CN106346126A - Method for electron beam welding of titanium alloy and red copper dissimilar metal - Google Patents
Method for electron beam welding of titanium alloy and red copper dissimilar metal Download PDFInfo
- Publication number
- CN106346126A CN106346126A CN201610867917.0A CN201610867917A CN106346126A CN 106346126 A CN106346126 A CN 106346126A CN 201610867917 A CN201610867917 A CN 201610867917A CN 106346126 A CN106346126 A CN 106346126A
- Authority
- CN
- China
- Prior art keywords
- welding
- titanium alloy
- copper
- electron beam
- vacuum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K15/00—Electron-beam welding or cutting
- B23K15/0033—Preliminary treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K15/00—Electron-beam welding or cutting
- B23K15/0046—Welding
- B23K15/0053—Seam welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K15/00—Electron-beam welding or cutting
- B23K15/06—Electron-beam welding or cutting within a vacuum chamber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/18—Dissimilar materials
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Welding Or Cutting Using Electron Beams (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Arc Welding In General (AREA)
Abstract
本发明为钛铜异种金属电子束焊接方法,具体为一种TC4钛合金与T2紫铜的电子束焊接方法,该方法具体步骤如下:首先,进行焊前的准备工作;完成第一道偏铜焊接;再使用小束流快速背部对中焊,进行根部成型强化;最后在前两道焊接的基础上,用电子束偏钛合金一侧进行焊接。本发明的焊接方法可以有效控制初生的不利取向金属间化合物的分布及含量,提高焊接接头的强度及可靠性。
The present invention is an electron beam welding method for dissimilar metals of titanium and copper, specifically an electron beam welding method for TC4 titanium alloy and T2 red copper. The specific steps of the method are as follows: first, preparatory work before welding is carried out; the first partial copper welding is completed ; Then use small beam current fast back-to-center welding to strengthen the root formation; finally, on the basis of the previous two weldings, use electron beam partial titanium alloy welding on one side. The welding method of the invention can effectively control the distribution and content of the primary unfavorable orientation intermetallic compound, and improve the strength and reliability of the welded joint.
Description
技术领域technical field
本发明涉及异种金属焊接领域,具体涉及TC4钛合金与T2紫铜焊接方法。The invention relates to the field of dissimilar metal welding, in particular to a welding method of TC4 titanium alloy and T2 red copper.
背景技术Background technique
异种金属的复合结构在航空航天、造船、电力工业等领域应用越来越广泛。钛合金因其耐热性强、比强度高、具有良好的塑性、韧性以及耐蚀性,广泛应用于航空航天、石油化工等领域。铜合金具有优良的导电性、导热性,耐腐蚀性优良,有些铜合金还具有较高的强度,应用与航空航天领域的诸多部件。Composite structures of dissimilar metals are widely used in aerospace, shipbuilding, power industry and other fields. Titanium alloys are widely used in aerospace, petrochemical and other fields because of their strong heat resistance, high specific strength, good plasticity, toughness and corrosion resistance. Copper alloys have excellent electrical conductivity, thermal conductivity, and excellent corrosion resistance. Some copper alloys also have high strength and are used in many parts in the aerospace field.
钛铜异种金属焊接不仅可以结合彼此材料特性,实现材料的多功能化,同时高强钛铜接头亦可探索作为过渡结构,以解决钛钢等其他异种金属焊接难题。传统钛铜焊接,包括钎焊、熔钎焊等,由于两种材料彼此物理性能较大差异及不利的脆性间金属化合物的生成,接头强度只能达到铜强度的70%左右,难以实现实际工程应用。The welding of titanium-copper dissimilar metals can not only combine the material properties of each other to realize the multifunctionality of materials, but also explore high-strength titanium-copper joints as a transitional structure to solve the welding problems of other dissimilar metals such as titanium steel. Traditional titanium-copper welding, including brazing, fusion brazing, etc., due to the large difference in physical properties between the two materials and the formation of unfavorable brittle intermetallic compounds, the joint strength can only reach about 70% of the copper strength, which is difficult to achieve in actual engineering. application.
钛-铜异种金属的复合结构不仅满足热传导、电传导、耐磨性和耐蚀性等需求,而且在减轻重量的同时能承受一定的强度,但是在高温下传统的熔焊容易在接头处产生大量的钛-铜脆性金属间化合物,严重的降低了接头的力学性能。钛-铜异种金属焊接的关键在于有效地控制金属间化合物的形成与长大,固相焊接方法如爆炸焊、摩擦焊可以形成钛-铜接头,但是在形状和尺寸等方面受到限制。赵海生.QCr0.8/TC4异种材料电子束焊接工艺研究[D].哈尔滨工业大学,2007.文中对QCr0.8/TC4异种材料进行了电子束对中焊研究,但是界面反应层厚,化合物种类及数量多,CuTi基固溶体区组织粗大,焊缝强度低,连接性差。刘伟,陈国庆,张秉刚,等.铜/钛合金电子束焊接工艺优化[J].焊接学报,2008,29(5).文中对铜/钛合金电子束焊接工艺进行了优化,采用电子束偏铜焊接的方法在原有基础上提高了接头强度,但是效果不是很明显,焊缝中仍然存在大量的脆性金属间化合物且分布不规律,根部未焊透也是造成接头强度提高不显著的原因之一。在工艺上如何克服上述焊接技术上的问题成为TC4钛合金与T2紫铜焊接的技术难题。The composite structure of titanium-copper dissimilar metals not only meets the requirements of heat conduction, electrical conduction, wear resistance and corrosion resistance, but also can withstand a certain strength while reducing weight, but traditional fusion welding at high temperatures is easy to produce at the joints A large number of titanium-copper brittle intermetallic compounds seriously reduce the mechanical properties of the joint. The key to titanium-copper dissimilar metal welding is to effectively control the formation and growth of intermetallic compounds. Solid-phase welding methods such as explosive welding and friction welding can form titanium-copper joints, but they are limited in shape and size. Zhao Haisheng. Research on electron beam welding process of QCr0.8/TC4 dissimilar materials[D]. Harbin Institute of Technology, 2007. In this paper, electron beam centered welding of QCr0.8/TC4 dissimilar materials was studied, but the interface reaction layer is thick and the types of compounds And the number is large, the structure of the CuTi-based solid solution zone is coarse, the weld strength is low, and the connectivity is poor. Liu Wei, Chen Guoqing, Zhang Binggang, et al. Optimization of Electron Beam Welding Process for Copper/Titanium Alloy [J]. Journal of Welding Society, 2008, 29(5). The copper welding method improves the joint strength on the original basis, but the effect is not very obvious. There are still a large number of brittle intermetallic compounds in the weld and the distribution is irregular. The incomplete penetration of the root is also one of the reasons for the insignificant increase in the joint strength. . How to overcome the above-mentioned welding technical problems in the process has become a technical problem in the welding of TC4 titanium alloy and T2 copper.
