对于主坐标系的变换矩阵。b13. Establish the transformation matrix of the component local coordinate system relative to the main coordinate system.

c.求取发动机质心c. Find the center of mass of the engine

c11.求取部件质心在局部坐标系中的坐标;c11. Obtain the coordinates of the centroid of the component in the local coordinate system;

c12.根据部件局部坐标系相对于主坐标系的变换矩阵,求取部件质心在主坐标系中的坐标;c12. Calculate the coordinates of the centroid of the component in the main coordinate system according to the transformation matrix of the component local coordinate system relative to the main coordinate system;

c13.根据部件质量和合力矩定理,求取发动机质心。c13. Calculate the center of mass of the engine according to the component mass and resultant moment theorem.

本发明的优点是:The advantages of the present invention are:

1、本发明的航空发动机质心计算方法能够准确的计算发动机整机的质心参数,方便吊装和运输工装的设计及整机的装配等工作。1. The method for calculating the center of mass of the aero-engine of the present invention can accurately calculate the parameters of the center of mass of the complete engine, and facilitate the design of hoisting and transportation tooling and the assembly of the complete machine.

2、本发明的航空发动机质心计算方法不仅适用于附件,也适用于主机件,具有很强的普适性,可以计算任意一个部件的质心参数。2. The method for calculating the center of mass of an aero-engine of the present invention is not only applicable to accessories, but also to main parts, and has strong universality, and can calculate the center of mass parameter of any part.

3、本发明的航空发动机质心计算方法不仅适用于航空发动机领域,对于其它旋转类机械同样意义。3. The method for calculating the center of mass of an aero-engine of the present invention is not only applicable to the field of aero-engines, but also has the same meaning for other rotating machines.

附图说明Description of drawings

图1是本发明的航空发动机质心计算方法原理图。Fig. 1 is a schematic diagram of the method for calculating the center of mass of an aeroengine according to the present invention.

图2是本发明的航空发动机质心计算方法实施流程图。Fig. 2 is an implementation flowchart of the method for calculating the center of mass of an aero-engine according to the present invention.

图3是本发明的航空发动机质心计算方法的零部件坐标变换几何模型。Fig. 3 is a coordinate transformation geometric model of parts of the aeroengine centroid calculation method of the present invention.

具体实施方式Detailed ways

结合附图1-3说明本实施方式,本实施方式的航空发动机质心计算方法其理论基础为齐次坐标变换方法和合力矩定理,按以下步骤进行计算:Illustrate this embodiment in conjunction with accompanying drawing 1-3, its theoretical basis of the calculation method of center of mass of aeroengine of this embodiment is the homogeneous coordinate transformation method and resultant moment theorem, calculates according to the following steps:

a.建立部件局部坐标系σ2相对于相对坐标系σ3的变换矩阵 a. Establish the transformation matrix of the component local coordinate system σ 2 relative to the relative coordinate system σ 3

a11.在发动机主安装节位置,建立发动机主坐标系σ1=[O1;x1,y1,z1];a11. At the position of the main engine installation section, establish the engine main coordinate system σ 1 =[O 1 ; x 1 ,y 1 ,z 1 ];

a12.根据部件质量特性文件,确定部件局部坐标系σ2=[O2;x2,y2,z2];a12. Determine the part local coordinate system σ 2 =[O 2 ; x 2 , y 2 , z 2 ] according to the part quality characteristic file;

a13.过局部坐标系σ2原点O2建立与主坐标系σ1各轴同方向的相对坐标系σ3=[O3;x3,y3,z3],坐标系σ2与σ3对应各轴的夹角分别为α、β、γ;a13. Establish a relative coordinate system σ 3 =[O 3 ; x 3 , y 3 , z 3 ] with the same direction as each axis of the main coordinate system σ 1 through the origin O 2 of the local coordinate system σ 2 , the coordinate systems σ 2 and σ 3 The included angles corresponding to each axis are α, β, γ respectively;

a14.根据局部坐标系σ2和相对坐标系σ3,建立部件局部坐标系σ2相对于相对坐标系σ3的变换矩阵其中a14. According to the local coordinate system σ 2 and the relative coordinate system σ 3 , establish the transformation matrix of the component local coordinate system σ 2 relative to the relative coordinate system σ 3 in

b.建立部件局部坐标系σ2相对于主坐标系σ1的变换矩阵 b. Establish the transformation matrix of the component local coordinate system σ 2 relative to the main coordinate system σ 1

