CN106334587A - Method for preparing supported metal catalyst through cold plasma-alcohol synergetic reduction under atmospheric pressure - Google Patents
Method for preparing supported metal catalyst through cold plasma-alcohol synergetic reduction under atmospheric pressure Download PDFInfo
- Publication number
- CN106334587A CN106334587A CN201610898559.XA CN201610898559A CN106334587A CN 106334587 A CN106334587 A CN 106334587A CN 201610898559 A CN201610898559 A CN 201610898559A CN 106334587 A CN106334587 A CN 106334587A
- Authority
- CN
- China
- Prior art keywords
- cold plasma
- atmospheric pressure
- plasma
- under
- alcohol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 66
- 239000002184 metal Substances 0.000 title claims abstract description 66
- 238000000034 method Methods 0.000 title claims abstract description 49
- 239000003054 catalyst Substances 0.000 title claims abstract description 31
- 230000009467 reduction Effects 0.000 title claims abstract description 13
- 230000002195 synergetic effect Effects 0.000 title abstract description 8
- 230000005495 cold plasma Effects 0.000 claims abstract description 47
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 46
- 239000007789 gas Substances 0.000 claims abstract description 44
- 239000002243 precursor Substances 0.000 claims abstract description 43
- 239000011261 inert gas Substances 0.000 claims abstract description 14
- 230000008569 process Effects 0.000 claims abstract description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 48
- 210000002381 plasma Anatomy 0.000 claims description 34
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical group [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 31
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical group O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 26
- 229910052786 argon Inorganic materials 0.000 claims description 24
- 229910052763 palladium Inorganic materials 0.000 claims description 23
- 239000010949 copper Substances 0.000 claims description 17
- 229910052802 copper Inorganic materials 0.000 claims description 11
- 238000006555 catalytic reaction Methods 0.000 claims description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- 230000004888 barrier function Effects 0.000 claims description 4
- GPNDARIEYHPYAY-UHFFFAOYSA-N palladium(ii) nitrate Chemical compound [Pd+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O GPNDARIEYHPYAY-UHFFFAOYSA-N 0.000 claims description 4
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 claims description 4
- 239000002253 acid Substances 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims description 3
- 229910000420 cerium oxide Inorganic materials 0.000 claims description 2
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 claims description 2
- 229910001981 cobalt nitrate Inorganic materials 0.000 claims description 2
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 claims description 2
- 239000008367 deionised water Substances 0.000 claims description 2
- 229910021641 deionized water Inorganic materials 0.000 claims description 2
- 229910021389 graphene Inorganic materials 0.000 claims description 2
- 239000001307 helium Substances 0.000 claims description 2
- 229910052734 helium Inorganic materials 0.000 claims description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 2
- 239000002808 molecular sieve Substances 0.000 claims description 2
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- 229910001961 silver nitrate Inorganic materials 0.000 claims description 2
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims description 2
- 239000004408 titanium dioxide Substances 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 2
- 239000003795 chemical substances by application Substances 0.000 claims 8
- 238000001802 infusion Methods 0.000 claims 2
- 239000000463 material Substances 0.000 claims 2
- 238000009938 salting Methods 0.000 claims 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims 1
- 229910052799 carbon Inorganic materials 0.000 claims 1
- FDWREHZXQUYJFJ-UHFFFAOYSA-M gold monochloride Chemical compound [Cl-].[Au+] FDWREHZXQUYJFJ-UHFFFAOYSA-M 0.000 claims 1
- 229910017604 nitric acid Inorganic materials 0.000 claims 1
- 239000013384 organic framework Substances 0.000 claims 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims 1
- 239000001257 hydrogen Substances 0.000 abstract description 12
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 12
- 229910021645 metal ion Inorganic materials 0.000 abstract description 12
- 238000002360 preparation method Methods 0.000 abstract description 12
- 238000005470 impregnation Methods 0.000 abstract description 7
- 239000002082 metal nanoparticle Substances 0.000 abstract description 4
- 238000001035 drying Methods 0.000 abstract description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 abstract 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 21
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 11
- 238000001816 cooling Methods 0.000 description 11
- 238000006722 reduction reaction Methods 0.000 description 11
- 238000002441 X-ray diffraction Methods 0.000 description 10
- 150000002500 ions Chemical class 0.000 description 8
- 238000011282 treatment Methods 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- 230000005587 bubbling Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 238000007540 photo-reduction reaction Methods 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 3
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000012266 salt solution Substances 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 101150003085 Pdcl gene Proteins 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- APUPEJJSWDHEBO-UHFFFAOYSA-P ammonium molybdate Chemical compound [NH4+].[NH4+].[O-][Mo]([O-])(=O)=O APUPEJJSWDHEBO-UHFFFAOYSA-P 0.000 description 1
- 229940010552 ammonium molybdate Drugs 0.000 description 1
- 235000018660 ammonium molybdate Nutrition 0.000 description 1
- 239000011609 ammonium molybdate Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 239000012621 metal-organic framework Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
- B01J37/0205—Impregnation in several steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/44—Palladium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/72—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/16—Reducing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/34—Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
- B01J37/349—Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of flames, plasmas or lasers
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Plasma & Fusion (AREA)
- Toxicology (AREA)
- Catalysts (AREA)
Abstract
Description
技术领域technical field
本发明属于负载型金属催化剂制备领域,具体涉及一种负载型金属催化剂的大气压冷等离子体制备方法。The invention belongs to the field of preparation of supported metal catalysts, and in particular relates to a method for preparing a supported metal catalyst by atmospheric pressure cooling plasma.