发明内容Contents of the invention
本发明目的在于提供一种钛铜异种金属电子束焊接方法,通过实现脆性金属间化合物受控生长的方式,大幅优化接头薄弱结合面,以解决钛铜异种金属结合强度低的问题。The purpose of the present invention is to provide an electron beam welding method for titanium-copper dissimilar metals, which greatly optimizes the weak bonding surface of the joint by realizing the controlled growth of brittle intermetallic compounds, so as to solve the problem of low bonding strength of titanium-copper dissimilar metals.
实现本发明目的采用如下技术方案:Realize the object of the present invention and adopt following technical scheme:
一种TC4钛合金与T2紫铜的电子束焊接方法,具体步骤如下:A kind of electron beam welding method of TC4 titanium alloy and T2 red copper, concrete steps are as follows:
步骤1,将TC4钛合金板与T2紫铜板进行焊前准备;Step 1, prepare the TC4 titanium alloy plate and the T2 copper plate before welding;
步骤2,抽取真空,设定焊接参数:电子束加速电压、聚焦电流、焊接高度及灯丝电流;Step 2, extract the vacuum and set the welding parameters: electron beam acceleration voltage, focusing current, welding height and filament current;
步骤3,设定电子束流:40mA-50mA,焊接速度:10mm/s,束流上升、下降时间:1.5s;使电子束偏置于T2紫铜板侧,偏置量范围:1mm-3mm,进行焊接,下束并待完整熔池形成后,开始水平轴运动,完成T2紫铜板侧正面进行真空焊接;Step 3, set the electron beam current: 40mA-50mA, welding speed: 10mm/s, beam current rising and falling time: 1.5s; make the electron beam bias on the T2 copper plate side, the bias range: 1mm-3mm, Carry out welding, lower the beam and after the complete molten pool is formed, start the horizontal axis movement, and complete the vacuum welding on the front side of the T2 copper plate;
步骤4,设定电子束流:10mA-20mA,焊接速度:15-20mm/s,束流上升、下降时间:1.5s;进行TC4钛合金板与T2紫铜板背部对中焊,下束并待完整熔池形成后,开始水平轴运动完成真空焊接;电子束焊接具有明显的深穿孔效应,深宽比大,焊接接头根部位置由于电子束偏置焊接,可能存在熔合不良,为保证接头优良的焊接质量,电子束背部使用小束流快速对中焊进行根部成型强化。Step 4, set the electron beam current: 10mA-20mA, welding speed: 15-20mm/s, beam rising and falling time: 1.5s; carry out back center welding of TC4 titanium alloy plate and T2 copper plate, lower the beam and wait After the complete molten pool is formed, start the horizontal axis movement to complete the vacuum welding; electron beam welding has obvious deep perforation effect, the aspect ratio is large, and the root position of the welded joint may have poor fusion due to electron beam bias welding. Welding quality, the back of the electron beam uses a small beam to quickly center the weld for root forming strengthening.
步骤5,设定电子束流:20mA-30mA,焊接速度:10mm/s,束流上升、下降时间:1.5s,将电子束偏置于钛侧,偏置量为1.5-3.5mm,进行TC4钛合金侧焊接,下束并待完整熔池形成后,开始水平轴运动完成真空焊接。通过对偏置焊接钛铜接头薄弱界面重新改造,实现逆向的脆性间金属化合物生长,从而实现接头的高强结合。Step 5, set the electron beam current: 20mA-30mA, welding speed: 10mm/s, beam current rise and fall time: 1.5s, bias the electron beam to the titanium side, the bias amount is 1.5-3.5mm, and perform TC4 Titanium alloy side welding, lower the beam and after the complete molten pool is formed, start the horizontal axis movement to complete the vacuum welding. By remodeling the weak interface of the offset welded titanium-copper joint, the reverse brittle intermetallic compound growth is realized, thereby achieving high-strength bonding of the joint.
进一步的,步骤1中,焊前准备具体步骤为:Further, in step 1, the specific steps of preparation before welding are:
步骤1.1,使用280#、400#、600#目数砂纸去除钛铜待焊面及周边300mm区域表面氧化层,并使用丙酮进行表面油污清理;Step 1.1, use 280#, 400#, 600# mesh sandpaper to remove the titanium copper surface to be welded and the surface oxide layer of the surrounding 300mm area, and use acetone to clean the surface oil;
步骤1.2,使TC4钛合金板与T2紫铜板放置在工作台上并无间隙紧密对接。In step 1.2, the TC4 titanium alloy plate and the T2 copper plate are placed on the workbench and tightly connected without gaps.
进一步的,步骤2中,枪真空、室真空度分别达到8E-3、7E-2。Further, in step 2, the gun vacuum and chamber vacuum are respectively up to 8E -3 and 7E -2 .
进一步的,步骤2中,设定的焊接参数为:电子束加速电压:60KV,聚焦电流600mA-650mA,焊接高度260mm-290mm,灯丝电流400mA-450mA。Further, in step 2, the welding parameters are set as follows: electron beam accelerating voltage: 60KV, focusing current 600mA-650mA, welding height 260mm-290mm, filament current 400mA-450mA.