b11.求取相对坐标系σ3原点在主坐标系σ1中的坐标 b11. Find the coordinates of the origin of the relative coordinate system σ 3 in the main coordinate system σ 1

b12.建立部件相对坐标系σ3相对于主坐标系σ1的变换矩阵b12. Establish the transformation matrix of the component relative coordinate system σ 3 relative to the main coordinate system σ 1

b13.建立部件局部坐标系σ2相对于主坐标系σ1的变换矩阵 b13. Establish the transformation matrix of the component local coordinate system σ 2 relative to the main coordinate system σ 1

c.求取发动机质心(X、Y、Z)c. Find the center of mass of the engine (X, Y, Z)

c11.求取部件质心在局部坐标系中的坐标Pi=[x′i y′i z′i 1]T,其中i=1,2,…,n;c11. Obtain the coordinates P i =[x′ i y′ i z′ i 1] T of the component centroid in the local coordinate system, where i=1,2,…,n;

c12.根据部件局部坐标系σ2相对于主坐标系σ1的变换矩阵求取部件质心在主坐标系中的坐标式中的(α、β、γ)、和(x′i y′iz′i)三组参数可通过质量特性文件和三维软件方便的得到;c12. According to the transformation matrix of the component local coordinate system σ 2 relative to the main coordinate system σ 1 Find the coordinates of the centroid of the part in the main coordinate system (α, β, γ) in the formula, and (x′ i y′ i z′ i ) three groups of parameters can be easily obtained through mass characteristic files and 3D software;

c13.最后,根据部件质量mi和合力矩定理,求取发动机质心(X、Y、Z)。c13. Finally, calculate the center of mass (X, Y, Z) of the engine according to the component mass m i and the resultant moment theorem.

Claims (4)