背景技术Background technique
负载型金属催化剂在化学化工和环保领域具有广泛的应用。其制备方法主要包括浸渍-热还原,化学还原和光还原等方法。浸渍-热还原方法操作过程简单,适用于规模化生产,已广泛应用于负载型金属催化剂的制备。但是其通常需要在氢气中长时间还原,这容易造成金属粒径变大,分散性变差,从而造成其活性不高。化学还原法通常需要使用过量的硼氢化钠、甲醛和肼等有毒有害的化学试剂,虽然能得到粒径小、分散性好的金属纳米粒子,获得高性能的负载型金属催化剂。但其环境不友好,因此在实际应用中受到限制。光还原法是一种温和的高性能负载型金属催化剂制备方法,但其需要高强度、长时间的光照,能耗较高。此外,化学还原和光还原法,都在液体环境中进行,后期干燥等步骤易造成金属纳米粒子粒径变大,活性变差。Supported metal catalysts have a wide range of applications in chemical engineering and environmental protection. The preparation method mainly includes impregnation-thermal reduction, chemical reduction, photoreduction and other methods. The impregnation-thermal reduction method has a simple operation process, is suitable for large-scale production, and has been widely used in the preparation of supported metal catalysts. However, it usually needs to be reduced in hydrogen for a long time, which tends to cause the metal particle size to become larger and the dispersion to be poor, resulting in its low activity. The chemical reduction method usually requires the use of excessive amounts of toxic and harmful chemical reagents such as sodium borohydride, formaldehyde, and hydrazine. Although metal nanoparticles with small particle size and good dispersion can be obtained, high-performance supported metal catalysts can be obtained. But its environment is not friendly, so it is limited in practical application. Photoreduction is a mild and high-performance method for preparing supported metal catalysts, but it requires high-intensity, long-term light and high energy consumption. In addition, the chemical reduction and photoreduction methods are both carried out in a liquid environment, and subsequent drying and other steps may easily cause the particle size of the metal nanoparticles to increase and the activity to deteriorate.
等离子体,也称为物质的第四态,通常由气体放电产生,是达到一定电离度、由电荷近似相等的电子(有时也包括电负性的离子)和正离子,以及中性的基态和激发态原子和分子组成。冷等离子体是一种重要的等离子体,其具有高的电子能量和低的气体温度,冷等离子法是一种制备负载型金属催化剂的有效方法。专利申请CN200410093820.6采用低温等离子体,以惰性气体、空气或氧气为工作气体,利用电子还原特性,制备负载型金属催化剂。发明人指出该过程可以在50Pa~0.1MPa之间进行,可还原的金属活性组分为“H2PtCl6、PdCl2、Ni(NO3)2、Au(NO3)2、Cu(NO3)2、Ag(NO3)2、Fe(NO3)3、Co(NO3)2、Zn(NO3)3、K2CrO3或钼酸铵的一种或几种”。采用大气压冷等离子体,以惰性气体为工作气体,利用高能电子还原金属离子,原则上确实可行。但由于大气压下气体密度大,碰撞增多,且电子能量较低,因此尚未有采用大气压冷等离子体,以惰性气体为工作气体,利用电子还原制备负载型金属催化剂的报道。该专利实施例也为低气压下,冷等离子体还原制备Pt/TiO2。此外,Liu等人(Changjun Liu,Minyue Li,Jiaqi Wang,Xintong Zhou,Qiuting Guo,Jinmao Yan,Yingzhi Li.Chinese Journal ofCatalysis 37(2016)340-348.)指出电子只能还原具有正电极电势的金属离子,而对于具有负电极电势的金属离子,如Ni2+/Ni(Eθ=-0.257V),Fe3 +/Fe(Eθ=-0.037V),Co2+/Co(Eθ=-0.28V),Zn2+/Zn(Eθ=-0.7618V),则无法还原。Plasma, also known as the fourth state of matter, is usually produced by gas discharge. It is composed of electrons (sometimes including electronegative ions) and positive ions with a certain degree of ionization, as well as a neutral ground state and an excited state. Composition of atoms and molecules. Cold plasma is an important plasma with high electron energy and low gas temperature. Cold plasma method is an effective method for preparing supported metal catalysts. Patent application CN200410093820.6 adopts low-temperature plasma, uses inert gas, air or oxygen as working gas, and utilizes electron reduction characteristics to prepare supported metal catalysts. The inventor pointed out that this process can be carried out between 50Pa~0.1MPa, and the reducible metal active components are "H 2 PtCl 6 , PdCl 2 , Ni(NO 3 ) 2 , Au(NO 3 ) 2 , Cu(NO 3 ) 2 , Ag(NO 3 ) 2 , Fe(NO 3 ) 3 , Co(NO 3 ) 2 , Zn(NO 3 ) 3 , K 2 CrO 3 or one or more of ammonium molybdate”. It is indeed feasible in principle to use atmospheric pressure-cooled plasma, use inert gas as the working gas, and use high-energy electrons to reduce metal ions. However, due to the high density of gas under atmospheric pressure, the increase of collisions, and the low energy of electrons, there have been no reports on the preparation of supported metal catalysts by electron reduction using atmospheric pressure-cooled plasma and inert gas as the working gas. The example of this patent is also the preparation of Pt/TiO 2 by cold plasma reduction under low pressure. Furthermore, Liu et al. (Changjun Liu, Minyue Li, Jiaqi Wang, Xintong Zhou, Qiuting Guo, Jinmao Yan, Yingzhi Li. Chinese Journal of Catalysis 37(2016) 340-348.) pointed out that electrons can only reduce metals with positive electrode potential ions, and for metal ions with negative electrode potential, such as Ni 2+ /Ni(E θ =-0.257V), Fe 3 + /Fe(E θ =-0.037V), Co 2+ /Co(E θ = -0.28V), Zn 2+ /Zn (E θ =-0.7618V), cannot be restored.