进一步的,TC4钛合金质量百分组成为:Ti:89.12%、Al:6.42%、V:4.30%、Fe:0.05%、C:0.03%;T2紫铜质量百分组成为:Cu:≥99.9%、O:0.06%。Further, the mass percentage of TC4 titanium alloy is composed of: Ti: 89.12%, Al: 6.42%, V: 4.30%, Fe: 0.05%, C: 0.03%; the mass percentage of T2 copper is composed of: Cu: ≥ 99.9%, O : 0.06%.
本发明相对于现有技术相比,具有显著优点如下:Compared with the prior art, the present invention has significant advantages as follows:
1、本发明在钛铜异种金属焊接过程中采用了第一道束流偏置铜侧的焊接方法,该方法有效控制了初生的不利取向金属间化合物的分布及含量,提高了焊接接头的强度及可靠性。1. The present invention adopts a welding method in which the first beam current is biased on the copper side during the welding process of titanium-copper dissimilar metals. This method effectively controls the distribution and content of the primary unfavorable orientation intermetallic compounds and improves the strength of the welded joint and reliability.
2、在焊接试板的背部对接面进行了小束流快速对中焊接,提高了接头根部的结合强度,从而进一步提升了焊接接头的连接可靠性。2. On the back butt joint surface of the welding test plate, a small beam of rapid centering welding is carried out, which improves the bonding strength of the joint root, thereby further improving the connection reliability of the welded joint.
3、在偏铜焊接焊缝相邻钛侧,进行了一次偏钛焊接,偏钛焊接在不破坏原始偏铜焊接连接界面的基础上,通过焊接热循环,改变了初生的不利取向金属间化合物的生长方向、成分及含量。焊接接头结合强度大幅提升。抗拉强度达到铜母材的90%以上,为220Mpa-250Mpa。3. On the titanium side adjacent to the copper-biased welding seam, a titanium-biased welding was performed. On the basis of not destroying the original copper-biased welding connection interface, the titanium-biased welding changed the unfavorable orientation of the primary intermetallic compound through welding heat cycle growth direction, composition and content. The bonding strength of welded joints is greatly improved. The tensile strength reaches more than 90% of the copper base material, which is 220Mpa-250Mpa.
附图说明Description of drawings
图1是本发明的焊接结构示意图;Fig. 1 is the welding structure schematic diagram of the present invention;
图2是本发明焊缝横截面示意图;Fig. 2 is a cross-sectional schematic diagram of a weld of the present invention;
图3是实施例1中焊缝SEM微观组织图;Fig. 3 is the SEM microstructure diagram of weld seam in embodiment 1;
图4是实施例2中焊缝SEM微观组织图。FIG. 4 is a SEM microstructure diagram of the weld in Example 2.
具体实施方式detailed description
本发明技术方法不局限于以下所列举的具体实施方式,还包括各具体实施方式之间的任意组合。The technical method of the present invention is not limited to the specific embodiments listed below, but also includes any combination of the specific embodiments.
采用北京航空制造工程研究所研制的ZD60-6A 5001型真空电子束焊机进行TC4钛合金与T2紫铜的电子束焊接,装配后如图1所示进焊接工艺进行焊接,得到的焊缝截面示意图如图2所示。The ZD60-6A 5001 vacuum electron beam welding machine developed by Beijing Aeronautical Manufacturing Engineering Research Institute is used to carry out electron beam welding of TC4 titanium alloy and T2 red copper. After assembly, the welding process is carried out as shown in Figure 1. as shown in picture 2.
实施例1Example 1
本实施方式中对钛合金TC4和T2紫铜的电子束相邻焊接方法按以下步骤进行:In the present embodiment, the electron beam adjacent welding method of titanium alloy TC4 and T2 red copper is carried out according to the following steps:
使用280#、400#、600#目数砂纸去除钛铜待焊面及周边300mm区域表面氧化层,并使用丙酮进行表面油污清理。钛铜材料分别是TC4和T2紫铜,其中,TC4钛合金质量百分组成为:Ti:89.12%、Al:6.42%、V:4.30%、Fe:0.05%、C:0.03%;T2紫铜质量百分组成为:Cu:≥99.9%、O:0.06%。对焊接试板进行装配,不开坡口并无间隙紧密对接。固定对接试板于真空室电子束斑表面焦点抑或下焦点位置,对接面平行于水平导轨运动方向。Use 280#, 400#, 600# mesh sandpaper to remove the oxide layer on the titanium copper surface to be welded and the surrounding 300mm area, and use acetone to clean the surface oil. Titanium-copper materials are TC4 and T2 red copper respectively, among which, the mass percentage of TC4 titanium alloy is composed of: Ti: 89.12%, Al: 6.42%, V: 4.30%, Fe: 0.05%, C: 0.03%; T2 red copper mass percentage group It becomes: Cu: ≥ 99.9%, O: 0.06%. Assemble the welded test panels, butt them tightly without opening grooves and without gaps. Fix the docking test plate at the focal point or the lower focal point of the electron beam spot surface in the vacuum chamber, and the docking surface is parallel to the moving direction of the horizontal guide rail.
抽取真空,并待枪真空、室真空度到达焊接条件,枪真空、室真空度分别达到8E-3、7E-2,加载高压,并进行焊接参数设定。其中,电子束加速电压:60KV,聚焦电流650mA,焊接高度280mm,灯丝电流430mA;电子束流:45mA,焊接速度:10mm/s,束流上升、下降时间:1.5s;启动真空室运动系统伺服使能,移动对接面垂直方向,使电子束偏置于铜侧,偏置量范围:1.5mm。完成参数设定后进行焊接,下束并待完整熔池形成后,开始水平轴运动完成第一道焊接。Extract the vacuum, and when the gun vacuum and chamber vacuum reach the welding conditions, the gun vacuum and chamber vacuum respectively reach 8E -3 and 7E -2 , load high pressure, and set the welding parameters. Among them, electron beam accelerating voltage: 60KV, focusing current 650mA, welding height 280mm, filament current 430mA; electron beam current: 45mA, welding speed: 10mm/s, beam rising and falling time: 1.5s; start the vacuum chamber motion system servo Enable, move the vertical direction of the docking surface, so that the electron beam is biased on the copper side, the bias range: 1.5mm. After the parameter setting is completed, the welding is carried out. After the beam is lowered and the complete molten pool is formed, the horizontal axis movement is started to complete the first welding.