1.一种航空发动机质心计算方法,基于齐次坐标变换方法进行计算,其特征在于,1. A method for calculating the center of mass of an aero-engine is calculated based on a homogeneous coordinate transformation method, characterized in that, 主要包括以下步骤:It mainly includes the following steps: a.建立部件局部坐标系相对于相对坐标系的变换矩阵;a. Establish the transformation matrix of the component local coordinate system relative to the relative coordinate system; a11.在发动机主安装节位置,建立发动机主坐标系;a11. Establish the main engine coordinate system at the position of the main engine installation section; a12.根据部件质量特性文件,确定部件局部坐标系;a12. Determine the component local coordinate system according to the component quality characteristic file; a13.通过部件局部坐标系原点建立与主坐标系各轴同方向的相对坐标系;a13. Establish a relative coordinate system in the same direction as each axis of the main coordinate system through the origin of the local coordinate system of the component; a14.根据部件局部坐标系和相对坐标系,建立部件局部坐标系相对于相对坐标系的变换矩阵;a14. According to the component local coordinate system and the relative coordinate system, establish the transformation matrix of the component local coordinate system relative to the relative coordinate system; b.建立部件局部坐标系相对于主坐标系的变换矩阵;b. Establish the transformation matrix of the component local coordinate system relative to the main coordinate system; b11.求取相对坐标系原点在主坐标系中的坐标;b11. Obtain the coordinates of the origin of the relative coordinate system in the main coordinate system; b12.建立部件相对坐标系相对于主坐标系的变换矩阵;b12. Establish the transformation matrix of the component relative coordinate system relative to the main coordinate system; b13.建立部件局部坐标系相对于主坐标系的变换矩阵;b13. Establish the transformation matrix of the component local coordinate system relative to the main coordinate system; c.求取发动机质心;c. Find the center of mass of the engine; c11.求取部件质心在部件局部坐标系中的坐标;c11. Obtain the coordinates of the centroid of the component in the local coordinate system of the component; c12.根据部件局部坐标系相对于主坐标系的变换矩阵,求取部件质心在主坐标系中的坐标;c12. Calculate the coordinates of the centroid of the component in the main coordinate system according to the transformation matrix of the component local coordinate system relative to the main coordinate system; c13.根据部件质量和合力矩定理,求取发动机质心。c13. Calculate the center of mass of the engine according to the component mass and resultant moment theorem. 2.根据权利要求1所述的一种航空发动机质心计算方法,其特征在于:2. a kind of aero-engine centroid calculation method according to claim 1, is characterized in that: a.建立部件局部坐标系σ2相对于相对坐标系σ3的变换矩阵 a. Establish the transformation matrix of the component local coordinate system σ 2 relative to the relative coordinate system σ 3 a11.在发动机主安装节位置,建立发动机主坐标系σ1=[O1;x1,y1,z1];a11. At the position of the main engine installation section, establish the engine main coordinate system σ 1 =[O 1 ; x 1 ,y 1 ,z 1 ]; a12.根据部件质量特性文件,确定部件局部坐标系σ2=[O2;x2,y2,z2];a12. Determine the part local coordinate system σ 2 =[O 2 ; x 2 , y 2 , z 2 ] according to the part quality characteristic file; a13.通过部件局部坐标系σ2原点O2建立与主坐标系σ1各轴同方向的相对坐标系σ3=[O3;x3,y3,z3],坐标系σ2与σ3对应各轴的夹角分别为α、β、γ;a13. Establish the relative coordinate system σ 3 = [O 3 ; x 3 , y 3 , z 3 ] in the same direction as each axis of the main coordinate system σ 1 through the origin O 2 of the component local coordinate system σ 2 , the coordinate system σ 2 and σ 3 The included angles corresponding to each axis are α, β, γ respectively; a14.根据部件局部坐标系σ2和相对坐标系σ3,建立部件局部坐标系σ2相对于相对坐标系σ3的变换矩阵其中a14. According to the component local coordinate system σ 2 and the relative coordinate system σ 3 , establish the transformation matrix of the component local coordinate system σ 2 relative to the relative coordinate system σ 3 in 3.根据权利要求1所述的一种航空发动机质心计算方法,其特征在于:3. a kind of aero-engine centroid calculation method according to claim 1, is characterized in that: b.建立部件局部坐标系σ2相对于主坐标系σ1的变换矩阵 b. Establish the transformation matrix of the component local coordinate system σ 2 relative to the main coordinate system σ 1 b11.求取相对坐标系σ3原点在主坐标系σ1中的坐标 b11. Find the coordinates of the origin of the relative coordinate system σ 3 in the main coordinate system σ 1 b12.建立相对坐标系σ3相对于主坐标系σ1的变换矩阵;b12. Establish the transformation matrix of the relative coordinate system σ 3 relative to the main coordinate system σ 1 ; b13.建立部件局部坐标系σ2相对于主坐标系σ1的变换矩阵 b13. Establish the transformation matrix of the component local coordinate system σ 2 relative to the main coordinate system σ 1 4.根据权利要求1所述的一种航空发动机质心计算方法,其特征在于:4. a kind of aeroengine centroid calculation method according to claim 1, is characterized in that: c.求取发动机质心(X、Y、Z);c. Find the center of mass of the engine (X, Y, Z); c11.求取部件质心在部件局部坐标系中的坐标Pi=[x′i y′i z′i 1]T,其中i=1,2,…,n;c11. Calculate the coordinates P i =[x′ i y′ i z′ i 1] T of the component centroid in the component local coordinate system, where i=1,2,…,n; c12.根据部件局部坐标系σ2相对于主坐标系σ1的变换矩阵求取部件质心在主坐标系中的坐标式中的(α、β、γ)、和(x′i y′i z′i )三组参数能够通过部件质量特性文件和三维软件方便的得到;c12. According to the transformation matrix of the component local coordinate system σ 2 relative to the main coordinate system σ 1 Find the coordinates of the centroid of the part in the main coordinate system (α, β, γ) in the formula, and (x′ i y′ i z′ i ) three groups of parameters can be easily obtained through component quality characteristic files and 3D software; c13.最后,根据部件质量mi和合力矩定理,求取发动机质心(X、Y、Z)。c13. Finally, according to the component mass mi and resultant moment theorem, Find the center of mass (X, Y, Z) of the engine.
CN201611007353.XA 2016-11-15 2016-11-15 A kind of aero-engine centroid computing method Active CN106353033B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611007353.XA CN106353033B (en) 2016-11-15 2016-11-15 A kind of aero-engine centroid computing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611007353.XA CN106353033B (en) 2016-11-15 2016-11-15 A kind of aero-engine centroid computing method

Publications (2)

Publication Number Publication Date
CN106353033A CN106353033A (en) 2017-01-25
CN106353033B true CN106353033B (en) 2018-11-02

Family

ID=57861925

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611007353.XA Active CN106353033B (en) 2016-11-15 2016-11-15 A kind of aero-engine centroid computing method

Country Status (1)