为了解决大气压下电子能量较低,无法还原金属离子的问题,研究者们做了大量相关研究。专利申请CN200910304664.6采用低温等离子体,以氢气为工作气体,在大气压下还原金属离子,同时制备催化剂载体和金属活性组分,获得负载型金属催化剂。该发明实施例证明该方法可还原制备负载型Ni催化剂。此外,其他相关报道也证实采用含有氢气的冷等离子体可还原制备负载型贵金属催化剂,以及负载型Ni和Co等非贵金属催化剂。这些研究表明,含氢冷等离子体确实是大气压下还原金属离子的一种有效方法,可获得高性能的负载型金属催化剂。但这些过程都需要使用氢气,虽然氢气是一种洁净能源,但其易燃易爆,存在安全隐患。In order to solve the problem of low electron energy and the inability to reduce metal ions under atmospheric pressure, researchers have done a lot of related research. Patent application CN200910304664.6 adopts low-temperature plasma, uses hydrogen as the working gas, reduces metal ions under atmospheric pressure, prepares catalyst carrier and metal active components at the same time, and obtains a supported metal catalyst. The embodiment of the invention proves that the method can be reduced to prepare a supported Ni catalyst. In addition, other related reports have also confirmed that supported noble metal catalysts, as well as supported non-noble metal catalysts such as Ni and Co, can be prepared by reduction using cold plasma containing hydrogen. These studies demonstrate that hydrogen-containing cold plasmas are indeed an efficient method for the reduction of metal ions at atmospheric pressure, leading to high-performance supported metal catalysts. However, these processes require the use of hydrogen. Although hydrogen is a clean energy source, it is flammable and explosive, posing safety hazards.
本发明采用大气压冷等离子体,以惰性气体为工作气体,并采用其携带醇蒸汽,在大气压冷等离子体-醇协同作用下,利用醇在冷等离子体中产生的多种含氢活性物种,对浸渍法获得负载于载体上的金属前驱体进行还原,制备负载型金属催化剂。该方法可简单、快速、安全、环境友好地制备负载型金属催化剂。The present invention adopts atmospheric pressure cooling plasma, uses inert gas as the working gas, and uses it to carry alcohol vapor, and under the synergistic effect of atmospheric pressure cooling plasma and alcohol, utilizes various hydrogen-containing active species produced by alcohol in the cold plasma, to The impregnation method obtains the metal precursor loaded on the carrier for reduction to prepare the supported metal catalyst. The method can prepare supported metal catalysts simply, quickly, safely and environmentally friendly.
发明内容Contents of the invention
为克服现有大气压冷等离子体,使用氢气作为工作气体不安全,而以惰性气体为工作气体,电子能量较低,无法还原金属离子的缺点与不足,本发明的首要目的在于提供一种简单、快速、安全环境友好的负载型金属催化剂制备方法。In order to overcome the existing atmospheric pressure cooling plasma, it is unsafe to use hydrogen as the working gas, and use inert gas as the working gas, the electron energy is low, and the shortcomings and deficiencies that cannot restore metal ions, the primary purpose of the present invention is to provide a simple, A fast, safe and environmentally friendly preparation method for supported metal catalysts.
本发明所采用的技术方案如下:采用大气压冷等离子体,以惰性气体为工作气体并携带醇蒸汽,在大气压冷等离子体-醇协同作用下,产生多种含氢活性物种,对浸渍法获得负载于载体上的金属前驱体进行还原,获得负载型金属催化剂。The technical scheme adopted in the present invention is as follows: using atmospheric pressure cooling plasma, using inert gas as the working gas and carrying alcohol vapor, under the synergistic effect of atmospheric pressure cooling plasma and alcohol, a variety of hydrogen-containing active species are produced, and the impregnation method obtains a load The metal precursor on the carrier is reduced to obtain a supported metal catalyst.
该方法的具体步骤为:The concrete steps of this method are:
(1)称取适量金属前驱体于烧杯中,加入一定量去离子水,配制成一定浓度的金属前驱体盐溶液;(1) Weigh an appropriate amount of metal precursor in a beaker, add a certain amount of deionized water, and prepare a metal precursor salt solution with a certain concentration;
(2)采用浸渍法,将一定量载体放入金属前驱体盐溶液,静置,干燥,获得负载于载体上的金属前驱体;(2) Using the impregnation method, put a certain amount of carrier into the metal precursor salt solution, let it stand, and dry to obtain the metal precursor loaded on the carrier;
(3)将负载于载体上的金属前驱体放入等离子体反应器中,以惰性气体为工作气体,携带醇蒸汽进入等离子体反应器。在大气压下产生冷等离子体,在等离子体-醇协同作用下,对负载于载体上的金属前驱体进行还原,获得负载型金属催化剂。(3) Put the metal precursor loaded on the carrier into the plasma reactor, use the inert gas as the working gas, and carry the alcohol vapor into the plasma reactor. A cold plasma is generated under atmospheric pressure, and under the plasma-alcohol synergistic effect, the metal precursor supported on the carrier is reduced to obtain a supported metal catalyst.