关闭室真空,将连接试板于固定夹具上拆卸,调换背面作为焊接面,重新固定,保持原始焊接高度不变并使对接面平行于水平移动导轨。使用丙酮对焊接面进行清理。Turn off the vacuum in the chamber, remove the connecting test plate from the fixing fixture, replace the back as the welding surface, fix it again, keep the original welding height unchanged and make the butt surface parallel to the horizontal moving guide rail. Clean the soldered surfaces with acetone.
抽取真空至焊接要求真空度及以下,枪真空、室真空度分别达到8E-3、7E-2重新设定电子束参数为:电子束加速电压:60KV,聚焦电流650mA,焊接高度280mm,灯丝电流430mA;电子束流:15mA,焊接速度:15mm/s,束流上升、下降时间:1.5s。完成参数设定后进行焊接,下束并待完整熔池形成后,开始水平轴运动完成第二道背部焊接。Extract the vacuum to the vacuum degree required by welding and below, the gun vacuum and chamber vacuum respectively reach 8E -3 and 7E -2 , and reset the electron beam parameters as follows: electron beam acceleration voltage: 60KV, focusing current 650mA, welding height 280mm, filament current 430mA; electron beam current: 15mA, welding speed: 15mm/s, beam current rising and falling time: 1.5s. After the parameter setting is completed, welding is carried out. After the beam is lowered and a complete molten pool is formed, the horizontal axis movement is started to complete the second back welding.
再次关闭真空,将连接试板于固定夹具上拆卸,将原始第一道焊接面重新作为正面并固定,同时保持原始焊接高度不变并使对接面平行于水平移动导轨。使用丙酮对焊接面进行清理。Turn off the vacuum again, remove the connection test plate from the fixing fixture, and fix the original first welding surface as the front side again, while keeping the original welding height unchanged and making the butt joint surface parallel to the horizontal moving guide rail. Clean the soldered surfaces with acetone.
使电子束偏置于钛侧,偏置量为2mm,抽取真空,枪真空、室真空度分别达到8E-3、7E-2,重新设定电子束参数为:电子束加速电压:60KV,聚焦电流650mA,焊接高度280mm,灯丝电流430mA;电子束流:20mA,焊接速度:10mm/s,束流上升、下降时间:1.5s。完成参数设定后进行焊接,下束并待完整熔池形成后,开始水平轴运动完成第三道相邻焊接。The electron beam is biased on the titanium side, the bias is 2mm, the vacuum is drawn, the gun vacuum and chamber vacuum are respectively 8E -3 and 7E -2 , and the electron beam parameters are reset as follows: electron beam acceleration voltage: 60KV, focusing Current 650mA, welding height 280mm, filament current 430mA; electron beam current: 20mA, welding speed: 10mm/s, beam rising and falling time: 1.5s. After the parameter setting is completed, welding is carried out. After the beam is lowered and a complete molten pool is formed, the horizontal axis movement is started to complete the third adjacent welding.
如图3所示为本发明实施例1中焊缝部分区域的SEM微观组织图。如图所示界面金属间化合物过渡层形成良好,没有较厚的连续金属间化合物。FIG. 3 is a SEM microstructure diagram of a part of the weld seam in Example 1 of the present invention. As shown in the figure, the interfacial intermetallic transition layer is well formed and there is no thicker continuous intermetallic compound.
钛合金TC4板和T2紫铜板的接头强度达到245Mpa。The joint strength of titanium alloy TC4 plate and T2 copper plate reaches 245Mpa.
实施例2Example 2
本实施方式中对钛合金TC4和T2紫铜的电子束焊接方法按以下步骤进行:In the present embodiment, the electron beam welding method to titanium alloy TC4 and T2 red copper is carried out in the following steps:
使用280#、400#、600#目数砂纸去除钛铜待焊面及周边300mm区域表面氧化层,并使用丙酮进行表面油污清理。钛铜材料分别是TC4和T2紫铜,其中,TC4钛合金质量百分组成为:Ti:89.12%、Al:6.42%、V:4.30%、Fe:0.05%、C:0.03%;T2紫铜质量百分组成为:Cu:≥99.9%、O:0.06%。对焊接试板进行装配,不开坡口并无间隙紧密对接。固定对接试板于真空室电子束斑表面焦点抑或下焦点位置,对接面平行于水平导轨运动方向。Use 280#, 400#, 600# mesh sandpaper to remove the oxide layer on the titanium copper surface to be welded and the surrounding 300mm area, and use acetone to clean the surface oil. Titanium-copper materials are TC4 and T2 red copper respectively, among which, the mass percentage of TC4 titanium alloy is composed of: Ti: 89.12%, Al: 6.42%, V: 4.30%, Fe: 0.05%, C: 0.03%; T2 red copper mass percentage group It becomes: Cu: ≥ 99.9%, O: 0.06%. Assemble the welded test plates, butt them tightly without opening grooves and gaps. Fix the docking test plate at the focal point or the lower focal point of the electron beam spot surface in the vacuum chamber, and the docking surface is parallel to the moving direction of the horizontal guide rail.
