CN106324607A - Space target ranging, imaging and communication integrated system - Google Patents
Space target ranging, imaging and communication integrated system Download PDFInfo
- Publication number
- CN106324607A CN106324607A CN201610652134.0A CN201610652134A CN106324607A CN 106324607 A CN106324607 A CN 106324607A CN 201610652134 A CN201610652134 A CN 201610652134A CN 106324607 A CN106324607 A CN 106324607A
- Authority
- CN
- China
- Prior art keywords
- light splitting
- splitting piece
- tracking
- imaging
- mirror
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004891 communication Methods 0.000 title claims abstract description 64
- 238000003384 imaging method Methods 0.000 title claims abstract description 53
- 230000003287 optical effect Effects 0.000 claims abstract description 59
- 239000011248 coating agent Substances 0.000 claims description 11
- 238000000576 coating method Methods 0.000 claims description 11
- 230000010287 polarization Effects 0.000 claims description 8
- 238000001228 spectrum Methods 0.000 claims description 7
- 230000005540 biological transmission Effects 0.000 claims description 6
- 230000004927 fusion Effects 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 5
- 238000001514 detection method Methods 0.000 claims description 2
- 238000007747 plating Methods 0.000 claims 8
- 230000013011 mating Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 7
- 238000002834 transmittance Methods 0.000 description 6
- 230000010354 integration Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000000701 chemical imaging Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/08—Systems determining position data of a target for measuring distance only
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/89—Lidar systems specially adapted for specific applications for mapping or imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
- G01S7/4811—Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
- G01S7/4817—Constructional features, e.g. arrangements of optical elements relating to scanning
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Electromagnetism (AREA)
- Optical Communication System (AREA)
Abstract
空间目标测距成像通信一体化系统,属于光学仪器技术领域,包括成像跟踪分系统、测距分系统、粗跟踪系统、精跟踪系统、通信系统以及天线分系统;所述天线分系统包括旋转分光镜以及折反混合卡塞格林光学系统;所述折反混合卡塞格林光学系统包括主镜、次镜以及准直透镜组,所述主镜镀反射膜;所述次镜为有曲率的光学透镜,透镜的后表面镀膜后,成像光束400nm~700nm波段50%透过,50%反射,其他波段全部反射;旋转分光镜与折反混合卡塞格林光学系统共光轴。本发明可实现同时三种功能,对空间非合作目标进行测距成像并与己方目标进行通信。
An integrated system for space target ranging, imaging and communication belongs to the technical field of optical instruments, and includes an imaging tracking subsystem, a ranging subsystem, a rough tracking system, a fine tracking system, a communication system, and an antenna subsystem; mirror and a catadioptric hybrid Cassegrain optical system; the catadioptric hybrid Cassegrain optical system includes a primary mirror, a secondary mirror and a collimating lens group, and the primary mirror is coated with a reflective film; the secondary mirror is a curved optical Lens, after the rear surface of the lens is coated, 50% of the imaging beam in the 400nm-700nm band is transmitted, 50% is reflected, and all other bands are reflected; the rotating beam splitter and the catadioptric hybrid Cassegrain optical system have a common optical axis. The invention can realize three functions at the same time, ranging and imaging the space non-cooperative target and communicating with one's own target.
Description
技术领域technical field
本发明属于光学仪器技术领域,特别是涉及到一种空间目标测距成像通信一体化系统。The invention belongs to the technical field of optical instruments, and in particular relates to an integrated system for space object ranging, imaging and communication.
背景技术Background technique
近年来,随着应用要求的不断提高,对系统的集成性、功能的多元化的需求也日益紧迫。原来的激光通信、激光测距、成像探测的单一功能已经不能满足人类发展的需要,因此,向激光测距和成像、通信相结合的多功能化“三合一”技术发展是必然趋势。美国的X2000项目是激光通信测距一体化最典型的例子。X2000飞行终端是一个多功能仪器,不仅能完成双向通信,还具有双向激光测距、科学成像和激光高度计等功能。JPL实验室为小型飞行器提出激光通信和空间成像一体化(ACLAIM)的设计方案。激光通信天线和空间相机共用一个前置望远镜,利用探测器阵列作为ATP和成像接收。西安504也采用异步应答进行激光测距通信一体化技术。In recent years, with the continuous improvement of application requirements, the demand for system integration and functional diversification has become increasingly urgent. The original single functions of laser communication, laser ranging, and imaging detection can no longer meet the needs of human development. Therefore, it is an inevitable trend to develop a multifunctional "three-in-one" technology that combines laser ranging, imaging, and communication. The X2000 project in the United States is the most typical example of the integration of laser communication and ranging. The X2000 flight terminal is a multifunctional instrument that not only can complete two-way communication, but also has functions such as two-way laser ranging, scientific imaging and laser altimeter. JPL Laboratories proposes a design for the Integrated Laser Communication and Space Imaging (ACLAIM) for small aircraft. The laser communication antenna and the space camera share a front telescope, using the detector array as ATP and imaging receiver. Xi'an 504 also uses asynchronous response to carry out laser ranging communication integration technology.
因此现有技术当中需要一种新型的技术方案来解决这一问题。Therefore need a kind of novel technical scheme among the prior art to solve this problem.
发明内容Contents of the invention
本发明所要解决的技术问题是:提供一种空间目标测距成像通信一体化系统,可实现同时三种功能,对空间非合作目标进行测距成像并与己方目标进行通信。The technical problem to be solved by the present invention is to provide an integrated system for space target ranging, imaging and communication, which can realize three functions at the same time, and perform ranging imaging for space non-cooperative targets and communicate with own targets.
空间目标测距成像通信一体化系统,其特征是:包括成像跟踪分系统、测距分系统、粗跟踪系统、精跟踪系统、通信系统以及天线分系统;The integrated system of space target ranging, imaging and communication is characterized by: including imaging tracking subsystem, ranging subsystem, rough tracking system, fine tracking system, communication system and antenna subsystem;
所述成像跟踪分系统包括分光片Ⅰ、半反半透镜Ⅰ、偏振光谱成像单元、数据融合单元、跟踪单元以及跟踪转台,所述分光片Ⅰ与水平方向逆时针旋转45°角设置;所述半反半透镜Ⅰ与水平方向逆时针旋转45°角设置;分光片Ⅰ与半反半透镜Ⅰ相互平行且共光轴;所述偏振光谱成像单元的探测器接收方向与跟踪单元的探测器接收方向相垂直;The imaging tracking subsystem includes a beam splitter I, a half mirror I, a polarization spectrum imaging unit, a data fusion unit, a tracking unit, and a tracking turntable, and the beam splitter I is set at an angle of 45° counterclockwise to the horizontal direction; the The half-mirror I and the horizontal direction are rotated counterclockwise at an angle of 45°; the beam splitter I and the half-mirror I are parallel to each other and share the same optical axis; the receiving direction of the detector of the polarization spectrum imaging unit is the same as that of the detector of the tracking unit perpendicular to the direction;
所述测距分系统包括分光片Ⅱ、半反半透镜Ⅱ、测距发射模块、测距接收模块以及测距处理模块,所述分光片Ⅱ与水平方向逆时针旋转45°角设置;所述半反半透镜Ⅱ与水平方向逆时针旋转45°设置;分光片Ⅱ和半反半透镜Ⅱ相互平行且共光轴;所述测距发射模块的探测器接收方向与测距接收模块的探测器接收方向相垂直;The ranging subsystem includes a beam splitter II, a semi-reflective half mirror II, a ranging transmitting module, a ranging receiving module, and a ranging processing module, and the beam splitting II is set at an angle of 45° counterclockwise to the horizontal direction; the The semi-reflective half-mirror II and the horizontal direction are rotated 45° counterclockwise; the beam splitter II and the semi-reflective half-mirror II are parallel to each other and have a common optical axis; The receiving direction is perpendicular to;
所述粗跟踪系统包括分光片Ⅲ、半反半透镜Ⅲ、粗跟踪发射模块以及粗跟踪接收模块,所述分光片Ⅲ与水平方向顺时针旋转45°角设置;所述半反半透镜Ⅲ与水平方向顺时针旋转45°设置;分光片Ⅲ和半反半透镜Ⅲ相互垂直且共光轴;所述粗跟踪发射模块的探测器接收方向与粗跟踪接收模块的探测器接收方向相垂直;The rough tracking system includes a beam splitter III, a half mirror III, a rough tracking transmitter module and a rough tracking receiver module, the beam splitter III is set at an angle of 45° clockwise to the horizontal direction; the half mirror III and The horizontal direction is rotated clockwise by 45°; the beam splitter III and the half mirror III are perpendicular to each other and have a common optical axis; the receiving direction of the detector of the rough tracking transmitting module is perpendicular to the receiving direction of the detector of the coarse tracking receiving module;
所述精跟踪分系统包括振镜、分光片Ⅳ、分光片Ⅴ、精跟踪发射模块以及精跟踪接收模块,所述振镜与水平方向顺时针旋转45°角设置;The fine tracking subsystem includes a galvanometer, a beam splitter IV, a beam splitter V, a fine tracking transmitting module, and a fine tracking receiving module, and the vibrating mirror is set at an angle of 45° clockwise to the horizontal direction;
所述分光片Ⅳ与水平方向顺时针旋转45°角设置;振镜与分光片Ⅳ相互平行且共光轴;所述分光片Ⅴ与水平方向逆时针旋转45°设置;The beam splitter IV is set at an angle of 45° clockwise to the horizontal direction; the vibrating mirror and the beam splitter IV are parallel to each other and have a common optical axis; the beam splitter V is set at a counterclockwise rotation of 45° to the horizontal direction;
分光片Ⅴ与分光片Ⅳ相互垂直且共光轴;所述精跟踪发射模块的探测器接收方向与精跟踪接收模块的探测器接收方向相互垂直;The beam splitter V and the beam splitter IV are perpendicular to each other and have a common optical axis; the receiving direction of the detector of the fine tracking transmitting module and the receiving direction of the detector of the fine tracking receiving module are perpendicular to each other;
所述通信分系统包括分光片Ⅵ、通信发射模块以及通信接收模块,所述分光片Ⅵ与水平方向顺时针旋转45°角设置,分光片Ⅵ与分光片Ⅳ相互平行且共光轴;通信发射模块的探测器接收方向与通信接收模块的探测器接收方向相互垂直;The communication subsystem includes a beam splitter VI, a communication transmitting module and a communication receiving module. The beam splitter VI is set at an angle of 45° clockwise to the horizontal direction, and the beam splitter VI and the beam splitter IV are parallel to each other and have a common optical axis; the communication transmitting The detector receiving direction of the module is perpendicular to the detector receiving direction of the communication receiving module;
所述天线分系统包括旋转分光镜以及折反混合卡塞格林光学系统;The antenna subsystem includes a rotating beam splitter and a catadioptric hybrid Cassegrain optical system;
所述折反混合卡塞格林光学系统包括主镜、次镜以及准直透镜组,所述主镜镀反射膜;所述次镜为有曲率的光学透镜,透镜的后表面镀膜后,成像光束400nm~700nm波段50%透过,50%反射,其他波段全部反射;旋转分光镜与折反混合卡塞格林光学系统共光轴。The catadioptric hybrid Cassegrain optical system includes a primary mirror, a secondary mirror and a collimating lens group, the primary mirror is coated with a reflective film; the secondary mirror is an optical lens with curvature, and after the rear surface of the lens is coated, the imaging beam The 400nm~700nm band is 50% transmitted, 50% reflected, and all other bands are fully reflected; the rotating beam splitter and the catadioptric hybrid Cassegrain optical system have a common optical axis.
所述分光片Ⅰ上镀400nm~700nm波段全反射膜,半反半透镜Ⅰ上镀有透过率和反射率均为50%的膜。The light splitter I is coated with a 400nm-700nm band total reflection film, and the half-mirror I is coated with a film with a transmittance and a reflectance of 50%.
所述分光片Ⅱ上镀1064nm波长全部反射膜,其他波段光束全部透过分光片Ⅱ,半反半透镜Ⅱ镀有透过率和反射率均为50%的膜。The beam splitter II is coated with a fully reflective film with a wavelength of 1064nm, all light beams in other wavelength bands pass through the beam splitter II, and the half mirror II is coated with a film with a transmittance and reflectivity of 50%.
所述分光片Ⅲ上镀800nm~820nm波段全部反射膜,其他波段光束全部透过分光片Ⅲ,半反半透镜Ⅲ镀有透过率和反射率均为50%的膜。The spectroscopic plate III is coated with a reflective film for the 800nm-820nm wave band, all light beams of other wavelength bands pass through the spectroscopic plate III, and the half mirror III is coated with a film with a transmittance and reflectivity of 50%.
所述分光片Ⅳ上镀1545nm~1555nm波段全部反射、1555nm~1565nm波段全部透射膜;分光片Ⅴ上镀1545nm波长全部透射、1555nm波长全部反射膜。The beam splitter IV is coated with a film that fully reflects the 1545nm-1555nm band and fully transmits the 1555nm-1565nm band; the beam splitter V is coated with a film that fully transmits the 1545nm wavelength and fully reflects the 1555nm wavelength.
所述分光片Ⅵ上镀1565nm波长全部透射、1575nm波长全部反射膜。The beam splitter VI is coated with a film that fully transmits at 1565nm wavelength and fully reflects at 1575nm wavelength.
所述旋转分光镜上镀400nm~700nm波段和1064波长全部透射膜,其他波段光束经旋转分光镜全部反射。The 400nm-700nm wavelength band and 1064 wavelengths are coated with a transparent film on the rotating beam splitter, and the light beams of other wave bands are all reflected by the rotating beam splitter.
通过上述设计方案,本发明可以带来如下有益效果:一种空间目标测距成像通信一体化系统,可实现同时三种功能,对空间非合作目标进行测距成像并与己方目标进行通信。同时可利用单个口径同时实现测距成像以及通信的功能。Through the above-mentioned design scheme, the present invention can bring the following beneficial effects: an integrated system for space object ranging, imaging and communication can realize three functions at the same time, and perform ranging imaging for space non-cooperative targets and communicate with own targets. At the same time, a single aperture can be used to simultaneously realize the functions of ranging imaging and communication.
附图说明Description of drawings
以下结合附图和具体实施方式对本发明作进一步的说明:The present invention will be further described below in conjunction with accompanying drawing and specific embodiment:
图1为本发明空间目标测距成像通信一体化系统结构示意框图。Fig. 1 is a schematic block diagram of the structure of the integrated system of space object ranging, imaging and communication according to the present invention.
图2为本发明空间目标测距成像通信一体化系统的成像跟踪分系统结构示意图。Fig. 2 is a schematic structural diagram of the imaging tracking subsystem of the space target ranging imaging and communication integrated system of the present invention.
图3为本发明空间目标测距成像通信一体化系统的测距分系统结构示意图。Fig. 3 is a schematic structural diagram of the ranging subsystem of the space object ranging imaging communication integrated system of the present invention.
图4为本发明空间目标测距成像通信一体化系统的粗跟踪分系统结构示意图。Fig. 4 is a schematic structural diagram of the rough tracking subsystem of the integrated system for space object ranging, imaging and communication according to the present invention.
图5为本发明空间目标测距成像通信一体化系统的精跟踪分系统结构示意图。Fig. 5 is a schematic structural diagram of the precise tracking subsystem of the integrated system for space object ranging, imaging and communication according to the present invention.
图6为本发明空间目标测距成像通信一体化系统的通信分系统结构示意图。FIG. 6 is a schematic structural diagram of the communication subsystem of the integrated system for space object ranging, imaging and communication according to the present invention.
图7为本发明空间目标测距成像通信一体化系统的天线分系统结构示意图。FIG. 7 is a schematic structural diagram of the antenna subsystem of the integrated system for space object ranging, imaging and communication according to the present invention.
图中1-成像跟踪分系统、2-测距分系统、3-粗跟踪系统、4-精跟踪系统、5-通信系统、6-天线分系统、101-分光片Ⅰ、102-半反半透镜Ⅰ、103-偏振光谱成像单元、104-数据融合单元、105-跟踪单元、106-跟踪转台、201-分光片Ⅱ、202-半反半透镜Ⅱ、203-测距发射模块、204-测距接收模块、205-测距处理模块、301-分光片Ⅲ、302-半反半透镜Ⅲ、303-粗跟踪发射模块、304-粗跟踪接收模块、401-振镜、402-分光片Ⅳ、403-分光片Ⅴ、404-精跟踪发射模块、405-精跟踪接收模块、501-分光片Ⅵ、502-通信发射模块、503-通信接收模块、601-旋转分光镜、602-折反混合卡塞格林光学系统、603-主镜、604-次镜、605-准直透镜组。In the figure 1-imaging tracking subsystem, 2-range measuring subsystem, 3-coarse tracking system, 4-fine tracking system, 5-communication system, 6-antenna subsystem, 101-splitter Ⅰ, 102-half-inverse Lens Ⅰ, 103-polarized spectrum imaging unit, 104-data fusion unit, 105-tracking unit, 106-tracking turntable, 201-beam splitter Ⅱ, 202-half mirror Ⅱ, 203-ranging transmitter module, 204-measuring Distance receiving module, 205-ranging processing module, 301-beam splitter III, 302-semi-reflective mirror III, 303-rough tracking transmitter module, 304-rough tracking receiver module, 401-galvanometer, 402-beam splitter IV, 403-Splitter Ⅴ, 404-Fine Tracking Transmitter Module, 405-Fine Tracking Receiver Module, 501-Splitter Ⅵ, 502-Communication Transmitter Module, 503-Communication Receiver Module, 601-Rotating Beamsplitter, 602-Reflective Hybrid Card Segrain optical system, 603-primary mirror, 604-secondary mirror, 605-collimating lens group.
具体实施方式detailed description
空间目标测距成像通信一体化系统,如图1所示,该系统由成像跟踪分系统1、测距分系统2、粗跟踪系统3、精跟踪系统4、通信系统5和天线分系统6组成,The space object ranging imaging communication integrated system, as shown in Figure 1, the system consists of imaging tracking subsystem 1, ranging subsystem 2, rough tracking system 3, fine tracking system 4, communication system 5 and antenna subsystem 6 ,
并且成像跟踪分系统1、测距分系统2、粗跟踪分系统3、精跟踪分系统4、通信分系统5共用一个天线分系统6。In addition, the imaging tracking subsystem 1 , the ranging subsystem 2 , the rough tracking subsystem 3 , the fine tracking subsystem 4 , and the communication subsystem 5 share an antenna subsystem 6 .
如图2所示,成像跟踪分系统1由一个分光片Ⅰ101、一个半反半透镜Ⅰ102、一个偏振光谱成像单元103、一个数据融合单元104、一个跟踪单元105和一个跟踪转台106组成,其中,分光片Ⅰ101上镀膜,400nm~700nm波段全部反射,其他波段全部透过,半反半透镜Ⅰ102上镀膜,As shown in Figure 2, the imaging tracking subsystem 1 is composed of a beam splitter I101, a half mirror I102, a polarization spectrum imaging unit 103, a data fusion unit 104, a tracking unit 105 and a tracking turntable 106, wherein, The beam splitter Ⅰ101 is coated, the 400nm~700nm band is fully reflected, and the other bands are all transmitted, and the semi-reflective mirror Ⅰ102 is coated.
透过率与反射率均为50%。分光片Ⅰ101和半反半透镜Ⅰ102均与水平逆时针旋转倾斜45°放置,并且分光片Ⅰ101和半反半透镜Ⅰ102彼此平行且共光轴;偏振光谱成像单元103与跟踪单元105的探测器接收方向相互垂直。The transmittance and reflectance are both 50%. Both the beam splitter I101 and the half mirror I102 are placed at an angle of 45° to the horizontal counterclockwise rotation, and the beam splitter I101 and the half mirror I102 are parallel to each other and have a common optical axis; the polarization spectrum imaging unit 103 and the detector of the tracking unit 105 receive directions perpendicular to each other.
如图3所示,测距分系统2由一个分光片Ⅱ201、一个半反半透镜Ⅱ202、一个测距发射模块203、一个测距接收模块204和一个测距处理模块205组成。其中,分光片Ⅱ201上镀膜,1064nm波长全部反射,其他波长全部透过,半反半透镜Ⅱ202上镀膜,As shown in FIG. 3 , the ranging subsystem 2 is composed of a beam splitter II 201 , a half mirror II 202 , a ranging transmitting module 203 , a ranging receiving module 204 and a ranging processing module 205 . Among them, the coating on the beam splitter II201 reflects all the wavelengths of 1064nm and transmits all other wavelengths, and the coating on the half mirror II202,
透过率与反射率均为50%。分光片Ⅱ201和半反半透镜Ⅱ202均与水平逆时针旋转倾斜45°放置,并且分光片Ⅱ201和半反半透镜Ⅱ202彼此平行且共光轴。测距发射模块203与测距接收模块204的探测器接收方向相互垂直。The transmittance and reflectance are both 50%. Both the beam splitter II 201 and the half mirror II 202 are placed at an angle of 45° counterclockwise to the horizontal, and the beam splitter II 201 and the half mirror II 202 are parallel to each other and have a common optical axis. The detector receiving directions of the ranging transmitting module 203 and the ranging receiving module 204 are perpendicular to each other.
如图4所示,As shown in Figure 4,
粗跟踪分系统3由一个分光片Ⅲ301、一个半反半透镜Ⅲ302、一个粗跟踪发射模块303和一个粗跟踪接收模块304组成。其中,分光片Ⅲ301上镀膜,800nm~820nm波段全部反射,其他波段全部透过,半反半透镜Ⅲ302上镀膜,透过率与反射率均为50%。分光片Ⅲ301与水平顺时针旋转倾斜45°放置,半反半透镜Ⅲ302与水平逆时针旋转倾斜45°放置,并且分光片Ⅲ301和半反半透镜Ⅲ302相互垂直且共光轴。粗跟踪发射模块303和粗跟踪接收模块304的探测器接收方向相互垂直。The rough tracking subsystem 3 is composed of a beam splitter III 301 , a half mirror III 302 , a rough tracking transmitting module 303 and a rough tracking receiving module 304 . Among them, the coating on the beam splitter III301 reflects all the bands from 800nm to 820nm and transmits all the other bands, and the coating on the half mirror III302 has a transmittance and reflectance of 50%. The beam splitter III301 is placed at an angle of 45° clockwise to the horizontal, and the half mirror III302 is placed at an angle of 45° counterclockwise to the horizontal, and the beam splitter III301 and the half mirror III302 are perpendicular to each other and have a common optical axis. The detector receiving directions of the rough tracking transmitting module 303 and the rough tracking receiving module 304 are perpendicular to each other.
如图5所示,精跟踪分系统4由一个振镜401、一个分光片Ⅳ402、一个分光片Ⅴ403、一个精跟踪发射模块404和一个精跟踪接收模块405组成。其中,分光片Ⅳ402上镀膜,1545nm~1555nm波段全部反射,1555nm~1565nm波段全部透过,分光片Ⅴ403上镀膜,1545nm波长全部透过,1555nm波长全部反射。振镜401与水平顺时针旋转倾斜45°放置,分光片Ⅳ402与水平顺时针旋转倾斜45°放置,振镜401与分光片Ⅳ402彼此平行且共光轴。分光片Ⅴ403与水平逆时针旋转倾斜45°放置,分光片Ⅴ403与分光片Ⅳ402相互垂直且共光轴。精信跟踪发射模块404和精跟踪接收模块405的探测器接收方向相互垂直。As shown in FIG. 5 , the fine tracking subsystem 4 is composed of a vibrating mirror 401 , a beam splitter IV 402 , a beam splitter V 403 , a fine tracking transmitter module 404 and a fine tracking receiver module 405 . Among them, the coating on the beam splitter Ⅳ 402 reflects all the wavelength bands from 1545nm to 1555nm, and transmits all the wavelength bands from 1555nm to 1565nm. The vibrating mirror 401 is placed at an angle of 45° clockwise to the horizontal, and the beam splitter IV 402 is placed at an angle of 45° to the horizontal clockwise rotation. The vibrating mirror 401 and the beam splitter IV 402 are parallel to each other and have a common optical axis. The beam splitter V403 is rotated counterclockwise and tilted at 45° from the horizontal, and the beam splitter V403 and the beam splitter IV402 are perpendicular to each other and have a common optical axis. The receiving directions of the detectors of the fine tracking transmitting module 404 and the fine tracking receiving module 405 are perpendicular to each other.
如图6所示,通信分系统5由一个分光片Ⅵ501、一个通信发射模块502和一个通信接收模块503组成。其中分光片Ⅵ501上镀膜,1565nm波长全部透过,1575nm波长全部反射。分光片Ⅵ501与水平顺时针旋转倾斜45°放置,分光片Ⅵ501与分光片Ⅳ402彼此平行且共光轴。通信发射模块502和通信接收模块503的的探测器接收方向相互垂直。As shown in FIG. 6 , the communication subsystem 5 is composed of an optical splitter VI 501 , a communication transmitting module 502 and a communication receiving module 503 . Among them, the coating on the beam splitter Ⅵ501, the wavelength of 1565nm is completely transmitted, and the wavelength of 1575nm is completely reflected. The beam splitter VI501 is rotated clockwise and tilted 45° from the horizontal, and the beam splitter VI501 and the beam splitter IV402 are parallel to each other and have a common optical axis. The detector receiving directions of the communication transmitting module 502 and the communication receiving module 503 are perpendicular to each other.
所述的天线分系统6由一个旋转分光镜601和一个折反混合卡塞格林光学系统602组成。The antenna subsystem 6 is composed of a rotating beam splitter 601 and a catadioptric hybrid Cassegrain optical system 602 .
其中,旋转分光镜601上镀膜,400nm~700nm波段和1064nm波长全部透过,其他波段全部反射。折反混合卡塞格林光学系统602包括一个卡塞格林光学系统的主镜603,一个卡塞格林光学系统的次镜604和准直透镜组605,如图7所示。其中,卡塞格林光学系统的主镜603镀反射膜,卡塞格林光学系统的次镜604为一个有曲率的光学透镜,其后表面镀膜,400nm~700nm波段透过50%,反射50%,其他波段全部反射。旋转分光镜601和一个折反混合卡塞格林光学系统602与分光片Ⅰ101、分光片Ⅱ201、分光片Ⅲ301、振镜401共光轴。Wherein, the rotating beam splitter 601 is coated with a film, and the 400nm-700nm wavelength band and the 1064nm wavelength are all transmitted, and the other wavelength bands are all reflected. The catadioptric hybrid Cassegrain optical system 602 includes a primary mirror 603 of the Cassegrain optical system, a secondary mirror 604 of the Cassegrain optical system and a collimating lens group 605, as shown in FIG. 7 . Among them, the primary mirror 603 of the Cassegrain optical system is coated with a reflective film, and the secondary mirror 604 of the Cassegrain optical system is an optical lens with curvature, and the rear surface is coated with a film, which transmits 50% and reflects 50% in the 400nm-700nm band. All other bands are reflected. The rotating beam splitter 601 and a catadioptric hybrid Cassegrain optical system 602 share the optical axis with the beam splitter I101, the beam splitter II201, the beam splitter III301, and the vibrating mirror 401.
折反混合卡塞格林光学系统602可以同时实现两个工作模式,一是卡塞格林反射式光学系统,二是透射式光学系统。The catadioptric hybrid Cassegrain optical system 602 can realize two working modes at the same time, one is a Cassegrain reflective optical system, and the other is a transmissive optical system.
从空间目标上反射的成像光束400nm~700nm的光经过旋转分光镜601透射,50%的光经过卡塞格林反射式光学系统,经过分光片Ⅰ101反射,再经过半反半透镜Ⅰ102透射,达到偏振光谱成像单元103并进行光谱偏振成像,其信息经过数据融合单元104融合之后再通过通信分系统5以通信光的形式发出与己方进行通信;50%的光经过透射式光学系统经过分光片Ⅰ101反射,再经过半反半透镜Ⅰ102反射,达到跟踪单元105并进行跟踪,得到的跟踪信息用于控制跟踪转台106,从而达到跟踪目标的作用。The 400nm-700nm light of the imaging beam reflected from the space target is transmitted through the rotating beam splitter 601, 50% of the light is passed through the Cassegrain reflective optical system, reflected by the beam splitter I101, and then transmitted through the half mirror I102 to achieve polarization The spectral imaging unit 103 performs spectral polarization imaging, and its information is fused by the data fusion unit 104, and then sent out in the form of communication light through the communication subsystem 5 to communicate with its own side; 50% of the light passes through the transmission optical system and is reflected by the spectrometer I 101 , and then reflected by the half-mirror I102, it reaches the tracking unit 105 for tracking, and the tracking information obtained is used to control the tracking turntable 106, so as to achieve the function of tracking the target.
测距光束1064nm的光从测距发射模块203发出,经过半反半透镜Ⅱ202透射,经过分光片Ⅱ201反射,再经过分光片Ⅰ101和分光片Ⅲ301透射,通过卡塞格林反射式光学系统反射和旋转分光镜601透射之后发出,遇到空间目标之后返回。返回的1064nm测距光经过旋转分光镜601透射,经过卡塞格林反射式光学系统,经过分光片Ⅰ101和分光片Ⅲ301透射,经过分光片Ⅱ201反射,再经过半反半透镜Ⅱ202反射到达测距接收模块204,再经过测距处理模块205进行处理得出距离信息,得到的信息再通过通信分系统5以通信光的形式发出与己方进行通信。The 1064nm light of the distance measuring beam is emitted from the distance measuring emission module 203, transmitted through the half mirror II 202, reflected by the beam splitter II 201, transmitted through the beam splitter I101 and III 301, reflected and rotated by the Cassegrain reflective optical system The spectroscopic mirror 601 sends out after transmission, and returns after encountering a space object. The returned 1064nm ranging light is transmitted through the rotating beam splitter 601, through the Cassegrain reflective optical system, transmitted through the beam splitter I101 and the beam splitter III301, reflected by the beam splitter II201, and then reflected by the half mirror II202 to reach the distance measuring receiver The module 204 is processed by the ranging processing module 205 to obtain the distance information, and the obtained information is sent out in the form of communication light through the communication subsystem 5 to communicate with the own side.
粗跟踪光束820nm的光从粗跟踪发射模块303发出,经过半反半透镜Ⅲ302反射和分光片Ⅲ301反射,经过分光片Ⅰ101透射,通过卡塞格林反射式光学系统和旋转分光镜601反射之后发出,由己方粗跟踪接收模块进行接收。由己方粗跟踪发射模块发出的粗跟踪光束800nm的光,通过旋转分光镜601反射,进入卡塞格林反射式光学系统,再经过分光片Ⅰ101透射,分光片Ⅲ301反射和半反半透镜Ⅲ302反射后达到粗跟踪接收模块304,所得到的跟踪信息用于控制旋转分光镜601,从而达到粗跟踪的目的。The 820nm light of the coarse tracking beam is emitted from the coarse tracking emission module 303, reflected by the half mirror III 302 and the beam splitter III 301, transmitted through the beam splitter I 101, reflected by the Cassegrain reflective optical system and the rotating beam splitter 601, and then emitted. It is received by the rough tracking receiving module of one's own side. The 800nm rough tracking beam emitted by our own rough tracking transmitter module is reflected by the rotating beam splitter 601, enters the Cassegrain reflective optical system, and then is transmitted through the beam splitter I101, reflected by the beam splitter III301 and reflected by the half-mirror III302 After reaching the rough tracking receiving module 304, the obtained tracking information is used to control the rotating beam splitter 601, so as to achieve the purpose of rough tracking.
精跟踪光束1545nm的光从精跟踪发射模块404发出,经过分光片Ⅴ403透射和分光片Ⅳ402和振镜401反射,依次经过分光片Ⅲ301、分光片Ⅱ201、分光片Ⅰ101透射,通过卡塞格林反射式光学系统和旋转分光镜601反射之后发出,由己方精跟踪接收模块进行接收。由己方精跟踪发射模块发出经跟踪光束1555nm的光,通过旋转分光镜601反射,进入卡塞格林反射式光学系统,再依次经过分光片Ⅰ101、分光片Ⅱ201、分光片Ⅲ301透射,再依次经过振镜401和分光片Ⅳ402、分光片Ⅴ403反射后,到达精跟踪接收模块405,所得到的跟踪信息用于控制振镜401,从而达到精跟踪的目的。The fine tracking beam 1545nm light is emitted from the fine tracking emission module 404, transmitted through the beam splitter V403, reflected by the beam splitter IV402 and the vibrating mirror 401, transmitted through the beam splitter III301, the beam splitter II201, and the beam splitter I101 in turn, and passed through the Cassegrain reflection After being reflected by the optical system and the rotating beam splitter 601, it is sent out and received by the fine tracking receiving module of our own side. The tracked beam 1555nm light emitted by our fine tracking transmitter module is reflected by the rotating beam splitter 601, enters the Cassegrain reflective optical system, and then transmits through the beam splitter I101, beam splitter II201, and beam splitter III301 in sequence, and then passes through the vibrating beam in turn. Mirror 401 , beam splitter IV 402 and beam splitter V 403 are reflected and then reach the fine tracking receiving module 405 , and the obtained tracking information is used to control the vibrating mirror 401 so as to achieve the purpose of fine tracking.
经过调制携带了成像和测距信息的通信光束1575nm的光,从通信发射模块502发出,经过分光片501反射,分光片Ⅳ402透射,经过振镜401反射,再依次经过分光片Ⅲ301、分光片Ⅱ201、分光片Ⅰ101透射,通过卡塞格林反射式光学系统和旋转分光镜601反射之后发出,由己方通信接收模块进行接收。由己方通信发射模块发出精跟踪光束1565nm的光,通过旋转分光镜601反射,进入卡塞格林反射式光学系统,再依次经过分光片Ⅰ101、分光片Ⅱ201、分光片Ⅲ301透射,经过振镜401反射,分光片Ⅳ402和分光片Ⅵ501透射之后,到达通信接收模块503,通过解调通信光得到通信信息。After modulation, the 1575nm communication beam carrying imaging and ranging information is emitted from the communication transmitting module 502, reflected by the beam splitter 501, transmitted by the beam splitter IV402, reflected by the vibrating mirror 401, and then passes through the beam splitter III301 and the beam splitter II201 in sequence 1. The beam splitter I 101 is transmitted, reflected by the Cassegrain reflective optical system and the rotating beam splitter 601, and then sent out by the own communication receiving module. The fine tracking beam 1565nm light is emitted by the own communication transmitter module, reflected by the rotating beam splitter 601, enters the Cassegrain reflective optical system, and then passes through the beam splitter I101, beam splitter II201, beam splitter III301, and then reflects through the vibrating mirror 401 , after the light splitter IV 402 and the light splitter VI 501 are transmitted, they reach the communication receiving module 503, and the communication information is obtained by demodulating the communication light.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610652134.0A CN106324607A (en) | 2016-08-10 | 2016-08-10 | Space target ranging, imaging and communication integrated system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610652134.0A CN106324607A (en) | 2016-08-10 | 2016-08-10 | Space target ranging, imaging and communication integrated system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106324607A true CN106324607A (en) | 2017-01-11 |
Family
ID=57740054
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610652134.0A Pending CN106324607A (en) | 2016-08-10 | 2016-08-10 | Space target ranging, imaging and communication integrated system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106324607A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106643689A (en) * | 2016-09-19 | 2017-05-10 | 中国运载火箭技术研究院 | Multi-mode common-optical path pose measuring apparatus |
CN108254915A (en) * | 2018-04-02 | 2018-07-06 | 中国科学院国家天文台长春人造卫星观测站 | Laser communication ranging and big view field imaging telescopic system |
CN109946705A (en) * | 2019-04-02 | 2019-06-28 | 上海微小卫星工程中心 | A spaceborne active-passive integrated ultra-long-distance space small target ranging system and method |
CN111736163A (en) * | 2020-07-06 | 2020-10-02 | 长春理工大学 | A space-based space target laser ranging optical system |
CN113589313A (en) * | 2021-07-12 | 2021-11-02 | 长春理工大学 | High-precision tracking system device for airborne high-energy laser weapon |
CN113794520A (en) * | 2021-08-17 | 2021-12-14 | 长春理工大学 | Miniaturized unmanned aerial vehicle laser communication device |
CN114142942A (en) * | 2021-12-08 | 2022-03-04 | 长光卫星技术有限公司 | Large-breadth optical imaging and laser communication integrated terminal |
WO2022083235A1 (en) * | 2020-10-23 | 2022-04-28 | 华为技术有限公司 | Detection and communication system, control device and detection system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101078765A (en) * | 2007-07-05 | 2007-11-28 | 北京航空航天大学 | Laser radar remote sensing polarized imaging system |
CN104639235A (en) * | 2015-01-20 | 2015-05-20 | 长春理工大学 | Integrated system with simultaneous laser ranging, polarization imaging and laser communication |
-
2016
- 2016-08-10 CN CN201610652134.0A patent/CN106324607A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101078765A (en) * | 2007-07-05 | 2007-11-28 | 北京航空航天大学 | Laser radar remote sensing polarized imaging system |
CN104639235A (en) * | 2015-01-20 | 2015-05-20 | 长春理工大学 | Integrated system with simultaneous laser ranging, polarization imaging and laser communication |
Non-Patent Citations (1)
Title |
---|
姜会林 等: "空间碎片激光探测成像通信一体化技术探讨", 《红外与激光工程》 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106643689A (en) * | 2016-09-19 | 2017-05-10 | 中国运载火箭技术研究院 | Multi-mode common-optical path pose measuring apparatus |
CN108254915A (en) * | 2018-04-02 | 2018-07-06 | 中国科学院国家天文台长春人造卫星观测站 | Laser communication ranging and big view field imaging telescopic system |
CN108254915B (en) * | 2018-04-02 | 2024-07-30 | 中国科学院国家天文台长春人造卫星观测站 | Laser communication ranging and large-view-field imaging telescope system |
CN109946705A (en) * | 2019-04-02 | 2019-06-28 | 上海微小卫星工程中心 | A spaceborne active-passive integrated ultra-long-distance space small target ranging system and method |
CN111736163A (en) * | 2020-07-06 | 2020-10-02 | 长春理工大学 | A space-based space target laser ranging optical system |
CN111736163B (en) * | 2020-07-06 | 2023-01-31 | 长春理工大学 | A laser ranging optical system for space-based space targets |
WO2022083235A1 (en) * | 2020-10-23 | 2022-04-28 | 华为技术有限公司 | Detection and communication system, control device and detection system |
CN114488124A (en) * | 2020-10-23 | 2022-05-13 | 华为技术有限公司 | Detection and communication system, control device and detection system |
CN113589313A (en) * | 2021-07-12 | 2021-11-02 | 长春理工大学 | High-precision tracking system device for airborne high-energy laser weapon |
CN113794520A (en) * | 2021-08-17 | 2021-12-14 | 长春理工大学 | Miniaturized unmanned aerial vehicle laser communication device |
CN114142942A (en) * | 2021-12-08 | 2022-03-04 | 长光卫星技术有限公司 | Large-breadth optical imaging and laser communication integrated terminal |
CN114142942B (en) * | 2021-12-08 | 2023-07-14 | 长光卫星技术股份有限公司 | Large-breadth optical imaging and laser communication integrated terminal |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106324607A (en) | Space target ranging, imaging and communication integrated system | |
CN104639235B (en) | Integrated system with simultaneous laser ranging, polarization imaging and laser communication | |
CN104502909B (en) | A kind of optics and the common aperture compound detection system of millimetre-wave radar | |
CN104570146B (en) | space debris detection imaging and communication system | |
CN112713932B (en) | Laser communication terminal optical path relay unit installation and inspection system and detection method based thereon | |
US20120002973A1 (en) | Dual band radio frequency (rf) & optical communications antenna and terminal design methodology and implementation | |
US4165936A (en) | Coaxial transmitting and receiving optics for an electro-optic range finder | |
CN109787686A (en) | A kind of satellite optical communication terminal on-orbit calibration and transmitting-receiving coaxiality correcting device and method | |
EP1019773B1 (en) | Displaced aperture beamsplitter for laser transmitter/receiver opto mechanical system | |
CN103762998B (en) | Big visual field shared antenna hybrid microwave and laser wireless communication device | |
CN101256233B (en) | Two-way Loop Transmitting and Receiving Telescope for Synthetic Aperture LiDAR | |
CN108415148B (en) | Photoelectric pod multi-sensor common optical path system | |
CN114200687B (en) | Optical self-calibration device and method for laser communication system | |
CN104995482A (en) | Multi-mode optical measurement device and method of operation | |
CN103345050B (en) | Space refraction and reflection type multichannel imaging optical system | |
CN112526531B (en) | Dual-view-field infrared imaging system with multi-target laser ranging function | |
KR20110038693A (en) | Reflective telescopes in multiple fields of view with laser path | |
CN104977708A (en) | Multi-spectral common-aperture optical system | |
CN108519591B (en) | Real-time high-precision monitoring device for laser ranging light beam pointing | |
CN206905904U (en) | High-flux high-stability coherent dispersion spectral imaging device | |
CN115801117A (en) | Novel laser communication receiving and transmitting light beam integrated monitoring system and monitoring method | |
CN107966707A (en) | A kind of laser ranging system | |
CN112543059B (en) | Common receiving optical path wireless laser communication networking antenna | |
CN207704032U (en) | A kind of laser ranging system | |
CN106643689A (en) | Multi-mode common-optical path pose measuring apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170111 |