Country Link
CN (1) CN106353033B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106979843B (en) * 2016-01-15 2019-08-27 中国航发常州兰翔机械有限责任公司 A method for detecting the center of gravity of an aero-engine
CN107238468B (en) * 2017-08-01 2019-06-18 中科新松有限公司 Discrimination method, device, equipment and the storage medium of mechanical arm tail end tool mass center
CN108267266B (en) * 2017-12-21 2019-11-22 北汽福田汽车股份有限公司 The measurement method and device of vehicle centroid
CN111307370A (en) * 2020-03-19 2020-06-19 青岛航空技术研究院(中国科学院工程热物理研究所青岛研究中心) Method for measuring rotational inertia of unmanned aerial vehicle
CN115081162A (en) * 2021-03-11 2022-09-20 中国航发商用航空发动机有限责任公司 Design method for actuating mechanism of adjustable bleed valve of aircraft engine
CN119555283A (en) * 2025-01-27 2025-03-04 中国航发四川燃气涡轮研究院 Aeroengine centroid measurement structure and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105243172A (en) * 2015-07-22 2016-01-13 湖南大学 Engine suspension system optimization method capable of considering dynamic rigidity and damping
CN105913464A (en) * 2016-04-05 2016-08-31 中国科学院自动化研究所 Multi-body target online measurement method based on videos

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014124319A (en) * 2012-12-26 2014-07-07 Tokyo Univ Of Agriculture & Technology Ultrasonic calibration system, and ultrasonic calibration method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105243172A (en) * 2015-07-22 2016-01-13 湖南大学 Engine suspension system optimization method capable of considering dynamic rigidity and damping
CN105913464A (en) * 2016-04-05 2016-08-31 中国科学院自动化研究所 Multi-body target online measurement method based on videos

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
基于齐次坐标变换的制造误差建模研究;徐旭松等;《浙江大学学报(工学版)》;20080630;第42卷(第6期);全文 *
航空发动机质量、质心及转动惯量的一种计算方法及应用;喻双喜;《中国航空学会重量工程专业学术会》;19981231;全文 *
齐次坐标变换的测量机误差修正模型;陈宝刚等;《黑龙江科技学院学报》;20100331;第20卷(第2期);第143-145页第3-4节 *

Also Published As

Publication number Publication date
CN106353033A (en) 2017-01-25

Similar Documents

Publication Publication Date Title
CN106353033B (en) A kind of aero-engine centroid computing method
CN114663528A (en) Multi-phase external parameter combined calibration method, device, equipment and medium
EP3314570B1 (en) Real-time, model-based object detection and pose estimation
US20160075028A1 (en) Methods and systems of repairing a structure
CN109163675B (en) Method for detecting angular pendulum shaft position accuracy based on laser tracker
CN105806251A (en) Four-axis measuring system based on line laser sensor and measuring method thereof
US10062202B2 (en) System and methods of generating a computer model of a composite component
CN107944143B (en) Assembly error obtaining method facing actual working condition
CN107480356B (en) Component design and inspection integrated method based on CATIA and laser tracker
CN104834785B (en) The modeling method of aero-engine steady-state model based on simplex spline function
Chen et al. Pose measurement approach based on two-stage binocular vision for docking large components
CN101847262A (en) Fast three-dimensional point cloud searching and matching method
CN108426554A (en) A kind of impeller blade streamline detection device and its working method
EP3045394B1 (en) Method and system for repairing a structure
JP2014523578A (en) Mapping of contour shape to XY coordinate system
CN105627916B (en) A method of it establishing tracker geographic coordinate system and six degree of freedom measures
CN109342008B (en) Wind tunnel test model attack angle single-camera video measuring method based on homography matrix
CN110716502A (en) Tool path generation method and device for engine blade repair
CN107729705B (en) Method for measuring and calculating precision of single panel of surface antenna
CN106447781B (en) It is a kind of based on Minkowski and towards the collision checking method of automatic assembling
CN109059761B (en) EIV model-based handheld target measuring head calibration method
CN108536932A (en) Based on the mutual aerial blade long-pending folded axle verticality computational methods turned round under constraints
JP4918569B2 (en) Response surface model creation device, response surface model method, and response surface model program
CN102519484A (en) Multi-disc overall adjustment calibration method of rotary photogrammetry system
CN112035981B (en) A Modeling Method of Turbine Blade Laminate Cooling Structure

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20250403

Address after: Room 312, 3rd Floor, No. 10 Guoyuan North Street, Miyun District, Beijing 101500

Patentee after: Beijing Kangda Huichuang Technology Co.,Ltd.

Country or region after: China

Address before: 110168 No. 9 Hunnan East Road, Hunnan District, Shenyang City, Liaoning Province

Patentee before: SHENYANG JIANZHU University

Country or region before: China