CN106270532A - Yittrium oxide tungsten functionally gradient material (FGM) and preparation method thereof and the application in manufacturing alloy melting crucible - Google Patents
Yittrium oxide tungsten functionally gradient material (FGM) and preparation method thereof and the application in manufacturing alloy melting crucible Download PDFInfo
- Publication number
- CN106270532A CN106270532A CN201610855084.6A CN201610855084A CN106270532A CN 106270532 A CN106270532 A CN 106270532A CN 201610855084 A CN201610855084 A CN 201610855084A CN 106270532 A CN106270532 A CN 106270532A
- Authority
- CN
- China
- Prior art keywords
- layer
- yttrium oxide
- tungsten
- powder
- layers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052721 tungsten Inorganic materials 0.000 title claims abstract description 108
- 239000000463 material Substances 0.000 title claims abstract description 99
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 title claims abstract description 65
- 239000010937 tungsten Substances 0.000 title claims abstract description 39
- 239000000956 alloy Substances 0.000 title claims abstract description 30
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 28
- 238000002844 melting Methods 0.000 title claims abstract description 24
- 230000008018 melting Effects 0.000 title claims abstract description 24
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 7
- 238000002360 preparation method Methods 0.000 title abstract description 8
- 230000007704 transition Effects 0.000 claims abstract description 94
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 claims abstract description 71
- 239000000843 powder Substances 0.000 claims abstract description 61
- 238000000034 method Methods 0.000 claims abstract description 53
- 238000005245 sintering Methods 0.000 claims abstract description 41
- XJIOYWPYHPACDT-UHFFFAOYSA-N [W+4].[O-2].[Y+3] Chemical compound [W+4].[O-2].[Y+3] XJIOYWPYHPACDT-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000002131 composite material Substances 0.000 claims description 48
- 239000002245 particle Substances 0.000 claims description 28
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical group [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 12
- 238000002156 mixing Methods 0.000 claims description 12
- 238000001272 pressureless sintering Methods 0.000 claims description 11
- -1 polyethylene Polymers 0.000 claims description 9
- 239000007921 spray Substances 0.000 claims description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 7
- 238000009694 cold isostatic pressing Methods 0.000 claims description 7
- 239000002270 dispersing agent Substances 0.000 claims description 7
- 239000002612 dispersion medium Substances 0.000 claims description 7
- 239000002609 medium Substances 0.000 claims description 7
- 238000007750 plasma spraying Methods 0.000 claims description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 6
- 229910052786 argon Inorganic materials 0.000 claims description 6
- 238000000498 ball milling Methods 0.000 claims description 5
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 4
- 239000000919 ceramic Substances 0.000 claims description 4
- 239000011812 mixed powder Substances 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 238000003825 pressing Methods 0.000 claims description 4
- 238000005507 spraying Methods 0.000 claims description 4
- 238000005266 casting Methods 0.000 claims description 3
- 238000007493 shaping process Methods 0.000 claims description 3
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 claims description 2
- 239000004698 Polyethylene Substances 0.000 claims description 2
- 229920002125 Sokalan® Polymers 0.000 claims description 2
- 239000002253 acid Substances 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims description 2
- 229920001577 copolymer Polymers 0.000 claims description 2
- 238000007580 dry-mixing Methods 0.000 claims description 2
- 235000011187 glycerol Nutrition 0.000 claims description 2
- 239000004584 polyacrylic acid Substances 0.000 claims description 2
- 229920000573 polyethylene Polymers 0.000 claims description 2
- 229920001296 polysiloxane Polymers 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 2
- 239000008096 xylene Substances 0.000 claims description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims 1
- 230000035939 shock Effects 0.000 abstract description 31
- 230000008569 process Effects 0.000 abstract description 17
- 230000007797 corrosion Effects 0.000 abstract description 8
- 238000005260 corrosion Methods 0.000 abstract description 8
- 238000003723 Smelting Methods 0.000 abstract description 5
- 238000004364 calculation method Methods 0.000 abstract description 5
- 229910000601 superalloy Inorganic materials 0.000 abstract description 5
- 238000005265 energy consumption Methods 0.000 abstract description 3
- 238000005303 weighing Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 219
- 238000000576 coating method Methods 0.000 description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 15
- 229910002804 graphite Inorganic materials 0.000 description 15
- 239000010439 graphite Substances 0.000 description 15
- 239000011248 coating agent Substances 0.000 description 14
- 238000005452 bending Methods 0.000 description 10
- 238000001816 cooling Methods 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 238000013001 point bending Methods 0.000 description 10
- 239000011229 interlayer Substances 0.000 description 9
- 125000004122 cyclic group Chemical group 0.000 description 8
- 238000007731 hot pressing Methods 0.000 description 8
- 238000004321 preservation Methods 0.000 description 8
- 150000002739 metals Chemical class 0.000 description 7
- 230000008646 thermal stress Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000011065 in-situ storage Methods 0.000 description 4
- 239000003870 refractory metal Substances 0.000 description 4
- DJOYTAUERRJRAT-UHFFFAOYSA-N 2-(n-methyl-4-nitroanilino)acetonitrile Chemical compound N#CCN(C)C1=CC=C([N+]([O-])=O)C=C1 DJOYTAUERRJRAT-UHFFFAOYSA-N 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- MMXSKTNPRXHINM-UHFFFAOYSA-N cerium(3+);trisulfide Chemical compound [S-2].[S-2].[S-2].[Ce+3].[Ce+3] MMXSKTNPRXHINM-UHFFFAOYSA-N 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 229910052761 rare earth metal Inorganic materials 0.000 description 3
- 150000002910 rare earth metals Chemical class 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000007751 thermal spraying Methods 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000010970 precious metal Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 238000010345 tape casting Methods 0.000 description 2
- 239000013077 target material Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910000711 U alloy Inorganic materials 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005315 distribution function Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000007770 graphite material Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000004372 laser cladding Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/02—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
-
- B22F1/0003—
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/06—Metallic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/06—Metallic material
- C23C4/08—Metallic material containing only metal elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B14/00—Crucible or pot furnaces
- F27B14/08—Details specially adapted for crucible or pot furnaces
- F27B14/10—Crucibles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/02—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
- B22F7/04—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
- B22F2007/042—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal characterised by the layer forming method
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2207/00—Aspects of the compositions, gradients
- B22F2207/01—Composition gradients
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Plasma & Fusion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- General Engineering & Computer Science (AREA)
- Powder Metallurgy (AREA)
Abstract
本发明涉及氧化钇‑钨梯度材料及其制备方法和在制造合金熔炼用坩埚中的应用。所述梯度材料包括氧化钇层和多个过渡层,第m过渡层的氧化钇和钨的体积分数根据CWm=1‑CYm和计算,其中CYm和CWm分别为第m过渡层中的氧化钇和钨的体积分数;m为1至(n‑1)的自然数;l为所述多个过渡层的总厚度;n为氧化钇层和各过渡层的总层数且n≥3;Hi为第i层的厚度,Hm为第m过渡层的厚度。所述方法包括称取钨粉末和氧化钇粉末;用各粉末铺制相应的层,并成型和烧结。所述梯度材料具有高热导率和密度、低热膨胀系数、优良的耐蚀性和优异的抗热冲击性,可广泛用于高温合金熔炼;所述方法工艺简单、易操作、能耗低、环境友好。
The invention relates to an yttrium oxide-tungsten gradient material, a preparation method thereof and an application in manufacturing a crucible for alloy melting. The gradient material includes an yttrium oxide layer and a plurality of transition layers, and the volume fractions of yttrium oxide and tungsten in the mth transition layer are according to C Wm = 1‑C Ym and Calculation, where C Ym and C Wm are respectively the volume fraction of yttrium oxide and tungsten in the m transition layer; m is a natural number from 1 to (n-1); l is the total thickness of the multiple transition layers; n is The total number of layers of the yttrium oxide layer and each transition layer is n≥3; H i is the thickness of the i-th layer, and H m is the thickness of the m-th transition layer. The method comprises weighing tungsten powder and yttrium oxide powder; laying corresponding layers with each powder, forming and sintering. The gradient material has high thermal conductivity and density, low thermal expansion coefficient, excellent corrosion resistance and excellent thermal shock resistance, and can be widely used in superalloy smelting; the method is simple in process, easy to operate, low in energy consumption, and environmentally friendly friendly.
Description
技术领域technical field
本发明属于材料领域,具体地说,本发明涉及一种氧化钇-钨梯度材料及其制备方法和在制造合金熔炼用坩埚中的应用。The invention belongs to the field of materials. Specifically, the invention relates to a yttrium oxide-tungsten gradient material, a preparation method thereof, and an application in manufacturing a crucible for alloy melting.
技术背景technical background
随着科学的发展,一些具有特殊性能的金属及合金材料被广泛地用在汽车工业,航空航天、电气电子、化工、石油、国防军工等方面。包括镁合金、铝合金、镍合金、铜合金、铀合金等。对于这些合金材料,在使用过程中要求具有很高的纯度以保证性能。因此,合金的熔炼具有重要的国民价值。石墨材料由于具有耐高温、抗热震性能好、易加工以及价格低廉等优点,已成为熔炼金属中重要的和普遍采用的坩埚和模具材料。活泼金属的精炼可以采用石墨坩埚表面涂覆涂层的方法代替贵重金属坩埚和陶瓷坩埚。但研究发现,其存在基体与内衬之间的结合状况不良、高温环境或热冲击条件下内衬的抗热震性能和耐侵蚀性能难以兼顾等缺点。关于石墨坩埚的研究也主要集中在对涂层材料的选择和喷涂工艺的探索。With the development of science, some metals and alloy materials with special properties are widely used in the automobile industry, aerospace, electrical and electronics, chemical industry, petroleum, national defense and military industry, etc. Including magnesium alloy, aluminum alloy, nickel alloy, copper alloy, uranium alloy, etc. For these alloy materials, high purity is required during use to ensure performance. Therefore, the smelting of alloys has important national value. Due to the advantages of high temperature resistance, good thermal shock resistance, easy processing and low price, graphite material has become an important and commonly used crucible and mold material in metal smelting. In the refining of active metals, the method of coating the surface of graphite crucibles can be used to replace precious metal crucibles and ceramic crucibles. However, studies have found that there are disadvantages such as poor bonding between the matrix and the lining, and difficulty in balancing the thermal shock resistance and erosion resistance of the lining under high temperature environments or thermal shock conditions. The research on graphite crucibles also mainly focuses on the selection of coating materials and the exploration of spraying process.