抽取真空,并待枪真空、室真空度到达焊接条件,枪真空、室真空度分别达到8E-3、7E-2,加载高压,并进行焊接参数设定。其中,电子束加速电压:60KV,聚焦电流650mA,焊接高度280mm,灯丝电流430mA;电子束流:45mA,焊接速度:10mm/s,束流上升、下降时间:1.5s;启动真空室运动系统伺服使能,移动对接面垂直方向,使电子束偏置于铜侧,偏置量范围:1.5mm。完成参数设定后进行焊接,下束并待完整熔池形成后,开始水平轴运动完成第一道焊接。Extract the vacuum, and when the gun vacuum and chamber vacuum reach the welding conditions, the gun vacuum and chamber vacuum respectively reach 8E -3 and 7E -2 , load high pressure, and set the welding parameters. Among them, electron beam accelerating voltage: 60KV, focusing current 650mA, welding height 280mm, filament current 430mA; electron beam current: 45mA, welding speed: 10mm/s, beam rising and falling time: 1.5s; start the vacuum chamber motion system servo Enable, move the vertical direction of the docking surface, so that the electron beam is biased on the copper side, the bias range: 1.5mm. After the parameter setting is completed, the welding is carried out. After the beam is lowered and the complete molten pool is formed, the horizontal axis movement is started to complete the first welding.
关闭室真空,将连接试板于固定夹具上拆卸,调换背面作为焊接面,重新固定,保持原始焊接高度不变并使对接面平行于水平移动导轨。使用丙酮对焊接面进行清理。Turn off the vacuum in the chamber, remove the connecting test plate from the fixing fixture, replace the back as the welding surface, fix it again, keep the original welding height unchanged and make the butt surface parallel to the horizontal moving guide rail. Clean the soldered surfaces with acetone.
抽取真空至焊接要求真空度,枪真空、室真空度分别达到8E-3、7E-2,重新设定电子束参数为:电子束加速电压:60KV,聚焦电流650mA,焊接高度280mm,灯丝电流430mA;电子束流:15mA,焊接速度:15mm/s,束流上升、下降时间:1.5s。完成参数设定后进行焊接,下束并待完整熔池形成后,开始水平轴运动完成第二道背部焊接。Extract the vacuum to the required vacuum degree for welding, gun vacuum and chamber vacuum respectively reach 8E -3 and 7E -2 , reset the electron beam parameters as follows: electron beam acceleration voltage: 60KV, focusing current 650mA, welding height 280mm, filament current 430mA ; Electron beam current: 15mA, welding speed: 15mm/s, beam current rising and falling time: 1.5s. After the parameter setting is completed, welding is carried out. After the beam is lowered and a complete molten pool is formed, the horizontal axis movement is started to complete the second back welding.
如图4所示为本发明实施例2中焊缝部分区域的SEM微观组织图。如图所示界面金属间化合物过渡层较厚,且分布杂乱。As shown in FIG. 4 , it is a SEM microstructure diagram of a part of the weld seam in Example 2 of the present invention. As shown in the figure, the interface intermetallic compound transition layer is thick and the distribution is disordered.
钛合金TC4板和T2紫铜板电子束只偏铜侧焊接的接头强度达到162Mpa。The joint strength of titanium alloy TC4 plate and T2 copper plate welded by electron beam only on the copper side reaches 162Mpa.
实施例3Example 3
对钛合金TC4和T2紫铜的电子束相邻焊接方法按以下步骤进行:The electron beam adjacent welding method for titanium alloy TC4 and T2 red copper is carried out in the following steps:
使用280#、400#、600#目数砂纸去除钛铜待焊面及周边300mm区域表面氧化层,并使用丙酮进行表面油污清理。钛铜材料分别是TC4和T2紫铜,其中,TC4钛合金质量百分组成为:Ti:89.12%、Al:6.42%、V:4.30%、Fe:0.05%、C:0.03%;T2紫铜质量百分组成为:Cu:≥99.9%、O:0.06%。对焊接试板进行装配,不开坡口并无间隙紧密对接。固定对接试板于真空室电子束斑表面焦点抑或下焦点位置,对接面平行于水平导轨运动方向。Use 280#, 400#, 600# mesh sandpaper to remove the oxide layer on the titanium copper surface to be welded and the surrounding 300mm area, and use acetone to clean the surface oil. Titanium-copper materials are TC4 and T2 red copper respectively, among which, the mass percentage of TC4 titanium alloy is composed of: Ti: 89.12%, Al: 6.42%, V: 4.30%, Fe: 0.05%, C: 0.03%; T2 red copper mass percentage group It becomes: Cu: ≥ 99.9%, O: 0.06%. Assemble the welded test plates, butt them tightly without opening grooves and gaps. Fix the docking test plate at the focal point or the lower focal point of the electron beam spot surface in the vacuum chamber, and the docking surface is parallel to the moving direction of the horizontal guide rail.
抽取真空,并待枪真空、室真空度到达焊接条件,枪真空、室真空度分别达到8E-3、7E-2,加载高压,并进行焊接参数设定。其中,电子束加速电压:60KV,聚焦电流650mA,焊接高度280mm,灯丝电流430mA;电子束流:45mA,焊接速度:10mm/s,束流上升、下降时间:1.5s;启动真空室运动系统伺服使能,移动对接面垂直方向,使电子束偏置于铜侧,偏置量范围:1.5mm。完成参数设定后进行焊接,下束并待完整熔池形成后,开始水平轴运动完成第一道焊接。Extract the vacuum, and when the gun vacuum and chamber vacuum reach the welding conditions, the gun vacuum and chamber vacuum respectively reach 8E -3 and 7E -2 , load high pressure, and set the welding parameters. Among them, electron beam accelerating voltage: 60KV, focusing current 650mA, welding height 280mm, filament current 430mA; electron beam current: 45mA, welding speed: 10mm/s, beam rising and falling time: 1.5s; start the vacuum chamber motion system servo Enable, move the vertical direction of the docking surface, so that the electron beam is biased on the copper side, the bias range: 1.5mm. After the parameter setting is completed, the welding is carried out. After the beam is lowered and the complete molten pool is formed, the horizontal axis movement is started to complete the first welding.
关闭室真空,将连接试板于固定夹具上拆卸,调换背面作为焊接面,重新固定,保持原始焊接高度不变并使对接面平行于水平移动导轨。使用丙酮对焊接面进行清理。Turn off the vacuum in the chamber, remove the connecting test plate from the fixing fixture, replace the back as the welding surface, fix it again, keep the original welding height unchanged and make the butt surface parallel to the horizontal moving guide rail. Clean the soldered surfaces with acetone.