其中,所述的金属前驱体为单金属组分,双金属组分或多金属组分;Wherein, the metal precursor is a monometallic component, a bimetallic component or a multimetallic component;
所述醇蒸汽中醇为甲醇、乙醇、丙醇和乙二醇中的一种或多种;The alcohol in the alcohol vapor is one or more of methanol, ethanol, propanol and ethylene glycol;
所述的工作气体为氩气、氮气、氦气中的一种或其混合气体;Described working gas is a kind of or its mixed gas in argon, nitrogen, helium;
所述的冷等离子体放电气体温度不超过90℃,无额外加热。The temperature of the cold plasma discharge gas does not exceed 90°C without additional heating.
进一步的,所述的载体为二氧化钛、二氧化硅、氧化铝、分子筛、金属有机骨架材料、石墨烯、活性炭、活性炭纤维、氧化铁或氧化铈中的一种。Further, the carrier is one of titanium dioxide, silicon dioxide, alumina, molecular sieve, metal-organic framework, graphene, activated carbon, activated carbon fiber, iron oxide or cerium oxide.
进一步的,所述的大气压冷等离子体为大气压介质阻挡放电冷等离子体、大气压射频放电冷等离子体、大气压辉光放电冷等离子体、大气压直流放电冷等离子体中的一种。Further, the atmospheric pressure cold plasma is one of atmospheric pressure dielectric barrier discharge cold plasma, atmospheric pressure radio frequency discharge cold plasma, atmospheric pressure glow discharge cold plasma, and atmospheric pressure direct current discharge cold plasma.
进一步的,所述的大气压冷等离子体电子能量不足以直接还原负载的金属离子。Further, the electron energy of the atmospheric pressure-cooled plasma is not enough to directly reduce the loaded metal ions.
进一步的,所述的金属前驱体盐为氯化钯、硝酸钯、氯铂酸、氯金酸、硝酸银、硝酸铜、氯化铜、硝酸镍或硝酸钴中的一种或几种。优选硝酸钯和硝酸铜。Further, the metal precursor salt is one or more of palladium chloride, palladium nitrate, chloroplatinic acid, chloroauric acid, silver nitrate, copper nitrate, copper chloride, nickel nitrate or cobalt nitrate. Palladium nitrate and copper nitrate are preferred.
进一步的,所述的冷等离子体放电电压为0.1kV~40kV。Further, the cold plasma discharge voltage is 0.1kV-40kV.
进一步的,所述的冷等离子体处理时间为2-30分钟。Further, the cold plasma treatment time is 2-30 minutes.
进一步的,负载于载体上的金属前驱体的质量分数为0.01%-60%。Further, the mass fraction of the metal precursor loaded on the carrier is 0.01%-60%.
与现有技术相比,本发明方法的优点在于:Compared with prior art, the advantage of the inventive method is:
本发明提供一种简单、快速、安全、环境友好的负载型金属催化剂制备新方法。该方法有效克服了现有方法中大气压下惰性气体放电冷等离子体电子能量较低,无法还原金属离子的缺点与不足,本发明属干法制备方法,可有效避免湿法工艺后期干燥,易使金属纳米粒子变大等问题。本发明在大气压冷等离子体-醇协同作用下,利用醇在冷等离子体中产生的多种含氢活性物种,对浸渍法获得负载于载体上的金属前驱体进行还原,且无需使用具有安全隐患的氢气,即可制备负载型金属催化剂。The invention provides a simple, rapid, safe and environment-friendly preparation method of a supported metal catalyst. The method effectively overcomes the disadvantages and deficiencies of the existing methods, such as the low electron energy of the cold plasma discharged by the inert gas under atmospheric pressure, and the inability to reduce metal ions. Problems such as the enlargement of metal nanoparticles. Under the synergistic effect of atmospheric pressure cooling plasma-alcohol, the present invention uses various hydrogen-containing active species produced by alcohol in the cold plasma to reduce the metal precursor loaded on the carrier obtained by the impregnation method, without using Hydrogen can be used to prepare supported metal catalysts.
附图说明Description of drawings
图1为不同方法制备的负载型催化剂Pd/TiO2照片;其中(a)为处理前2wt%Pd/TiO2样品;(b)为采用大气压冷等离子体,以氩气为工作气体,不携带乙醇蒸汽制备2wt%Pd/TiO2样品;(c)为采用大气压冷等离子体,以氩气为工作气体,携带乙醇蒸汽,制备2wt%Pd/TiO2样品;(d)为不采用冷等离子体,直接用氩气携带乙醇蒸汽,在80℃下处理9min获得2wt%Pd/TiO2样品的照片。Fig. 1 is the photo of supported catalyst Pd/ TiO2 prepared by different methods; wherein (a) is the 2wt% Pd/ TiO2 sample before treatment; (b) is the use of atmospheric pressure cooling plasma, with argon as the working gas Preparation of 2wt% Pd/TiO 2 samples by ethanol vapor; (c) using atmospheric pressure cooled plasma, using argon as the working gas, carrying ethanol vapor to prepare 2wt% Pd/TiO 2 samples; (d) not using cold plasma , directly carried ethanol vapor with argon, and treated at 80 °C for 9 min to obtain photos of 2wt% Pd/TiO 2 samples.
图2为不同方法制备的2wt%Pd/TiO2样品XRD谱图;其中,(a)采用大气压冷等离子体,以氩气为工作气体,不携带乙醇蒸汽(b)携带乙醇蒸汽,分别制备2wt%Pd/TiO2样品的XRD谱图,(c)采用氩气携带乙醇蒸汽,在80℃下处理9min获得2wt%Pd/TiO2样品的XRD谱图。Fig. 2 is the 2wt%Pd/ TiO2 sample XRD spectrogram prepared by different methods; Wherein, (a) adopts atmospheric pressure cooling plasma, uses argon as working gas, does not carry ethanol vapor (b) carries ethanol vapor, prepares 2wt respectively The XRD spectrum of the %Pd/TiO 2 sample, (c) the XRD spectrum of the 2wt% Pd/TiO 2 sample was obtained by using argon to carry ethanol vapor at 80°C for 9 minutes.
图3为不同方法制备的负载型催化剂Cu/TiO2照片;其中,(a)2wt%Cu/TiO2样品处理前,以及采用大气压冷等离子体,以氩气为工作气体,(b)不携带乙醇蒸汽或(c)携带乙醇蒸汽,分别制备2wt%Cu/TiO2样品的照片。Figure 3 is a photo of supported catalyst Cu/ TiO2 prepared by different methods; among them, (a) 2wt% Cu/ TiO2 sample is processed before, and adopts atmospheric pressure cooling plasma, with argon as the working gas, (b) does not carry Photographs of 2wt% Cu/ TiO2 samples prepared with ethanol vapor or (c) carrying ethanol vapor, respectively.
图4为采用大气压冷等离子体,以氩气为工作气体,不携带乙醇蒸汽或携带乙醇蒸汽,分别制备2wt%Cu/TiO2样品的XRD谱图。Fig. 4 is the XRD spectrum of 2wt% Cu/TiO 2 samples prepared by atmospheric pressure cooling plasma, using argon as the working gas, without ethanol vapor or with ethanol vapor, respectively.
具体实施方式detailed description
下面结合具体实施例对本发明的技术方案作进一步的说明,但本发明不以任何形式受限于实施例内容。实施例中所述试验方法如无特殊说明,均为常规方法;如无特殊说明,所述试剂和生物材料,均可从商业途径获得。The technical solutions of the present invention will be further described below in conjunction with specific examples, but the present invention is not limited by the content of the examples in any form. Unless otherwise specified, the test methods described in the examples are conventional methods; unless otherwise specified, the reagents and biological materials can be obtained from commercial sources.
实施例1Example 1
以硝酸钯为前驱体,采用浸渍法制备2wt%Pd/TiO2的前驱体,静置,干燥。Using palladium nitrate as the precursor, the precursor of 2wt% Pd/TiO 2 was prepared by impregnation method, left standing, and dried.
将上述前驱体0.3g,放入介质阻挡放电冷等离子体反应器中,通入氩气(100ml·min-1),调节放电频率为15kHz,正弦交流放电电压峰-峰值为10kV,放电间隙为2mm,在大气压条件下,对2wt%Pd/TiO2的前驱体进行处理,每次处理时间为3min,中间间歇8min,共处理3次,获得2wt%Pd/TiO2样品。冷等离子体放电气体温度不超过80℃,无额外加热。Put 0.3 g of the above precursor into a dielectric barrier discharge cold plasma reactor, pass in argon gas (100ml·min -1 ), adjust the discharge frequency to 15kHz, the peak-to-peak sinusoidal AC discharge voltage to 10kV, and the discharge gap to 2mm, under the condition of atmospheric pressure, the precursor of 2wt%Pd/TiO 2 was treated, each treatment time was 3min, and the interval was 8min, and the treatment was 3 times in total to obtain 2wt%Pd/TiO 2 samples. The cold plasma discharge gas temperature does not exceed 80°C without additional heating.
实施例1样品的照片和X射线衍射图谱分别见图1和图2。The photo and X-ray diffraction pattern of the sample of Example 1 are shown in Fig. 1 and Fig. 2 respectively.
图1所示实施例1样品的照片表明:以氩气为工作气体产生等离子体,不携带醇蒸汽的情况下,对2wt%Pd/TiO2的前驱体进行处理,样品颜色没有变化,这初步说明Pd离子没有被还原;The photo of the sample of Example 1 shown in Fig. 1 shows: use argon as the working gas to generate plasma, and under the situation of not carrying alcohol vapor, the precursor of 2wt %Pd/TiO is processed, and the color of the sample does not change, which is preliminary Indicates that Pd ions have not been reduced;
图2所示实施例1样品的X射线衍射图谱表明:以氩气为工作气体产生等离子体,不携带醇蒸汽的情况下,对2wt%Pd/TiO2的前驱体进行处理,没有Pd金属单质产生。The X-ray diffraction pattern of the sample of Example 1 shown in Figure 2 shows: use argon as the working gas to generate plasma, without carrying alcohol vapor, the precursor of 2wt%Pd/ TiO2 is processed, there is no Pd metal element produce.
实施例2Example 2
与实施例1基本相同,氩气以鼓泡的方式携带置于常温下的乙醇,对2wt%Pd/TiO2的前驱体进行处理,每次处理时间为3min,中间间歇8min,共处理3次,获得2wt%Pd/TiO2样品。冷等离子体放电气体温度不超过80℃,无额外加热。Basically the same as in Example 1, argon carries ethanol placed at room temperature in the form of bubbling, and treats the precursor of 2wt% Pd/TiO 2 . The treatment time is 3 minutes each time, and the middle interval is 8 minutes. , to obtain a 2wt% Pd/ TiO2 sample. The cold plasma discharge gas temperature does not exceed 80°C without additional heating.
实施例2样品的照片和X射线衍射图谱分别见图1和图2。The photos and X-ray diffraction patterns of the sample in Example 2 are shown in Fig. 1 and Fig. 2 respectively.
图1所示实施例2样品的照片表明:以氩气为工作气体产生等离子体,携带乙醇蒸汽的情况下,对2wt%Pd/TiO2的前驱体进行处理,样品颜色发生明显变化,这初步说明Pd离子被还原;The photos of the sample of Example 2 shown in Fig. 1 show that: with argon as the working gas to generate plasma, under the condition of carrying ethanol vapor, the precursor of 2wt%Pd/ TiO2 is processed, and the color of the sample changes obviously, which is preliminary Indicates that Pd ions are reduced;
图2所示实施例2样品的X射线衍射图谱表明:以氩气为工作气体产生等离子体,携带乙醇蒸汽的情况下,对2wt%Pd/TiO2的前驱体进行处理,有明显的Pd金属单质产生。这说明大气压冷等离子体-醇协同作用,可有效克服现有大气压冷等离子体,以惰性气体为工作气体,电子能量较低,无法还原金属离子的缺点。The X-ray diffraction pattern of the sample of Example 2 shown in Fig. 2 shows: use argon as the working gas to generate plasma, under the situation of carrying ethanol vapor, the precursor of 2wt%Pd/TiO 2 is processed, there is obvious Pd metal Elemental production. This shows that the atmospheric pressure-cooled plasma-alcohol synergistic effect can effectively overcome the shortcomings of the existing atmospheric pressure-cooled plasma, which uses inert gas as the working gas, has low electron energy, and cannot reduce metal ions.
实施例3Example 3
与实施例2区别在于,不施加冷等离子体,氩气以鼓泡的方式携带置于常温下的乙醇蒸汽,在80℃条件下,对2wt%Pd/TiO2的前驱体进行处理,共处理时间9min,获得2wt%Pd/TiO2样品。The difference from Example 2 is that no cold plasma is applied, argon gas carries ethanol vapor at room temperature in the form of bubbling, and at 80°C, the precursor of 2wt% Pd/TiO 2 is treated, co-processing After 9 minutes, a 2wt% Pd/TiO 2 sample was obtained.
实施例3样品的照片和X射线衍射图谱分别见图1和图2。The photo and X-ray diffraction pattern of the sample of Example 3 are shown in Fig. 1 and Fig. 2 respectively.
图1所示实施例3样品的照片表明:以氩气携带乙醇蒸汽,在80℃条件下,对2wt%Pd/TiO2的前驱体进行处理,样品颜色无变化,这初步说明仅使用醇蒸汽不能还原Pd离子;The photo of the sample of Example 3 shown in Figure 1 shows that: the precursor of 2wt% Pd/TiO 2 is treated at 80°C with argon carrying ethanol vapor, and the color of the sample does not change, which preliminarily indicates that only alcohol vapor is used Cannot reduce Pd ions;
图2所示实施例3样品的X射线衍射图谱表明:以氩气携带乙醇蒸汽,在80℃条件下,对2wt%Pd/TiO2的前驱体进行处理,没有金属Pd单质产生。The X-ray diffraction pattern of the sample of Example 3 shown in FIG. 2 shows that: the precursor of 2wt% Pd/TiO 2 is treated at 80° C. with argon carrying ethanol vapor, and no metal Pd element is produced.
实施例4Example 4
以硝酸铜为前驱体,采用浸渍法制备2wt%Cu/TiO2的前驱体,静置,干燥。Using copper nitrate as the precursor, the precursor of 2wt% Cu/TiO 2 was prepared by impregnation method, left to stand, and dried.
将上述前驱体0.3g,放入介质阻挡放电冷等离子体反应器中,通入氩气(100ml·min-1),调节放电频率为15kHz,正弦交流放电电压峰-峰值为10kV,放电间隙为2mm,在大气压条件下,对2wt%Pd/TiO2的前驱体进行处理,每次处理时间为3min,中间间歇8min,共处理3次,获得2wt%Pd/TiO2样品。冷等离子体放电气体温度不超过80℃,无额外加热。Put 0.3 g of the above precursor into a dielectric barrier discharge cold plasma reactor, pass in argon gas (100ml·min -1 ), adjust the discharge frequency to 15kHz, the peak-to-peak sinusoidal AC discharge voltage to 10kV, and the discharge gap to 2mm, under the condition of atmospheric pressure, the precursor of 2wt%Pd/TiO 2 was treated, each treatment time was 3min, and the interval was 8min, and the treatment was 3 times in total to obtain 2wt%Pd/TiO 2 samples. The cold plasma discharge gas temperature does not exceed 80°C without additional heating.
实施例4样品的照片和X射线衍射图谱分别见图3和图4。The photo and X-ray diffraction pattern of the sample of Example 4 are shown in Fig. 3 and Fig. 4 respectively.
图4所示实施例4样品的照片表明:以氩气为工作气体产生等离子体,不携带醇蒸汽的情况下,对2wt%Cu/TiO2的前驱体进行处理,样品颜色没有变化,这初步说明Cu离子没有被还原;The photos of the sample of Example 4 shown in Fig. 4 show that: using argon as the working gas to generate plasma, without carrying alcohol vapor, the precursor of 2wt % Cu/TiO is processed, and the color of the sample does not change, which is preliminary Indicates that Cu ions have not been reduced;
图4所示实施例4样品的X射线衍射图谱表明:以氩气为工作气体产生等离子体,不携带醇蒸汽的情况下,对2wt%Cu/TiO2的前驱体进行处理,没有Cu金属单质产生。The X-ray diffraction pattern of the sample of Example 4 shown in Figure 4 shows: use argon as the working gas to generate plasma, without alcohol vapor, the precursor of 2wt % Cu/TiO is processed, and there is no Cu metal element produce.
实施例5Example 5
与实施例4基本相同,氩气以鼓泡的方式携带置于常温下的乙醇,对2wt%Cu/TiO2的前驱体进行处理,每次处理时间为3min,中间间歇8min,共处理3次,获得2wt%Cu/TiO2样品。冷等离子体放电气体温度不超过80℃,无额外加热。Basically the same as in Example 4, argon carries ethanol placed at room temperature in the form of bubbling, and treats the precursor of 2wt% Cu/TiO 2 , each treatment time is 3 minutes, with an interval of 8 minutes in between, and a total of 3 treatments , to obtain a 2wt% Cu/ TiO2 sample. The cold plasma discharge gas temperature does not exceed 80°C without additional heating.
实施例5样品的照片和X射线衍射图谱分别见图3和图4。The photo and X-ray diffraction pattern of the sample of Example 5 are shown in Fig. 3 and Fig. 4 respectively.
图3所示实施例5样品的照片表明:以氩气为工作气体产生等离子体,携带乙醇蒸汽的情况下,对2wt%Cu/TiO2的前驱体进行处理,样品颜色发生明显变化,这初步说明Cu离子被还原;The photos of the sample of Example 5 shown in Fig. 3 show that: using argon as the working gas to generate plasma, carrying ethanol vapor, the precursor of 2wt%Cu/ TiO2 is processed, and the color of the sample changes significantly, which is preliminary Indicates that Cu ions are reduced;
图4所示实施例5样品的X射线衍射图谱表明:以氩气为工作气体产生等离子体,携带乙醇蒸汽的情况下,对2wt%Cu/TiO2的前驱体进行处理,有明显的Cu金属单质产生。这进一步说明大气压冷等离子体-醇协同作用,可有效克服现有大气压冷等离子体,以惰性气体为工作气体,电子能量较低,无法还原金属离子的缺点。The X-ray diffraction pattern of the sample of Example 5 shown in Fig. 4 shows: use argon as the working gas to generate plasma, under the situation of carrying ethanol vapor, the precursor of 2wt% Cu/TiO 2 is processed, there is obvious Cu metal Elemental production. This further shows that the atmospheric pressure-cooled plasma-alcohol synergy can effectively overcome the shortcomings of the existing atmospheric pressure-cooled plasma, which uses inert gas as the working gas, has low electron energy, and cannot reduce metal ions.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610898559.XA CN106334587B (en) | 2016-10-14 | 2016-10-14 | A method for preparing supported metal catalysts by cold plasma-alcohol synergistic reduction under atmospheric pressure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610898559.XA CN106334587B (en) | 2016-10-14 | 2016-10-14 | A method for preparing supported metal catalysts by cold plasma-alcohol synergistic reduction under atmospheric pressure |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106334587A true CN106334587A (en) | 2017-01-18 |
CN106334587B CN106334587B (en) | 2020-10-09 |
Family
ID=57839810
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610898559.XA Active CN106334587B (en) | 2016-10-14 | 2016-10-14 | A method for preparing supported metal catalysts by cold plasma-alcohol synergistic reduction under atmospheric pressure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106334587B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108855166A (en) * | 2018-06-20 | 2018-11-23 | 郑州轻工业学院 | A kind of loaded catalyst and preparation method thereof, application |
CN109590028A (en) * | 2018-11-28 | 2019-04-09 | 浙江工商大学 | A method of nm-class catalyst is prepared using ultrasonic atomizatio plasma reaction |
CN112691542A (en) * | 2020-12-31 | 2021-04-23 | 华南理工大学 | Metal composite molecular sieve material for adsorbing-catalytically oxidizing VOCs (volatile organic compounds), and preparation method and application thereof |
CN113019329A (en) * | 2021-03-09 | 2021-06-25 | 湖南加法检测有限公司 | Method for modifying MOFs material by low-temperature plasma and application |
CN114505488A (en) * | 2020-10-26 | 2022-05-17 | 中国石油化工股份有限公司 | Method for preparing copper nanoparticles, copper nanoparticles obtained by method and application of copper nanoparticles |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1647858A (en) * | 2004-12-01 | 2005-08-03 | 天津大学 | Method for Reducing Supported Metal Catalysts Using Low Temperature Plasma |
CN101024488A (en) * | 2007-01-11 | 2007-08-29 | 武汉理工大学 | Method for preparing hydogen-riched mixed gas by water-contained alcohol and its plasma recombiner |
CN103638927A (en) * | 2013-11-06 | 2014-03-19 | 大连大学 | Supported Au catalyst preparation method by utilization of atmospheric pressure cold plasma |
CN103769163A (en) * | 2014-01-09 | 2014-05-07 | 大连大学 | Method for preparing load type double-metal catalyst by reducing atmospheric cold plasmas |
-
2016
- 2016-10-14 CN CN201610898559.XA patent/CN106334587B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1647858A (en) * | 2004-12-01 | 2005-08-03 | 天津大学 | Method for Reducing Supported Metal Catalysts Using Low Temperature Plasma |
CN101024488A (en) * | 2007-01-11 | 2007-08-29 | 武汉理工大学 | Method for preparing hydogen-riched mixed gas by water-contained alcohol and its plasma recombiner |
CN103638927A (en) * | 2013-11-06 | 2014-03-19 | 大连大学 | Supported Au catalyst preparation method by utilization of atmospheric pressure cold plasma |
CN103769163A (en) * | 2014-01-09 | 2014-05-07 | 大连大学 | Method for preparing load type double-metal catalyst by reducing atmospheric cold plasmas |
Non-Patent Citations (1)
Title |
---|
WENJU WANG,等: "DFT study on pathways of steam reforming of ethanol under cold plasma conditions for hydrogen generation", 《INTERNATIONAL JOURNAL OF HYDROGENENERGY》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108855166A (en) * | 2018-06-20 | 2018-11-23 | 郑州轻工业学院 | A kind of loaded catalyst and preparation method thereof, application |
CN108855166B (en) * | 2018-06-20 | 2021-05-07 | 郑州轻工业学院 | Supported catalyst and preparation method and application thereof |
CN109590028A (en) * | 2018-11-28 | 2019-04-09 | 浙江工商大学 | A method of nm-class catalyst is prepared using ultrasonic atomizatio plasma reaction |
CN114505488A (en) * | 2020-10-26 | 2022-05-17 | 中国石油化工股份有限公司 | Method for preparing copper nanoparticles, copper nanoparticles obtained by method and application of copper nanoparticles |
CN112691542A (en) * | 2020-12-31 | 2021-04-23 | 华南理工大学 | Metal composite molecular sieve material for adsorbing-catalytically oxidizing VOCs (volatile organic compounds), and preparation method and application thereof |
CN113019329A (en) * | 2021-03-09 | 2021-06-25 | 湖南加法检测有限公司 | Method for modifying MOFs material by low-temperature plasma and application |
Also Published As
Publication number | Publication date |
---|---|
CN106334587B (en) | 2020-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Nie et al. | Photocatalytic degradation of organic pollutants coupled with simultaneous photocatalytic H2 evolution over graphene quantum dots/Mn-N-TiO2/g-C3N4 composite catalysts: Performance and mechanism | |
CN106334587B (en) | A method for preparing supported metal catalysts by cold plasma-alcohol synergistic reduction under atmospheric pressure | |
CN107469845B (en) | A kind of black phosphorus/precious metal composite material, its preparation method and application | |
Yamauchi et al. | Highly selective ammonia synthesis from nitrate with photocatalytically generated hydrogen on CuPd/TiO2 | |
CN107020082B (en) | A kind of nanocomposite and its preparation method and application | |
CN104028272A (en) | Graphene-supported copper-nickel composite nanometer photocatalyst, and preparation method and application thereof | |
CN109331860B (en) | Low-platinum alloy composite nano photocatalyst for air purification and preparation method and application thereof | |
CN104028293A (en) | Preparation method of a low-temperature nitrogen-doped graphene-supported nano-Pd hydrogenation catalyst | |
Chau et al. | Facile synthesis of bimetallic nanoparticles by femtosecond laser irradiation method | |
CN103769163A (en) | Method for preparing load type double-metal catalyst by reducing atmospheric cold plasmas | |
CN103691428A (en) | Preparation method of carbon-supported noble metal catalyst | |
Zhu et al. | TiO2-supported Au-Ag plasmonic nanocatalysts achieved by plasma restructuring and activation | |
CN108160094A (en) | A kind of N doping Carbon Materials support noble metal catalyst and preparation and application | |
CN106732797A (en) | A kind of phosphotungstic acid loading type Pd metal organic framework catalyst | |
CN104549263B (en) | A kind of Pd/ niobic acid nanometer sheet catalyst and its preparation method and application | |
CN105618042A (en) | Bimetallic oxide catalyst for removing hydrogen in CO gas and preparation method of bimetallic oxide catalyst | |
CN102101051B (en) | A preparation method of carbon nanotube-loaded nano-photocatalytic material capable of degrading nitrogen oxides | |
Yamamoto et al. | The influence of the preparing method of a Ag/Ga2O3 catalyst on its activity for photocatalytic reduction of CO2 with water | |
Weigang et al. | Activated persulfate by DBD plasma and activated carbon for the degradation of acid orange II | |
Guo et al. | Recent advances on catalysts for photocatalytic selective hydrogenation of nitrobenzene to aniline | |
CN105251483B (en) | A kind of controllable preparation Ag modifies TiO2The method of nano flower photochemical catalyst | |
CN101229514A (en) | Preparation method and application of composite titanate nanotube photocatalyst | |
CN107008511A (en) | A kind of method that atmosphere cold plasma reduction prepares load type metal catalyst | |
Zhao et al. | Facile synthesis of Co-N4-doped mesoporous carbon for oxygen reduction reaction | |
CN103638927A (en) | Supported Au catalyst preparation method by utilization of atmospheric pressure cold plasma |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20211224 Address after: 116000 No. 300-8, jinlongsi, Ganjingzi District, Dalian City, Liaoning Province Patentee after: Zhongke Yiran future (Dalian) Technology Development Co.,Ltd. Address before: 116622 No. 10, Xuefu Avenue, Dalian economic and Technological Development Zone, Liaoning Patentee before: DALIAN University |