通常使用的的涂层材料除了有高熔点氧化物(Al2O3,MgO,CaO,ZrO2,Y2O3,YSZ(7-8%Y2O3))和氮化物(TiN,ZrN,HfN)外,还有一部分碳化物。此外,还有MgZrO2、CaZrO2等锆酸盐和Al2TiO5等。Los Alamos报道了实验室使用石墨或高温氧化物涂层的金属模具熔炼金属时,使用的氧化物涂层通常为MgO或Al2O3,但其效果不佳。Vasconcelos的研究结果表明,在1700K时TiN与熔融合金之间没有发生任何化学反应。A.Shankar采用磁控溅射法制备具有TiN,ZrN和HfN涂层石墨坩埚,涂层厚度在3.62~3.85μm,并计算了涂层材料与高温合金反应的吉布斯自由能,计算结果表明在低于1500℃的温度范围内,涂层材料能够与合金保持良好的化学稳定性。Condon J.B等人研究了近50种陶瓷材料(包括金属氧化物,氮化物,碳化物,硼化物,硅化物)的涂层,设计了高温合金熔融反应性实验,大多数金属氧化物在于合金反应中保持了较好的化学稳定性。其中,以Y2O3涂层的抗合金侵蚀性能最佳,热稳定性最好。张显、成来飞等人分别对Y2O3、CaO、BeO、Ce2O3、MgO、ZrO2等涂层或内衬材料与金属在高温下的化学反应进行了热力学计算。结果表明在1200K~1900K温度区间内,Y2O3、CaO、BeO和Ce2O3不会与高温合金发生化学反应,具有良好的热化学稳定性,Y2O3对高温合金的热化学稳定性最好。但是,Y2O3的热膨胀系数较大,高温力学性能较低,因此以纯Y2O3作为高温合金熔炼坩埚材料不能满足使用要求。Commonly used coating materials include refractory oxides (Al 2 O 3 , MgO, CaO, ZrO 2 , Y 2 O 3 , YSZ (7-8% Y 2 O 3 )) and nitrides (TiN, ZrN , HfN), there are some carbides. In addition, there are zirconates such as MgZrO 2 and CaZrO 2 and Al 2 TiO 5 . Los Alamos reported that when the laboratory uses graphite or high-temperature oxide-coated metal molds to melt metals, the oxide coatings used are usually MgO or Al 2 O 3 , but the effect is not good. Vasconcelos' results showed that no chemical reaction occurred between TiN and the molten alloy at 1700K. A. Shankar used the magnetron sputtering method to prepare graphite crucibles with TiN, ZrN and HfN coatings. The coating thickness was 3.62-3.85 μm, and calculated the Gibbs free energy of the reaction between coating materials and superalloys. The calculation results showed that In the temperature range below 1500 °C, the coating material can maintain good chemical stability with the alloy. Condon JB et al. studied the coating of nearly 50 kinds of ceramic materials (including metal oxides, nitrides, carbides, borides, silicides), and designed a superalloy melting reactivity experiment. Most of the metal oxides are in the alloy reaction. maintained good chemical stability. Among them, the Y 2 O 3 coating has the best alloy corrosion resistance and the best thermal stability. Zhang Xian, Cheng Laifei and others performed thermodynamic calculations on the chemical reactions between Y 2 O 3 , CaO, BeO, Ce 2 O 3 , MgO, ZrO 2 and other coating or lining materials and metals at high temperatures. The results show that in the temperature range of 1200K~1900K, Y 2 O 3 , CaO, BeO and Ce 2 O 3 will not chemically react with the superalloy, and have good thermochemical stability. Stability is the best. However, Y 2 O 3 has a large coefficient of thermal expansion and low high-temperature mechanical properties, so using pure Y 2 O 3 as a material for a high-temperature alloy melting crucible cannot meet the application requirements.
纯W具有高热导率、低热膨胀系数、优良的耐蚀性、抗热冲击以及抗中子辐照性等性能。但作为熔炼坩埚材料,由于金属间的相互扩散对合金的熔炼和浓缩势必造成一定的影响。Pure W has high thermal conductivity, low thermal expansion coefficient, excellent corrosion resistance, thermal shock resistance and neutron radiation resistance. However, as a melting crucible material, due to the interdiffusion between metals, it will inevitably have a certain impact on the melting and concentration of the alloy.
日本东芝公司研发了W-Y2O3的复合材料,这种材料具有的高强度和高耐腐蚀性,被用于熔炼稀土金属,与普通的石墨坩埚相比,复合材料坩埚的使用寿命高出10倍;在1000℃以内,抗弯强度达到800MPa,超过纯W的5倍,且熔炼后的稀土金属杂质含量下降到十分之一。但是日本东芝公司研发的W-Y2O3复合材料在传递材料制备和服役过程中产生较高的热应力,从而导致抗热震性能和耐侵蚀性能不足。Toshiba Corporation of Japan has developed a WY 2 O 3 composite material. This material has high strength and high corrosion resistance and is used for melting rare earth metals. Compared with ordinary graphite crucibles, the service life of composite material crucibles is 10 times longer. times; within 1000°C, the flexural strength reaches 800MPa, more than 5 times that of pure W, and the content of rare earth metal impurities after smelting drops to one-tenth. However, the WY 2 O 3 composite material developed by Toshiba Corporation in Japan produces high thermal stress during the preparation and service of the transfer material, which leads to insufficient thermal shock resistance and erosion resistance.
中国专利申请CN200910046508.4公开了一种熔钛用坩埚,该坩埚为在石墨坩埚的内表面涂覆有一复合涂层,该复合涂层为内层、过渡梯度涂层和外层三层结构,内层为SiC薄层,过渡层由高温稳定化合物氧化钇、锆酸钙或硫化铈中的一种与难熔金属钨、钼或钽中的一种组成,外层为高温稳定化合物氧化钇、锆酸钙或硫化铈中的一种,所述过渡梯度涂层是由高温稳定化合物氧化钇、锆酸钙或硫化铈中的一种的粉末与难熔金属钨、钼或钽中的一种的粉末以不同质量比混合并用热喷涂法(激光熔覆、离子体喷涂等)制备的亚三层,从内向外,以高温稳定化合物与难熔金属质量比计,第一亚层为1∶3,第二亚层为1∶1,第三亚层为3∶1。但是这种坩埚是以石墨为基底,而且还需要在内层涂覆有SiC薄层,因而存在不能用于对C敏感的金属或者合金的熔炼。另外,该坩埚中的过渡层中的亚三层中高温稳定氧化物和难熔金属的比例只是简单升降,并没有通过对目标材料梯度分布函数进行优化设计来实现目标材料热应力的优化匹配,因此所述内层、过渡梯度涂层和外层之间以及各亚三层之间仍然存在明显层间界面,导致在制备和使用过程中产生的热应力不匹配现象,降低了整个材料构件的热机械性能尤其是降低了构件的抗热震性能。Chinese patent application CN200910046508.4 discloses a crucible for melting titanium. The crucible is coated with a composite coating on the inner surface of the graphite crucible. The composite coating has a three-layer structure of an inner layer, a transitional gradient coating and an outer layer. The inner layer is a thin SiC layer, the transition layer is composed of one of high temperature stable compound yttrium oxide, calcium zirconate or cerium sulfide and one of refractory metal tungsten, molybdenum or tantalum, the outer layer is high temperature stable compound yttrium oxide, One of calcium zirconate or cerium sulfide, the transition gradient coating is composed of powder of one of high-temperature stable compound yttrium oxide, calcium zirconate or cerium sulfide and one of refractory metal tungsten, molybdenum or tantalum The powder is mixed in different mass ratios and prepared by thermal spraying method (laser cladding, plasma spraying, etc.), from the inside to the outside, based on the mass ratio of high-temperature stable compounds and refractory metals, the first sub-layer is 1: 3. The second sublayer is 1:1, and the third sublayer is 3:1. However, this crucible is based on graphite and needs to be coated with a thin layer of SiC on the inner layer, so it cannot be used for melting metals or alloys sensitive to C. In addition, the proportion of high-temperature stable oxide and refractory metal in the sub-three layers of the transition layer in the crucible is only a simple increase and decrease, and the optimal matching of the thermal stress of the target material is not achieved by optimizing the gradient distribution function of the target material. Therefore, there are still obvious interlayer interfaces between the inner layer, the transition gradient coating and the outer layer, and between the sub-tertiary layers, resulting in thermal stress mismatch phenomenon generated during preparation and use, and reducing the stability of the entire material component. Thermomechanical properties especially reduce the thermal shock resistance of the component.
为了提高使用温度及高温合金的提炼纯度,并兼顾到抗热震性能和耐侵蚀性能,本发明提出了采用具有层状梯度过渡结构的Y2O3-W梯度材料以满足以上性能的要求。Y2O3-W梯度材料可充分发挥Y2O3陶瓷的高温热化学稳定性和W金属高强度、高导热系数等优点;且具有层状梯度过渡结构的Y2O3-W梯度材料可有效缓解和传递材料制备和服役过程中产生的热应力,从而延长材料的使用寿命。In order to improve the service temperature and the refining purity of the superalloy, and take into account the thermal shock resistance and corrosion resistance, the present invention proposes to use a Y 2 O 3 -W gradient material with a layered gradient transition structure to meet the above performance requirements. Y 2 O 3 -W gradient materials can give full play to the high temperature thermochemical stability of Y 2 O 3 ceramics and the advantages of high strength and high thermal conductivity of W metal; and Y 2 O 3 -W gradient materials with layered gradient transition structure It can effectively relieve and transfer the thermal stress generated in the process of material preparation and service, thereby prolonging the service life of the material.
本发明所制备的材料可广泛应用于高纯稀土合金熔炼领域,具有良好的抗热震性能和抗侵蚀性能,且制备工艺简单、能耗较低、环境友好,具有广阔的产业化应用前景。The material prepared by the invention can be widely used in the field of high-purity rare earth alloy smelting, has good thermal shock resistance and corrosion resistance, has simple preparation process, low energy consumption, and is environmentally friendly, and has broad industrial application prospects.
发明内容Contents of the invention
本发明在第一方面提供了一种氧化钇-钨梯度材料,所述梯度材料包括氧化钇层和多个过渡层,所述氧化钇层位于所述多个过渡层中的氧化钇含量最大的层的一侧,从所述多个过渡层中的钨含量最大的层的一侧开始计,所述多个过渡层包括第1、2、……、n-1层,所述氧化钇层为第n层;所述多个过渡层中第m过渡层的氧化钇的体积分数和钨的体积分数根据如下公式计算:The present invention provides a yttrium oxide-tungsten gradient material in a first aspect, the gradient material includes a yttrium oxide layer and a plurality of transition layers, and the yttrium oxide layer is located in the transition layer with the largest yttrium oxide content. One side of the layer, counting from the side of the layer with the largest tungsten content in the multiple transition layers, the multiple transition layers include the 1st, 2nd, ..., n-1 layers, the yttrium oxide layer Be the nth layer; the volume fraction of the yttrium oxide of the mth transition layer and the volume fraction of tungsten in the multiple transition layers are calculated according to the following formula:
CWm=1-CYm (2)C Wm =1-C Ym (2)
其中:in:
CYm为第m过渡层中的氧化钇的体积分数;CWm为第m过渡层中的钨的体积分数;m为1至(n-1)的自然数;l为所述多个过渡层的总厚度;n为氧化钇层和各过渡层的总层数且n≥3;Hi为第i层的厚度,Hm为第m过渡层的厚度。C Ym is the volume fraction of the yttrium oxide in the mth transition layer; C Wm is the volume fraction of the tungsten in the m transition layer; m is the natural number of 1 to (n-1); 1 is described a plurality of transition layers The total thickness; n is the total number of layers of the yttrium oxide layer and each transition layer and n≥3; H i is the thickness of the i-th layer, and H m is the thickness of the m-th transition layer.
本发明在第二方面提供了一种制备本发明第一方面所述的梯度材料的方法,所述方法包括如下步骤:In a second aspect, the present invention provides a method for preparing the gradient material described in the first aspect of the present invention, the method comprising the following steps:
(a)根据所述梯度材料的尺寸和层数,称取所需的钨粉末和氧化钇粉末;(a) According to the size and the number of layers of the gradient material, take the required tungsten powder and yttrium oxide powder;
(b)在模具中使用氧化钇粉末和由氧化钇粉末和钨粉末组成的复合粉末、钨粉末分别铺层氧化钇层、过渡层和钨层,形成复合材料铺层坯体,并在铺层的同时或者之后进行成型和烧结,由此制得所述梯度材料。(b) Use yttrium oxide powder and composite powder composed of yttrium oxide powder and tungsten powder, and tungsten powder to lay up the yttrium oxide layer, the transition layer and the tungsten layer respectively in the mold to form a composite material layup green body, and lay the layers Simultaneously or after forming and sintering, the gradient material is thus produced.
本发明在第三方面还提供了第一方面所述的梯度材料或者第二方面所述方法制得的梯度材料在制造合金熔炼用坩埚中的应用。The third aspect of the present invention also provides the application of the gradient material described in the first aspect or the gradient material prepared by the method described in the second aspect in manufacturing a crucible for alloy melting.
本发明的梯度材料在经过1200℃~1600℃下的循环热震15~25次后,材料没有发生层间剥落及断裂失效等现象;且材料能够抵抗功率为50~80MW/m2的瞬间激光热冲击,在线平均电子密度为1~1.5×1013/cm3的等离子体原位辐照下材料表面无明显的损伤,具有高热导率、高密度、低热膨胀系数、优良的耐蚀性、优异的抗热冲击性的特点。本发明在保证制备的梯度材料具有良好耐烧蚀性能同时,提高复合材料抗热震性能和高温力学性能,避免了贵金属及高温合金熔炼过程中的污染,可广泛应用于高纯合金熔炼领域,尤其适于制造多功能熔炼坩埚特别是合金熔炼用坩埚的核心部件。本发明方法具有工艺简单、能耗较低、环境友好,具有广阔的产业化应用前景。After the gradient material of the present invention undergoes 15 to 25 cyclic thermal shocks at 1200°C to 1600°C, the material does not have interlayer peeling and fracture failure; and the material can resist instantaneous laser power of 50 to 80MW /m2 Thermal shock, the surface of the material has no obvious damage under the in-situ irradiation of plasma with an online average electron density of 1-1.5×10 13 /cm 3 , and has high thermal conductivity, high density, low thermal expansion coefficient, excellent corrosion resistance, Characterized by excellent thermal shock resistance. The invention ensures that the prepared gradient material has good ablation resistance, improves the thermal shock resistance and high-temperature mechanical properties of the composite material, avoids pollution in the melting process of precious metals and high-temperature alloys, and can be widely used in the field of high-purity alloy melting. It is especially suitable for manufacturing multifunctional melting crucibles, especially the core parts of alloy melting crucibles. The method of the invention has the advantages of simple process, low energy consumption, environmental friendliness and broad industrial application prospect.
附图说明Description of drawings
图1是本发明的梯度材料的一个具体实施方式的示意图,最上层(与要熔炼的合金接触的层)为氧化钇层(即第n层,在该实施方式中n=9,即第9层),过渡层包括n-1层即8层,从下往上计算依次为第1层、第2层,……,第n-1层(即第8层),最下侧为过渡层的富钨侧,过渡层中富钨侧的相对侧为富氧化钇侧。Fig. 1 is a schematic diagram of an embodiment of the gradient material of the present invention, the uppermost layer (the layer in contact with the alloy to be smelted) is the yttrium oxide layer (i.e. the nth layer, n=9 in this embodiment, i.e. the ninth layers), the transition layer includes n-1 layers, that is, 8 layers, and the calculation from bottom to top is the first layer, the second layer, ..., the n-1th layer (that is, the eighth layer), and the bottom side is the transition layer The tungsten-rich side of the transition layer is the yttrium oxide-rich side opposite the tungsten-rich side.
具体实施方式detailed description
如上所述,本发明在在第一方面提供了一种氧化钇-钨梯度材料,所述梯度材料包括氧化钇层和过渡层,所述梯度材料包括氧化钇层和多个过渡层,所述氧化钇层位于所述多个过渡层中的氧化钇含量最大的层的一侧,从所述多个过渡层中的钨含量最大的层的一侧开始计,所述多个过渡层包括第1、2、……、n-1层,所述氧化钇层为第n层;所述多个过渡层中第m过渡层的氧化钇的体积分数和钨的体积分数根据如下公式计算:As mentioned above, the present invention provides a yttrium oxide-tungsten gradient material in the first aspect, the gradient material includes a yttrium oxide layer and a transition layer, the gradient material includes a yttrium oxide layer and a plurality of transition layers, the The yttrium oxide layer is located on the side of the layer with the largest yttrium oxide content in the multiple transition layers, counting from the side of the layer with the largest tungsten content in the multiple transition layers, and the multiple transition layers include the first 1, 2, ..., n-1 layers, the yttrium oxide layer is the nth layer; the volume fraction of yttrium oxide and the volume fraction of tungsten in the mth transition layer in the plurality of transition layers are calculated according to the following formula:
CWm=1-CYm (2)C Wm =1-C Ym (2)
其中:in:
CYm为第m过渡层中的氧化钇的体积分数;CWm为第m过渡层中的钨的体积分数;m为1至(n-1)的自然数;l为所述多个过渡层的总厚度;n为氧化钇层和各过渡层的总层数且n≥3;Hi为第i层的厚度,Hm为第m过渡层的厚度,xm为如公式(3)所示,即,第m过渡层在厚度方向上的中间位置距离所述多个过渡层中的钨含量最大的层的外表面(远离氧化钇层的表面)的距离。C Ym is the volume fraction of the yttrium oxide in the mth transition layer; C Wm is the volume fraction of the tungsten in the m transition layer; m is the natural number of 1 to (n-1); 1 is described a plurality of transition layers Total thickness; n is the total number of layers of the yttrium oxide layer and each transition layer and n≥3; H i is the thickness of the i-th layer, H m is the thickness of the m-th transition layer, x m is as shown in formula (3) , that is, the distance between the middle position of the mth transition layer in the thickness direction and the outer surface (the surface away from the yttrium oxide layer) of the layer with the largest tungsten content among the plurality of transition layers.
本发明基于坩埚材料的尺寸、热应力匹配、抗热震性能和耐合金侵蚀性能的要求,还充分地考虑了氧化钇和钨材料的性能,按照上述公式计算各过渡层的氧化钇和钨的用量和分布,从而制得了具有满足预期性能要求的梯度材料。The present invention is based on the requirements of the size of the crucible material, thermal stress matching, thermal shock resistance and alloy corrosion resistance, and also fully considers the properties of yttrium oxide and tungsten materials, and calculates the ratio of yttrium oxide and tungsten in each transition layer according to the above formula The dosage and distribution are used to prepare gradient materials that meet the expected performance requirements.
在一些优选的实施方式中,所述梯度材料的总层数3≤n≤15,例如n为1、2、3、4、5、6、7、8、9、10、11、12、13、14或15,又例如,5≤n≤11或5≤n≤10。In some preferred embodiments, the total number of layers of the gradient material is 3≤n≤15, for example, n is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 , 14 or 15, and for example, 5≤n≤11 or 5≤n≤10.
本发明对所述过渡层中的每一层的厚度没有特别的限制,只要所述梯度材料能够具有预期性能即可。但是优选的是,所述过渡层中每一层的厚度可以独立地为0.5mm至3mm以及期间所有的数值或者子范围,例如为0.5mm、1.0mm、1.1mm、1.2mm、1.3mm、1.4mm、1.5cm、1.6mm、1.7mm、1.8mm、1.9mm、2.0mm、2.1mm、2.2mm、2.3mm、2.4mm、2.5mm、2.6mm、2.7mm、2.8mm、2.9mm或3.0mm。The present invention has no particular limitation on the thickness of each layer in the transition layer, as long as the gradient material can have expected performance. But preferably, the thickness of each layer in the transition layer can be independently 0.5mm to 3mm and all values or sub-ranges in between, such as 0.5mm, 1.0mm, 1.1mm, 1.2mm, 1.3mm, 1.4 mm, 1.5cm, 1.6mm, 1.7mm, 1.8mm, 1.9mm, 2.0mm, 2.1mm, 2.2mm, 2.3mm, 2.4mm, 2.5mm, 2.6mm, 2.7mm, 2.8mm, 2.9mm or 3.0mm.
本发明对所述氧化钇层的厚度没有特别的限制,只要所述梯度材料能够具有预期性能即可。但是优选的是,所述氧化钇层的厚度可以独立地为0.5mm至3mm以及期间所有的数值或者子范围,例如为0.5mm、1.0mm、1.1mm、1.2mm、1.3mm、1.4mm、1.5cm、1.6mm、1.7mm、1.8mm、1.9mm、2.0mm、2.1mm、2.2mm、2.3mm、2.4mm、2.5mm、2.6mm、2.7mm、2.8mm、2.9mm或3.0mm。。The present invention has no particular limitation on the thickness of the yttrium oxide layer, as long as the gradient material can have expected performance. Preferably, however, the thickness of the yttrium oxide layer may independently be 0.5 mm to 3 mm and all values or subranges therebetween, such as 0.5 mm, 1.0 mm, 1.1 mm, 1.2 mm, 1.3 mm, 1.4 mm, 1.5 cm, 1.6mm, 1.7mm, 1.8mm, 1.9mm, 2.0mm, 2.1mm, 2.2mm, 2.3mm, 2.4mm, 2.5mm, 2.6mm, 2.7mm, 2.8mm, 2.9mm or 3.0mm. .
在一些可选的实施方式中,所述梯度材料可以在富钨侧还包括钨层。本发明对所述钨层的厚度没有特别的限制,所述钨层的厚度可以为0.01mm至3.0mm以及期间所有的数值或者子范围,例如为0mm、0.01mm、0.05mm、0.1mm、0.2mm、0.3mm、0.4mm、0.5mm、0.6mm、0.7mm、0.8mm、0.9mm、1.0mm、1.1mm、1.2mm、1.3mm、1.4mm、1.5mm、1.6mm、1.7mm、1.8mm、1.9mm、2.0mm、、2.1mm、2.2mm、2.3mm、2.4mm、2.5mm、2.6mm、2.7mm、2.8mm、2.9mm或3.0mm。In some optional implementation manners, the gradient material may further include a tungsten layer on the tungsten-rich side. The present invention has no particular limitation on the thickness of the tungsten layer, and the thickness of the tungsten layer can be 0.01mm to 3.0mm and all values or sub-ranges therebetween, such as 0mm, 0.01mm, 0.05mm, 0.1mm, 0.2 mm, 0.3mm, 0.4mm, 0.5mm, 0.6mm, 0.7mm, 0.8mm, 0.9mm, 1.0mm, 1.1mm, 1.2mm, 1.3mm, 1.4mm, 1.5mm, 1.6mm, 1.7mm, 1.8mm, 1.9mm, 2.0mm, 2.1mm, 2.2mm, 2.3mm, 2.4mm, 2.5mm, 2.6mm, 2.7mm, 2.8mm, 2.9mm or 3.0mm.
在一些实施方式中,所述钨,例如所述钨层(如果有的话)中的钨,或者例如所述过渡层中的钨(所述过渡层中的氧化钇不计算在内),其纯度可以独立地为90质量%以上,例如可以90、91、92、93、94、95、96、97、98、99或者99.9质量%以上,优选在98质量%以上。In some embodiments, the tungsten, such as tungsten in the tungsten layer (if present), or such as tungsten in the transition layer (not counting the yttrium oxide in the transition layer), which The purity may independently be 90% by mass or higher, such as 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 99.9% by mass, preferably 98% by mass or higher.
在另外一些实施方式中,所述氧化钇,例如所述氧化钇层中的氧化钇或者所述过渡层中的氧化钇(所述过渡层中的钨不计算在内)的纯度可以独立地为90质量%以上,例如可以90、91、92、93、94、95、96、97、98、99或者99.9质量%以上,优选在98质量%以上。In some other embodiments, the purity of the yttrium oxide, for example, the yttrium oxide in the yttrium oxide layer or the yttrium oxide in the transition layer (the tungsten in the transition layer is not counted) can independently be 90 mass % or more, for example, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 99.9 mass % or more, preferably 98 mass % or more.
本发明在第二方面提供了一种制备本发明第一方面所述的梯度材料的方法,所述方法包括如下步骤:In a second aspect, the present invention provides a method for preparing the gradient material described in the first aspect of the present invention, the method comprising the following steps:
(a)根据所述梯度材料的尺寸和层数,称取所需的钨粉末和氧化钇粉末;(a) According to the size and the number of layers of the gradient material, take the required tungsten powder and yttrium oxide powder;
(b)在模具(例如石墨模具)中使用氧化钇粉末和由氧化钇粉末和钨粉末组成的复合粉末、钨粉末分别铺层氧化钇层、过渡层和钨层,形成复合材料铺层坯体,并在铺层的同时或者之后进行成型和烧结,由此制得所述梯度材料。(b) Use yttrium oxide powder and composite powder composed of yttrium oxide powder and tungsten powder in a mold (such as a graphite mold), and tungsten powder is used to lay up an yttrium oxide layer, a transition layer and a tungsten layer respectively to form a composite material laminated body , and molding and sintering are carried out at the same time as or after lamination, thereby preparing the gradient material.
在一些实施方式中,用于形成所述钨层(如果有的话)的钨粉末的粒径和用于形成所述过渡层的钨粉末的粒径独立地为0.1μm至10μm,例如为0.1、0.2、0.5、1、2、3、4、5、6、7、8、9或10μm。In some embodiments, the particle size of the tungsten powder used to form the tungsten layer (if any) and the particle size of the tungsten powder used to form the transition layer are independently 0.1 μm to 10 μm, for example 0.1 μm , 0.2, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 μm.
在另外一些实施方式中,用于形成所述氧化钇层的氧化钇粉末的粒径和用于形成所述过渡层的氧化钇粉末的粒径独立地为0.1μm至8μm,例如为0.1、0.2、0.5、1、2、3、4、5、6、7或8μm。In other embodiments, the particle size of the yttrium oxide powder used to form the yttrium oxide layer and the particle size of the yttrium oxide powder used to form the transition layer are independently 0.1 μm to 8 μm, for example, 0.1, 0.2 , 0.5, 1, 2, 3, 4, 5, 6, 7 or 8 μm.
在一些实施方式中,所述复合粉末可以通过球磨湿混方式制得,其中以分散介质和分散剂作为混合介质,混合时间为6小时至24小时(例如6、12、18或24小时),然后例如通过在开放式烘干炉或减压蒸馏系统中蒸发掉乙醇等混合介质来除去混合介质,从而得到混合粉末,然后将混合粉末过120目筛,得到混合均匀的复合粉末。In some embodiments, the composite powder can be prepared by ball milling wet mixing, wherein the dispersion medium and the dispersant are used as the mixing medium, and the mixing time is 6 hours to 24 hours (such as 6, 12, 18 or 24 hours), Then, for example, the mixed medium is removed by evaporating the mixed medium such as ethanol in an open drying oven or a vacuum distillation system to obtain a mixed powder, and then the mixed powder is passed through a 120-mesh sieve to obtain a uniformly mixed composite powder.
本发明对球磨湿混所使用的分散介质和分散剂没有特别的限制,但是在在一些优选的实施方式中,所述分散介质可以选自由水、乙醇、甲醇和二甲苯组成的组。本发明对所述分散介质的用量没有特别的限制,只用能够使要分散的氧化钇粉末和钨粉末能够分散即可。在另外一些实施方式中,所述分散剂可以选自由聚乙烯、聚丙烯酸、甘油、以及由聚羧酸和聚硅氧烷共聚形成的共聚物组成的组。本发明对所述分散介质的用量没有特别的限制,只用能够使要分散的氧化钇粉末和/或钨粉末能够分散即可。但是在一些优选的实施方式中,所述分散液中的分散剂的使用浓度可以为0.5mol%至3mol%,例如为0.5、1、2、或3mol%。The present invention has no special limitation on the dispersion medium and dispersant used in ball milling wet mixing, but in some preferred embodiments, the dispersion medium can be selected from the group consisting of water, ethanol, methanol and xylene. In the present invention, there is no special limitation on the amount of the dispersion medium, as long as it can disperse the yttrium oxide powder and tungsten powder to be dispersed. In other embodiments, the dispersant may be selected from the group consisting of polyethylene, polyacrylic acid, glycerin, and copolymers formed by copolymerization of polycarboxylic acid and polysiloxane. In the present invention, there is no special limitation on the amount of the dispersion medium, as long as it can disperse the yttrium oxide powder and/or tungsten powder to be dispersed. However, in some preferred embodiments, the concentration of the dispersant in the dispersion liquid may be 0.5 mol% to 3 mol%, such as 0.5, 1, 2, or 3 mol%.
在一些可选的实施方式中,所述复合粉末可以通过球磨干混方式制得,其中以陶瓷球或硬质合金球作为混合介质,混合时间为12小时至48小时(例如12、18、24、30、36、42或48小时),然后过120目筛,得到混合均匀的复合粉末。In some optional embodiments, the composite powder can be prepared by ball milling dry mixing, wherein ceramic balls or cemented carbide balls are used as the mixing medium, and the mixing time is 12 hours to 48 hours (for example, 12, 18, 24 , 30, 36, 42 or 48 hours), and then passed through a 120 mesh sieve to obtain a uniformly mixed composite powder.
可选的是,可以在制得所述复合粉末之后对其进行造粒,以实现更好的成型。Optionally, the composite powder can be granulated after preparation to achieve better shaping.
在同时实现铺层、成型和烧结的一些实施方式中,所述复合材料铺层坯体可以通过等离子喷涂设备利用各粉末对相应的层进行铺层,其中采用配有送粉器的等离子喷涂设备。所述等离子喷涂设备的喷枪的工作压力可以为0.1~0.5MPa(例如为0.1、0.2、0.3、0.4或0.5MPa),喷枪的移动速率可以为20~50mm/s(例如20mm/s、30mm/s、40mm/s或50mm/s),送粉器的送粉量可以为5~20g/分钟(例如5、10、15或20g/分钟),喷涂的温度可以为1600~2000℃或者其间的任意的数值或者范围,例如为1600、1700、1800、1900或2000℃,由此在铺层的同时实现成型和烧结。In some embodiments where layup, shaping and sintering are achieved simultaneously, the composite layup body can be laid up with respective powders for the respective layers by means of a plasma spraying equipment equipped with a powder feeder . The working pressure of the spray gun of the plasma spraying equipment can be 0.1~0.5MPa (such as 0.1, 0.2, 0.3, 0.4 or 0.5MPa), and the moving speed of the spray gun can be 20~50mm/s (such as 20mm/s, 30mm/s s, 40mm/s or 50mm/s), the powder feeding rate of the powder feeder can be 5-20g/min (such as 5, 10, 15 or 20g/min), and the spraying temperature can be 1600-2000℃ or in between Any numerical value or range, for example, 1600, 1700, 1800, 1900 or 2000° C., thereby realizing forming and sintering while laying layers.
在依次进行铺层、成型和烧结的实施方式中,所述铺层可以通过手工铺层、流延法铺层等。例如,在流延法铺层的情况中,可以在室温下通过流延法进行铺设,然后在80~150℃干燥(80、90、100、110、120、130、140或150℃),并在120~350℃(120、150、200、250、300或350℃)实施排胶,从而铺制所述复合材料铺层坯体。然后,依次对所述坯体进行成型和烧结。所述成型可以通过室温冷压成型和/或冷等静压来实现。所述室温冷压成型的压力可以为5至50MPa,例如为5、10、20、25、30、35、40、45或50MPa。所述冷等静压的压力可以为50~200MPa(例如50、100、150或200MPa)。烧结可以通过热压烧结或无压烧结来进行。热压烧结的烧结温度可以为1600~2000℃或者其间的任意的数值或者范围,例如为1600、1700、1800、1900或2000℃,热压烧结时可以采用单向加压或双向加压的方式加压,所施加的压力为10MPa至50MPa或者其间的任意的数值或者范围,例如为10、20、30、40或50MPa,烧结保温时间为1小时至5小时,例如为1、2、3、4或5小时,降温速率为5℃/分钟至10℃/分钟,例如5、6、7、8、9或10℃/分钟,烧结气氛可以为氩气、氮气或真空。无压烧结的烧结温度可以为1600~2000℃其间的任意的数值或者范围,例如为1600、1700、1800、1900或2000℃。无压烧结的保温时间为1小时至5小时,例如为1、2、3、4或5小时,降温速率为5℃/分钟至10℃/分钟,例如5、6、7、8、9或10℃/分钟,烧结气氛可以为氩气、氮气或真空。In an embodiment in which layer laying, molding and sintering are performed sequentially, the layer laying can be done by hand laying, tape casting and the like. For example, in the case of tape laying, it can be laid by casting at room temperature, then dried at 80 to 150°C (80, 90, 100, 110, 120, 130, 140, or 150°C), and Debinding is carried out at 120-350° C. (120, 150, 200, 250, 300 or 350° C.), so as to lay the composite material ply body. Then, the green body is formed and sintered in sequence. The molding can be realized by cold pressing at room temperature and/or cold isostatic pressing. The pressure of the room temperature cold pressing can be 5 to 50 MPa, for example, 5, 10, 20, 25, 30, 35, 40, 45 or 50 MPa. The pressure of the cold isostatic pressing may be 50-200 MPa (for example, 50, 100, 150 or 200 MPa). Sintering can be performed by hot-press sintering or pressureless sintering. The sintering temperature of hot-press sintering can be 1600-2000°C or any value or range in between, such as 1600, 1700, 1800, 1900 or 2000°C. One-way pressure or two-way pressure can be used during hot-press sintering Pressurization, the applied pressure is 10MPa to 50MPa or any value or range therebetween, such as 10, 20, 30, 40 or 50MPa, and the sintering holding time is 1 hour to 5 hours, such as 1, 2, 3, For 4 or 5 hours, the cooling rate is 5°C/min to 10°C/min, such as 5, 6, 7, 8, 9 or 10°C/min, and the sintering atmosphere can be argon, nitrogen or vacuum. The sintering temperature of the pressureless sintering can be any value or range between 1600°C and 2000°C, for example, 1600, 1700, 1800, 1900 or 2000°C. The holding time of pressureless sintering is 1 hour to 5 hours, such as 1, 2, 3, 4 or 5 hours, and the cooling rate is 5°C/min to 10°C/min, such as 5, 6, 7, 8, 9 or 10°C/min, the sintering atmosphere can be argon, nitrogen or vacuum.
本发明在第三方面还提供了第一方面所述的梯度材料或者第二方面所述方法制得的梯度材料在制造坩埚,例如用于高温金属或者合金熔炼用坩埚尤其是合金熔炼用坩埚中的应用。In the third aspect, the present invention also provides the gradient material described in the first aspect or the gradient material prepared by the method described in the second aspect used in the manufacture of crucibles, such as crucibles for melting high-temperature metals or alloys, especially crucibles for melting alloys Applications.
下文将通过举例说明的方式对本发明进行进一步地说明,但是这些实施例仅出于说明目的,不应理解为是对本发明的保护范围的限制。The present invention will be further described below by way of illustration, but these examples are only for the purpose of illustration, and should not be construed as limiting the protection scope of the present invention.
实施例1Example 1
预先设定复合材料的层数n=5,材料的最上层为Y2O3层,厚度为2mm。过渡层为4层,每层的厚度均为2mm。将平均粒径为1μm、纯度98%的氧化钇粉末及平均粒径为0.2μm、纯度98%的钨粉按照前文公式(1)至(3)计算出各过渡层的体积配比,过渡层由上到下各个层的成分分别为:The number of layers of the composite material is preset to be n=5, and the uppermost layer of the material is Y 2 O 3 layers with a thickness of 2 mm. The transition layer is 4 layers, and the thickness of each layer is 2mm. Calculate the volume ratio of each transition layer according to the above formulas (1) to (3) according to the yttrium oxide powder with an average particle size of 1 μm and a purity of 98% and the tungsten powder with an average particle size of 0.2 μm and a purity of 98%. The components of each layer from top to bottom are:
81.8vol.%Y2O3-18.2vol.%W,49.4vol.%Y2O3-50.6vol.%W, 81.8vol .% Y2O3-18.2vol .%W, 49.4vol .% Y2O3-50.6vol .%W,
23vol.%Y2O3-50.0vol.%W,4.4vol.%Y2O3-95.6vol.%W, 23vol .% Y2O3-50.0vol .%W, 4.4vol .% Y2O3-95.6vol .%W,
按照预先设计的梯度渐变结构将各粉末逐层放入石墨模具中,室温下冷压成型,压力为5MPa;经200MPa冷等静压后在真空热压烧结炉中直接进行无压烧结,制得Y2O3-W梯度材料。真空无压烧结的工艺参数为:1800℃时保温1小时,真空度为1.3×10-2Pa,降温速度为5℃/分钟。According to the pre-designed gradient structure, each powder is put into the graphite mold layer by layer, cold-pressed at room temperature, and the pressure is 5MPa; after 200MPa cold isostatic pressing, it is directly sintered in a vacuum hot-pressing sintering furnace to obtain Y 2 O 3 -W gradient material. The process parameters of vacuum pressureless sintering are: heat preservation at 1800°C for 1 hour, vacuum degree of 1.3×10 -2 Pa, and cooling rate of 5°C/min.
复合材料的致密度达到96.8%,室温下的三点弯曲法测试的抗弯强度为532.0MPa。能够抵抗功率约为50MW/m2的瞬间激光热冲击,而且在线平均电子密度为1~1.5×1013/cm3的等离子体原位辐照下材料表面无明显的损伤。The density of the composite material reaches 96.8%, and the bending strength tested by the three-point bending method at room temperature is 532.0MPa. It can resist instantaneous laser thermal shock with a power of about 50MW/m 2 , and there is no obvious damage to the surface of the material under the in-situ irradiation of plasma with an online average electron density of 1-1.5×10 13 /cm 3 .
实施例2Example 2
预先设定复合材料的层数n=5,材料的最上层为Y2O3层,厚度为2mm。过渡层为4层,每层的厚度均为2mm。将平均粒径为1μm、纯度98%的氧化钇粉末及平均粒径为0.2μm、纯度98%的钨粉按照上文所述公式(1)至(3)计算出过渡层的体积配比,过渡层由上到下各个层的成分分别为:The number of layers of the composite material is preset to be n=5, and the uppermost layer of the material is Y 2 O 3 layers with a thickness of 2 mm. The transition layer is 4 layers, and the thickness of each layer is 2mm. Calculate the volume ratio of the transition layer according to the formulas (1) to (3) above with the yttrium oxide powder with an average particle size of 1 μm and a purity of 98% and the tungsten powder with an average particle size of 0.2 μm and a purity of 98%. The components of the transition layer from top to bottom are:
81.8vol.%Y2O3-18.2vol.%W,49.4vol.%Y2O3-50.6vol.%W, 81.8vol .% Y2O3-18.2vol .%W, 49.4vol .% Y2O3-50.6vol .%W,
23vol.%Y2O3-50.0vol.%W,4.4vol.%Y2O3-95.6vol.%W, 23vol .% Y2O3-50.0vol .%W, 4.4vol .% Y2O3-95.6vol .%W,
按照预先设计的梯度渐变结构将粉末逐层放入石墨模具中,室温下冷压成型,压力为5MPa。然后,在真空热压烧结炉中直接进行热压烧结,制得Y2O3-W梯度材料。真空热压烧结的工艺参数为:1500℃时保温1小时,压力为30MPa,真空度为1.3×10-2Pa,降温速度为10℃/分钟。Put the powder into the graphite mold layer by layer according to the pre-designed gradient structure, and cold press at room temperature with a pressure of 5 MPa. Then, direct hot-press sintering in a vacuum hot-press sintering furnace to prepare the Y 2 O 3 -W gradient material. The process parameters of the vacuum hot pressing sintering are: heat preservation at 1500°C for 1 hour, pressure at 30MPa, vacuum degree at 1.3×10 -2 Pa, and cooling rate at 10°C/min.
复合材料的致密度达到97.6%,室温下的三点弯曲法测试的抗弯强度为535.2MPa。在循环热震炉氛炉中,于1200℃~1600℃之间循环热震15次后,所制备的Y2O3-W梯度材料没有发生层间剥落及断裂失效等现象,其性能满足合金熔炼坩埚材料的服役性能。The density of the composite material reaches 97.6%, and the bending strength tested by the three-point bending method at room temperature is 535.2MPa. In a cyclic thermal shock furnace, after 15 cycles of thermal shock between 1200°C and 1600°C, the prepared Y 2 O 3 -W gradient material has no interlayer peeling and fracture failure, and its performance meets the alloy Service performance of melting crucible materials.
实施例3Example 3
预先设定复合材料的层数n=5,材料的最上层为Y2O3层,厚度为2mm。过渡层为4层,每层的厚度均为2mm。将平均粒径为2μm、纯度99%的氧化钇粉末及平均粒径为0.5μm、纯度98%的钨粉按照上文所述公式(1)至(3)计算出过渡层的体积配比,过渡层由上到下各个层的成分分别为:The number of layers of the composite material is preset to be n=5, and the uppermost layer of the material is Y 2 O 3 layers with a thickness of 2 mm. The transition layer is 4 layers, and the thickness of each layer is 2mm. Calculate the volume ratio of the transition layer according to the formulas (1) to (3) above with the yttrium oxide powder with an average particle size of 2 μm and a purity of 99% and the tungsten powder with an average particle size of 0.5 μm and a purity of 98%. The components of the transition layer from top to bottom are:
81.8vol.%Y2O3-18.2vol.%W,49.4vol.%Y2O3-50.6vol.%W, 81.8vol .% Y2O3-18.2vol .%W, 49.4vol .% Y2O3-50.6vol .%W,
23vol.%Y2O3-50.0vol.%W,4.4vol.%Y2O3-95.6vol.%W, 23vol .% Y2O3-50.0vol .%W, 4.4vol .% Y2O3-95.6vol .%W,
按照预先设计的过渡层体积含量逐次放入热喷涂的送粉器中,采用等离子喷涂工艺逐次逐层喷涂送粉,制得Y2O3-W梯度材料。工艺参数为:采用1600℃的电弧加热,喷枪的工作压力为0.5~1.0MPa,喷枪的移动速率为30mm/s,送粉器的送粉量为15g/分钟。According to the volume content of the pre-designed transition layer, it is put into the powder feeder of thermal spraying one by one, and the powder is sprayed layer by layer by the plasma spraying process to prepare the Y 2 O 3 -W gradient material. The process parameters are: arc heating at 1600°C, the working pressure of the spray gun is 0.5-1.0MPa, the moving speed of the spray gun is 30mm/s, and the powder feeding volume of the powder feeder is 15g/min.
复合材料的致密度达到95.3%,室温下的三点弯曲法测试的抗弯强度可达524.0MPa。在循环热震炉氛炉中,于1200℃~1600℃之间循环热震15次后,所制备的Y2O3-W梯度材料没有发生层间剥落及断裂失效等现象,其性能满足合金熔炼坩埚材料的服役性能。The density of the composite material reaches 95.3%, and the bending strength tested by the three-point bending method at room temperature can reach 524.0MPa. In a cyclic thermal shock furnace, after 15 cycles of thermal shock between 1200°C and 1600°C, the prepared Y 2 O 3 -W gradient material has no interlayer peeling and fracture failure, and its performance meets the alloy Service performance of melting crucible materials.
实施例4Example 4
预先设定复合材料的层数n=9,材料的最上层为Y2O3层,厚度为2mm。过渡层为8层,每层的厚度均为1mm。将平均粒径为2μm、纯度99%的氧化钇粉末及平均粒径为0.5μm、纯度98%的钨粉按照上文所述公式(1)至(3)计算出过渡层的体积配比,过渡层由上到下各个层的成分分别为:The number of layers of the composite material is preset to be n=9, and the uppermost layer of the material is Y 2 O 3 layers with a thickness of 2 mm. The transition layer is 8 layers, and the thickness of each layer is 1mm. Calculate the volume ratio of the transition layer according to the formulas (1) to (3) above with the yttrium oxide powder with an average particle size of 2 μm and a purity of 99% and the tungsten powder with an average particle size of 0.5 μm and a purity of 98%. The components of the transition layer from top to bottom are:
91.0vol.%Y2O3-9.0vol.%W,73.2vol.%Y2O3-26.8vol.%W, 91.0vol .% Y2O3-9.0vol .%W, 73.2vol .% Y2O3-26.8vol .%W,
57.0vol.%Y2O3-43.0vol.%W,42.2vol.%Y2O3-57.8vol.%W, 57.0vol .% Y2O3-43.0vol .%W, 42.2vol .% Y2O3-57.8vol .%W,
29.0vol.%Y2O3-71.0vol.%W,17.5vol.%Y2O3-82.5vol.%W, 29.0vol .% Y2O3-71.0vol .%W, 17.5vol .% Y2O3-82.5vol .%W,
8.2vol.%Y2O3-91.8vol.%W,1.6vol.%Y2O3-98.4vol.%W, 8.2vol .% Y2O3-91.8vol .%W, 1.6vol .% Y2O3-98.4vol .%W,
按照预先设计的梯度渐变结构将粉末逐层放入石墨模具中,室温下冷压成型,压力为5MPa;经200MPa冷等静压后,在真空热压烧结炉中直接进行无压烧结,制得Y2O3-W梯度材料。真空无压烧结的工艺参数为:1900℃时保温1小时,氩气保护,降温速度为10℃/分钟。According to the pre-designed gradient structure, the powder is put into the graphite mold layer by layer, cold-pressed at room temperature, and the pressure is 5MPa; after 200MPa cold isostatic pressing, it is directly sintered without pressure in a vacuum hot-pressing sintering furnace to obtain Y 2 O 3 -W gradient material. The process parameters of vacuum pressureless sintering are: heat preservation at 1900°C for 1 hour, argon protection, and cooling rate of 10°C/min.
复合材料的致密度达到98.0%,室温下的三点弯曲法测试的抗弯强度为537.0MPa。在循环热震炉氛炉中,于1200℃~1600℃之间循环热震20次后,所制备的Y2O3-W梯度材料没有发生层间剥落及断裂失效等现象,其性能满足合金熔炼坩埚材料的服役性能。The density of the composite material reaches 98.0%, and the bending strength tested by the three-point bending method at room temperature is 537.0MPa. In a cyclic thermal shock furnace, after 20 cycles of thermal shock between 1200°C and 1600°C, the prepared Y 2 O 3 -W gradient material has no interlayer peeling and fracture failure, and its performance meets the alloy Service performance of melting crucible materials.
实施例5Example 5
预先设定复合材料的层数n=9,材料的最上层为Y2O3层,厚度为2mm。过渡层为8层,每层的厚度均为1mm。将平均粒径为4μm、纯度99%的氧化钇粉末及平均粒径为1μm、纯度99%的钨粉按照上文所述公式(1)至(3)计算出过渡层的体积配比,过渡层由上到下各个层的成分分别为:The number of layers of the composite material is preset to be n=9, and the uppermost layer of the material is Y 2 O 3 layers with a thickness of 2 mm. The transition layer is 8 layers, and the thickness of each layer is 1mm. The yttrium oxide powder with an average particle size of 4 μm and a purity of 99% and the tungsten powder with an average particle size of 1 μm and a purity of 99% are used to calculate the volume ratio of the transition layer according to the above-mentioned formulas (1) to (3). The components of each layer from top to bottom are:
91.0vol.%Y2O3-9.0vol.%W,73.2vol.%Y2O3-26.8vol.%W, 91.0vol .% Y2O3-9.0vol .%W, 73.2vol .% Y2O3-26.8vol .%W,
57.0vol.%Y2O3-43.0vol.%W,42.2vol.%Y2O3-57.8vol.%W, 57.0vol .% Y2O3-43.0vol .%W, 42.2vol .% Y2O3-57.8vol .%W,
29.0vol.%Y2O3-71.0vol.%W,17.5vol.%Y2O3-82.5vol.%W, 29.0vol .% Y2O3-71.0vol .%W, 17.5vol .% Y2O3-82.5vol .%W,
8.2vol.%Y2O3-91.8vol.%W,1.6vol.%Y2O3-98.4vol.%W, 8.2vol .% Y2O3-91.8vol .%W, 1.6vol .% Y2O3-98.4vol .%W,
按照预先设计的梯度渐变结构将粉末逐层放入石墨模具中,室温下冷压成型,压力为5MPa。然后,在真空热压烧结炉中直接进行热压烧结,制得Y2O3-W梯度材料。真空热压烧结的工艺参数为:1600℃时保温1小时,压力为35MPa,氩气保护,降温速度为10℃/分钟。Put the powder into the graphite mold layer by layer according to the pre-designed gradient structure, and cold press at room temperature with a pressure of 5 MPa. Then, direct hot-press sintering in a vacuum hot-press sintering furnace to prepare the Y 2 O 3 -W gradient material. The process parameters of the vacuum hot pressing sintering are: heat preservation at 1600°C for 1 hour, pressure at 35MPa, argon protection, and cooling rate at 10°C/min.
复合材料的致密度达到98.5%,室温下的三点弯曲法测试的抗弯强度为551.5MPa。能够抵抗功率约为60MW/m2的瞬间激光热冲击,而且在线平均电子密度为1~1.5×1013/cm3的等离子体原位辐照下材料表面无明显的损伤。The density of the composite material reaches 98.5%, and the bending strength tested by the three-point bending method at room temperature is 551.5MPa. It can resist instantaneous laser thermal shock with a power of about 60MW/m 2 , and there is no obvious damage to the surface of the material under in-situ irradiation of plasma with an online average electron density of 1-1.5×10 13 /cm 3 .
实施例6Example 6
预先设定复合材料的层数n=9,材料的最上层为Y2O3层,厚度为2mm。过渡层为8层,每层的厚度均为1mm。将平均粒径为4μm、纯度99%的氧化钇粉末及平均粒径为1μm、纯度99%的钨粉按照上文所述公式(1)至(3)计算出过渡层的体积配比,过渡层由上到下各个层的成分分别为:The number of layers of the composite material is preset to be n=9, and the uppermost layer of the material is Y 2 O 3 layers with a thickness of 2 mm. The transition layer is 8 layers, and the thickness of each layer is 1mm. The yttrium oxide powder with an average particle size of 4 μm and a purity of 99% and the tungsten powder with an average particle size of 1 μm and a purity of 99% are used to calculate the volume ratio of the transition layer according to the above-mentioned formulas (1) to (3). The components of each layer from top to bottom are:
91.0vol.%Y2O3-9.0vol.%W,73.2vol.%Y2O3-26.8vol.%W, 91.0vol .% Y2O3-9.0vol .%W, 73.2vol .% Y2O3-26.8vol .%W,
57.0vol.%Y2O3-43.0vol.%W,42.2vol.%Y2O3-57.8vol.%W, 57.0vol .% Y2O3-43.0vol .%W, 42.2vol .% Y2O3-57.8vol .%W,
29.0vol.%Y2O3-71.0vol.%W,17.5vol.%Y2O3-82.5vol.%W, 29.0vol .% Y2O3-71.0vol .%W, 17.5vol .% Y2O3-82.5vol .%W,
8.2vol.%Y2O3-91.8vol.%W,1.6vol.%Y2O3-98.4vol.%W, 8.2vol .% Y2O3-91.8vol .%W, 1.6vol .% Y2O3-98.4vol .%W,
按照预先设计的过渡层体积含量逐次放入热喷涂的送粉器中,采用等离子喷涂工艺逐次逐层喷涂送粉,制得Y2O3-W梯度材料。工艺参数为:采用1700℃的电弧加热,喷枪的工作压力为0.5~1.0MPa,喷枪的移动速率为40mm/s,送粉器的送粉量为10g/分钟。According to the volume content of the pre-designed transition layer, it is put into the powder feeder of thermal spraying one by one, and the powder is sprayed layer by layer by the plasma spraying process to prepare the Y 2 O 3 -W gradient material. The process parameters are: arc heating at 1700°C, the working pressure of the spray gun is 0.5-1.0MPa, the moving speed of the spray gun is 40mm/s, and the powder feeding volume of the powder feeder is 10g/min.
复合材料的致密度达到96.8%,室温下的三点弯曲法测试的抗弯强度为540.5MPa。在循环热震炉氛炉中,于1200℃~1600℃之间循环热震20次后,所制备的Y2O3-W梯度材料没有发生层间剥落及断裂失效等现象,其性能满足合金熔炼坩埚材料的服役性能。The density of the composite material reaches 96.8%, and the bending strength tested by the three-point bending method at room temperature is 540.5MPa. In a cyclic thermal shock furnace, after 20 cycles of thermal shock between 1200°C and 1600°C, the prepared Y 2 O 3 -W gradient material has no interlayer peeling and fracture failure, and its performance meets the alloy Service performance of melting crucible materials.
实施例7Example 7
预先设定复合材料的层数n=11,材料的最上层为Y2O3层,厚度为2mm。过渡层为10层,每层的厚度均为0.8mm。将平均粒径为5μm、纯度99.9%的氧化钇粉末及平均粒径为0.8μm、纯度99%的钨粉按照上文所述公式(1)至(3)计算出过渡层的体积配比,过渡层由上到下各个层的成分分别为:The number of layers of the composite material is preset to be n=11, and the uppermost layer of the material is a Y 2 O 3 layer with a thickness of 2 mm. The transition layer is 10 layers, and the thickness of each layer is 0.8mm. Calculate the volume ratio of the transition layer according to the formulas (1) to (3) above with the yttrium oxide powder with an average particle size of 5 μm and a purity of 99.9% and the tungsten powder with an average particle size of 0.8 μm and a purity of 99%. The components of the transition layer from top to bottom are:
92.6vol.%Y2O3-7.4vol.%W,78.4vol.%Y2O3-21.6vol.%W, 92.6vol .% Y2O3-7.4vol .%W, 78.4vol .% Y2O3-21.6vol .%W,
65.0vol.%Y2O3-35.0vol.%W,52.4vol.%Y2O3-47.6vol.%W, 65.0vol .% Y2O3-35.0vol .%W, 52.4vol .% Y2O3-47.6vol .%W,
40.8vol.%Y2O3-59.2vol.%W,30.2vol.%Y2O3-69.8vol.%W, 40.8vol .% Y2O3-59.2vol .%W, 30.2vol .% Y2O3-69.8vol .%W,
20.7vol.%Y2O3-79.3vol.%W,12.5vol.%Y2O3-87.5vol.%W, 20.7vol .% Y2O3-79.3vol .%W, 12.5vol .% Y2O3-87.5vol .%W,
5.8vol.%Y2O3-94.2vol.%W,1.1vol.%Y2O3-98.9vol.%W, 5.8vol .% Y2O3-94.2vol .%W, 1.1vol .% Y2O3-98.9vol .%W,
按照预先设计的梯度渐变结构将粉末逐层放入石墨模具中,室温下冷压成型,压力为5MPa。然后,在真空热压烧结炉中直接进行无压烧结,制得Y2O3-W梯度材料。真空无压烧结的工艺参数为:1850℃时保温1小时,真空度为1.2×10-2Pa,降温速度为10℃/分钟。Put the powder into the graphite mold layer by layer according to the pre-designed gradient structure, and cold press at room temperature with a pressure of 5 MPa. Then, directly carry out pressureless sintering in a vacuum hot-pressing sintering furnace to prepare Y 2 O 3 -W gradient material. The process parameters of the vacuum pressureless sintering are: heat preservation at 1850°C for 1 hour, vacuum degree of 1.2×10 -2 Pa, and cooling rate of 10°C/min.
复合材料的致密度达到98.5%,室温下的三点弯曲法测试的抗弯强度为543.5MPa。在循环热震炉氛炉中,于1200℃~1600℃之间循环热震25次后,所制备的Y2O3-W梯度材料没有发生层间剥落及断裂失效等现象,其性能满足合金熔炼坩埚材料的服役性能。The density of the composite material reaches 98.5%, and the bending strength tested by the three-point bending method at room temperature is 543.5MPa. In a cyclic thermal shock furnace, after 25 cycles of thermal shock between 1200°C and 1600°C, the prepared Y 2 O 3 -W gradient material has no interlayer peeling and fracture failure, and its performance meets the alloy Service performance of melting crucible materials.
实施例8Example 8
预先设定复合材料的层数n=11,材料的最上层为Y2O3层,厚度为2mm。过渡层为10层,每层的厚度均为0.8mm。将平均粒径为5μm、纯度99.9%的氧化钇粉末及平均粒径为0.8μm、纯度99%的钨粉按照上文所述公式(1)至(3)计算出过渡层的体积配比,过渡层由上到下各个层的成分分别为:The number of layers of the composite material is preset to be n=11, and the uppermost layer of the material is a Y 2 O 3 layer with a thickness of 2 mm. The transition layer is 10 layers, and the thickness of each layer is 0.8mm. Calculate the volume ratio of the transition layer according to the formulas (1) to (3) above with the yttrium oxide powder with an average particle size of 5 μm and a purity of 99.9% and the tungsten powder with an average particle size of 0.8 μm and a purity of 99%. The components of the transition layer from top to bottom are:
92.6vol.%Y2O3-7.4vol.%W,78.4vol.%Y2O3-21.6vol.%W, 92.6vol .% Y2O3-7.4vol .%W, 78.4vol .% Y2O3-21.6vol .%W,
65.0vol.%Y2O3-35.0vol.%W,52.4vol.%Y2O3-47.6vol.%W, 65.0vol .% Y2O3-35.0vol .%W, 52.4vol .% Y2O3-47.6vol .%W,
40.8vol.%Y2O3-59.2vol.%W,30.2vol.%Y2O3-69.8vol.%W, 40.8vol .% Y2O3-59.2vol .%W, 30.2vol .% Y2O3-69.8vol .%W,
20.7vol.%Y2O3-79.3vol.%W,12.5vol.%Y2O3-87.5vol.%W, 20.7vol .% Y2O3-79.3vol .%W, 12.5vol .% Y2O3-87.5vol .%W,
5.8vol.%Y2O3-94.2vol.%W,1.1vol.%Y2O3-98.9vol.%W, 5.8vol .% Y2O3-94.2vol .%W, 1.1vol .% Y2O3-98.9vol .%W,
按照预先设计的梯度渐变结构将粉末逐层放入石墨模具中,室温下冷压成型,压力为5MPa。然后,在真空热压烧结炉中直接进行热压烧结,制得Y2O3-W梯度材料。真空热压烧结的工艺参数为:1600℃时保温1小时,压力为40MPa,真空度为1.2×10-2Pa,降温速度为10℃/分钟。Put the powder into the graphite mold layer by layer according to the pre-designed gradient structure, and cold press at room temperature with a pressure of 5 MPa. Then, direct hot-press sintering in a vacuum hot-press sintering furnace to prepare the Y 2 O 3 -W gradient material. The process parameters of the vacuum hot pressing sintering are: heat preservation at 1600°C for 1 hour, pressure at 40MPa, vacuum degree at 1.2×10 -2 Pa, and cooling rate at 10°C/min.
复合材料的致密度达到98.8%,室温下的三点弯曲法测试的抗弯强度为548.0MPa。在循环热震炉氛炉中,于1200℃~1600℃之间循环热震25次后,所制备的Y2O3-W梯度材料没有发生层间剥落及断裂失效等现象,其性能满足合金熔炼坩埚材料的服役性能。The density of the composite material reaches 98.8%, and the bending strength tested by the three-point bending method at room temperature is 548.0MPa. In a cyclic thermal shock furnace, after 25 cycles of thermal shock between 1200°C and 1600°C, the prepared Y 2 O 3 -W gradient material has no interlayer peeling and fracture failure, and its performance meets the alloy Service performance of melting crucible materials.
实施例9Example 9
预先设定复合材料的层数n=11,材料的最上层为Y2O3层,厚度为2mm。过渡层为10层,每层的厚度均为0.8mm。将平均粒径为4μm、纯度99.9%的氧化钇粉末及平均粒径为1μm、纯度99%的钨粉按照上文所述公式(1)至(3)计算出过渡层的体积配比,过渡层由上到下各个层的成分分别为:The number of layers of the composite material is preset to be n=11, and the uppermost layer of the material is a Y 2 O 3 layer with a thickness of 2 mm. The transition layer is 10 layers, and the thickness of each layer is 0.8mm. The yttrium oxide powder with an average particle size of 4 μm and a purity of 99.9% and the tungsten powder with an average particle size of 1 μm and a purity of 99% are used to calculate the volume ratio of the transition layer according to the above formulas (1) to (3). The components of each layer from top to bottom are:
92.6vol.%Y2O3-7.4vol.%W,78.4vol.%Y2O3-21.6vol.%W, 92.6vol .% Y2O3-7.4vol .%W, 78.4vol .% Y2O3-21.6vol .%W,
65.0vol.%Y2O3-35.0vol.%W,52.4vol.%Y2O3-47.6vol.%W, 65.0vol .% Y2O3-35.0vol .%W, 52.4vol .% Y2O3-47.6vol .%W,
40.8vol.%Y2O3-59.2vol.%W,30.2vol.%Y2O3-69.8vol.%W, 40.8vol .% Y2O3-59.2vol .%W, 30.2vol .% Y2O3-69.8vol .%W,
20.7vol.%Y2O3-79.3vol.%W,12.5vol.%Y2O3-87.5vol.%W, 20.7vol .% Y2O3-79.3vol .%W, 12.5vol .% Y2O3-87.5vol .%W,
5.8vol.%Y2O3-94.2vol.%W,1.1vol.%Y2O3-98.9vol.%W, 5.8vol .% Y2O3-94.2vol .%W, 1.1vol .% Y2O3-98.9vol .%W,
按照预先设计的过渡层体积含量,采用流延成型工艺,在室温下制备具有成分梯度变化的复合材料坯体。经过90℃干燥和280℃排胶工艺,制备出成分梯度变化的复合材料坯体。室温下冷压成型,压力为5MPa。再经200MPa冷等静压后制备出较为致密的成分梯度变化的复合材料坯体。在真空热压烧结炉中直接进行无压烧结,制得Y2O3-W梯度材料。真空无压烧结的工艺参数为:1800℃时保温1小时,真空度为1.3×10-2Pa,降温速度为10℃/分钟。According to the pre-designed volume content of the transition layer, a tape casting process is used to prepare a composite material green body with a composition gradient change at room temperature. After drying at 90°C and debinding at 280°C, a composite body with gradient composition was prepared. Cold pressing at room temperature, the pressure is 5MPa. After 200MPa cold isostatic pressing, a relatively dense composite body with gradient composition was prepared. The Y 2 O 3 -W gradient material is obtained by direct pressureless sintering in a vacuum hot-pressing sintering furnace. The process parameters of vacuum pressureless sintering are: heat preservation at 1800°C for 1 hour, vacuum degree of 1.3×10 -2 Pa, and cooling rate of 10°C/min.
复合材料的致密度达到98.3%,室温下的三点弯曲法测试的抗弯强度为445.0MPa。能够抵抗功率约为70MW/m2的瞬间激光热冲击,而且在线平均电子密度为1~1.5×1013/cm3的等离子体原位辐照下材料表面无明显的损伤。The density of the composite material reaches 98.3%, and the bending strength tested by the three-point bending method at room temperature is 445.0MPa. It can resist instantaneous laser thermal shock with a power of about 70MW/m 2 , and there is no obvious damage to the surface of the material under in-situ irradiation of plasma with an online average electron density of 1-1.5×10 13 /cm 3 .
实施例10Example 10
预先设定复合材料的层数n=5,材料的最上层为Y2O3层,厚度为2mm。过渡层为3层,每层的厚度均为2mm,按从Y2O3层开始计算的顺序,过渡层的第一层、第二层和第三层中的氧化钇与钨的体积配比依次为3:1、1:1和1:3。最下层为钨层,厚度为2mm。将平均粒径为1μm、纯度98%的氧化钇粉末及平均粒径为0.2μm、纯度98%的钨粉按照如上体积配比,过渡层由上到下各个层的成分分别为:The number of layers of the composite material is preset to be n=5, and the uppermost layer of the material is Y 2 O 3 layers with a thickness of 2 mm. The transition layer is 3 layers, and the thickness of each layer is 2mm. According to the order of calculation from the Y 2 O 3 layer, the volume ratio of yttrium oxide and tungsten in the first layer, the second layer and the third layer of the transition layer The order is 3:1, 1:1 and 1:3. The bottom layer is a tungsten layer with a thickness of 2mm. The yttrium oxide powder with an average particle size of 1 μm and a purity of 98% and the tungsten powder with an average particle size of 0.2 μm and a purity of 98% are mixed according to the above volume ratio, and the components of each layer from top to bottom of the transition layer are as follows:
75.0vol.%Y2O3-25.0vol.%W,75.0vol.% Y 2 O 3 -25.0vol.% W,
50.0vol.%Y2O3-50.0vol.%W,50.0vol.% Y 2 O 3 -50.0vol.% W,
25.0vol.%Y2O3-75.0vol.%W, 25.0vol .% Y2O3-75.0vol .%W,
按照预先设计的梯度渐变结构将粉末逐层放入石墨模具中,室温下冷压成型,压力为5MPa。然后,在真空热压烧结炉中直接进行热压烧结,制得Y2O3-W梯度材料。真空热压烧结的工艺参数为:1500℃时保温1小时,压力为30MPa,真空度为1.3×10-2Pa,降温速度为10℃/分钟。Put the powder into the graphite mold layer by layer according to the pre-designed gradient structure, and cold press at room temperature with a pressure of 5 MPa. Then, direct hot-press sintering in a vacuum hot-press sintering furnace to prepare the Y 2 O 3 -W gradient material. The process parameters of the vacuum hot pressing sintering are: heat preservation at 1500°C for 1 hour, pressure at 30MPa, vacuum degree at 1.3×10 -2 Pa, and cooling rate at 10°C/min.
复合材料的致密度达到90.4%,室温下的三点弯曲法测试的抗弯强度为230.1MPa。在循环热震炉氛炉中,于1200℃~1600℃之间循环热震8次后,所制备的Y2O3-W梯度材料发生层间剥落及断裂失效等现象,其性能不能满足合金熔炼坩埚材料的服役性能。The density of the composite material reaches 90.4%, and the bending strength tested by the three-point bending method at room temperature is 230.1MPa. In a cyclic thermal shock furnace, after 8 cycles of thermal shock between 1200°C and 1600°C, the prepared Y 2 O 3 -W gradient material has interlayer peeling and fracture failure, and its performance cannot meet the requirements of alloys. Service performance of melting crucible materials.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610855084.6A CN106270532A (en) | 2016-09-27 | 2016-09-27 | Yittrium oxide tungsten functionally gradient material (FGM) and preparation method thereof and the application in manufacturing alloy melting crucible |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610855084.6A CN106270532A (en) | 2016-09-27 | 2016-09-27 | Yittrium oxide tungsten functionally gradient material (FGM) and preparation method thereof and the application in manufacturing alloy melting crucible |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106270532A true CN106270532A (en) | 2017-01-04 |
Family
ID=57715104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610855084.6A Pending CN106270532A (en) | 2016-09-27 | 2016-09-27 | Yittrium oxide tungsten functionally gradient material (FGM) and preparation method thereof and the application in manufacturing alloy melting crucible |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106270532A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107022711A (en) * | 2017-04-26 | 2017-08-08 | 中南大学 | A kind of Y2Ti2O7/ stainless steel functional gradient composite materials and preparation method thereof |
CN117253568A (en) * | 2023-11-15 | 2023-12-19 | 沈阳恒泰鑫源精铸耐材有限公司 | Coating process optimization method and system for preparing yttrium oxide crucible |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63243679A (en) * | 1987-03-30 | 1988-10-11 | 株式会社東芝 | Crucible for melting uranium |
JP2002088405A (en) * | 2000-07-13 | 2002-03-27 | Toshiba Corp | Functionally gradient material, its production method, and sealing member and discharge lamp usin the material |
JP2007314886A (en) * | 2007-07-06 | 2007-12-06 | Tocalo Co Ltd | Member coated with yttrium oxide sprayed coating film, excellent in heat-radiation property and damage resistance and method of manufacturing the same |
CN101363687A (en) * | 2008-09-19 | 2009-02-11 | 中国科学院上海硅酸盐研究所 | Composite coating for smelting metal high temperature vessel and preparation method thereof |
CN102199033A (en) * | 2010-03-26 | 2011-09-28 | 迪亚摩弗股份公司 | Functionally graded material shape and method for producing such a shape |
-
2016
- 2016-09-27 CN CN201610855084.6A patent/CN106270532A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63243679A (en) * | 1987-03-30 | 1988-10-11 | 株式会社東芝 | Crucible for melting uranium |
JP2002088405A (en) * | 2000-07-13 | 2002-03-27 | Toshiba Corp | Functionally gradient material, its production method, and sealing member and discharge lamp usin the material |
JP2007314886A (en) * | 2007-07-06 | 2007-12-06 | Tocalo Co Ltd | Member coated with yttrium oxide sprayed coating film, excellent in heat-radiation property and damage resistance and method of manufacturing the same |
CN101363687A (en) * | 2008-09-19 | 2009-02-11 | 中国科学院上海硅酸盐研究所 | Composite coating for smelting metal high temperature vessel and preparation method thereof |
CN102199033A (en) * | 2010-03-26 | 2011-09-28 | 迪亚摩弗股份公司 | Functionally graded material shape and method for producing such a shape |
Non-Patent Citations (2)
Title |
---|
石渡裕等: "活性金属溶解用Y203粒子分散W合金の開発", 《BULLETIN OF THE JAPAN INSTITUTE OF METALS》 * |
胡文彬等: "金属-陶瓷梯度功能材料的研究和发展", 《材料工程》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107022711A (en) * | 2017-04-26 | 2017-08-08 | 中南大学 | A kind of Y2Ti2O7/ stainless steel functional gradient composite materials and preparation method thereof |
CN117253568A (en) * | 2023-11-15 | 2023-12-19 | 沈阳恒泰鑫源精铸耐材有限公司 | Coating process optimization method and system for preparing yttrium oxide crucible |
CN117253568B (en) * | 2023-11-15 | 2024-01-26 | 沈阳恒泰鑫源精铸耐材有限公司 | Coating process optimization method and system for preparing yttrium oxide crucible |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107141004B (en) | Boron carbide composite material and preparation method thereof | |
CN105886812B (en) | WNbTaMoV high-entropy alloy and preparation method thereof | |
CN103981389B (en) | A kind of method that low-temperature sintering W skeleton prepares tungsten-copper alloy | |
US12151979B2 (en) | Highly oriented nanometer max phase ceramic and preparation method for max phase in-situ autogenous oxide nanocomposite ceramic | |
CN100478467C (en) | Activated sintering preparation method of fine crystalline non-magnetic wolfram-copper alloy | |
CN106588021B (en) | A kind of silicon carbide ceramics and preparation method thereof | |
CN101913879B (en) | Silicon nitride material and preparation method thereof, as well as silicon nitride heating device and production method thereof | |
CN109400164B (en) | A MAX phase/nitride ceramic layered gradient composite material and its rapid preparation method and application | |
CN100455688C (en) | Titanium carbon silicide-based gradient material and preparation method of in-situ reaction | |
CN105568024A (en) | Preparation method for nano ceramic reinforced metal-matrix composite | |
CN106392082A (en) | Yttrium oxide-tungsten graded material as well as preparation method thereof and application thereof in manufacturing crucible for rare-earth smelting | |
CN102284701A (en) | Preparation method for Cu-MoCu-Cu composite sheet | |
CN101186981A (en) | Preparation method of high-strength and high-toughness ultrafine-grained WC-10Co cemented carbide | |
CN102886942A (en) | Layered composite boron carbide ceramic material and its preparation method | |
CN107473237A (en) | A kind of preparation method of binary tungsten boride superhard material | |
KR20100108290A (en) | Alumina sintered body, method for manufacturing the same, and semiconductor manufacturing apparatus member | |
CN107285329B (en) | Tungsten diboride hard material and preparation method and application thereof | |
CN114574789B (en) | Silicon carbide fiber and medium-high entropy ceramic reinforced metal matrix composite material and preparation method | |
CN106270532A (en) | Yittrium oxide tungsten functionally gradient material (FGM) and preparation method thereof and the application in manufacturing alloy melting crucible | |
CN101182212B (en) | Boride-oxide composite ceramics and preparation method thereof | |
Du et al. | Synthesis, fabrication, and applications of Ti3SiC2/SiC ceramics: a review | |
CN100581807C (en) | NbTiAl series laminate structure intermetallic compound composite material and its preparation method | |
CN104593657A (en) | Boron carbide-based composite material and preparation method thereof | |
CN112899510B (en) | A kind of in-situ reaction synthesis method of TiC/Ni composite material | |
CN103949647B (en) | A kind of self-diffusion gradient function complex cutter material and its preparation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170104 |
|
RJ01 | Rejection of invention patent application after publication |