抽取真空至焊接要求真空度及,枪真空、室真空度分别达到8E-3、7E-2,重新设定电子束参数为:电子束加速电压:60KV,聚焦电流650mA,焊接高度280mm,灯丝电流430mA;电子束流:15mA,焊接速度:15mm/s,束流上升、下降时间:1.5s。完成参数设定后进行焊接,下束并待完整熔池形成后,开始水平轴运动完成第二道背部焊接。Extract the vacuum to the required vacuum degree for welding, gun vacuum and chamber vacuum respectively reach 8E -3 and 7E -2 , reset the electron beam parameters as follows: electron beam acceleration voltage: 60KV, focusing current 650mA, welding height 280mm, filament current 430mA; electron beam current: 15mA, welding speed: 15mm/s, beam current rising and falling time: 1.5s. After the parameter setting is completed, welding is carried out. After the beam is lowered and a complete molten pool is formed, the horizontal axis movement is started to complete the second back welding.
再次关闭真空,将连接试板于固定夹具上拆卸,将原始第一道焊接面重新作为正面并固定,同时保持原始焊接高度不变并使对接面平行于水平移动导轨。使用丙酮对焊接面进行清理。Turn off the vacuum again, remove the connection test plate from the fixing fixture, and fix the original first welding surface as the front side again, while keeping the original welding height unchanged and making the butt joint surface parallel to the horizontal moving guide rail. Clean the soldered surfaces with acetone.
使电子束偏置于钛侧,偏置量为2.5mm,抽取真空,枪真空、室真空度分别达到8E-3、7E-2,重新设定电子束参数为:电子束加速电压:60KV,聚焦电流650mA,焊接高度280mm,灯丝电流430mA;电子束流:20mA,焊接速度:10mm/s,束流上升、下降时间:1.5s。完成参数设定后进行焊接,下束并待完整熔池形成后,开始水平轴运动完成第三道相邻焊接。The electron beam is biased on the titanium side, the bias is 2.5mm, the vacuum is drawn, the gun vacuum and chamber vacuum are respectively 8E -3 and 7E -2 , and the electron beam parameters are reset as follows: electron beam acceleration voltage: 60KV, Focusing current 650mA, welding height 280mm, filament current 430mA; electron beam current: 20mA, welding speed: 10mm/s, beam rising and falling time: 1.5s. After the parameter setting is completed, welding is carried out. After the beam is lowered and a complete molten pool is formed, the horizontal axis movement is started to complete the third adjacent welding.
钛合金TC4板和T2紫铜板的接头强度达到228Mpa。The joint strength of titanium alloy TC4 plate and T2 copper plate reaches 228Mpa.
实施例4Example 4
本实施例中对钛合金TC4和T2紫铜的电子束相邻焊接方法按以下步骤进行:The electron beam adjacent welding method to titanium alloy TC4 and T2 red copper is carried out in the following steps in the present embodiment:
使用280#、400#、600#目数砂纸去除钛铜待焊面及周边300mm区域表面氧化层,并使用丙酮进行表面油污清理。钛铜材料分别是TC4和T2紫铜,其中,TC4钛合金质量百分组成为:Ti:89.12%、Al:6.42%、V:4.30%、Fe:0.05%、C:0.03%;T2紫铜质量百分组成为:Cu:≥99.9%、O:0.06%。对焊接试板进行装配,不开坡口并无间隙紧密对接。固定对接试板于真空室电子束斑表面焦点抑或下焦点位置,对接面平行于水平导轨运动方向。Use 280#, 400#, 600# mesh sandpaper to remove the oxide layer on the titanium copper surface to be welded and the surrounding 300mm area, and use acetone to clean the surface oil. Titanium-copper materials are TC4 and T2 red copper respectively, among which, the mass percentage of TC4 titanium alloy is composed of: Ti: 89.12%, Al: 6.42%, V: 4.30%, Fe: 0.05%, C: 0.03%; T2 red copper mass percentage group It becomes: Cu: ≥ 99.9%, O: 0.06%. Assemble the welded test plates, butt them tightly without opening grooves and gaps. Fix the docking test plate at the focal point or the lower focal point of the electron beam spot surface in the vacuum chamber, and the docking surface is parallel to the moving direction of the horizontal guide rail.
抽取真空,并待枪真空、室真空度到达焊接条件,枪真空、室真空度分别达到8E-3、7E-2以下,加载高压,并进行焊接参数设定。其中,电子束加速电压:60KV,聚焦电流650mA,焊接高度280mm,灯丝电流430mA;电子束流:45mA,焊接速度:10mm/s,束流上升、下降时间:1.5s;启动真空室运动系统伺服使能,移动对接面垂直方向,使电子束偏置于铜侧,偏置量范围:1.5mm。完成参数设定后进行焊接,下束并待完整熔池形成后,开始水平轴运动完成第一道焊接。Extract the vacuum, and when the gun vacuum and chamber vacuum reach the welding conditions, the gun vacuum and chamber vacuum respectively reach below 8E -3 and 7E -2 , load high pressure, and set the welding parameters. Among them, electron beam accelerating voltage: 60KV, focusing current 650mA, welding height 280mm, filament current 430mA; electron beam current: 45mA, welding speed: 10mm/s, beam rising and falling time: 1.5s; start the vacuum chamber motion system servo Enable, move the vertical direction of the docking surface, so that the electron beam is biased on the copper side, the bias range: 1.5mm. After the parameter setting is completed, the welding is carried out. After the beam is lowered and the complete molten pool is formed, the horizontal axis movement is started to complete the first welding.
关闭室真空,将连接试板于固定夹具上拆卸,调换背面作为焊接面,重新固定,保持原始焊接高度不变并使对接面平行于水平移动导轨。使用丙酮对焊接面进行清理。Turn off the vacuum in the chamber, remove the connecting test plate from the fixing fixture, replace the back as the welding surface, fix it again, keep the original welding height unchanged and make the butt surface parallel to the horizontal moving guide rail. Clean the soldered surfaces with acetone.
抽取真空至焊接要求真空度及以下,枪真空、室真空度分别达到8E-3、7E-2重新设定电子束参数为:电子束加速电压:60KV,聚焦电流650mA,焊接高度280mm,灯丝电流430mA;电子束流:15mA,焊接速度:15mm/s,束流上升、下降时间:1.5s。完成参数设定后进行焊接,下束并待完整熔池形成后,开始水平轴运动完成第二道背部焊接。Extract the vacuum to the vacuum degree required by welding and below, the gun vacuum and chamber vacuum respectively reach 8E -3 and 7E -2 , and reset the electron beam parameters as follows: electron beam acceleration voltage: 60KV, focusing current 650mA, welding height 280mm, filament current 430mA; electron beam current: 15mA, welding speed: 15mm/s, beam current rising and falling time: 1.5s. After the parameter setting is completed, welding is carried out. After the beam is lowered and a complete molten pool is formed, the horizontal axis movement is started to complete the second back welding.
再次关闭真空,将连接试板于固定夹具上拆卸,将原始第一道焊接面重新作为正面并固定,同时保持原始焊接高度不变并使对接面平行于水平移动导轨。使用丙酮对焊接面进行清理。Turn off the vacuum again, remove the connection test plate from the fixing fixture, and fix the original first welding surface as the front side again, while keeping the original welding height unchanged and making the butt joint surface parallel to the horizontal moving guide rail. Clean the soldered surfaces with acetone.
使电子束偏置于钛侧,偏置量为3mm,抽取真空,枪真空、室真空度分别达到8E-3、7E-2,重新设定电子束参数为:电子束加速电压:60KV,聚焦电流650mA,焊接高度280mm,灯丝电流430mA;电子束流:20mA,焊接速度:10mm/s,束流上升、下降时间:1.5s。完成参数设定后进行焊接,下束并待完整熔池形成后,开始水平轴运动完成第三道相邻焊接。Make the electron beam bias on the titanium side, the bias amount is 3mm, pump the vacuum, the gun vacuum and chamber vacuum respectively reach 8E -3 , 7E -2 , reset the electron beam parameters as follows: electron beam acceleration voltage: 60KV, focusing Current 650mA, welding height 280mm, filament current 430mA; electron beam current: 20mA, welding speed: 10mm/s, beam rising and falling time: 1.5s. After the parameter setting is completed, welding is carried out. After the beam is lowered and a complete molten pool is formed, the horizontal axis movement is started to complete the third adjacent welding.
钛合金TC4板和T2紫铜板的接头强度达到220Mpa。The joint strength of titanium alloy TC4 plate and T2 copper plate reaches 220Mpa.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610867917.0A CN106346126B (en) | 2016-09-29 | 2016-09-29 | A kind of titanium alloy and red copper dissimilar metal electro-beam welding method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610867917.0A CN106346126B (en) | 2016-09-29 | 2016-09-29 | A kind of titanium alloy and red copper dissimilar metal electro-beam welding method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106346126A true CN106346126A (en) | 2017-01-25 |
CN106346126B CN106346126B (en) | 2019-01-18 |
Family
ID=57866854
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610867917.0A Active CN106346126B (en) | 2016-09-29 | 2016-09-29 | A kind of titanium alloy and red copper dissimilar metal electro-beam welding method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106346126B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107931805A (en) * | 2017-12-26 | 2018-04-20 | 江苏烁石焊接科技有限公司 | A kind of plasma welding method of titanium alloy and aluminium alloy |
CN108176920A (en) * | 2017-12-26 | 2018-06-19 | 南京理工大学 | A kind of electron beam connection method of the high-strength metallurgical binding of titanium-aluminum dissimilar metal |
CN110039169A (en) * | 2019-04-30 | 2019-07-23 | 中国船舶重工集团公司第七二五研究所 | A kind of titanium-aluminum dissimilar metal electro-beam welding method |
CN115121928A (en) * | 2022-08-01 | 2022-09-30 | 宁波江丰电子材料股份有限公司 | Welding method of tantalum-titanium dissimilar metal |
CN115446440A (en) * | 2022-09-28 | 2022-12-09 | 南京理工大学 | A double-beam electron beam in-situ remelting welding method for titanium-copper dissimilar metals |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004066294A (en) * | 2002-08-06 | 2004-03-04 | Ykk Corp | Bonding method of metal materials using high-density energy beam heat source |
CN101913023A (en) * | 2010-09-10 | 2010-12-15 | 哈尔滨工业大学 | A kind of titanium alloy and tin bronze electron beam welding method |
CN101913021A (en) * | 2010-09-10 | 2010-12-15 | 哈尔滨工业大学 | Electron beam superposition welding method of chromium bronze and duplex titanium alloy dissimilar materials |
CN101913022A (en) * | 2010-09-10 | 2010-12-15 | 哈尔滨工业大学 | A method of electron beam welding TA15 titanium alloy and chrome bronze dissimilar materials |
CN101920391A (en) * | 2010-09-10 | 2010-12-22 | 哈尔滨工业大学 | Electron beam welding method for dissimilar materials of nickel-aluminum bronze and TC4 titanium alloy |
CN101934424A (en) * | 2010-09-10 | 2011-01-05 | 哈尔滨工业大学 | A kind of TB5/copper alloy vacuum electron beam welding method |
CN102059443A (en) * | 2010-12-28 | 2011-05-18 | 哈尔滨工业大学 | High-strength electron beam welding process of titanium metal material and copper or copper alloy |
CN103221564A (en) * | 2010-11-22 | 2013-07-24 | 新日铁住金株式会社 | Electron beam welded joint, steel material for electron beam welding, and manufacturing method thereof |
US20140144890A1 (en) * | 2012-11-27 | 2014-05-29 | Robert Bosch Gmbh | Method for connecting different types of metallic joining partners using a radiation source |
-
2016
- 2016-09-29 CN CN201610867917.0A patent/CN106346126B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004066294A (en) * | 2002-08-06 | 2004-03-04 | Ykk Corp | Bonding method of metal materials using high-density energy beam heat source |
CN101913023A (en) * | 2010-09-10 | 2010-12-15 | 哈尔滨工业大学 | A kind of titanium alloy and tin bronze electron beam welding method |
CN101913021A (en) * | 2010-09-10 | 2010-12-15 | 哈尔滨工业大学 | Electron beam superposition welding method of chromium bronze and duplex titanium alloy dissimilar materials |
CN101913022A (en) * | 2010-09-10 | 2010-12-15 | 哈尔滨工业大学 | A method of electron beam welding TA15 titanium alloy and chrome bronze dissimilar materials |
CN101920391A (en) * | 2010-09-10 | 2010-12-22 | 哈尔滨工业大学 | Electron beam welding method for dissimilar materials of nickel-aluminum bronze and TC4 titanium alloy |
CN101934424A (en) * | 2010-09-10 | 2011-01-05 | 哈尔滨工业大学 | A kind of TB5/copper alloy vacuum electron beam welding method |
CN103221564A (en) * | 2010-11-22 | 2013-07-24 | 新日铁住金株式会社 | Electron beam welded joint, steel material for electron beam welding, and manufacturing method thereof |
CN102059443A (en) * | 2010-12-28 | 2011-05-18 | 哈尔滨工业大学 | High-strength electron beam welding process of titanium metal material and copper or copper alloy |
US20140144890A1 (en) * | 2012-11-27 | 2014-05-29 | Robert Bosch Gmbh | Method for connecting different types of metallic joining partners using a radiation source |
Non-Patent Citations (1)
Title |
---|
SHUN GUO ET.: "Effect of beam offset on the characteristics of copper/304stainless steel electron beam welding", 《VACUUM》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107931805A (en) * | 2017-12-26 | 2018-04-20 | 江苏烁石焊接科技有限公司 | A kind of plasma welding method of titanium alloy and aluminium alloy |
CN108176920A (en) * | 2017-12-26 | 2018-06-19 | 南京理工大学 | A kind of electron beam connection method of the high-strength metallurgical binding of titanium-aluminum dissimilar metal |
CN107931805B (en) * | 2017-12-26 | 2021-09-03 | 江苏烁石焊接科技有限公司 | Plasma welding method for titanium alloy and aluminum alloy |
CN110039169A (en) * | 2019-04-30 | 2019-07-23 | 中国船舶重工集团公司第七二五研究所 | A kind of titanium-aluminum dissimilar metal electro-beam welding method |
CN110039169B (en) * | 2019-04-30 | 2021-04-02 | 中国船舶重工集团公司第七二五研究所 | Electron beam welding method for titanium-aluminum dissimilar metal |
CN115121928A (en) * | 2022-08-01 | 2022-09-30 | 宁波江丰电子材料股份有限公司 | Welding method of tantalum-titanium dissimilar metal |
CN115446440A (en) * | 2022-09-28 | 2022-12-09 | 南京理工大学 | A double-beam electron beam in-situ remelting welding method for titanium-copper dissimilar metals |
CN115446440B (en) * | 2022-09-28 | 2024-04-23 | 南京理工大学 | Double-beam electron beam in-situ remelting welding method for titanium-copper dissimilar metal |
Also Published As
Publication number | Publication date |
---|---|
CN106346126B (en) | 2019-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106346126A (en) | Method for electron beam welding of titanium alloy and red copper dissimilar metal | |
CN105414733B (en) | The method of electron beam welding xenogenesis system aluminium alloy | |
CN107442921B (en) | Electron beam welding method for dissimilar aluminum alloy materials | |
CN107999916B (en) | A kind of compound silk filling melt-brazing method of the double light beam laser-TIG of dissimilar material | |
CN101920391B (en) | Electron beam welding method for dissimilar materials of nickel-aluminum bronze and TC4 titanium alloy | |
CN107335921B (en) | Add titanium alloy-stainless steel dissimilar metal laser welding method of vanadium middle layer | |
CN101284339A (en) | A kind of welding wire and its application method for welding aluminum and aluminum alloy and steel | |
CN108188582B (en) | Laser-electric arc composite filler wire welding method for preparing magnesium/steel dissimilar metal | |
CN108176920B (en) | Electron beam connection method for high-strength metallurgical bonding of titanium-aluminum dissimilar metal | |
CN106181016A (en) | The electromagnetic pulse of bimetallic stratiform composite board soldering joint drives welding system and method | |
CN104476011B (en) | High-entropy alloy welding wire and the application of titanium/mild steel is welded for TIG | |
CN110977168A (en) | A connection method of SiCp/Al composite material | |
CN110421261B (en) | Laser welding method for titanium alloy-stainless steel dissimilar metal added with composite intermediate layer | |
CN106270879A (en) | The magnesium of a kind of coating assistant regulating and controlling and steel foreign material laser welding-brazing method | |
CN102059443B (en) | High-strength electron beam welding process of titanium metal material and copper or copper alloy | |
CN105710511A (en) | Manufacturing method for alloy welded splice | |
CN106270876A (en) | A kind of aluminium lithium alloy and titanium alloy electron beam melt pricker welding method | |
CN101934424B (en) | A vacuum electron beam welding method for TB5 titanium alloy and copper alloy | |
CN101913022B (en) | Method for welding dissimilar materials of TA15 titanium alloy and chromium bronze through electron beams | |
CN112475808B (en) | Process suitable for industrial production of aluminum alloy/steel composite structural member and application | |
CN103231160B (en) | Fusion welding process for iron and aluminum-base alloy and stainless steel by taking Fe-Cr-Ni alloy as filling material | |
CN104907657B (en) | A kind of TiAl/TC4 electron beam melt-brazing methods for adding alloy interlayer | |
CN110142495B (en) | Titanium-aluminum alloy electron beam welding method for reducing dilution rate of parent metal | |
CN100361774C (en) | Joint Strengthening Method for Controlling the Interface Structure of Copper Alloy and Steel Butt Welding Joints | |
CN101913023B (en) | Titanium alloy and tin bronze electron beam welding method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |