CN106328527A - Forming method of fin type field effect transistor - Google Patents
Forming method of fin type field effect transistor Download PDFInfo
- Publication number
- CN106328527A CN106328527A CN201510372784.5A CN201510372784A CN106328527A CN 106328527 A CN106328527 A CN 106328527A CN 201510372784 A CN201510372784 A CN 201510372784A CN 106328527 A CN106328527 A CN 106328527A
- Authority
- CN
- China
- Prior art keywords
- fin
- field effect
- effect transistor
- forming
- fin field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005669 field effect Effects 0.000 title claims abstract description 82
- 238000000034 method Methods 0.000 title claims abstract description 65
- 150000002500 ions Chemical class 0.000 claims abstract description 102
- 238000005468 ion implantation Methods 0.000 claims abstract description 97
- 238000002955 isolation Methods 0.000 claims abstract description 55
- 239000004065 semiconductor Substances 0.000 claims abstract description 39
- 239000000758 substrate Substances 0.000 claims abstract description 35
- 238000002513 implantation Methods 0.000 claims description 55
- 239000000463 material Substances 0.000 claims description 44
- 238000009792 diffusion process Methods 0.000 claims description 12
- 238000002347 injection Methods 0.000 claims description 12
- 239000007924 injection Substances 0.000 claims description 12
- 238000011065 in-situ storage Methods 0.000 claims description 9
- 238000000137 annealing Methods 0.000 claims description 8
- 229910052785 arsenic Inorganic materials 0.000 claims description 5
- 239000007943 implant Substances 0.000 claims description 5
- 229910052738 indium Inorganic materials 0.000 claims description 5
- 238000005530 etching Methods 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 229910052814 silicon oxide Inorganic materials 0.000 description 7
- 239000003989 dielectric material Substances 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 239000007772 electrode material Substances 0.000 description 4
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 4
- 238000000231 atomic layer deposition Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910003855 HfAlO Inorganic materials 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 238000005234 chemical deposition Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- -1 hetero ions Chemical class 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/024—Manufacture or treatment of FETs having insulated gates [IGFET] of fin field-effect transistors [FinFET]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/024—Manufacture or treatment of FETs having insulated gates [IGFET] of fin field-effect transistors [FinFET]
- H10D30/0241—Manufacture or treatment of FETs having insulated gates [IGFET] of fin field-effect transistors [FinFET] doping of vertical sidewalls, e.g. using tilted or multi-angled implants
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/62—Fin field-effect transistors [FinFET]
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
- Thin Film Transistor (AREA)
Abstract
一种鳍式场效应晶体管的形成方法,包括:提供半导体衬底,所述半导体衬底表面具有多个鳍部;在相邻鳍部之间的半导体衬底表面形成隔离结构,所述隔离结构的表面低于所述鳍部的顶部表面;形成横跨所述鳍部的栅极结构,所述栅极结构覆盖部分鳍部的顶部和侧壁;采用第一离子注入在所述隔离结构中注入第一离子,且使得所述第一离子扩散进入隔离结构两侧的鳍部,在鳍部底部形成第一轻掺杂区;第一离子注入之后,在所述栅极结构两侧的鳍部表面形成源漏区;进行第三离子注入,在鳍部中形成第二轻掺杂区,所述第二轻掺杂区位于所述源漏区和所述第一轻掺杂区之间。所述鳍式场效应晶体管的形成方法提高了鳍式场效应晶体管的性能。
A method for forming a fin field effect transistor, comprising: providing a semiconductor substrate, the surface of the semiconductor substrate has a plurality of fins; forming an isolation structure on the surface of the semiconductor substrate between adjacent fins, the isolation structure The surface of the fin is lower than the top surface of the fin; forming a gate structure across the fin, the gate structure covering part of the top and sidewall of the fin; using a first ion implantation in the isolation structure Implanting first ions, and making the first ions diffuse into the fins on both sides of the isolation structure, forming a first lightly doped region at the bottom of the fins; after the first ion implantation, the fins on both sides of the gate structure forming a source and drain region on the surface of the fin; performing a third ion implantation to form a second lightly doped region in the fin, and the second lightly doped region is located between the source and drain region and the first lightly doped region . The forming method of the fin field effect transistor improves the performance of the fin field effect transistor.
Description
技术领域technical field
本发明涉及半导体制造领域,尤其涉及一种鳍式场效应晶体管的形成方法。The invention relates to the field of semiconductor manufacturing, in particular to a method for forming a fin field effect transistor.
背景技术Background technique
MOS晶体管是现代集成电路中最重要的元件之一。MOS晶体管的基本结构包括:半导体衬底;位于半导体衬底表面的栅极结构,位于栅极结构两侧半导体衬底内的源漏区。MOS晶体管通过在栅极施加电压,调节通过栅极结构底部沟道的电流来产生开关信号。MOS transistors are one of the most important components in modern integrated circuits. The basic structure of a MOS transistor includes: a semiconductor substrate; a gate structure located on the surface of the semiconductor substrate, and source and drain regions located in the semiconductor substrate on both sides of the gate structure. MOS transistors generate switching signals by applying a voltage to the gate and regulating the current through the channel at the bottom of the gate structure.
随着半导体技术的发展,传统的平面式的MOS晶体管对沟道电流的控制能力变弱,造成严重的漏电流。鳍式场效应晶体管(Fin FET)是一种新兴的多栅器件,它一般包括凸出于半导体衬底表面的鳍部,覆盖部分所述鳍部的顶部和侧壁的栅极结构,位于栅极结构两侧的鳍部内的源漏区。With the development of semiconductor technology, the ability of the traditional planar MOS transistor to control the channel current becomes weaker, resulting in serious leakage current. Fin Field Effect Transistor (Fin FET) is an emerging multi-gate device, which generally includes a fin protruding from the surface of the semiconductor substrate, a gate structure covering part of the top and side walls of the fin, located at the gate The source and drain regions in the fins on both sides of the pole structure.
形成鳍式场效应晶体管的方法包括:提供半导体衬底,所述半导体衬底表面具有凸起的鳍部和横跨所述鳍部的栅极结构,所述栅极结构覆盖部分所述鳍部的顶部和侧壁;在栅极结构两侧侧壁表面形成侧墙;以侧墙和栅极结构为掩膜对栅极结构两侧的鳍部进行离子注入形成重掺杂的源漏区。The method for forming a fin field effect transistor includes: providing a semiconductor substrate, the surface of the semiconductor substrate has a raised fin and a gate structure across the fin, the gate structure covers part of the fin The top and sidewalls of the gate structure; sidewalls are formed on the sidewall surfaces on both sides of the gate structure; ion implantation is performed on the fins on both sides of the gate structure by using the sidewalls and the gate structure as a mask to form heavily doped source and drain regions.
随着特征尺寸进一步缩小,现有技术形成的鳍式场效应晶体管的性能和可靠性较差。As the feature size shrinks further, the performance and reliability of the FinFETs formed by the prior art are poor.
发明内容Contents of the invention
本发明解决的问题是提供一种鳍式场效应晶体管的形成方法,以提高鳍式场效应晶体管的性能和可靠性。The problem solved by the present invention is to provide a method for forming a fin field effect transistor to improve the performance and reliability of the fin field effect transistor.
为解决上述问题,本发明提供一种鳍式场效应晶体管的形成方法,包括:提供半导体衬底,所述半导体衬底表面具有多个鳍部;在相邻鳍部之间的半导体衬底表面形成隔离结构,所述隔离结构的表面低于所述鳍部的顶部表面;形成横跨所述鳍部的栅极结构,所述栅极结构覆盖部分鳍部的顶部和侧壁;采用第一离子注入在所述隔离结构中注入第一离子,且使得所述第一离子扩散进入隔离结构两侧的鳍部,在鳍部底部形成第一轻掺杂区;第一离子注入之后,在所述栅极结构两侧的鳍部表面形成源漏区;进行第三离子注入,在鳍部中形成第二轻掺杂区,所述第二轻掺杂区位于所述源漏区和所述第一轻掺杂区之间。In order to solve the above problems, the present invention provides a method for forming a fin field effect transistor, comprising: providing a semiconductor substrate, the surface of the semiconductor substrate has a plurality of fins; the surface of the semiconductor substrate between adjacent fins forming an isolation structure, the surface of the isolation structure is lower than the top surface of the fin; forming a gate structure across the fin, and the gate structure covers part of the top and sidewall of the fin; using the first Ion implantation implants first ions into the isolation structure, and diffuses the first ions into the fins on both sides of the isolation structure, forming a first lightly doped region at the bottom of the fin; after the first ion implantation, the Form source and drain regions on the fin surfaces on both sides of the gate structure; perform third ion implantation to form a second lightly doped region in the fin, and the second lightly doped region is located between the source and drain regions and the between the first lightly doped regions.
可选的,所述扩散的方向沿着垂直于鳍部延伸方向指向鳍部。Optionally, the diffusion direction points to the fin along the direction perpendicular to the extending direction of the fin.
可选的,当形成的鳍式场效应晶体管为N型鳍式场效应晶体管时,所述第一离子注入和第三离子注入采用N型离子。Optionally, when the formed FinFET is an N-type FinFET, the first ion implantation and the third ion implantation use N-type ions.
可选的,当形成的鳍式场效应晶体管为P型鳍式场效应晶体管时,所述第一离子注入和第三离子注入采用P型离子。Optionally, when the formed FinFET is a P-type FinFET, the first ion implantation and the third ion implantation use P-type ions.
可选的,所述第一离子注入采用的离子为As,注入能量为8KeV~25KeV,注入剂量为5E12atom/cm2~8E13atom/cm2,注入角度为0度。Optionally, the first ion implantation uses As ions, the implantation energy is 8KeV-25KeV, the implantation dose is 5E12atom/cm 2 ˜8E13atom/cm 2 , and the implantation angle is 0 degree.
可选的,所述第一离子注入采用的离子为P,注入能量为5KeV~15KeV,注入剂量为3E12atom/cm2~6E13atom/cm2,注入角度为0度。Optionally, the ion used in the first ion implantation is P, the implantation energy is 5KeV˜15KeV, the implantation dose is 3E12atom/cm 2 ˜6E13atom/cm 2 , and the implantation angle is 0 degree.
可选的,所述第一离子注入采用的离子为B,注入能量为6KeV~10KeV,剂量范围为2E12atom/cm2~6E13atom/cm2,注入角度为0度。Optionally, the first ion implantation uses B ions, the implantation energy is 6KeV˜10KeV, the dose range is 2E12atom/cm 2 ˜6E13atom/cm 2 , and the implantation angle is 0°.
可选的,所述第三离子注入采用的离子为As,注入能量为2KeV~5KeV,注入剂量为1E14atom/cm2~5E15atom/cm2,注入角度为0度~20度。Optionally, As is used for the third ion implantation, the implantation energy is 2KeV-5KeV, the implantation dose is 1E14atom/cm 2 -5E15atom/cm 2 , and the implantation angle is 0°-20°.
可选的,所述第三离子注入采用的离子为P,注入能量为1KeV~3KeV,注入剂量为1E14atom/cm2~5E15atom/cm2,注入角度为0度~20度。Optionally, the ion used in the third ion implantation is P, the implantation energy is 1KeV-3KeV, the implantation dose is 1E14atom/cm 2 -5E15atom/cm 2 , and the implantation angle is 0°-20°.
可选的,所述第三离子注入采用的离子为B,注入能量为1KeV~4KeV,注入剂量为1E14atom/cm2~5E15atom/cm2,注入角度为0度~20度。Optionally, B is used for the third ion implantation, the implantation energy is 1KeV-4KeV, the implantation dose is 1E14atom/cm 2 -5E15atom/cm 2 , and the implantation angle is 0°-20°.
可选的,鳍部的宽度为8nm~20nm。Optionally, the fins have a width of 8nm˜20nm.
可选的,所述第一轻掺杂区在鳍部中的深度为5nm~30nm。Optionally, the depth of the first lightly doped region in the fin is 5nm˜30nm.
可选的,所述第二轻掺杂区在鳍部中的深度为2nm~15nm。Optionally, the depth of the second lightly doped region in the fin is 2nm˜15nm.
可选的,所述栅极结构包括横跨所述鳍部的栅介质层和位于所述栅介质层表面的栅电极层。Optionally, the gate structure includes a gate dielectric layer across the fin and a gate electrode layer located on the surface of the gate dielectric layer.
可选的,形成所述源漏区的方法包括:在鳍部表面外延生长源漏区材料层;在外延生长所述源漏区材料层的同时原位掺杂离子或者在外延生长源漏区材料层之后进行第二离子注入而重掺杂离子。Optionally, the method for forming the source and drain regions includes: epitaxially growing the material layer of the source and drain regions on the surface of the fin; doping ions in situ while epitaxially growing the material layer of the source and drain regions; The material layer is then heavily doped with ions by second ion implantation.
可选的,当形成的鳍式场效应晶体管为N型鳍式场效应晶体管时,所述源漏区中掺杂的离子为N型离子;当形成的鳍式场效应晶体管为P型鳍式场效应晶体管时,所述源漏区中掺杂的离子为P型离子。Optionally, when the formed Fin Field Effect Transistor is an N-type Fin Field Effect Transistor, the ions doped in the source and drain regions are N-type ions; when the formed Fin Field Effect Transistor is a P-type Fin Field Effect Transistor In the case of a field effect transistor, the ions doped in the source and drain regions are P-type ions.
可选的,所述N型离子包括P或As。Optionally, the N-type ions include P or As.
可选的,所述P型离子包括B或In。Optionally, the P-type ions include B or In.
可选的,所述第二轻掺杂区中的离子浓度小于所述源漏区中的离子浓度且大于所述第一轻掺杂区中的离子浓度。Optionally, the ion concentration in the second lightly doped region is smaller than the ion concentration in the source-drain region and greater than the ion concentration in the first lightly doped region.
可选的,还包括:在所述第三离子注入之后,进行退火处理。Optionally, the method further includes: performing annealing treatment after the third ion implantation.
与现有技术相比,本发明的技术方案具有以下优点:Compared with the prior art, the technical solution of the present invention has the following advantages:
采用第一离子注入在所述隔离结构中注入第一离子,且使得所述第一离子扩散进入隔离结构两侧的鳍部,在鳍部底部形成第一轻掺杂区。所述第一离子不需要纵向穿过鳍部而进入鳍部的底部区域,而是通过扩散的方式进入鳍部的底部区域,由于鳍部的宽度较小,第一离子通过扩散的方式可以进入隔离结构两侧的鳍部,在鳍部底部形成第一轻掺杂区,且所述第一轻掺杂区在鳍部的宽度方向上均有分布,这样可以降低第一离子注入的能量,从而可以降低第一离子注入对鳍部的损伤;另外,由于在鳍部底部区域中形成了第一轻掺杂区,后续进行的第三离子注入可以采用较低的注入能量,可以降低后续第三离子注入所需要的注入能量,从而可以降低第三离子注入对鳍部的注入损伤。The first ion implantation is used to implant first ions into the isolation structure, and the first ions are diffused into the fins on both sides of the isolation structure to form a first lightly doped region at the bottom of the fins. The first ions do not need to pass through the fin longitudinally to enter the bottom area of the fin, but enter the bottom area of the fin through diffusion. Since the width of the fin is small, the first ion can enter through diffusion. The fins on both sides of the isolation structure form a first lightly doped region at the bottom of the fin, and the first lightly doped region is distributed in the width direction of the fin, so that the energy of the first ion implantation can be reduced, Thereby, the damage to the fin portion by the first ion implantation can be reduced; in addition, since the first lightly doped region is formed in the bottom region of the fin portion, the subsequent third ion implantation can use lower implantation energy, which can reduce the subsequent third ion implantation. The implantation energy required by the triple ion implantation can reduce the implantation damage of the third ion implantation to the fin.
进一步的,在鳍部中形成位于源漏区和第一轻掺杂区之间的第二轻掺杂区,所述第二轻掺杂区中的离子浓度小于源漏区中的离子浓度且大于第一轻掺杂区中的离子浓度,从而在源漏区、第二轻掺杂区和第一轻掺杂区之间形成浓度梯度,进一步改善了鳍式场效应晶体管的结电容。Further, a second lightly doped region located between the source and drain regions and the first lightly doped region is formed in the fin, the ion concentration in the second lightly doped region is lower than the ion concentration in the source and drain regions and The ion concentration is higher than that in the first lightly doped region, thereby forming a concentration gradient among the source-drain region, the second lightly doped region and the first lightly doped region, and further improving the junction capacitance of the FinFET.
附图说明Description of drawings
图1至图5c为本发明一实施例中鳍式场效应晶体管的形成过程的结构示意图。1 to 5c are structural schematic diagrams of the formation process of the fin field effect transistor in an embodiment of the present invention.
图6至图11c为本发明另一实施例中鳍式场效应晶体管的形成过程的结构示意图。6 to 11c are structural schematic diagrams of the formation process of the fin field effect transistor in another embodiment of the present invention.
具体实施方式detailed description
现有技术形成的鳍式场效应晶体管随着特征尺寸进一步缩小时,鳍式场效应晶体管的性能和可靠性较差。As the feature size of the fin field effect transistor formed in the prior art is further reduced, the performance and reliability of the fin field effect transistor are poor.
图1至图5c为本发明一实施例中鳍式场效应晶体管的形成过程的结构示意图。1 to 5c are structural schematic diagrams of the formation process of the fin field effect transistor in an embodiment of the present invention.
结合参考图1、图2a、图2b和图2c,提供半导体衬底100,半导体衬底100表面具有鳍部120和横跨鳍部120的栅极结构130,栅极结构130覆盖部分鳍部120的顶部和侧壁。1, FIG. 2a, FIG. 2b and FIG. 2c, a semiconductor substrate 100 is provided, the surface of the semiconductor substrate 100 has a fin 120 and a gate structure 130 across the fin 120, the gate structure 130 covers part of the fin 120 top and side walls.
图2a为鳍式场效应晶体管沿着图1中鳍部延伸方向(A-A1轴线)的剖视图,图2b为鳍式场效应晶体管沿着图1中栅极结构延伸方向(B-B1轴线)的栅极结构中线的剖视图,图2c为鳍式场效应晶体管沿着图1中平行于栅极结构延伸方向且通过栅极结构一侧的鳍部(C-C1轴线)获得的剖视图。Figure 2a is a cross-sectional view of the fin field effect transistor along the extending direction of the fin in Figure 1 (A-A1 axis), and Figure 2b is a cross-sectional view of the fin field effect transistor along the extending direction of the gate structure in Figure 1 (B-B1 axis) Figure 2c is a cross-sectional view of the fin field effect transistor along the extending direction parallel to the gate structure in Figure 1 and passing through the fin on one side of the gate structure (axis C-C1).
栅极结构130包括横跨鳍部120的栅介质层131和覆盖栅介质层131的栅电极层132。The gate structure 130 includes a gate dielectric layer 131 across the fin portion 120 and a gate electrode layer 132 covering the gate dielectric layer 131 .
半导体衬底100上还具有隔离结构110,隔离结构110的表面低于鳍部120的顶部表面,隔离结构110用于电学隔离相邻的鳍部120。There is also an isolation structure 110 on the semiconductor substrate 100 , the surface of the isolation structure 110 is lower than the top surface of the fin 120 , and the isolation structure 110 is used to electrically isolate adjacent fins 120 .
结合参考图3a、图3b和图3c,在栅极结构130两侧侧壁形成侧墙140。With reference to FIG. 3 a , FIG. 3 b and FIG. 3 c , sidewalls 140 are formed on both sidewalls of the gate structure 130 .
结合参考图4a、图4b和图4c,在栅极结构130两侧的鳍部120表面形成源漏区150。Referring to FIG. 4 a , FIG. 4 b and FIG. 4 c together, source and drain regions 150 are formed on the surfaces of the fins 120 on both sides of the gate structure 130 .
形成源漏区150的方法为:形成侧墙材料层(未图示),所述侧墙材料层覆盖鳍部120和栅极结构130,对侧墙材料层进行刻蚀暴露出栅极结构130两侧的鳍部,在鳍部120两侧侧壁形成鳍部侧墙,所述鳍部侧墙低于所述鳍部120的顶部表面;对鳍部120进行刻蚀,使得刻蚀后的鳍部120和所述鳍部侧墙平齐;在刻蚀后的鳍部120表面外延生长源漏区材料层;在外延生长所述源漏区材料层的同时原位掺杂或者在外延生长源漏区材料层之后进行第二离子注入而重掺杂,形成源漏区150。The method for forming the source-drain region 150 is: forming a sidewall material layer (not shown), the sidewall material layer covers the fin 120 and the gate structure 130, and etching the sidewall material layer to expose the gate structure 130 For the fins on both sides, fin sidewalls are formed on the sidewalls on both sides of the fin 120, and the fin sidewalls are lower than the top surface of the fin 120; the fin 120 is etched, so that the etched The fin portion 120 is flush with the sidewall of the fin portion; the source and drain region material layer is epitaxially grown on the surface of the etched fin portion 120; while the source and drain region material layer is epitaxially grown, in-situ doping or epitaxially grown The source-drain region material layer is then heavily doped by second ion implantation to form the source-drain region 150 .
结合参考图5a、图5b和图5c,进行第一离子注入,在源漏区150底部的鳍部中120形成第一掺杂区160。Referring to FIG. 5 a , FIG. 5 b and FIG. 5 c together, a first ion implantation is performed to form a first doped region 160 in the fin portion 120 at the bottom of the source and drain regions 150 .
所述第一掺杂区160的作用是为了降低源漏区150和鳍部120底部区域之间的浓度梯度,从而降低源漏区150和鳍部120底部区域形成的结电容。The function of the first doped region 160 is to reduce the concentration gradient between the source-drain region 150 and the bottom region of the fin 120 , thereby reducing the junction capacitance formed between the source-drain region 150 and the bottom region of the fin 120 .
第一掺杂区160中掺杂的离子浓度低于源漏区150中掺杂的离子浓度。The concentration of ions doped in the first doped region 160 is lower than the concentration of ions doped in the source and drain regions 150 .
形成第一掺杂区160后,进行退火处理。After the first doped region 160 is formed, annealing is performed.
研究发现,上述方法形成的鳍式场效应晶体管依然存在性能和可靠性差的原因在于:Research has found that the fin field effect transistors formed by the above method still have poor performance and reliability due to:
由于所述第一掺杂区位于源漏区的底部,即在所述鳍部的底部区域,所以在形成第一掺杂区的过程中,需要用高的离子注入能量以注入到鳍部的底部区域,高能量的注入能量使得所述源漏区和所述第一掺杂区受到严重的损伤,且在后续进行退火处理的过程中所述损伤也难以得到修复。Since the first doped region is located at the bottom of the source and drain regions, that is, at the bottom region of the fin, high ion implantation energy is needed to implant the fin into the fin during the process of forming the first doped region. In the bottom region, the high-energy implantation energy causes serious damage to the source-drain region and the first doped region, and the damage is difficult to repair in the subsequent annealing process.
为了减小所述第一离子注入对所述源漏区和所述第一掺杂区的注入损伤,可以采用热离子注入形成所述第一掺杂区,但是采用热离子注入形成所述第一轻掺杂区会增加工艺的复杂度,具体表现在:热离子注入需要较高的温度,通常温度范围为400摄氏度至500摄氏度,需要增加热源;光阻在所述温度范围内会发生严重变形,不能作为热离子注入的掩膜,所以需要形成硬掩膜层作为热离子注入的掩膜,而形成所述硬掩膜层还需要使用光阻来定义所述硬掩膜层的图案,增加了工艺次数和复杂度;在去除硬掩膜层的过程中容易对鳍部造成损伤。In order to reduce the implantation damage of the first ion implantation to the source drain region and the first doped region, the first doped region may be formed by thermal ion implantation, but the first doped region may be formed by thermal ion implantation. A lightly doped region will increase the complexity of the process, specifically: thermal ion implantation requires a higher temperature, usually in the temperature range of 400 degrees Celsius to 500 degrees Celsius, and requires an increase in heat source; photoresist will seriously occur in the temperature range deformation, and cannot be used as a mask for thermal ion implantation, so it is necessary to form a hard mask layer as a mask for thermal ion implantation, and forming the hard mask layer also requires the use of photoresist to define the pattern of the hard mask layer, The number of processes and the complexity are increased; the fins are easily damaged during the process of removing the hard mask layer.
本发明提供了另一实施例的鳍式场效应晶体管的形成方法,包括:提供半导体衬底,所述半导体衬底表面具有多个鳍部;在相邻鳍部之间的半导体衬底表面形成隔离结构,所述隔离结构的表面低于所述鳍部的顶部表面;形成横跨所述鳍部的栅极结构,所述栅极结构覆盖部分鳍部的顶部和侧壁;采用第一离子注入在所述隔离结构中注入第一离子,且使得所述第一离子扩散进入隔离结构两侧的鳍部,在鳍部中形成第一轻掺杂区;第一离子注入之后,在所述栅极结构两侧的鳍部表面形成源漏区;进行第三离子注入,在鳍部中形成第二轻掺杂区,所述第二轻掺杂区位于所述源漏区和第一轻掺杂区之间。The present invention provides a method for forming a fin field effect transistor according to another embodiment, comprising: providing a semiconductor substrate, the surface of the semiconductor substrate has a plurality of fins; forming a fin field effect transistor on the surface of the semiconductor substrate between adjacent fins an isolation structure, the surface of the isolation structure is lower than the top surface of the fin; forming a gate structure across the fin, the gate structure covers part of the top and sidewalls of the fin; using the first ion Implanting first ions into the isolation structure, and causing the first ions to diffuse into the fins on both sides of the isolation structure, forming a first lightly doped region in the fins; after the first ion implantation, the Forming source and drain regions on the surfaces of the fins on both sides of the gate structure; performing a third ion implantation to form a second lightly doped region in the fin, and the second lightly doped region is located between the source and drain regions and the first lightly doped region. between the doped regions.
所述第一离子不需要纵向穿过鳍部而进入鳍部的底部区域,而是采用将掺杂隔离结构中的第一离子通过扩散的方式进入鳍部的底部区域,由于鳍部的宽度较小,第一离子通过扩散的方式可以进入隔离结构两侧的鳍部,在鳍部底部形成第一轻掺杂区,且所述第一轻掺杂区在鳍部的宽度方向上均有分布,这样可以降低第一离子注入的能量,从而可以降低第一离子注入对鳍部的损伤;另外,由于在鳍部底部区域中形成了第一轻掺杂区,后续进行的第三离子注入可以采用较低的注入能量,可以降低后续第三离子注入所需要的注入能量,从而可以降低第三离子注入对鳍部的注入损伤。The first ions do not need to pass through the fin longitudinally to enter the bottom region of the fin, but enter the bottom region of the fin by diffusing the first ions in the doped isolation structure, since the width of the fin is relatively small Small, the first ions can enter the fins on both sides of the isolation structure through diffusion, and form a first lightly doped region at the bottom of the fin, and the first lightly doped region is distributed in the width direction of the fin , which can reduce the energy of the first ion implantation, thereby reducing the damage of the first ion implantation to the fin; in addition, since the first lightly doped region is formed in the bottom region of the fin, the subsequent third ion implantation can be By adopting lower implantation energy, the implantation energy required for the subsequent third ion implantation can be reduced, thereby reducing the implantation damage to the fin portion by the third ion implantation.
在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此的描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施的限制。其次,本发明利用示意图进行详细描述,在详述本发明实施例时,为了便于说明,所述示意图只是实例,其再次不应限制本发明保护的范围。In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, the present invention can be implemented in many other ways different from the description herein, and those skilled in the art can make similar extensions without violating the connotation of the present invention, so the present invention is not limited by the specific implementation disclosed below. Secondly, the present invention is described in detail by means of schematic diagrams. When describing the embodiments of the present invention in detail, for convenience of explanation, the schematic diagrams are only examples, which should not limit the protection scope of the present invention again.
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and advantages of the present invention more comprehensible, specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.
结合参考图6、图7a、图7b和图7c,提供半导体衬底200,半导体衬底200表面具有多个鳍部220。Referring to FIG. 6 , FIG. 7 a , FIG. 7 b and FIG. 7 c together, a semiconductor substrate 200 is provided, and the surface of the semiconductor substrate 200 has a plurality of fins 220 .
图7a为鳍式场效应晶体管沿着图6中鳍部延伸方向(A-A1轴线)的剖视图,图7b为鳍式场效应晶体管沿着图6中栅极结构延伸方向(B-B1轴线)的栅极结构中线的剖视图,图7c为鳍式场效应晶体管沿着图6中平行于栅极结构延伸方向且通过栅极结构一侧的鳍部(C-C1轴线)获得的剖视图。Fig. 7a is a cross-sectional view of the fin field effect transistor along the extending direction of the fin in Fig. 6 (A-A1 axis), and Fig. 7b is a cross-sectional view of the fin field effect transistor along the extending direction of the gate structure in Fig. 6 (B-B1 axis) 7c is a cross-sectional view of the FinFET along the direction parallel to the extension of the gate structure in FIG. 6 and passing through the fin on one side of the gate structure (axis C-C1).
所述半导体衬底200可以是单晶硅,多晶硅或非晶硅;半导体衬底200也可以是硅、锗、锗化硅、砷化镓等半导体材料;所述半导体衬底200可以是体材料,也可以是复合结构,如绝缘体上硅;所述半导体衬底200还可以是其它半导体材料,这里不再一一举例。本实施例中,所述半导体衬底200的材料为硅。The semiconductor substrate 200 can be monocrystalline silicon, polycrystalline silicon or amorphous silicon; the semiconductor substrate 200 can also be semiconductor materials such as silicon, germanium, silicon germanium, gallium arsenide; the semiconductor substrate 200 can be a bulk material , can also be a composite structure, such as silicon-on-insulator; the semiconductor substrate 200 can also be other semiconductor materials, which will not be exemplified here. In this embodiment, the material of the semiconductor substrate 200 is silicon.
本实施例中,鳍部220与半导体衬底200的连接方式是一体的,形成鳍部220的方法为:在半导体衬底200表面形成具有图案化的掩膜层,所述图案化的掩膜层定义鳍部220的位置,以所述图案化的掩膜层为掩膜刻蚀半导体衬底200,在半导体衬底200表面形成多个突起的鳍部220。In this embodiment, the fin portion 220 is connected to the semiconductor substrate 200 in one piece, and the method for forming the fin portion 220 is: forming a patterned mask layer on the surface of the semiconductor substrate 200, and the patterned mask layer The layers define the positions of the fins 220 , and the semiconductor substrate 200 is etched using the patterned mask layer as a mask to form a plurality of protruding fins 220 on the surface of the semiconductor substrate 200 .
在另一个实施例中,可以通过在半导体衬底200上沉积一层鳍部材料层,然后以半导体衬底200为刻蚀停止层刻蚀鳍部材料层形成鳍部220。In another embodiment, the fin 220 may be formed by depositing a fin material layer on the semiconductor substrate 200 and then etching the fin material layer using the semiconductor substrate 200 as an etch stop layer.
鳍部220的宽度范围为8nm~20nm。The width of the fin portion 220 ranges from 8 nm to 20 nm.
相邻的鳍部220之间的距离为20nm~50nm。The distance between adjacent fins 220 is 20 nm˜50 nm.
所述鳍部220还可以根据待形成的鳍式场效应晶体管的类型掺杂不同的杂质离子,用于调节鳍式场效应晶体管的阈值电压。当待形成N型鳍式场效应晶体管时,鳍部220掺杂P型离子;当待形成P型鳍式场效应晶体管时,鳍部220掺杂N型离子。The fin portion 220 can also be doped with different impurity ions according to the type of the fin field effect transistor to be formed, so as to adjust the threshold voltage of the fin field effect transistor. When an N-type FinFET is to be formed, the fin 220 is doped with P-type ions; when a P-type FinFET is to be formed, the fin 220 is doped with N-type ions.
本实施例中,图示出两个鳍部220作为示意,并不代表鳍部220的个数,在实际工艺中可以根据需要形成多个鳍部220。In this embodiment, the figure shows two fins 220 for illustration, and does not represent the number of fins 220 , and a plurality of fins 220 may be formed as required in an actual process.
继续参考图6、图7a、图7b和图7c,在相邻鳍部220之间的半导体衬底200表面形成隔离结构210,隔离结构210的表面低于鳍部220的顶部表面。Continuing to refer to FIG. 6 , FIG. 7 a , FIG. 7 b and FIG. 7 c , an isolation structure 210 is formed on the surface of the semiconductor substrate 200 between adjacent fins 220 , and the surface of the isolation structure 210 is lower than the top surface of the fins 220 .
隔离结构210用于电学隔离相邻的鳍部220。The isolation structure 210 is used to electrically isolate adjacent fins 220 .
本实施例中,隔离结构210为浅沟槽隔离结构。In this embodiment, the isolation structure 210 is a shallow trench isolation structure.
隔离结构210的材料包括氧化硅、氮氧化硅或氢氧化硅。本实施例中,隔离结构210的材料为氧化硅。The material of the isolation structure 210 includes silicon oxide, silicon oxynitride or silicon hydroxide. In this embodiment, the material of the isolation structure 210 is silicon oxide.
形成所述隔离结构210的方法为:形成覆盖半导体衬底200表面和鳍部220的隔离结构材料层,并填充满相邻鳍部220之间的凹槽;采用平坦化工艺,如化学机械掩膜,平坦化所述隔离结构材料层,以鳍部220的顶部表面为停止层;刻蚀去除部分所述隔离结构材料层,形成隔离结构210,所述隔离结构210的表面低于鳍部220的顶部表面。The method of forming the isolation structure 210 is: forming an isolation structure material layer covering the surface of the semiconductor substrate 200 and the fins 220, and filling the grooves between adjacent fins 220; using a planarization process, such as a chemical mechanical mask film, planarizing the material layer of the isolation structure, using the top surface of the fin 220 as a stop layer; etching and removing part of the material layer of the isolation structure to form an isolation structure 210, the surface of the isolation structure 210 is lower than the fin 220 of the top surface.
形成所述隔离结构材料层的方法为沉积工艺,如原子层沉积工艺、低压化学气相沉积工艺或等离子体增强化学气相沉积工艺。本实施例中,采用等离子体增强化学气相沉积工艺形成所述隔离结构材料层。The method for forming the material layer of the isolation structure is a deposition process, such as an atomic layer deposition process, a low pressure chemical vapor deposition process or a plasma enhanced chemical vapor deposition process. In this embodiment, the isolation structure material layer is formed by a plasma enhanced chemical vapor deposition process.
继续参考图6、图7a、图7b和图7c,形成横跨鳍部220的栅极结构230,栅极结构230覆盖部分鳍部220的顶部和侧壁。Continuing to refer to FIG. 6 , FIG. 7 a , FIG. 7 b and FIG. 7 c , a gate structure 230 is formed across the fin portion 220 , and the gate structure 230 covers part of the top and sidewalls of the fin portion 220 .
所述栅极结构230包括横跨鳍部220的栅介质层231和覆盖栅介质层231的栅电极层232。The gate structure 230 includes a gate dielectric layer 231 across the fin portion 220 and a gate electrode layer 232 covering the gate dielectric layer 231 .
所述栅介质层231位于隔离结构210表面、覆盖部分鳍部220顶部和侧壁,所述栅电极层232位于栅介质层231的表面。The gate dielectric layer 231 is located on the surface of the isolation structure 210 and covers part of the top and sidewall of the fin 220 , and the gate electrode layer 232 is located on the surface of the gate dielectric layer 231 .
本实施例中,栅介质层231的材料为氧化硅,栅电极层232的材料为多晶硅。在其它实施例中,栅介质层231的材料为高K介质材料(K大于3.9),如HfO2、HfSiON、HfAlO2、ZrO2或Al2O3,所述栅电极层232的材料为金属材料,如Al、Cu、Ag、Au、Pt、Ni、Ti、TiN、Ta、TaN、W、WN或WSi。In this embodiment, the material of the gate dielectric layer 231 is silicon oxide, and the material of the gate electrode layer 232 is polysilicon. In other embodiments, the material of the gate dielectric layer 231 is a high-K dielectric material (K greater than 3.9), such as HfO 2 , HfSiON, HfAlO 2 , ZrO 2 or Al 2 O 3 , and the material of the gate electrode layer 232 is metal Materials such as Al, Cu, Ag, Au, Pt, Ni, Ti, TiN, Ta, TaN, W, WN or WSi.
形成所述栅极结构230的方法为:形成覆盖所述隔离结构210和鳍部220的栅介质材料层;在所述栅介质材料层表面形成栅电极材料层;在所述栅电极材料层表面形成图形化的掩膜层,所述图形化的掩膜层定义形成的栅极结构230的位置;以所述图形化的掩膜层作为掩膜,采用刻蚀工艺刻蚀所述栅介质材料层和栅电极材料层,形成栅极结构230。所述栅极结构230两侧暴露出部分鳍部220。The method for forming the gate structure 230 is: forming a gate dielectric material layer covering the isolation structure 210 and the fin portion 220; forming a gate electrode material layer on the surface of the gate dielectric material layer; Forming a patterned mask layer, the patterned mask layer defines the position of the formed gate structure 230; using the patterned mask layer as a mask, etching the gate dielectric material by an etching process layer and a layer of gate electrode material to form a gate structure 230 . Part of the fins 220 are exposed on both sides of the gate structure 230 .
沉积所述栅介质材料层的方法可以是金属有机气相化学沉积,原子层沉积工艺或等离子体增强化学气相沉积工艺。形成所述栅电极材料层的方法可以是物理气相沉积或化学气相沉积,比如溅射工艺、电镀工艺、原子层沉积工艺或分子束外延生长等。本实施例中,采用等离子体增强化学气相沉积形成所述栅介质材料层和所述栅电极材料层。The method for depositing the gate dielectric material layer may be metal organic vapor phase chemical deposition, atomic layer deposition process or plasma enhanced chemical vapor deposition process. The method for forming the gate electrode material layer may be physical vapor deposition or chemical vapor deposition, such as sputtering process, electroplating process, atomic layer deposition process or molecular beam epitaxy. In this embodiment, the gate dielectric material layer and the gate electrode material layer are formed by plasma enhanced chemical vapor deposition.
需要说明的是,在形成栅极结构230的过程中,可以不去掉定义栅极结构230位置的掩膜层,在栅极结构230顶部表面保留所述掩膜层(未图示),在后续进行第一离子注入和形成源漏区的过程中可以保护所述栅极结构230。It should be noted that, in the process of forming the gate structure 230, the mask layer defining the position of the gate structure 230 may not be removed, and the mask layer (not shown) is retained on the top surface of the gate structure 230, and the subsequent The gate structure 230 can be protected during the process of performing the first ion implantation and forming the source and drain regions.
结合参考图8a、图8b和图8c,在栅极结构230两侧形成偏移侧壁240。Referring to FIG. 8 a , FIG. 8 b and FIG. 8 c together, offset sidewalls 240 are formed on both sides of the gate structure 230 .
所述偏移侧壁240可以保护栅极结构230。The offset sidewall 240 can protect the gate structure 230 .
所述偏移侧壁240的材料包括氮化硅,氧化硅或者氮氧化硅等绝缘材料。本实施例中所述偏移侧壁240的材料为氧化硅。The material of the offset sidewall 240 includes insulating materials such as silicon nitride, silicon oxide or silicon oxynitride. In this embodiment, the material of the offset sidewall 240 is silicon oxide.
所述偏移侧壁240形成的工艺例如可以是化学气相沉积。本实施例中,采用原位氧化的方法形成偏移侧壁240。The process of forming the offset sidewall 240 may be, for example, chemical vapor deposition. In this embodiment, the offset sidewall 240 is formed by in-situ oxidation.
结合参考图9a、图9b和图9c,采用第一离子注入211在隔离结构210(参考图8b和图8c)中注入第一离子,且使得所述第一离子扩散212进入隔离结构210两侧的鳍部220,在鳍部220底部形成第一轻掺杂区214。Referring to FIG. 9a, FIG. 9b and FIG. 9c together, the first ion implantation 211 is used to implant first ions in the isolation structure 210 (refer to FIG. 8b and FIG. 8c), and the first ion diffusion 212 enters both sides of the isolation structure 210. The fin portion 220 is formed, and the first lightly doped region 214 is formed at the bottom of the fin portion 220 .
以偏移侧壁240和栅极结构230为掩膜对隔离结构210进行第一离子注入,从而在隔离结构210中掺杂第一离子,形成掺杂隔离结构213。由于鳍部210的宽度尺寸很小,掺杂隔离结构212中的第一离子可以通过扩散212进入隔离结构213两侧的鳍部220,在鳍部220底部形成第一轻掺杂区214。所述第一轻掺杂区214位于鳍部220的底部区域,且所述第一轻掺杂区214在鳍部220的宽度方向上均有分布。A first ion implantation is performed on the isolation structure 210 by using the offset sidewall 240 and the gate structure 230 as a mask, so that the isolation structure 210 is doped with first ions to form a doped isolation structure 213 . Due to the small width of the fin 210 , the first ions in the doped isolation structure 212 can enter the fins 220 on both sides of the isolation structure 213 through the diffusion 212 , forming the first lightly doped region 214 at the bottom of the fin 220 . The first lightly doped region 214 is located at the bottom region of the fin portion 220 , and the first lightly doped region 214 is distributed along the width direction of the fin portion 220 .
需要说明的是,所述第一离子主要沿着垂直于鳍部220延伸方向且指向鳍部220的方向进行扩散212,形成第一轻掺杂区214。It should be noted that the first ions are mainly diffused 212 along a direction perpendicular to the extending direction of the fin portion 220 and pointing to the fin portion 220 to form a first lightly doped region 214 .
当形成的鳍式场效应晶体管为N型鳍式场效应晶体管时,所述第一离子注入211采用的是N型离子,As或P等;当形成的鳍式场效应晶体管为P型鳍式场效应晶体管时,所述第一离子注入211采用的是P型离子,包括B,In等。When the formed Fin Field Effect Transistor is an N-type Fin Field Effect Transistor, the first ion implantation 211 uses N-type ions, such as As or P; when the formed Fin Field Effect Transistor is a P-type Fin Field Effect Transistor For field effect transistors, the first ion implantation 211 uses P-type ions, including B, In and so on.
在一个实施例中,待形成的鳍式场效应晶体管为N型鳍式场效应晶体管,第一离子注入211采用的离子为As,注入能量范围为8KeV~25KeV,注入剂量范围为5E12atom/cm2~8E13atom/cm2,注入角度为0度。In one embodiment, the fin field effect transistor to be formed is an N-type fin field effect transistor, the ions used in the first ion implantation 211 are As, the implantation energy ranges from 8KeV to 25KeV, and the implantation dose ranges from 5E12atom/ cm2 ~8E13atom/cm 2 , the injection angle is 0 degrees.
在另一个实施例中,待形成的鳍式场效应晶体管为N型鳍式场效应晶体管,第一离子注入211采用的离子为P,注入能量范围为5KeV~15KeV,注入剂量范围为3E12atom/cm2~6E13atom/cm2,注入角度为0度。In another embodiment, the fin field effect transistor to be formed is an N-type fin field effect transistor, the ion used in the first ion implantation 211 is P, the implantation energy ranges from 5KeV to 15KeV, and the implantation dose ranges from 3E12atom/cm 2 ~ 6E13atom/cm 2 , the injection angle is 0 degrees.
在又一个实施例中,待形成的鳍式场效应晶体管为P型鳍式场效应晶体管,第一离子注入211采用的离子为B,注入能量范围为6KeV~10KeV,注入剂量范围为2E12atom/cm2~6E13atom/cm2,注入角度为0度。In yet another embodiment, the fin field effect transistor to be formed is a P-type fin field effect transistor, the ion used in the first ion implantation 211 is B, the implantation energy ranges from 6KeV to 10KeV, and the implantation dose ranges from 2E12atom/cm 2 ~ 6E13atom/cm 2 , the injection angle is 0 degrees.
所述第一离子注入211注入到隔离结构210的深度为5nm~30nm。The depth of the first ion implantation 211 implanted into the isolation structure 210 is 5 nm˜30 nm.
所述鳍部220的宽度尺寸很小,掺杂隔离结构213中的第一离子可以通过扩散212掺杂进入掺杂隔离结构213两侧的鳍部220中,在鳍部220底部形成第一轻掺杂区214,且所述第一轻掺杂区214在鳍部220的宽度方向上均有分布。由于所述第一离子不需要纵向穿过鳍部220而进入鳍部220的底部区域,而是采用将掺杂隔离结构213中的第一离子通过扩散的方式进入鳍部220的底部区域,可以降低第一离子注入的能量,从而可以降低第一离子注入对鳍部210的损伤;另外,由于在鳍部220底部区域中形成了第一轻掺杂区,后续进行的第三离子注入可以采用较低的注入能量,可以降低后续第三离子注入所需要的注入能量,从而可以降低第三离子注入对鳍部的注入损伤。The width of the fin 220 is very small, and the first ions in the doped isolation structure 213 can be doped into the fins 220 on both sides of the doped isolation structure 213 through the diffusion 212, forming the first light at the bottom of the fin 220. doped regions 214 , and the first lightly doped regions 214 are distributed along the width direction of the fin portion 220 . Since the first ions do not need to pass through the fin 220 longitudinally to enter the bottom region of the fin 220, but the first ions in the doped isolation structure 213 enter the bottom region of the fin 220 through diffusion, which can be Reduce the energy of the first ion implantation, thereby reducing the damage of the first ion implantation to the fin portion 210; in addition, since the first lightly doped region is formed in the bottom region of the fin portion 220, the subsequent third ion implantation can use The lower implantation energy can reduce the implantation energy required for the subsequent third ion implantation, thereby reducing the implantation damage of the third ion implantation to the fin.
结合参考图10a、图10b和图10c,在栅极结构230两侧形成间隙侧壁241。Referring to FIG. 10 a , FIG. 10 b and FIG. 10 c together, gap sidewalls 241 are formed on both sides of the gate structure 230 .
间隙侧壁241的作用为保护栅极结构230,并定义后续形成的源漏区250与栅极结构230之间的距离。The gap sidewall 241 is used to protect the gate structure 230 and define the distance between the subsequently formed source and drain regions 250 and the gate structure 230 .
所述间隙侧壁241的材料包括氮化硅,氧化硅或者氮氧化硅等绝缘材料。本实施例中所述间隙侧壁241的材料为氧化硅。The material of the spacer sidewall 241 includes insulating materials such as silicon nitride, silicon oxide or silicon oxynitride. In this embodiment, the material of the spacer sidewall 241 is silicon oxide.
所述间隙侧壁241形成的工艺为,沉积间隙侧壁材料层,所述间隙侧壁材料层覆盖所述栅极结构230;采用各向异性干法刻蚀对所述间隙侧壁材料层进行刻蚀,在栅极结构230两侧形成间隙侧壁241。The process of forming the gap sidewall 241 is to deposit a gap sidewall material layer, and the gap sidewall material layer covers the gate structure 230; anisotropic dry etching is used to perform an anisotropic dry etching on the gap sidewall material layer. Etching to form gap sidewalls 241 on both sides of the gate structure 230 .
继续参考图10a、图10b和图10c,第一离子注入211之后,在栅极结构230两侧的鳍部220表面形成源漏区250。Continuing to refer to FIG. 10 a , FIG. 10 b and FIG. 10 c , after the first ion implantation 211 , source and drain regions 250 are formed on the surfaces of the fins 220 on both sides of the gate structure 230 .
形成源漏区250的方法为:形成侧墙材料层(未图示),所述侧墙材料层覆盖鳍部220和栅极结构230,对侧墙材料层进行刻蚀暴露出栅极结构230两侧的鳍部220,在鳍部220两侧侧壁形成鳍部侧墙,所述鳍部侧墙低于所述鳍部220的顶部表面;对鳍部220进行刻蚀,使得刻蚀后的鳍部220和所述鳍部侧墙平齐;在刻蚀后的鳍部220表面外延生长源漏区材料层;在外延生长所述源漏区材料层的同时原位掺杂离子或者在外延生长源漏区材料层之后进行第二离子注入而重掺杂离子,形成源漏区250。The method for forming the source-drain region 250 is: forming a sidewall material layer (not shown), the sidewall material layer covers the fin 220 and the gate structure 230, and etching the sidewall material layer to expose the gate structure 230 For the fins 220 on both sides, fin sidewalls are formed on the sidewalls on both sides of the fins 220, and the fin sidewalls are lower than the top surface of the fins 220; the fins 220 are etched so that after etching The fin portion 220 of the fin portion is flush with the sidewall of the fin portion; the source-drain region material layer is epitaxially grown on the surface of the etched fin portion 220; while the source-drain region material layer is epitaxially grown, ions are doped in situ or in-situ After epitaxially growing the material layer of the source and drain regions, a second ion implantation is performed to heavily dope ions to form the source and drain regions 250 .
当形成的鳍式场效应晶体管为N型鳍式场效应晶体管时,所述第二离子注入或所述原位掺杂采用的是N型离子,As或P等;当形成的鳍式场效应晶体管为P型鳍式场效应晶体管时,所述第二离子注入或所述原位掺杂采用的是P型离子,如B或In等。When the formed Fin Field Effect Transistor is an N-type Fin Field Effect Transistor, the second ion implantation or the in-situ doping uses N-type ions, As or P, etc.; when the formed Fin Field Effect Transistor When the transistor is a P-type fin field effect transistor, the second ion implantation or the in-situ doping uses P-type ions, such as B or In.
在本实施例中,在外延生长所述源漏区材料层的同时原位掺杂离子,形成源漏区250。In this embodiment, the source and drain regions 250 are formed by doping ions in situ while epitaxially growing the material layer of the source and drain regions.
需要说明的是,也可以不刻蚀鳍部220,直接在鳍部220表面外延生长源漏区材料层,然后对源漏区材料层进行掺杂。此时,不需要在鳍部220侧壁形成鳍部侧墙。It should be noted that, instead of etching the fin portion 220 , the material layer of the source and drain regions may be epitaxially grown directly on the surface of the fin portion 220 , and then the material layer of the source and drain region may be doped. At this time, there is no need to form fin sidewalls on the sidewalls of the fins 220 .
结合参考图11a、图11b和图11c,对鳍部220进行第三离子注入,在鳍部220中形成第二轻掺杂区260,所述第二轻掺杂区260位于源漏区250和第一轻掺杂区214之间。Referring to FIG. 11a, FIG. 11b and FIG. 11c, a third ion implantation is performed on the fin portion 220 to form a second lightly doped region 260 in the fin portion 220, and the second lightly doped region 260 is located between the source and drain regions 250 and between the first lightly doped regions 214 .
当形成的鳍式场效应晶体管为N型鳍式场效应晶体管时,所述第三离子注入采用的是N型离子,As或P等;当形成的鳍式场效应晶体管为P型鳍式场效应晶体管时,所述第三离子注入采用的是P型离子,包括B,In等。When the formed Fin Field Effect Transistor is an N-type Fin Field Effect Transistor, the third ion implantation uses N-type ions, such as As or P; when the formed Fin Field Effect Transistor is a P-type Fin Field Effect Transistor In the case of an effect transistor, the third ion implantation uses P-type ions, including B, In, and the like.
在一个实施例中,待形成的鳍式场效应晶体管为N型鳍式场效应晶体管,第三离子注入采用的离子为As,注入能量范围为2KeV~5KeV,注入剂量范围为1E14atom/cm2~5E15atom/cm2,注入角度为0度~20度。In one embodiment, the fin field effect transistor to be formed is an N-type fin field effect transistor, the ions used in the third ion implantation are As, the implantation energy ranges from 2KeV to 5KeV, and the implantation dose ranges from 1E14atom/cm 2 to 5E15atom/cm 2 , the injection angle is 0°-20°.
在另一个实施例中,待形成的鳍式场效应晶体管为N型鳍式场效应晶体管,第三离子注入采用的离子为P,第三离子注入的离子能量范围为1KeV~3KeV,剂量范围为1E14atom/cm2~5E15atom/cm2,注入角度为0度~20度。In another embodiment, the fin field effect transistor to be formed is an N-type fin field effect transistor, the ion used in the third ion implantation is P, the ion energy range of the third ion implantation is 1KeV~3KeV, and the dose range is 1E14atom/cm 2 to 5E15atom/cm 2 , and the injection angle is 0° to 20°.
在又一个实施例中,待形成的鳍式场效应晶体管为P型鳍式场效应晶体管,第三离子注入采用的离子为B,第三离子注入的离子能量范围为1KeV~4KeV,剂量范围为1E14atom/cm2~5E15atom/cm2,注入角度为0度~20度。In yet another embodiment, the fin field effect transistor to be formed is a P-type fin field effect transistor, the ion used in the third ion implantation is B, the ion energy range of the third ion implantation is 1KeV-4KeV, and the dose range is 1E14atom/cm 2 to 5E15atom/cm 2 , and the injection angle is 0° to 20°.
所述第三离子注入注入到鳍部220的深度为2~15nm。The depth of the third ion implantation into the fin portion 220 is 2˜15 nm.
由于在鳍部220底部区域中形成了第一轻掺杂区214,第三离子注入可以采用较低的注入能量使得形成的第二轻掺杂区260位于源漏区250和和第一轻掺杂区214之间,降低了第三离子注入所需要的注入能量,从而可以降低第三离子注入对鳍部220的注入损伤。Since the first lightly doped region 214 is formed in the bottom region of the fin portion 220, the third ion implantation can use lower implantation energy so that the formed second lightly doped region 260 is located at the source and drain region 250 and the first lightly doped region. Between the impurity regions 214 , the implantation energy required for the third ion implantation is reduced, so that the implantation damage to the fin portion 220 by the third ion implantation can be reduced.
第三离子注入后,执行退火处理,在退火处理的过程中,所述第一轻掺杂区214中掺杂的第一离子可以进一步扩散均匀。After the third ion implantation, an annealing treatment is performed. During the annealing treatment, the first ions doped in the first lightly doped region 214 can be further diffused uniformly.
需要说明的是,可以在第一离子注入、第二离子注入、第三离子注入之后分别进行退火处理,以激活掺杂离子;也可以在第三离子注入完成后进行一次退火处理,以激活掺杂离子。It should be noted that an annealing treatment can be performed respectively after the first ion implantation, the second ion implantation, and the third ion implantation to activate the dopant ions; an annealing treatment can also be performed after the third ion implantation is completed to activate the dopant ions. hetero ions.
第二轻掺杂区260中的离子浓度和第一轻掺杂区214中的离子浓度一致,或者第二轻掺杂区260中的离子浓度小于源漏区250中的离子浓度且大于第一轻掺杂区214中的离子浓度。The ion concentration in the second lightly doped region 260 is consistent with the ion concentration in the first lightly doped region 214, or the ion concentration in the second lightly doped region 260 is less than the ion concentration in the source and drain regions 250 and greater than the first The ion concentration in the lightly doped region 214 .
本实施例中,第二轻掺杂区260中的离子浓度小于源漏区250中的离子浓度且大于第一轻掺杂区214中的离子浓度,从而在源漏区250、第二轻掺杂区260和第一轻掺杂区214之间形成浓度梯度,进一步改善了鳍式场效应晶体管的结电容。In this embodiment, the ion concentration in the second lightly doped region 260 is lower than the ion concentration in the source and drain regions 250 and greater than the ion concentration in the first lightly doped region 214, so that in the source and drain regions 250, the second lightly doped region A concentration gradient is formed between the impurity region 260 and the first lightly doped region 214 to further improve the junction capacitance of the FinFET.
本发明具有以下优点:The present invention has the following advantages:
掺杂隔离结构中的第一离子可以通过扩散进入鳍部,在鳍部中形成第一轻掺杂区,所述第一轻掺杂区位于鳍部的底部区域。由于所述第一离子不需要纵向穿过鳍部而进入鳍部的底部区域,而是采用将掺杂隔离结构中的第一离子通过扩散的方式进入掺杂隔离结构两侧的鳍部,在鳍部底部形成第一轻掺杂区,且所述第一轻掺杂区在鳍部的宽度方向上均有分布,这样可以降低第一离子注入的能量,从而可以降低第一离子注入对鳍部的损伤;另外,由于在鳍部底部区域中形成了第一轻掺杂区,后续进行的第三离子注入可以采用较低的注入能量,可以降低后续第三离子注入所需要的注入能量,从而可以降低第三离子注入对鳍部的注入损伤。The first ions in the doped isolation structure can enter the fin through diffusion to form a first lightly doped region in the fin, and the first lightly doped region is located at the bottom region of the fin. Since the first ions do not need to pass through the fin longitudinally to enter the bottom region of the fin, but the first ions in the doped isolation structure enter the fins on both sides of the doped isolation structure by diffusion, A first lightly doped region is formed at the bottom of the fin, and the first lightly doped region is distributed in the width direction of the fin, so that the energy of the first ion implantation can be reduced, thereby reducing the impact of the first ion implantation on the fin. In addition, since the first lightly doped region is formed in the fin bottom region, the subsequent third ion implantation can use lower implantation energy, which can reduce the implantation energy required for the subsequent third ion implantation, Therefore, the implantation damage to the fin portion by the third ion implantation can be reduced.
进一步的,在鳍部中形成位于源漏区和第一轻掺杂区之间的第二轻掺杂区,所述第二轻掺杂区中的离子浓度小于源漏区中的离子浓度且大于第一轻掺杂区中的离子浓度,从而在源漏区、第二轻掺杂区和第一轻掺杂区之间形成浓度梯度,进一步改善了鳍式场效应晶体管的结电容。Further, a second lightly doped region located between the source and drain regions and the first lightly doped region is formed in the fin, the ion concentration in the second lightly doped region is lower than the ion concentration in the source and drain regions and The ion concentration is higher than that in the first lightly doped region, thereby forming a concentration gradient among the source-drain region, the second lightly doped region and the first lightly doped region, and further improving the junction capacitance of the FinFET.
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention, so the protection scope of the present invention should be based on the scope defined in the claims.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510372784.5A CN106328527B (en) | 2015-06-30 | 2015-06-30 | The forming method of fin formula field effect transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510372784.5A CN106328527B (en) | 2015-06-30 | 2015-06-30 | The forming method of fin formula field effect transistor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106328527A true CN106328527A (en) | 2017-01-11 |
CN106328527B CN106328527B (en) | 2019-05-28 |
Family
ID=57722956
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510372784.5A Active CN106328527B (en) | 2015-06-30 | 2015-06-30 | The forming method of fin formula field effect transistor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106328527B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110047927A (en) * | 2018-01-17 | 2019-07-23 | 中芯国际集成电路制造(上海)有限公司 | A kind of semiconductor devices and its manufacturing method, electronic device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120003801A1 (en) * | 2008-04-24 | 2012-01-05 | Kabushiki Kaisha Toshiba | Semiconductor device and method for manufacturing the same |
US20130280883A1 (en) * | 2012-04-24 | 2013-10-24 | Globalfoundries Inc. | Methods of forming bulk finfet devices so as to reduce punch through leakage currents |
CN104022037A (en) * | 2013-02-28 | 2014-09-03 | 中芯国际集成电路制造(上海)有限公司 | Fin type field effect transistor and forming method thereof |
US20140377926A1 (en) * | 2013-06-21 | 2014-12-25 | Samsung Electronics Co., Ltd. | Method for fabricating semiconductor device |
-
2015
- 2015-06-30 CN CN201510372784.5A patent/CN106328527B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120003801A1 (en) * | 2008-04-24 | 2012-01-05 | Kabushiki Kaisha Toshiba | Semiconductor device and method for manufacturing the same |
US20130280883A1 (en) * | 2012-04-24 | 2013-10-24 | Globalfoundries Inc. | Methods of forming bulk finfet devices so as to reduce punch through leakage currents |
CN104022037A (en) * | 2013-02-28 | 2014-09-03 | 中芯国际集成电路制造(上海)有限公司 | Fin type field effect transistor and forming method thereof |
US20140377926A1 (en) * | 2013-06-21 | 2014-12-25 | Samsung Electronics Co., Ltd. | Method for fabricating semiconductor device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110047927A (en) * | 2018-01-17 | 2019-07-23 | 中芯国际集成电路制造(上海)有限公司 | A kind of semiconductor devices and its manufacturing method, electronic device |
CN110047927B (en) * | 2018-01-17 | 2022-06-28 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor device, manufacturing method thereof and electronic device |
Also Published As
Publication number | Publication date |
---|---|
CN106328527B (en) | 2019-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102117750B (en) | Mosfet structure and manufacturing method thereof | |
US10749008B2 (en) | Gate structure, semiconductor device and the method of forming semiconductor device | |
US9558946B2 (en) | FinFETs and methods of forming FinFETs | |
US9614051B2 (en) | Semiconductor devices and fabrication method thereof | |
CN103137488B (en) | Semiconductor device and method for manufacturing the same | |
US9142651B1 (en) | Methods of forming a FinFET semiconductor device so as to reduce punch-through leakage currents and the resulting device | |
US9865505B2 (en) | Method for reducing N-type FinFET source and drain resistance | |
US9412641B1 (en) | FinFET having controlled dielectric region height | |
CN107785261A (en) | Semiconductor structure and its manufacture method | |
US9385212B2 (en) | Method for manufacturing semiconductor device | |
US9064729B2 (en) | Junction-less transistors and fabrication method thereof | |
US9640660B2 (en) | Asymmetrical FinFET structure and method of manufacturing same | |
CN109148578B (en) | Semiconductor structure and method of forming the same | |
CN103489779B (en) | Semiconductor structure and manufacturing method thereof | |
US20150255577A1 (en) | Method for manufacturing mosfet | |
CN103779223B (en) | MOSFET manufacturing method | |
CN106601820A (en) | Semiconductor device and method for manufacturing the same | |
US10418461B2 (en) | Semiconductor structure with barrier layers | |
CN104064467B (en) | The forming method of fin formula field effect transistor | |
CN109285778B (en) | Semiconductor device and method of forming the same | |
CN106328531B (en) | Method of forming a fin field effect transistor | |
CN106328706B (en) | The forming method of fin formula field effect transistor | |
CN106328527A (en) | Forming method of fin type field effect transistor | |
CN104465377B (en) | Pmos transistor and forming method thereof | |
CN112151607B (en) | Semiconductor structure and forming method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |