[go: up one dir, main page]

CN106324010A - 使用mr设备对在管道中流动的流体的分析 - Google Patents

使用mr设备对在管道中流动的流体的分析 Download PDF

Info

Publication number
CN106324010A
CN106324010A CN201510532753.1A CN201510532753A CN106324010A CN 106324010 A CN106324010 A CN 106324010A CN 201510532753 A CN201510532753 A CN 201510532753A CN 106324010 A CN106324010 A CN 106324010A
Authority
CN
China
Prior art keywords
fluid
descend
mrd
coordinate
roi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510532753.1A
Other languages
English (en)
Inventor
尤里·拉波波特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ai Sibai Cut Ai Ltd
ASPECT AI Ltd
Original Assignee
Ai Sibai Cut Ai Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ai Sibai Cut Ai Ltd filed Critical Ai Sibai Cut Ai Ltd
Publication of CN106324010A publication Critical patent/CN106324010A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
    • G01N24/081Making measurements of geologic samples, e.g. measurements of moisture, pH, porosity, permeability, tortuosity or viscosity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
    • G01N24/085Analysis of materials for the purpose of controlling industrial production systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/483NMR imaging systems with selection of signals or spectra from particular regions of the volume, e.g. in vivo spectroscopy
    • G01R33/4833NMR imaging systems with selection of signals or spectra from particular regions of the volume, e.g. in vivo spectroscopy using spatially selective excitation of the volume of interest, e.g. selecting non-orthogonal or inclined slices
    • G01R33/4835NMR imaging systems with selection of signals or spectra from particular regions of the volume, e.g. in vivo spectroscopy using spatially selective excitation of the volume of interest, e.g. selecting non-orthogonal or inclined slices of multiple slices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/563Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution of moving material, e.g. flow contrast angiography

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Optics & Photonics (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Vascular Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • Signal Processing (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

用于测量和监测流经管道的流体的物理或化学性质变化的方法,包括步骤:使流经管道的流体进入磁共振成像设备(MRD);在管道中定义感兴趣的区域(ROI);在具有p个切片的ROI内限定c个坐标,c和p是整数,每个大于等于1;沿至少一个坐标在至少一个切片中获得所述流体的至少一个物理或化学性质的数据库对ROI内的流体进行MR成像,以提供至少一个图像,该图像沿坐标ci具有p个切片,包括切片Pi ci;从所述图像确定所述流体沿至少一个坐标ci、在至少一个切片Pi ci中的至少一个物理或化学性质比较在至少一个切片p中的、在相同的预定义坐标ci中的从而确定性质差其中代表与流体的预先确定的标准的偏差,该预先确定的标准由管道内预定义的坐标来指示;如果

Description

使用MR设备对在管道中流动的流体的分析
技术领域
本发明一般涉及利用MR设备测量并监测在管道中流动的流体的物理或化学性质的装置、系统和方法。
背景技术
复杂流体通常由若干非均匀地混合的成分组成。这些流体在宏观尺度通常是均匀的而在微观尺度是无序的,且具有介观长度尺度的结构,其在确定通常相当难分析的流体性质中发挥关键作用。复杂流体流动行为的测量和分析对物质的物理和化学性质提供有价值的见解。流体流动分析已成为控制和优化工业过程(比如,探索油田钻井、流体输送,和食品生产)的重要手段;也为各种疾病提供了诊断工具,比如,心血管疾病和多发性硬化。
因为核磁共振(NMR)成像是高度敏感的、非侵入性的,且可以量化大范围的物理和化学性质,所以其在流体分析中有广泛的应用。一些非常有效的分析应用程序是基于脉冲场梯度自旋回波(PGSE)和信号成像实验的组合。这些应用依赖于不同的流态,包括层流、湍流,和层流-湍流混合流条件下收集的流体数据。
核磁共振和磁共振成像(MRI)最近已被确认为产品和工艺研发的重要技术,这已在近年来不同领域的若干成功应用中得以证实。例如,在石油工业中,钻井液的流变和组成性质为工艺控制提供必要的信息。该信息通常导致钻井液的成分或钻井参数、比如钻井速度和钻压的实时的过程变化。基于油田钻井操作的性质,此类控制决策可能带来数千万美元的经济结果。
几乎没有专利描述过对在管道中流动的流体进行绘制和指示,以比较其性质或获得信息,比如流体结构和成分随位置的变化。
因此,显然需要如下解决方案:测量和分析流经核磁共振成像设备的流体的性质,所述核磁共振成像设备允许监测任何给定维度中的、在特定位置和时间点上的流体变化。
发明内容
本发明的目的是公开用于测量和监测流经管道、管件或类似物的流体的物理或化学性质的变化的方法,其包括:(a)使流经管道的流体进入磁共振成像设备(MRD);(b)在所述管道中限定感兴趣的区域(ROI);(c)在具有p个切片的所述ROI内限定c个坐标,c和p是整数,每个大于等于1;(d)获得沿所述至少一个坐标的、在所述至少一个切片中的所述流体的至少一个物理或化学性质的数据库(e)对所述ROI内的所述流体进行磁共振(MR)成像,从而提供至少一个图像,该至少一个图像沿坐标ci具有p个切片,其除其他外还包括切片Pi ci;(f)从所述图像确定所述沿所述至少一个坐标ci的、在至少一个切片Pi ci的流体的所述至少一个物理或化学性质(g)比较在所述至少一个切片p中、在同一预定义的坐标ci中的所述与所述从而确定性质差其中代表与所述流体的预先确定的标准的偏差,该预先确定的标准由在所述管道内所述预定义的坐标指示;进一步地,如果则发出通知。
本发明的另一目的是公开上述限定的方法,其中所述坐标限定为远离所述ROI中点的一维点;每个所述点的位置由坐标(xi)定义。
本发明的另一目的是公开上述限定的方法,其中根据由像素组成的二维网格将所述坐标定义在所述横截面中;每个所述像素的位置由坐标(xi,yi)定义。
本发明的另一目的是公开上述限定的方法,其中根据由体素组成的三维网格将所述坐标定义在所述ROI中;每个所述体素的位置由坐标(xi,yi,zi)定义。
本发明的另一目的是公开上述限定的方法,其进一步包括随时间连续地测量所述记录的物理或化学性质的装置。
本发明的另一目的是公开上述限定的方法,其中在不同的切片和坐标确定获得作为位置的函数的
本发明的另一目的是公开上述限定的方法,其中由所述基于MR的系统测量的流动物质的物理或化学性质包括电导率、介电常数,和磁性。
本发明的另一目的是公开上述限定的方法,其中由所述MRD测量的流动流体的物理和化学性质包括所述流体中的至少一种材料的浓度和识别以及所述材料的粒度、粒度分布、颗粒形状、动态流动特征,和含水量。
本发明的另一目的是公开上述限定的方法,进一步包括根据所述流体的至少一种性质的变化来控制过程的反馈机构。
本发明的另一目的是公开上述限定的方法,进一步包括选择下组性质的步骤,该组包括:流体类型、流体密度、流体粘度、流体粘弹性、流体屈服应力及其任意组合。
本发明的另一个目的是公开上述限定的方法,该方法进一步包括从牛顿流体、假塑性流体、胀流型流体、宾汉塑性流体,和赫歇尔-巴尔克莱流体中选择所述流体类型的步骤。
本发明的另一个目的是公开上述限定的方法,该方法进一步包括对识别所述流体中的非均质区域进行另外的分析。
本发明的另一个目的是公开上述限定的方法,其中所述流体中的所述非均质区域选自:气泡、液泡、分层区域、沉淀区域、分解乳剂区域,和不完全混合区域。
本发明的另一个目的是公开上述限定的方法,该方法进一步包括通过速度场中涡流的存在识别湍流区域的步骤。
本发明的另一个目的是公开上述限定的方法,该方法进一步包括从所述速度图像确定流阵面、并且通过所述流阵面形状的不规则性识别湍流区域的步骤。
本发明的另一个目的是公开上述限定的方法,该方法进一步包括在显示设备上显示所述1D、2D和3D速度图像的步骤。
本发明的目的是公开用于测量和监测流体的物理或化学性质的磁共振成像设备(MRD)(100),其包括:(a)磁共振扫描仪(110),用于使流体在产生的磁场内受射频信号((RF))作用、并测量所述流体重新发射的RF信号;(b)计算机处理器(120),用于控制所述磁共振扫描仪的RF波的产生和检测功能;(c)计算机可读载体(CRM)(130),用于储存所述计算机处理器用的机器指令和用于储存有关所述RF信号测量的信息;(d)可视显示器(140),用于指示MRD的当前状态和功能;(e)数字电子连接端口(150),用于在MRD和计算机通信网络进行数字通信;(f)管道(160)、管道配件或类似物,具有用于容纳流体流的预先确定的部分;(g)用于在管道内使流体流动的流激机构(170);其中所述CRM(130)包括用于涉及测量和监测所述流体的至少一个物理或化学性质的变化的数据分析过程的指令;根据在具有p个切片的所述ROI内的、沿坐标的离散位置,指示所述性质。
本发明的另一目的是公开上述限定的MRD,其中所述坐标定义为远离所述ROI中点的一维点;每个所述点的位置由坐标(xi)定义。
本发明的另一目的是公开上述限定的MRD,其中根据由像素组成的二维网格将所述坐标定义在所述ROI中;每个所述像素的位置由坐标(xi,yi)定义。
本发明的另一目的是公开上述限定的MRD,其中根据由体素组成的三维网格将所述坐标限定在所述ROI中;每个所述体素的位置由坐标(xi,yi,zi)定义。
It is another object of the current invention to disclose the MRD as defined inany of above,further comprising a means of measuring physical or chemical propertiessequentially over time.
本发明的另一目的是公开上述限定的MRD,其进一步包括随时间连续地测量物理或化学性质的装置。
本发明的另一目的是公开上述限定的MRD,其中在不同的切片和坐标中确定获得作为位置的函数的
本发明的另一目的是公开上述限定的MRD,其中所述管道(160)被配置成在线的,容纳平行于工业过程的常规流体流的所述流体的流。
本发明的另一目的是公开上述限定的MRD,所述流体被从所述常规流体中虹吸出来,并在经过基于所述MR的系统的监测点的点处重新整合到所述常规流体流动中。
本发明的另一目的是公开上述限定的MRD,其中由所述基于MR的系统测量的流动物质的物理或化学性质包括电导率、介电常数,和磁性。
本发明的另一目的是公开上述限定的MRD,其中由所述基于MR的系统测量的流动流体的物理和化学性质包括:所述至少一种材料的浓度和识别,以及所述材料的粒度、粒度分布、颗粒形状、动态流动特征,和含水量。
本发明的另一目的是公开上述限定的MRD,进一步包括用于根据所述流体的至少一种性质的变化来控制过程的反馈机构。
本发明的另一目的是公开上述限定的MRD,进一步包括选择下组特征的步骤,该组包括:流体类型、流体密度、流体粘度、流体粘弹性、流体屈服应力及其任意组合。
本发明的另一目的是公开上述限定的MRD,进一步包括从牛顿流体、假塑性流体、胀流型流体、宾汉塑性流体,和赫歇尔-巴尔克莱流体中选择所述流体类型的步骤。
本发明的另一目的是公开上述限定的MRD,进一步包括对识别所述流体中的非均质区域进行另外的分析。
本发明的另一目的是公开上述限定的MRD,其中所述流体中的所述非均质区域选自:气泡、液泡、分层区域、沉淀区域、分解乳剂区域,和不完全混合区域。
本发明的另一目的是公开上述限定的MRD,进一步包括通过速度场中涡流的存在识别湍流区域的步骤。
本发明的另一目的是公开上述限定的MRD,进一步包括从所述速度图像确定流阵面、并且通过所述流阵面形状的不规则性识别湍流区域的步骤。
本发明的另一目的是公开上述限定的MRD,进一步包括在显示设备上显示所述1D、2D和3D速度图像的步骤。
附图说明
为了更好地理解本发明及其实践,结合附图,仅通过非限制性实施例的方式,描述多个实施例,其中:
图1展示了通过MRD测量和监测在管道中流动的流体的物理或化学性质的方法的流程图。
图2示意性展示了用于测量在管道中流动的流体的物理或化学性质的MRD(100)。
图3展示了对在管道中流动的流体的选定横截面中的一维点的指示。
图4展示了对在管道中流动的流体的选定横截面中的二维像素的指示;以及
图5展示了对在管道中流动的流体的感兴趣的体积中的三维体素的指示。
具体实施方式
通过以下说明使本领域的技术通通来理解本发明,并并明实施本发明的优选实施方式。然而,对于本领域的技术通通来说可对用不同的对变,因为本发明的因要因则限定为提供一种用于以高准确度测量和控制工业环境中的流体物质的物理和/或化学状态转变的非侵入式、在线或线内装置。
本发明中的“核磁共振”和“NMR”术术指的是处于磁场中的物质的因子核吸收并再发射电磁电射的物理电电。所述物质再发射出的电射共振频率由磁场出度和所述物质的特定因子结构决定。
本发明中的“磁共振成像设备”和“MRD”术术指的是一种对物质产生可控核磁共振作用并检测由此产生的电磁电射的分测测定的设备(例如,NMR、MRI等等)。
本发明中的“磁共振成像”、“NMR成像”、“MR成像”和“MRI”术术指的是物质物理或化学特性的集成的MR测谱测量,及其相关的多维表征。
本发明中的“非侵入式”术术指的是,本发明所公开的操作并不影响待测物质,且不会干扰所述物质参与的正常工业过程。
下文中的术术“多个”指的是任何大于等于一的整数。
本发明中的“层流”术术指的是流体各层平行流动的流体动态特征,各层之间各不干扰。层流亦可表征为其流体的粘度吸收其动能的形式。
本发明中的“湍流”术术指的是流体流动时各层之间显著相互干扰的流体动态特征,其特征在于并非以平滑的平行层流动。湍流亦可表征为其流体的粘度不吸收其动能的形式。
本发明中的术术“在线”("on-line")指的是一种系统状态,在此状态下,系统的测量功能为实时操作,且无需通工干预。
本发明中的“线内”("in-line")术术指的是,配置为在涉及流体的工业过程中作为连续操作序列中的组成部分的测量系统。
本发明中的“泡”术术指的是基本上以特征与流动流体的因体特征明显不同的流体填充的区域。泡不必是大致球形或卵形的,但其中的流体性质应该相对均一。泡的非限制性例子为乳液或液体内的大于约一毫米的空气区域。泡的其它非限制性例子为在乳液或液体内的油区域,或在气体内的液体区域。
本发明中的“感兴趣的区域”或“ROI”指的是为了处理及分析流体性质的目的,选择识别的在管道中流动的流体样品的子集。其可以为感兴趣的横截面或体积。
本发明中的“像素”术术指的是二维网格中的要素。
本发明中的“体素”术术指的是三维网格中的要素。
在本发明的方法和设备的实施例中,反馈机构整合到系统中,使得如果从设定的标准获得流体的一种或多种性质,则可以对变生产过程以引导流体性质恢复至预设的标准。对变生产过程的方法可以是通过流体温度、压力等的变化。
在本发明的范围中,术术“管道”指的是任何管、流体(例如,气体、液体、固体、气溶胶、乳剂,及其任何混合物)的热管或导管,包括任何尺寸、横截面结构和形状的管道、柔性管道、半柔性管道和刚性管道、部分开放的通道、管道配件、管道的附加件、管道接头和叉状物、管道的插件和向外安装的装置、线性和非线性管道、金属制造的管道、聚合物制造的固定、玻璃装置的管道或其它物质制造的管道,及其任意组合。
参见图1,展示了通过MRD测量和监测在管道中流动的流体的方法。可以从其流剖面获得在管道中流动的流体的物理和化学性质。图3、图4和图5分别展示了以1D、2D和3D指示感兴趣的区域的流体并且根据位置绘制流体性质。
流体可以由速度剖面表征。利用MRD测量速度剖面的两个因要方法为飞行时间(TOF)和相位编码成像。在任何一种情况下,流动流体暴露于已知出度和已知的空间变量的恒定磁场。在自旋系统与出加的磁场对齐之后,自旋系统通过在流中标记区域的射频脉冲而被扰动。飞行时间技术使用选择性激发和重聚焦RF脉冲,以选择性影响在空间朝向正交方向的平面,以及垂直于流的激发区域和平行于并包括该流的重新聚焦的区域。对得到的自旋回波的来源的位置进行成像,展示相当于速度和回波时间的乘积的位移。这些图像清晰地展示了速度在层流和非层流中的分布剖面。相位编码成像产生单向流和更复杂的流的速度分布图的直接图像。在单向稳流的情况下,如果在时间t自旋的因子核的位置为z(t),那么z(t)=z0+wt,其中z0为因子核在时间0自旋的位置,并且w为因子核的自旋速度。在流动方向施加的磁场梯度具有量级gz,并且以下布洛赫方程式表示磁化相位:
φ = γ g ∫ 0 t z ( s ) g z ( s ) d s = γ ( z 0 m 0 + wm 1 ) - - - ( 1 )
其中γg为因子核的旋磁比,并且
m 0 = ∫ 0 t g z ( s ) d s
m 1 = ∫ 0 t sg z ( s ) d s - - - ( 2 )
在相位编码成像中,施加的梯度设计成m0=0但m1≠0。那么该相位角与自旋因子核的速度成比例;对当设计梯度使相位能测量样本中的速度分布。
局部流变测量基于速度剖面。这使得在流体的流变性质的数据分析中,实际测量的剖面代替假设的速度场。可以根据下式计算局部的粘度值:
μ ( y ) = τ ( y ) / γ · ( y ) - - - ( 3 )
其中为从测定的速度剖面获得的剪切率剖面(局部剪切率),而τ(y)为从压力差测量(毛细管或管道流动几何学)或从扭矩测量(旋转式流变仪)获得的局部剪切应力。在进行流变试验之前,该局部流变测量已经捕获一些微扰效应。
流体动力的科学和应用几何学表明,相对于具有其它横截面形状的管道,管道的横截面形状可以影响层流-湍流瞬变区域的大小。如此,MR成像技术与为其层流-湍流瞬变性质而专门选择的流体管道系统的组合可以为确定流体的流变和组成性质提供有有的实验和流程控制价值。
表征在管道中流动的流体可以在一维、二维或三维中完成。可以确定在离散位置的流体性质的区别。通过比较,可以监测流体的特征和变化。
在本发明的系统的另一实施例中,参数被选择为使得对流体阵面的绘制产生自作为感兴趣区域中的位置的函数的速度。
根据本发明的另一个实施例,展示一种特别对于检测物质中所含(即浓度和识别)的至少一种物质以及该材料的物理特征(包括粒径、颗粒结构、颗粒形状、动态流体特征、含水量)的方法。
本系统进一步应用于流动流体的电化学转变的测量,所述转变包括所述物质的电导率、介电常数,和磁性的相应变化。
在另一实施例中,所述产物为乳剂比如牛奶或蛋黄酱。乳剂通常表电为赫歇尔-巴尔克莱类流体,具有特有的流剖面。如果存在空气泡或如果乳剂被分解,那么该流剖面变得没那么尖锐和对称。
在另一实施例中,流体在NMR设备内流动期间发生反应。流剖面的形状将表征该反应的过程,从而可以施加纠正性反馈,例如,通过对变管壁的温度,以在期望参数内进行反应过程。
实施例
下面将描述本发明下下下下的实施方式的多个实施例,以为例证。下文中将涉及部分所述实验。所述实施例描述了本发明的形式和方法,并列并了发明通所构构的实施本发明的最构构式,但不应但作是对本发明范围的限制。
实施例1
在油田钻井位点,将MRD配置为测量和监测流变性质,比如钻井液的粘度。在石油勘探工业中,钻井液沿钻杆向下流通再向上回到围绕钻杆的钻孔环形区域,其流变性质和组成性质将提供必要的过程控制信息。该信息往往带来钻井液成分或钻井参数(例如钻井速度和钻压)的实时过程变化。
在一些情况下,循环钻井液的性质可以提供地质结构构造信息。某些地质结构更可能使得钻井下部钻具组合(BHAs)卡住。当检测到所述情况时,将采用特定步骤来避免钻柱卡住。应当注意,钻柱卡住将导致数以百万计的不可预测操作费用,尤其是损失昂贵的下部工具,且钻井点场地费用浪费天数累积。
实施例2
将MRD用于测量和监测番茄酱生产过程中流动的流体的流变性质。该系统针对期望的番茄酱剖面相关的共振频率进行校准和调整。对番茄酱流进行持续的在线测量,若系统检测到偏离校准粘度值大于0.5%的流体粘度时,则可以启动警报。
此外,MRD测量番茄酱生产线的流内的层流-湍流瞬变横截面区域,这是为了分离和识别未能完全同化在流体基质中的任何成分。由此,可以使产品一致性和质量控制最大化。
实施例3
MRD用于测量在牛奶巴氏灭菌过程中流动的流体的性质。牛奶为乳剂,通常表电为赫歇尔-巴尔克莱类流体,具有特有的流剖面。如果乳剂被分解,那么该流剖面变得没那么尖锐且更对称。通过监测流剖面变化,可以更好地控制牛奶巴氏灭菌过程的条件并因此避免可能的经济损失。
实施例4
MRD用于测量动脉中的血流。心血管系统在通体内是具有多条分支的内部流体环路,复杂液体在其中循环。正常的动脉流是层流式的,并且第二层流在弯曲处和分叉处产生。动脉是活器官,其对应变化的血液动力学状况,并随其而变化。在某些情况下,异常血液动力学状况引起反常的生物反应。速度剖面偏斜可以产生袋形区,其中所述壁的剪应力的方向摇摆不定。动脉粥样硬化性疾病常常位于这些位置并且导致动脉管腔变窄-狭窄症。狭窄症可引起湍流且通过粘性头部损失和流堵塞,减少流动。在患有狭窄症的咽喉附近的非常高的剪切应力可以激活血小板,由此诱发血栓形成,这可以完全阻止血液流向心脏或脑。狭窄症的检测和定量作为手术干预的基础。在湍流边缘的三维脉动流将为疾病诊断和量化提供有用的信息。
实施例5
制浆造纸工业使用来自木浆的复杂的高分子量化合物的混合物作为其因材料。已经将NMR用于表征纸浆并且NMR可以用于确定产生的纸浆类的不同机械或化学处理的效果。含水纸浆悬浮液表电出非牛顿流体的行为。通常,宾汉构型用于洞察已观察到的行为。即使在管内流动,而宾汉构型可以捕获在管中心的堵塞行为,也不能解决在产生不稳定流的堵塞区域外工作的重要机制。通过绘制流体流动、感兴趣的区域的定性比较可以洞察纸浆的微观结构,这有助于对工厂中的纸浆生产进行监测。

Claims (34)

1.一种用于测量和监测流经管道的流体的物理或化学性质的变化的方法,其包括如下步骤:
a.使流经管道的流体进入磁共振成像设备(MRD);
b.在所述管道中限定感兴趣的区域(ROI);
c.在具有p个切片的所述ROI内限定c个坐标,c和p是整数,每个大于等于1;
d.获得沿所述至少一个坐标的、在所述至少一个切片中的所述流体的至少一个物理或化学性质的数据库
e.对所述ROI内的所述流体进行MR成像,从而提供至少一个图像,所述至少一个图像沿坐标ci具有p个切片,其除其他外还包括切片Pi ci
f.从所述图像确定沿所述至少一个坐标ci、在至少一个切片Pi ci的所述流体的所述至少一个物理或化学性质
g.比较在所述至少一个切片p中、在同一预定义的坐标ci中的所述与所述从而确定性质差
其中代表与所述流体的预先确定的标准之间的偏差,该预先确定的标准由在所述管道内所述预定义的坐标指示;进一步地,如果则发出通知。
2.根据权利要下1所述的方法,其特征在于,所述坐标定义为远离所述ROI中点的一维点;每个所述点的位置由坐标(xi)定义。
3.根据权利要下1所述的方法,其特征在于,根据由像素组成的二维网格将所述坐标定义在所述横截面中;每个所述像素的位置由坐标(xi,yi)定义。
4.根据权利要下1所述的方法,其特征在于,根据由体素组成的三维网格将所述坐标定义在所述ROI中;每个所述体素的位置由坐标(xi,yi,zi)定义。
5.根据权利要下2、权利要下3或权利要下4所述的方法,其特征在于,进一步包括随时间连续地测量所述记录的物理或化学性质的装置。
6.根据权利要下5所述的方法,其特征在于,在不同的切片和坐标中确定获得作为位置的函数的
7.根据权利要下5所述的方法,其特征在于,由所述基于MR的系统测量的流动物质的物理或化学性质包括电导率、介电常数和磁性。
8.根据权利要下5所述的方法,其特征在于,由所述MRD测量的流动流体的物理和化学性质包括所述流体中的至少一种材料的浓度和识别,以及所述材料的粒度、粒度分布、颗粒形状、动态流动特征和含水量。
9.根据权利要下5所述的方法,其特征在于,其进一步包括用于根据所述流体的至少一种性质的变化来控制过程的反馈机构。
10.根据权利要下5所述的方法,其特征在于,其进一步包括选择下组性质的步骤,该组包括:流体类型、流体密度、流体粘度、流体粘弹性、流体屈服应力及其任意组合。
11.根据权利要下5所述的方法,其特征在于,其进一步包括从下组中选择所述流体类型的步骤,该组包括:牛顿流体、假塑性流体、胀流型流体、宾汉塑性流体和赫歇尔-巴尔克莱流体。
12.根据权利要下5所述的方法,其特征在于,其进一步包括对识别所述流体中的非均质区域进行另外的分析。
13.根据权利要下5所述的方法,其特征在于,所述流体中的所述非均质区域选自:气泡、液泡、分层区域、沉淀区域、分解乳剂区域和不完全混合区域。
14.根据权利要下5所述的方法,其特征在于,其进一步包括通过速度场中涡流的存在来识别湍流区域的步骤。
15.根据权利要下5所述的方法,其特征在于,其进一步包括从所述速度图像确定流阵面、并且通过所述流阵面形状的不规则性识别湍流区域的步骤。
16.根据权利要下5所述的方法,其特征在于,其进一步包括在显示设备上显示所述1D、2D和3D速度图像的步骤。
17.磁共振成像设备(MRD,100),用于测量和监测流体的物理或化学性质,所述MRD包括:
a.磁共振扫描仪(110),用于使流体在产生的磁场内受射频信号(RF)作用、并测量由所述流体重新发射的RF信号;所述扫描仪配置为使所述流体成像;
b.计算机处理器(120),用于控制所述磁共振扫描仪的RF波的产生和检测功能;
c.计算机可读载体(CRM,130),用于储存所述计算机处理器用的机器指令和用于储存有关所述RF信号测量的信息;以及
d.管道(160),用于容纳所述流体流;
其中所述CRM(130)包括用于对数据进行分析性处理的指令,所述数据涉及测量和监测流体的至少一个物理或化学性质的变化根据在具有p个切片的所述ROI内的、沿坐标的离散位置,指示所述性质。
18.根据权利要下17所述的MRD(100),其特征在于,所述坐标定义为远离所述ROI的中点的一维点;每个所述点的位置由坐标(xi)定义。
19.根据权利要下17所述的MRD(100),其特征在于,根据由像素组成的二维网格将所述坐标限定在所述ROI中;每个所述像素的位置由坐标(xi,yi)定义。
20.根据权利要下17所述的MRD(100),其特征在于,根据由体素组成的三维网格将所述坐标限定在所述ROI中;每个所述体素的位置由坐标(xi,yi,zi)定义。
21.根据权利要下18、权利要下19,或权利要下20所述的MRD(100),其特征在于,其进一步包括随时间连续地测量物理或化学性质的装置。
22.根据权利要下21所述的MRD(100),其特征在于,在不同的切片和坐标中确定获得作为位置的函数的
23.根据权利要下21所述的MRD(100),其特征在于,所述管道(160)被配置成在线的,容纳平行于工业过程的常规流体流的所述流体的流。
24.根据权利要下21所述的MRD(100),其特征在于,所述流体被从所述常规流体中虹吸出来,并在经过基于所述MR的系统的监测点的点处重新整合到所述常规流体流动中。
25.根据权利要下21所述的MRD(100),其特征在于,由所述基于MR的系统测量的流动物质的物理或化学性质包括电导率、介电常数和磁性。
26.根据权利要下21所述的MRD(100),其特征在于,由所述基于MR的系统测量的流动流体的物理和化学性质包括:所述至少一种材料的浓度和识别,以及所述材料的粒度、粒度分布、颗粒形状、动态流动特征和含水量。
27.根据权利要下21所述的MRD(100),其特征在于,其进一步包括用于根据所述流体的至少一种性质的变化来控制过程的反馈机构。
28.根据权利要下21所述的MRD(100),其特征在于,其进一步包括选择下组特征的步骤,该组包括:流体类型、流体密度、流体粘度、流体粘弹性、流体屈服应力及其任意组合。
29.根据权利要下21所述的MRD(100),其特征在于,其进一步包括从下组中选择所述流体类型的步骤,该组包括:牛顿流体、假塑性流体、胀流型流体、宾汉塑性流体和赫歇尔-巴尔克莱流体。
30.根据权利要下21所述的MRD(100),其特征在于,其进一步包括对识别所述流体中的非均质区域进行另外的分析。
31.根据权利要下21所述的MRD(100),其特征在于,所述流体中的所述非均质区域选下组,该组包括:气泡、液泡、分层区域、沉淀区域、分解乳剂区域,和不完全混合区域。
32.根据权利要下21所述的MRD(100),其特征在于,其进一步包括通过速度场中涡流的存在来识别湍流区域的步骤。
33.根据权利要下21所述的MRD(100),其特征在于,其进一步包括从所述速度图像确定流阵面、并且通过所述流阵面形状的不规则性识别湍流区域的步骤。
34.根据权利要下21所述的MRD(100),其特征在于,其进一步包括在显示设备上显示所述1D、2D和3D速度图像的步骤。
CN201510532753.1A 2015-07-02 2015-08-25 使用mr设备对在管道中流动的流体的分析 Pending CN106324010A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562187822P 2015-07-02 2015-07-02
US62/187,822 2015-07-02

Publications (1)

Publication Number Publication Date
CN106324010A true CN106324010A (zh) 2017-01-11

Family

ID=57609347

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510532753.1A Pending CN106324010A (zh) 2015-07-02 2015-08-25 使用mr设备对在管道中流动的流体的分析

Country Status (3)

Country Link
US (1) US10444170B2 (zh)
CN (1) CN106324010A (zh)
WO (1) WO2017002126A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107884733A (zh) * 2017-11-06 2018-04-06 厦门大学 3d打印的一体化核磁共振射频探头前端及其制备方法
CN107907842A (zh) * 2017-11-24 2018-04-13 武汉中科牛津波谱技术有限公司 一种极弱磁性材料的检测方法
CN109270107A (zh) * 2017-03-27 2019-01-25 北京青檬艾柯科技有限公司 多维核磁共振测量方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220110530A2 (en) * 2019-12-09 2022-04-14 Nordsletten David Method and System for Estimating Pressure Difference in Turbulent Flow
US11460600B2 (en) 2020-09-09 2022-10-04 Baker Hughes Oilfield Operations Llc Through-bit reconfigurable NMR logging tool

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4468622A (en) * 1981-08-27 1984-08-28 Siemens Aktiengesellschaft Gradient coil system for nuclear magnetic resonance apparatus
US5532593A (en) * 1993-11-01 1996-07-02 The Regents Of The University Of California Nuclear magnetic resonance imaging rheometer
CN101421636A (zh) * 2006-04-13 2009-04-29 皇家飞利浦电子股份有限公司 后台磁共振成像
CN101632584A (zh) * 2008-07-24 2010-01-27 株式会社东芝 磁共振成像装置
US20140049257A1 (en) * 2012-08-15 2014-02-20 Aspect Imaging Ltd. Measurement of properties of fluids using mri
CN103954639A (zh) * 2014-04-09 2014-07-30 上海大学 一种探测凝胶在微孔道中分布的方法
US20140354299A1 (en) * 2006-08-21 2014-12-04 Medi-Mag Ltd. System and method for a nondestructive on-line testing of samples

Family Cites Families (197)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2768529A (en) 1954-06-23 1956-10-30 Georgia Iron Works Co Means for determining specific gravity of fluids and slurries in motion
US3175403A (en) 1961-11-14 1965-03-30 Jersey Prod Res Co Continuously determining the density of a flow stream
US3989630A (en) 1972-11-24 1976-11-02 Texaco Inc. Low solids shale controlling drilling fluid
SU876954A1 (ru) 1979-10-25 1981-10-30 Всесоюзный Ордена Трудового Красного Знамени Научно-Исследовательский Институт Буровой Техники Циркул ционна система буровых установок
US4417474A (en) 1980-12-22 1983-11-29 Itt Densitometer
SU1041677A1 (ru) 1982-05-17 1983-09-15 Всесоюзный научно-исследовательский институт по креплению скважин и буровым растворам Автоматизированна система дл регулировани свойств бурового раствора
EP0210289B1 (en) 1985-07-25 1992-03-04 General Electric Company Superconducting filter coils for high homogeneity magnetic field
US4697594A (en) 1985-08-21 1987-10-06 North American Philips Corporation Displaying a single parameter image
US5055787A (en) 1986-08-27 1991-10-08 Schlumberger Technology Corporation Borehole measurement of NMR characteristics of earth formations
GB2202047A (en) 1987-03-09 1988-09-14 Forex Neptune Sa Monitoring drilling mud
US5208534A (en) 1989-08-09 1993-05-04 Kabushiki Kaisha Toshiba Magnetic resonance imaging system
US4994746A (en) 1989-09-05 1991-02-19 Advanced Techtronics, Inc. Method of and apparatus for nuclear magnetic resonance analysis using true logarithmic amplifier
GB2237305B (en) 1989-10-28 1993-03-31 Schlumberger Prospection Analysis of drilling solids samples
EP0560893B1 (en) 1990-12-05 1996-11-20 Numar Corporation System for nmr logging a well during the drilling thereof
GB9107041D0 (en) 1991-04-04 1991-05-22 Schlumberger Services Petrol Analysis of drilling fluids
US5168226A (en) 1991-05-22 1992-12-01 General Electric Acquisition of multiple images in fast spin echo nmr scans
US5145189A (en) 1991-09-11 1992-09-08 General Electric Company Hydro-lift dynamic circumferential seal
US5705927A (en) 1992-07-30 1998-01-06 Schlumberger Technology Corporation Pulsed nuclear magnetism tool for formation evaluation while drilling including a shortened or truncated CPMG sequence
EP0581666B1 (en) 1992-07-30 1997-10-01 Schlumberger Limited Pulsed nuclear magnetism tool for formation evaluation while drilling
US5757187A (en) 1993-06-24 1998-05-26 Wollin Ventures, Inc. Apparatus and method for image formation in magnetic resonance utilizing weak time-varying gradient fields
GB2284887B (en) 1993-12-17 1997-12-10 Pumptech Nv Method of analysing drilling fluids
US5410248A (en) 1993-12-29 1995-04-25 General Electric Company Method for the simultaneous detection of velocity and acceleration distribution in moving fluids
US6069106A (en) 1994-03-03 2000-05-30 Hettinger, Jr.; William P Process and compositions for Mn containing catalyst for carbo-metallic hydrocarbons
US5479925A (en) 1994-06-23 1996-01-02 General Electric Company Magnetic resonance (MR) angiography in a low-field imaging magnet
US5696448A (en) 1995-06-26 1997-12-09 Numar Corporation NMR system and method for formation evaluation using diffusion and relaxation log measurements
GB9522075D0 (en) 1995-10-27 1996-01-03 Mud B W Ltd Starch additive
US5827952A (en) 1996-03-26 1998-10-27 Sandia National Laboratories Method of and apparatus for determining deposition-point temperature
US5986454A (en) 1997-03-21 1999-11-16 Varian, Inc. Quadrature elliptical birdcage coil for NMR
US5784333A (en) 1997-05-21 1998-07-21 Western Atlas International, Inc. Method for estimating permeability of earth formations by processing stoneley waves from an acoustic wellbore logging instrument
TW412769B (en) 1997-08-04 2000-11-21 Koninkl Philips Electronics Nv Method of manufacturing a device comprising an element of a hard-magnetic material
US6421337B1 (en) 1997-12-15 2002-07-16 Nortel Networks Limited Converting device for alleviating switch congestion caused by long hold times for on-line access calls
CA2318033A1 (en) 1998-01-16 1999-07-22 Numar Corporation Method and apparatus for nuclear magnetic resonance measuring while drilling
US6215304B1 (en) 1998-01-21 2001-04-10 Oxford Instruments (Uk) Ltd. NMR sensor
GB9801622D0 (en) 1998-01-23 1998-03-25 Inst Of Food Research Improvements in and relating to magnetic resonance imaging
US6237404B1 (en) 1998-02-27 2001-05-29 Schlumberger Technology Corporation Apparatus and method for determining a drilling mode to optimize formation evaluation measurements
JP4127889B2 (ja) 1998-03-04 2008-07-30 株式会社日立メディコ 磁気共鳴イメージング装置
US6178807B1 (en) 1998-03-25 2001-01-30 Phillips Petroleum Company Method for laboratory measurement of capillary pressure in reservoir rock
US6090728A (en) 1998-05-01 2000-07-18 3M Innovative Properties Company EMI shielding enclosures
NL1009248C2 (nl) 1998-05-22 1999-11-24 Groot Nijkerk Maschf B V De Inrichting voor het meten van de dichtheid van een stromend medium.
US6346813B1 (en) 1998-08-13 2002-02-12 Schlumberger Technology Corporation Magnetic resonance method for characterizing fluid samples withdrawn from subsurface formations
US6107796A (en) 1998-08-17 2000-08-22 Numar Corporation Method and apparatus for differentiating oil based mud filtrate from connate oil
FR2796152B1 (fr) 1999-07-06 2001-09-21 Dowell Schlumberger Services Modelisation du comportement rheologique de fluides de forages en fonction de la pression et de la temperature
US6507191B1 (en) 1999-09-09 2003-01-14 Jeol Ltd. NMR cell system for supercritical fluid measurements and high-pressure cell for NMR
JP4808885B2 (ja) 1999-11-16 2011-11-02 ウォーリン・ベンチャーズ・インコーポレイテッド 磁気共鳴解析流量計および流動測定方法
CA2397566A1 (en) 2000-01-14 2001-07-19 Foxboro Nmr Ltd. Method and system for controlling a fluid catalytic cracker
US6412337B1 (en) 2000-01-28 2002-07-02 Polyvalor S.E.C. Apparatus and method for measuring the rheological properties of a power law fluid
US6646437B1 (en) 2000-04-07 2003-11-11 Halliburton Energy Services, Inc. System and method for clay typing using NMR-based porosity modeling
US6713177B2 (en) 2000-06-21 2004-03-30 Regents Of The University Of Colorado Insulating and functionalizing fine metal-containing particles with conformal ultra-thin films
US6684096B2 (en) 2000-12-15 2004-01-27 Berndt P. Schmit Restraining apparatus and method for use in imaging procedures
US6823205B1 (en) 2001-02-08 2004-11-23 Boston University Radiology Associates Synthetic images for a magnetic resonance imaging scanner using linear combination of source images to generate contrast and spatial navigation
US6611702B2 (en) 2001-05-21 2003-08-26 General Electric Company Apparatus for use in neonatal magnetic resonance imaging
US6528995B1 (en) 2001-09-10 2003-03-04 Schlumberger Technology Corporation Methods and apparatus for measuring flow velocity in a wellbore using NMR and applications using same
US6907375B2 (en) 2002-11-06 2005-06-14 Varco I/P, Inc. Method and apparatus for dynamic checking and reporting system health
US6807857B2 (en) 2002-06-05 2004-10-26 Halliburton Energy Services, Inc. Method and apparatus for determining density of a flowing fluid
US6815950B2 (en) 2002-07-24 2004-11-09 Schlumberger Technology Corporation J-spectroscopy in the wellbore
US6856132B2 (en) 2002-11-08 2005-02-15 Shell Oil Company Method and apparatus for subterranean formation flow imaging
US20040116799A1 (en) 2002-11-29 2004-06-17 Ravi Srinivasan Compatibility of accessory to magnetic resonance
US6917201B2 (en) 2002-12-09 2005-07-12 Varian, Inc. Squashed liquid NMR sample tubes and RF coils
US6841996B2 (en) 2003-01-22 2005-01-11 Schlumberger Technology Corporation Nuclear magnetic resonance apparatus and methods for analyzing fluids extracted from earth formation
US6954066B2 (en) 2003-04-01 2005-10-11 Halliburton Energy Services, Inc. Abnormal pressure determination using nuclear magnetic resonance logging
AR040189A1 (es) 2003-06-11 2005-03-16 Spinlock S R L Un metodo, elementos sensores y una disposicion para la deteccion y/o analisis de compuestos que presenten, simultaneamente, resonancia cuadrupolar nuclear y resonancia magnetica nuclear o doble resonancia cuadrupolar nuclear
US7295933B2 (en) 2003-07-15 2007-11-13 Cidra Corporation Configurable multi-function flow measurement apparatus having an array of sensors
US8461842B2 (en) 2003-07-18 2013-06-11 Mks Instruments, Inc. Methods and systems for stabilizing an amplifier
US7075366B2 (en) 2003-07-18 2006-07-11 Mks Instruments, Inc. Methods and systems for stabilizing an amplifier
GB0317675D0 (en) 2003-07-29 2003-09-03 Rolls Royce Plc Engine monitoring arrangement
US6986284B2 (en) 2003-08-29 2006-01-17 Rohm And Haas Electronic Materials Cmp Holdings, Inc. System and method for characterizing a textured surface
US6952096B2 (en) 2003-09-05 2005-10-04 Schlumberger Technology Corporation Method and apparatus for determining speed and properties of flowing fluids using NMR measurements
DE10357184A1 (de) 2003-12-08 2005-07-07 Siemens Ag Verfahren zur fusionierten Bilddarstellung
US20060011547A1 (en) 2004-07-13 2006-01-19 Bell Stephen A Methods of separating components in treatment fluids
CA2524993C (en) 2004-10-29 2014-10-14 University Of New Brunswick Methods and apparatus for measuring capillary pressure in a sample
US7142986B2 (en) 2005-02-01 2006-11-28 Smith International, Inc. System for optimizing drilling in real time
RU2285119C1 (ru) 2005-03-09 2006-10-10 Эдуард Евгеньевич Лукьянов Система измерения расхода и свойств бурового и цементного раствора
DE102005013853B4 (de) 2005-03-24 2009-06-25 Siemens Ag Magnetresonanzanlage mit einer Hochfrequenz-Sendeantenne
US20090050318A1 (en) 2005-06-20 2009-02-26 Kasevich Raymond S Method and apparatus for in-situ radiofrequency assisted gravity drainage of oil (ragd)
US7908034B2 (en) 2005-07-01 2011-03-15 Board Of Regents, The University Of Texas System System, program products, and methods for controlling drilling fluid parameters
US8256532B2 (en) 2005-07-01 2012-09-04 Board Of Regents, The University Of Texas System System, program products, and methods for controlling drilling fluid parameters
US7425828B2 (en) 2005-10-11 2008-09-16 Regents Of The University Of Minnesota Frequency swept excitation for magnetic resonance
US7458257B2 (en) 2005-12-19 2008-12-02 Schlumberger Technology Corporation Downhole measurement of formation characteristics while drilling
AR054423A3 (es) 2006-01-11 2007-06-27 Spinlock S R L Un aparato y metodo para medir el caudal y el corte de petroleo y agua de la produccion petrolera en tiempo y caudales reales
US20080257413A1 (en) 2006-06-23 2008-10-23 Saudi Arabian Oil Company System, Program Product, and Related Methods for Global Targeting of Process Utilities Under Varying Conditions
WO2008008447A2 (en) 2006-07-12 2008-01-17 The Regents Of The University Of California Portable device for ultra-low field magnetic resonance imaging (ulf-mri)
US9476847B2 (en) 2006-10-03 2016-10-25 Invensys Systems, Inc. Spectroscopic crude oil analysis
WO2008043373A1 (en) 2006-10-09 2008-04-17 Advanced Glass Ceramics Establishment Heat insulating composite and methods of manufacturing thereof
WO2008130383A2 (en) 2006-10-31 2008-10-30 The University Of Akron Molecular and photonic nanostructures, optical biomaterials, photosensitizers, molecular contrast agents, and metamaterials
US7872474B2 (en) 2006-11-29 2011-01-18 Shell Oil Company Magnetic resonance based apparatus and method to analyze and to measure the bi-directional flow regime in a transport or a production conduit of complex fluids, in real time and real flow-rate
US7528600B2 (en) 2006-12-08 2009-05-05 Schlumberger Technology Corporation System and method for downhole time-of-flight sensing, remote NMR detection of fluid flow in rock formations
US7927960B2 (en) 2006-12-11 2011-04-19 Macronix International Co., Ltd. Method of improving overlay performance in semiconductor manufacture
US7489132B2 (en) 2006-12-15 2009-02-10 General Electric Company Enhanced heat transfer in MRI gradient coils with phase-change materials
US7898786B2 (en) 2007-01-26 2011-03-01 Siemens Industry, Inc. Intrinsically safe galvanically isolated barrier device and method thereof
US7870324B2 (en) 2007-02-01 2011-01-11 Siemens Industry, Inc. Method and apparatus for serial bus communication
US8093056B2 (en) 2007-06-29 2012-01-10 Schlumberger Technology Corporation Method and apparatus for analyzing a hydrocarbon mixture using nuclear magnetic resonance measurements
US7810400B2 (en) 2007-07-24 2010-10-12 Cidra Corporate Services Inc. Velocity based method for determining air-fuel ratio of a fluid flow
US8736263B2 (en) 2007-07-26 2014-05-27 Schlumberger Technology Corporation System and method for estimating formation characteristics in a well
FR2920782B1 (fr) 2007-09-07 2010-07-30 Arkema France Fluide de forage contenant des nanotubes de carbone
US7884602B2 (en) 2007-09-18 2011-02-08 Baker Hughes Incorporated Nuclear magnetic resonance evaluation using independent component analysis (ICA)-based blind source separation
US7832257B2 (en) 2007-10-05 2010-11-16 Halliburton Energy Services Inc. Determining fluid rheological properties
US7921731B2 (en) 2007-12-03 2011-04-12 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Two-axis direct fluid shear stress sensor
US7860669B2 (en) 2008-06-17 2010-12-28 Saudi Arabian Oil Company System, program product, and related methods for estimating and managing crude gravity in flowlines in real-time
US7668688B2 (en) 2008-06-17 2010-02-23 Saudi Arabian Oil Company System, program product, and related methods for estimating and managing crude gravity in real-time
GB0811307D0 (en) 2008-06-20 2008-07-30 Ross Lamond Colquhoun Test apparatus
CA2638405A1 (en) 2008-06-30 2009-12-30 Konstandinos S. Zamfes Method and apparatus for on-site drilling cuttings analysis
US7570058B1 (en) 2008-07-11 2009-08-04 General Electric Company System and method for treatment of liquid coolant in an MRI system
US8024962B2 (en) 2008-07-28 2011-09-27 Halliburton Energy Services Inc. Flow-through apparatus for testing particle laden fluids and methods of making and using same
RU2367982C1 (ru) 2008-07-31 2009-09-20 Общество с ограниченной ответственностью "Нефтегазгеофизика" Способ каротажа с использованием ядерно-магнитного резонанса и устройство для его осуществления
CN102176946A (zh) 2008-08-12 2011-09-07 艾斯拜克特磁铁技术有限公司 用于麻醉并调节哺乳动物体温的系统和方法
WO2010029547A2 (en) 2008-09-10 2010-03-18 Aspect Magnet Technologies Ltd. A chamber for housing animals during anaesthetic procedures
US8087203B2 (en) 2008-12-18 2012-01-03 Pdc Facilities, Inc. Waveguide for a radio frequency door
IL196487A (en) 2009-01-13 2016-03-31 Aspect Imaging Ltd Means for buying sharp resolution mri
US7823656B1 (en) 2009-01-23 2010-11-02 Nch Corporation Method for monitoring drilling mud properties
US8373412B2 (en) 2009-01-23 2013-02-12 Baker Hughes Incorporated NMR-LWD imaging tool
US9194972B2 (en) 2009-03-02 2015-11-24 Statoil Petroleum As Method of adjusting properties of drilling fluids and apparatus for use in such methods
GB201001833D0 (en) 2010-02-04 2010-03-24 Statoil Asa Method
US8400147B2 (en) 2009-04-22 2013-03-19 Schlumberger Technology Corporation Predicting properties of live oils from NMR measurements
CN101556234A (zh) 2009-04-30 2009-10-14 浙江大学 气水两相流多参数测量方法和装置
EP2432384B1 (en) 2009-05-18 2015-07-15 Koninklijke Philips N.V. Arrangement for detecting magnetic particles and for monitoring bleeding
CN101581717A (zh) 2009-06-02 2009-11-18 海安县石油科研仪器有限公司 一种超临界co2连续钻井液模拟循环试验装置
EP3605131A1 (en) 2009-06-30 2020-02-05 Aspect Imaging Ltd. Cage for generating a magnetic field in a magnetic resonance device
EP2278120A1 (en) 2009-07-22 2011-01-26 Bergen Teknologioverføring AS Method for integrated enhanced oil recovery from heterogeneous reservoirs
CA2683411C (en) 2009-08-31 2017-07-18 University Of New Brunswick Magnetic resonance imaging apparatus and method
EP2492006A4 (en) 2009-10-21 2018-05-23 China Petroleum & Chemical Corporation Fluidized-bed reactor and hydrotreating method thereof
US9133709B2 (en) 2009-11-17 2015-09-15 Board Of Regents, The University Of Texas System Determination of oil saturation in reservoir rock using paramagnetic nanoparticles and magnetic field
WO2011077401A1 (de) 2009-12-22 2011-06-30 Esch Barbara M Begegnungs- und kontaktmatratze oder -kissen für kleinkinder und säuglinge, insbesondere für früh- und neugeborene
US9720062B2 (en) 2010-03-03 2017-08-01 Brain Research Institute Foundation Pty Ltd. Image processing system
US20110234347A1 (en) 2010-03-24 2011-09-29 Aspect Magnet Technologies Ltd. Pole piece for permanent magnet mri systems
CN101793147B (zh) 2010-03-24 2012-10-10 苏州纽迈电子科技有限公司 在线核磁共振钻井液含油分析检测装置
EP2564339A4 (en) 2010-04-30 2015-05-06 Spm Flow Control Inc MACHINES, SYSTEMS, COMPUTER IMPLEMENTED METHODS AND COMPUTER PROGRAM PRODUCTS FOR THE TESTING AND CERTIFICATION OF OIL AND GAS EQUIPMENT
US20110296911A1 (en) 2010-06-02 2011-12-08 Barry Moore Method and apparatus for measuring the density of a flowing fluid in a conduit using differential pressure
CN101907586B (zh) 2010-06-11 2012-03-07 中国石油天然气股份有限公司 用于核磁共振测试岩心的高温高压夹持器
JP3184764U (ja) 2010-07-07 2013-07-18 アスペクト イメージング リミテッド Mri/nmr装置用の未熟児の生命維持環境室
US9562956B2 (en) 2012-10-31 2017-02-07 Aspect Imaging Ltd. Rotatable protective cover functioning as a door for MRI system
US8469116B2 (en) 2010-07-30 2013-06-25 National Oilwell Varco, L.P. Control system for mud cleaning apparatus
FI128224B (fi) 2010-08-31 2020-01-15 Vaisala Oyj Matalakenttäinen ydinmagneettiresonanssilaite kiintoaineiden ja lietteiden vesipitoisuuden mittaamiseksi
DE202011051313U1 (de) 2010-09-16 2011-11-23 Aspect Magnet Technologies Ltd. Geschlossenes Lebensunterstützungssystem für Frühgeborene
DE202011050130U1 (de) 2010-09-27 2011-08-01 Aspect Magnet Technologies Ltd. Maske für analysierte Säugetiere
DE202011051402U1 (de) 2010-09-27 2011-11-25 Aspect Magnet Technologies Ltd. Mikrowells mit MRI lesbaren Markierungen
DE202011051413U1 (de) 2010-09-29 2012-01-09 Aspect Magnet Technologies Ltd. Magnetresonanztomograf mit Magnetenanordnung zum praktischen Scannen von Versuchstieren
US9655542B2 (en) 2010-09-29 2017-05-23 Aspect Imaging Ltd. MRI with magnet assembly adapted for convenient scanning of laboratory animals with automated RF tuning unit
US8807084B2 (en) 2010-09-30 2014-08-19 Aspect Imaging Ltd. MRI device with a plurality of individually controllable entry ports and inserts therefor
US8633689B2 (en) 2010-10-19 2014-01-21 Baker Hughes Incorporated NMR flow metering using velocity selection and remote detection
JP2013542036A (ja) 2010-11-16 2013-11-21 アスペクト イメージング リミテッド 非侵襲的に過分極した画像を生成するシステム及び方法
DE212012000043U1 (de) 2011-02-01 2013-09-06 Aspect Magnet Technologies Ltd. Niedrigfeld-Magnetresonanzsystem (LF-MRS) zum Erzeugen eines Magnetresonanzbildes
US8587314B2 (en) 2011-02-22 2013-11-19 Agilent Technologies, Inc. Suspended substrate circuits and nuclear magnetic resonance probes utilizing same
US20120265050A1 (en) 2011-04-04 2012-10-18 Ge Wang Omni-Tomographic Imaging for Interior Reconstruction using Simultaneous Data Acquisition from Multiple Imaging Modalities
US8763170B1 (en) 2011-07-11 2014-07-01 Benjamin I Ungarsohn Sink strainer scraper apparatus for dislodging residual solid debris therefrom
BR112014000754A2 (pt) 2011-07-12 2017-02-14 Halliburton Energy Services Inc rastreamento de fluidos injetados em ressonância magnética nuclear (rmn)
DK2739942T3 (en) 2011-08-04 2016-08-15 Cape Peninsula Univ Of Tech (Cput) FLUID VISUALIZATION AND CHARACTERIZATION SYSTEM AND PROCEDURE
US9394783B2 (en) 2011-08-26 2016-07-19 Schlumberger Technology Corporation Methods for evaluating inflow and outflow in a subterranean wellbore
US10732314B2 (en) 2011-09-01 2020-08-04 Schlumberger Technology Corporation Estimation of petrophysical and fluid properties using integral transforms in nuclear magnetic resonance
US20130079624A1 (en) 2011-09-23 2013-03-28 Uri Rapoport Graphical user interface for operating an mri
JP2013122443A (ja) 2011-11-11 2013-06-20 Hideo Ando 生体活動測定方法、生体活動測定装置、生体活動検出信号の転送方法および生体活動情報を利用したサービスの提供方法
US20130124106A1 (en) 2011-11-11 2013-05-16 Chevron U.S.A. Inc. Method for estimating sediment content of a hydroprocessed hydrocarbon-containing feedstock
DK177351B1 (en) 2011-12-12 2013-02-11 Nanonord As A method of determining catalytic fines in an oil
EP2604996A1 (en) 2011-12-14 2013-06-19 Geoservices Equipements Method for preparing a sample of rock cuttings extracted from a subsoil and associated analysis assembly
US9244052B2 (en) 2011-12-22 2016-01-26 Exxonmobil Research And Engineering Company Global crude oil quality monitoring using direct measurement and advanced analytic techniques for raw material valuation
US9625551B2 (en) 2012-04-16 2017-04-18 Ali Caglar Ozen Magnetic resonance apparatus and data acquisition method with decoupling between transmit and receive coils
WO2013162400A1 (en) 2012-04-25 2013-10-31 Siemens Aktiengesellschaft Determining physical properties of solid materials suspended in a drilling fluid
CN104380797B (zh) 2012-05-30 2018-11-30 诺基亚技术有限公司 用于提供网络接入技术切换事件的通知的方法和设备
US9182461B2 (en) 2012-06-06 2015-11-10 Aspect Imaging Ltd. High resolution high contrast MRI for flowing media
US20150130463A1 (en) 2012-06-25 2015-05-14 T2 Biosystems, Inc. Portable device for nmr based analysis of rheological changes in liquid samples
DE102012013935A1 (de) 2012-07-16 2014-01-16 Krohne Ag Magnetisierungsvorrichtung und Verfahren zum Betreiben einer Magnetisierungsvorrichtung
US20140051974A1 (en) 2012-08-15 2014-02-20 Aspect Imaging Ltd. System and method for mri imaging using polarized light
IL221491A (en) 2012-08-15 2016-06-30 Aspect Imaging Ltd A magnetic resonance device integrated with a light field camera
US20140050827A1 (en) 2012-08-15 2014-02-20 Aspect Imaging Ltd. Non-invasive mri system for analyzing quality of solid food products enveloped by flexible aluminum foil wrapper and methods thereof
US20140051973A1 (en) 2012-08-15 2014-02-20 Aspect Imaging Ltd Mri imaging system for generating a rendered image
US20140050824A1 (en) 2012-08-15 2014-02-20 Aspect Imaging Ltd. Integrating analysis and production of a food product
US9709652B2 (en) 2012-10-07 2017-07-18 Aspect Imaging Ltd. MRI system with means to eliminate object movement whilst acquiring its image
CL2012003019A1 (es) 2012-10-26 2013-03-08 Jri Ingenieria S A Reómetro para medir fluidos no newtonianos, que permite hacer mediciones en linea, que posee dos capilares; una bomba , una pieza de destribucion; válvulas, un medidor de flujo y un medidor de densidad; un medidor de velocidad; un par de piezómetros, un micro controlador; metodo para la utilizacion de reometro.
US20140128725A1 (en) 2012-11-08 2014-05-08 Aspect Imaging Ltd. Neonate's incubator and mri docking-station
US9864034B2 (en) 2012-11-21 2018-01-09 Aspect Imaging Ltd. Method and system for a universal NMR/MRI console
US20140142914A1 (en) 2012-11-22 2014-05-22 Aspect Imaging Ltd. Means and methods of multidimensional modeling in vivo spatial image of an mri contrast agent
US9551731B2 (en) 2012-12-02 2017-01-24 Aspect Imaging Ltd. Gantry for mobilizing an MRI device towards static patients
US20140152310A1 (en) 2012-12-02 2014-06-05 Aspect Imaging Ltd. Gantry for mobilizing an mri device
EP2932983B1 (en) 2012-12-11 2018-09-12 National University Corporation Kumamoto University Nuclear magnetic resonance diagnostic agent, and use thereof in a method for detecting or diagnosing state of cell, tissue or organ in subject
US20140230850A1 (en) 2013-02-20 2014-08-21 Aspect Imaging Ltd. Ramrod for mri and methods thereof
US9459330B2 (en) 2013-03-05 2016-10-04 Schlumberger Technology Corporation System and method for obtaining nuclear magnetic resonance measurements on reservoir fluids for prediction of fluid properties
US9155490B2 (en) 2013-03-07 2015-10-13 Aspect Imaging Ltd. Integrated stethoscope-metal detector device
US9535141B2 (en) 2013-03-13 2017-01-03 Aspect Imaging Ltd. MRI safety device means and methods thereof
CN103217362B (zh) 2013-03-15 2015-06-24 中国海洋石油总公司 一种钻井液流变性测量装置及测量方法
US8992770B2 (en) 2013-03-15 2015-03-31 Exxonmobil Research And Engineering Company Evaluation of distillate composition of a crude
JP6050716B2 (ja) 2013-03-29 2016-12-21 Jxエネルギー株式会社 潤滑油基油の製造方法
US20140300358A1 (en) 2013-04-08 2014-10-09 Aspect Imaging Ltd. System and method for real-time noise reduction in mri data acquisition
EP2988668B1 (en) 2013-04-24 2019-07-24 Tel HaShomer Medical Research Infrastructure and Services Ltd. Magnetic resonance maps for analyzing tissue
US10174569B2 (en) 2013-06-20 2019-01-08 Aspect International (2015) Private Limited NMR/MRI-based integrated system for analyzing and treating of a drilling mud for drilling mud recycling process and methods thereof
DE202013105901U1 (de) 2013-09-02 2014-02-11 Aspect Imaging Ltd. Inkubator mit doppeltverglaster Wand
US20160108687A1 (en) 2013-10-10 2016-04-21 Aspect International (2015) Private Limited Means and Methods for Multirnodality Analysis and Processing of Drilling Mud
US9494503B2 (en) 2013-11-06 2016-11-15 Aspect Imaging Ltd. Inline rheology/viscosity, density, and flow rate measurement
CN105765376A (zh) 2013-11-13 2016-07-13 纳诺努德股份公司 用于对水流体中氮的定量测定的方法
US20150130460A1 (en) 2013-11-13 2015-05-14 Schlumberger Technology Corporation Methods for separating oil and water on multidimensional nuclear magnetic resonance maps
DE202013105212U1 (de) 2013-11-17 2013-12-19 Aspect Imaging Ltd. Schließvorrichtung eines MRT-Inkubators
US10018692B2 (en) 2013-11-20 2018-07-10 Aspect Imaging Ltd. Shutting assembly for closing an entrance of an MRI device
DE202013011370U1 (de) 2013-12-18 2014-01-30 Aspect Imaging Ltd. HF-abschirmende Verbindung in einer MRT-Schließvorrichtung
CN103712071B (zh) 2013-12-27 2016-03-30 中国石油化工股份有限公司 核磁共振输油管道渗漏隐患探测仪及探测方法
MX2014015407A (es) 2014-03-23 2015-09-22 Aspect Internat 2015 Private Ltd Medios y metodos para el analisis multimodal y el tratamiento del lodo de perforacion.
US8812236B1 (en) 2014-04-11 2014-08-19 Particle Size Engineering, LLC Method for using particle size analysis in near time or real time to create a proper particle size distribution within a drilling fluid management system for improved well drilling efficiency
FR3022080A1 (fr) 2014-06-06 2015-12-11 Thales Sa Dispositif de transmission d'energie d'un milieu a un autre
US11300531B2 (en) 2014-06-25 2022-04-12 Aspect Ai Ltd. Accurate water cut measurement
FI20145755A7 (fi) 2014-09-01 2016-03-02 Luvata Espoo Oy Metallikokoonpano joka käsittää suprajohteen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4468622A (en) * 1981-08-27 1984-08-28 Siemens Aktiengesellschaft Gradient coil system for nuclear magnetic resonance apparatus
US5532593A (en) * 1993-11-01 1996-07-02 The Regents Of The University Of California Nuclear magnetic resonance imaging rheometer
CN101421636A (zh) * 2006-04-13 2009-04-29 皇家飞利浦电子股份有限公司 后台磁共振成像
US20140354299A1 (en) * 2006-08-21 2014-12-04 Medi-Mag Ltd. System and method for a nondestructive on-line testing of samples
CN101632584A (zh) * 2008-07-24 2010-01-27 株式会社东芝 磁共振成像装置
US20140049257A1 (en) * 2012-08-15 2014-02-20 Aspect Imaging Ltd. Measurement of properties of fluids using mri
CN103954639A (zh) * 2014-04-09 2014-07-30 上海大学 一种探测凝胶在微孔道中分布的方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109270107A (zh) * 2017-03-27 2019-01-25 北京青檬艾柯科技有限公司 多维核磁共振测量方法
CN109270107B (zh) * 2017-03-27 2021-10-08 北京青檬艾柯科技有限公司 多维核磁共振测量方法
CN107884733A (zh) * 2017-11-06 2018-04-06 厦门大学 3d打印的一体化核磁共振射频探头前端及其制备方法
CN107907842A (zh) * 2017-11-24 2018-04-13 武汉中科牛津波谱技术有限公司 一种极弱磁性材料的检测方法
CN107907842B (zh) * 2017-11-24 2020-10-02 武汉中科牛津波谱技术有限公司 一种极弱磁性材料的检测方法

Also Published As

Publication number Publication date
WO2017002126A1 (en) 2017-01-05
US20180188194A1 (en) 2018-07-05
US10444170B2 (en) 2019-10-15

Similar Documents

Publication Publication Date Title
Al-Kizwini et al. The monitoring of the two phase flow-annular flow type regime using microwave sensor technique
US11300531B2 (en) Accurate water cut measurement
CN106324010A (zh) 使用mr设备对在管道中流动的流体的分析
DE102004043151B4 (de) Verfahren und Vorrichtung zum Bestimmen der Geschwindigkeit und von Eigenschaften von strömenden Fluiden unter Verwendung von magnetischen Kernresonanzmessungen
Powell Experimental techniques for multiphase flows
EP3066499B1 (en) Inline rheology/viscosity, density, and flow rate measurement
CN105804734B (zh) 一种利用核磁共振测井识别稠油储层的方法
EP2885612B1 (en) Measurement of properties of fluids using mri
Abdulkadir et al. Detailed analysis of phase distributions in a vertical riser using wire mesh sensor (WMS)
Tan et al. Gas–water two-phase flow characterization with electrical resistance tomography and multivariate multiscale entropy analysis
EP2343538B1 (en) Electrical network analysis of a multiphase system
US11543556B2 (en) NMR characterization and monitoring of drilling fluids
Ooi et al. Beyond time-averaged measurement of bubble parameters in steam-water flows with conductivity probes
Thatte et al. Local gas holdup measurement in sparged and aerated tanks by γ-ray attenuation technique
Maru et al. Multiphase flow and mixing quantification using computational fluid dynamics and magnetic resonance imaging
Chevalier et al. Quantitative exploitation of PFG NMR and MRI velocimetry data for the rheological study of yield stress fluid flows at macro-and micro-scales in complex geometries
Santos et al. Bubble shape estimation in gas-liquid slug flow using wire-mesh sensor and advanced data processing
Santos Development and application of wire-mesh sensors for high-speed multiphase flow imaging
CN109387456B (zh) 一种原油密度测量方法
Tozzi et al. Quantifying mixing using magnetic resonance imaging
Madhumaya et al. Application of Computerized Tomography (CT) Scan Imaging Technique to Analyze Fluid Flow During Enhanced Oil Recovery Process
NIK KAMALUDDIN CHARACTERIZATION OF WAXY COOLED CRUDE OIL USING ELECTRICAL RESISTANCE TOMOGRAPHY (ERT)
Bijeljic et al. Slow flow across macroscopically semi-circular fibre lattices and a free-flow region of variable width—visualisation by magnetic resonance imaging
Tozzi et al. Robust processing of capillary velocimetry data via stress-rescaled velocity functions
US10809338B2 (en) System and method for NMR imaging of fluids in non-circular cross-sectional conduits

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170111