CN106268544A - Tower ultra-fine bubble reactor - Google Patents
Tower ultra-fine bubble reactor Download PDFInfo
- Publication number
- CN106268544A CN106268544A CN201610641251.7A CN201610641251A CN106268544A CN 106268544 A CN106268544 A CN 106268544A CN 201610641251 A CN201610641251 A CN 201610641251A CN 106268544 A CN106268544 A CN 106268544A
- Authority
- CN
- China
- Prior art keywords
- chamber
- outlet
- reaction chamber
- gas
- receiving chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007788 liquid Substances 0.000 claims abstract description 91
- 238000006243 chemical reaction Methods 0.000 claims abstract description 56
- 239000000203 mixture Substances 0.000 claims abstract description 33
- 239000012530 fluid Substances 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 4
- 230000006698 induction Effects 0.000 claims 8
- 230000008676 import Effects 0.000 claims 7
- 238000007599 discharging Methods 0.000 claims 3
- 238000012546 transfer Methods 0.000 abstract description 5
- 230000035484 reaction time Effects 0.000 abstract description 4
- 238000005265 energy consumption Methods 0.000 abstract description 3
- 230000004308 accommodation Effects 0.000 description 14
- 238000002347 injection Methods 0.000 description 10
- 239000007924 injection Substances 0.000 description 10
- 230000007423 decrease Effects 0.000 description 7
- 238000004891 communication Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000012824 chemical production Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J10/00—Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
本发明公开了一种塔式超细气泡反应器。所述塔式超细气泡反应器包括:本体,所述本体内具有反应腔,所述反应腔的壁上设有通孔、进液口、循环液出口、进气口和循环气出口;一次气泡破碎器,所述一次气泡破碎器的一部分穿过所述通孔且伸入到所述反应腔内,其中所述一次气泡破碎器具有循环液进口、循环气进口和气液混合物出口,所述循环液进口与所述循环液出口连通,所述循环气进口与所述循环气出口连通;和二次气泡破碎器,所述二次气泡破碎器具有进料口和出料口,所述进料口与所述气液混合物出口连通。根据本发明实施例的塔式超细气泡反应器具有传质效率高、反应速率快、能耗低等优点,能大幅度缩短反应时间,减小反应器尺寸。
The invention discloses a tower type superfine bubble reactor. The tower-type ultra-fine bubble reactor comprises: a body, the body has a reaction chamber, and the wall of the reaction chamber is provided with a through hole, a liquid inlet, a circulating liquid outlet, an air inlet and a circulating gas outlet; A bubble breaker, a part of the primary bubble breaker passes through the through hole and extends into the reaction chamber, wherein the primary bubble breaker has a circulating liquid inlet, a circulating gas inlet and a gas-liquid mixture outlet, the The circulating liquid inlet communicates with the circulating liquid outlet, the circulating gas inlet communicates with the circulating gas outlet; and a secondary bubble breaker, the secondary bubble breaker has a feed port and a discharge port, the feed inlet The feed port communicates with the gas-liquid mixture outlet. The tower-type ultra-fine bubble reactor according to the embodiment of the present invention has the advantages of high mass transfer efficiency, fast reaction rate and low energy consumption, and can greatly shorten the reaction time and reduce the size of the reactor.
Description
技术领域technical field
本发明涉及反应器,具体而言,涉及塔式超细气泡反应器。The invention relates to a reactor, in particular to a tower-type ultrafine bubble reactor.
背景技术Background technique
反应器是化工工艺过程的核心,采用高效节能的反应器是提升化工装置竞争力的关键。传统的多相反应器多采用鼓泡、搅拌或两者相结合的方式,这些方式放大效应明显,气泡直径大通常为10-20mm之间,气液界面积小,传热传质效率低,反应时间长,设备体积大,不能满足现代化工生产高效节能的要求。The reactor is the core of the chemical process, and the use of high-efficiency and energy-saving reactors is the key to improving the competitiveness of chemical plants. Traditional multiphase reactors mostly use bubbling, stirring or a combination of the two. These methods have obvious amplification effects. The diameter of the bubble is usually between 10-20mm, the gas-liquid interface area is small, and the heat and mass transfer efficiency is low. The reaction time is long and the equipment is bulky, which cannot meet the requirements of high efficiency and energy saving in modern chemical production.
针对上述问题,有人提出了喷射强化反应器的理念,利用一次气泡破碎器内的液气两相卷吸混合,并产生大量气泡,较传统的多相反应器能较大幅度地大幅度提高反应速率。但现有的喷射强化反应器所产生的气泡直径仍然偏大,大多处在4mm-10mm之间,其整体能量利用率尚较低。In response to the above problems, someone proposed the concept of a jet-enhanced reactor, using the liquid-gas two-phase entrainment and mixing in the primary bubble breaker to generate a large number of bubbles, which can greatly improve the reaction rate compared with the traditional multi-phase reactor. rate. However, the diameter of the bubbles produced by the existing jet intensified reactors is still relatively large, mostly between 4mm and 10mm, and the overall energy utilization rate is still low.
发明内容Contents of the invention
本发明经过深入研究后发现:一次气泡破碎器喷射出的气液混合物的机械能很高,该气液混合物直接进入反应器内并形成强烈的湍动,此部分湍动能最终以摩擦热的形式耗散了,对气泡破碎的贡献较小。After in-depth research, the present invention finds that the gas-liquid mixture ejected from the primary bubble breaker has high mechanical energy, and the gas-liquid mixture directly enters the reactor and forms strong turbulence, and this part of the turbulent kinetic energy is finally consumed in the form of frictional heat. disperse and contribute less to bubble collapse.
本发明旨在解决现有技术中存在的问题。为此,本发明提出一种具有能量利用率高、气泡直径更小、气液界面积更大的塔式超细气泡反应器。The present invention aims to solve the problems existing in the prior art. Therefore, the present invention proposes a tower-type ultra-fine bubble reactor with high energy utilization rate, smaller bubble diameter and larger gas-liquid interface area.
本发明所述塔式超细气泡反应器包括:本体,所述本体内具有反应腔,所述反应腔的壁上设有通孔、进液口、循环液出口、进气口和循环气出口;一次气泡破碎器,所述一次气泡破碎器的一部分穿过所述通孔且伸入到所述反应腔内,其中所述一次气泡破碎器具有循环液进口、循环气进口和气液混合物出口,所述循环液进口与所述循环液出口连通,所述循环气进口与所述循环气出口连通;和二次气泡破碎器,所述二次气泡破碎器具有进料口和出料口,所述进料口与所述气液混合物出口连通。The tower type ultra-fine bubble reactor of the present invention comprises: a body, the body has a reaction chamber inside, and the wall of the reaction chamber is provided with a through hole, a liquid inlet, a circulating liquid outlet, an air inlet and a circulating gas outlet A primary bubble breaker, a part of the primary bubble breaker passes through the through hole and extends into the reaction chamber, wherein the primary bubble breaker has a circulating liquid inlet, a circulating gas inlet and a gas-liquid mixture outlet, The circulating liquid inlet is communicated with the circulating liquid outlet, the circulating gas inlet is communicated with the circulating gas outlet; and a secondary bubble breaker, the secondary bubble breaker has a feed port and a discharge port, the The feed inlet is in communication with the gas-liquid mixture outlet.
根据本发明实施例的塔式超细气泡反应器具有传质效率高、反应速率快、能耗低的优点,能大幅度缩短反应时间。The tower-type ultra-fine bubble reactor according to the embodiment of the present invention has the advantages of high mass transfer efficiency, fast reaction rate and low energy consumption, and can greatly shorten the reaction time.
另外,根据本发明实施例的塔式超细气泡反应器还可以具有如下附加的技术特征:In addition, the tower-type ultra-fine bubble reactor according to the embodiment of the present invention can also have the following additional technical features:
根据本发明的一个实施例,所述循环气出口设在所述反应腔的顶壁上,所述进液口、所述进气口设在所述反应腔的侧壁的上部,所述反应腔的壁上还设有出液口,所述出液口设在所述反应腔的底壁上,所述循环液出口设在所述反应腔的侧壁上且位于所述进液口和所述进气口的下方,其中所述塔式超细气泡反应器进一步包括溢流挡板,所述溢流挡板设在所述反应腔的壁上且邻近所述循环液出口,其中所述溢流挡板的上沿位于所述循环液出口的上方。According to an embodiment of the present invention, the circulating gas outlet is arranged on the top wall of the reaction chamber, the liquid inlet and the air inlet are arranged on the upper part of the side wall of the reaction chamber, and the reaction chamber A liquid outlet is also provided on the wall of the chamber, and the liquid outlet is arranged on the bottom wall of the reaction chamber, and the circulating liquid outlet is arranged on the side wall of the reaction chamber and is located between the liquid inlet and the Below the air inlet, wherein the tower-type ultra-fine bubble reactor further includes an overflow baffle, the overflow baffle is arranged on the wall of the reaction chamber and is adjacent to the outlet of the circulating liquid, wherein the The upper edge of the overflow baffle is located above the circulating fluid outlet.
根据本发明的一个实施例,所述一次气泡破碎器包括:吸气室,所述吸气室具有所述循环气进口;喷射管,所述喷射管具有所述循环液进口,所述喷射管的端部构造出喷嘴,所述喷嘴伸入所述吸气室内;混合管,所述混合管与所述吸气室连通,所述混合管的前端口与所述喷嘴配合,其中所述混合管具有所述气液混合物出口;固定筋板,所述固定筋板的一端与所述反应腔的内壁连接,所述固定筋板的另一端与所述混合管的外壁连接。According to an embodiment of the present invention, the primary bubble breaker includes: a suction chamber, the suction chamber has the circulating gas inlet; a spray pipe, the spray pipe has the circulating liquid inlet, and the spray pipe The nozzle is constructed at the end of the nozzle, and the nozzle extends into the suction chamber; the mixing tube, the mixing tube communicates with the suction chamber, and the front port of the mixing tube is matched with the nozzle, wherein the mixing The tube has the gas-liquid mixture outlet; a fixed rib, one end of the fixed rib is connected to the inner wall of the reaction chamber, and the other end of the fixed rib is connected to the outer wall of the mixing tube.
根据本发明的一个实施例,所述吸气室包括彼此相连的前段和后段,所述前段具有所述循环气进口,所述前段的横截面积沿轴线方向保持不变,所述后段的横截面积由前向后减小,其中所述后段的端部敞开且与所述混合管的前端部相连,所述喷嘴穿过所述吸气室的前壁伸入所述吸气室内,所述喷嘴邻近所述混合管。According to an embodiment of the present invention, the suction chamber includes a front section and a rear section connected to each other, the front section has the circulation gas inlet, the cross-sectional area of the front section remains constant along the axial direction, and the rear section The cross-sectional area decreases from front to back, wherein the end of the rear section is open and connected to the front end of the mixing tube, and the nozzle extends into the suction chamber through the front wall of the suction chamber. Inside the chamber, the nozzle is adjacent to the mixing tube.
根据本发明的一个实施例,所述吸气室、所述喷射管和所述混合管中的每一个均水平地设置,所述混合管的横截面积沿前后方向保持不变,其中所述气液混合物出口设在所述混合管的侧壁上且邻近所述扩散管的后端部。According to an embodiment of the present invention, each of the suction chamber, the injection pipe and the mixing pipe is arranged horizontally, and the cross-sectional area of the mixing pipe remains constant along the front-to-back direction, wherein the The gas-liquid mixture outlet is provided on the side wall of the mixing tube and adjacent to the rear end of the diffusion tube.
根据本发明的一个实施例,所述二次气泡破碎器包括:连接管,所述连接管的第一端与所述气液混合物出口相连;和容纳腔,所述容纳腔的壁上设有所述进料口和所述出料口,所述容纳腔的在其轴向上相对的第一端和第二端上均设有所述出料口,其中所述连接管的第二端与所述进料口相连,所述连接管的长度方向与所述容纳腔的周向相切。According to an embodiment of the present invention, the secondary bubble breaker includes: a connecting pipe, the first end of which is connected to the gas-liquid mixture outlet; and a housing chamber, the wall of which is provided with The feed port and the discharge port are provided with the discharge ports on the opposite first end and the second end of the accommodating cavity in the axial direction, wherein the second end of the connecting pipe It is connected with the feed inlet, and the length direction of the connecting pipe is tangent to the circumference of the accommodating chamber.
根据本发明的一个实施例,所述二次气泡破碎器的进料口在所述容纳腔的轴向上位于所述容纳腔的中部,所述容纳腔的横截面积由所述容纳腔的中部向所述容纳腔的端部减小,优选地,所述容纳腔相对经过所述容纳腔的轴向的中心的横截面对称。According to an embodiment of the present invention, the feed port of the secondary bubble breaker is located in the middle of the housing chamber in the axial direction of the housing chamber, and the cross-sectional area of the housing chamber is determined by the The middle portion decreases toward the end of the accommodation chamber, and preferably, the accommodation chamber is symmetrical with respect to a cross section passing through the axial center of the accommodation chamber.
根据本发明的一个实施例,所述容纳腔为回转体状,所述容纳腔的回转母线为一条圆弧线、或者一条与所述容纳腔的轴线平行的直线和两条直线组成的曲线、或者一条与所述容纳腔的轴线平行的直线和两条圆弧线组成的曲线,优选地,与所述容纳腔的轴线平行的所述直线与两条所述圆弧线在它们的相交处相切。According to an embodiment of the present invention, the accommodating cavity is in the shape of a rotator, and the generatrix of the gyration of the accommodating cavity is a circular arc, or a curve composed of a straight line parallel to the axis of the accommodating cavity and two straight lines, Or a curve composed of a straight line parallel to the axis of the accommodation cavity and two arc lines, preferably, the line parallel to the axis of the accommodation cavity and the two arc lines are at their intersection Tangent.
附图说明Description of drawings
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:The above and/or additional aspects and advantages of the present invention will become apparent and comprehensible from the description of the embodiments in conjunction with the following drawings, wherein:
图1是根据本发明实施例的塔式超细气泡反应器的结构示意图;Fig. 1 is the structural representation of tower type superfine bubble reactor according to the embodiment of the present invention;
图2是根据本发明实施例的塔式超细气泡反应器的一次气泡破碎器的结构示意图;Fig. 2 is a structural schematic diagram of a primary bubble breaker of a tower-type ultra-fine bubble reactor according to an embodiment of the present invention;
图3是根据本发明实施例的塔式超细气泡反应器的二次气泡破碎器的结构示意图;3 is a schematic structural view of a secondary bubble breaker of a tower-type ultrafine bubble reactor according to an embodiment of the present invention;
图4是根据本发明实施例的塔式超细气泡反应器的二次气泡破碎器的结构示意图;4 is a schematic structural view of a secondary bubble breaker of a tower-type ultrafine bubble reactor according to an embodiment of the present invention;
图5是根据本发明实施例的塔式超细气泡反应器的二次气泡破碎器的结构示意图。Fig. 5 is a schematic structural view of a secondary bubble breaker of a tower-type ultrafine bubble reactor according to an embodiment of the present invention.
具体实施方式detailed description
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。Embodiments of the present invention are described in detail below, examples of which are shown in the drawings, wherein the same or similar reference numerals designate the same or similar elements or elements having the same or similar functions throughout. The embodiments described below by referring to the figures are exemplary only for explaining the present invention and should not be construed as limiting the present invention.
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。In describing the present invention, it should be understood that the terms "center", "longitudinal", "transverse", "upper", "lower", "front", "rear", "left", "right", " The orientations or positional relationships indicated by "vertical", "horizontal", "top", "bottom", "inner" and "outer" are based on the orientations or positional relationships shown in the drawings, and are only for the convenience of describing the present invention and Simplified descriptions, rather than indicating or implying that the device or element referred to must have a particular orientation, be constructed and operate in a particular orientation, and thus should not be construed as limiting the invention. In addition, the terms "first" and "second" are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as "first" and "second" may explicitly or implicitly include one or more of these features. In the description of the present invention, unless otherwise specified, "plurality" means two or more.
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。In the description of the present invention, it should be noted that unless otherwise specified and limited, the terms "installation", "connection" and "connection" should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it may be mechanically connected or electrically connected; it may be directly connected or indirectly connected through an intermediary, and it may be the internal communication of two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention in specific situations.
下面参考图1-图5描述根据本发明实施例的塔式超细气泡反应器1。如图1-图5所示,根据本发明实施例的塔式超细气泡反应器1包括本体10、一次气泡破碎器102和二次气泡破碎器103。A tower-type ultrafine bubble reactor 1 according to an embodiment of the present invention will be described below with reference to FIGS. 1-5 . As shown in FIGS. 1-5 , a tower-type ultrafine bubble reactor 1 according to an embodiment of the present invention includes a body 10 , a primary bubble breaker 102 and a secondary bubble breaker 103 .
本体10内具有反应腔101,反应腔101的壁上设有通孔、进液口104、进气口105、循环气出口106、循环液出口107、出液口108。一次气泡破碎器102的一部分穿过该通孔且伸入到反应腔101内,其中一次气泡破碎器102具有循环液进口1021、循环气进口1022和气液混合物出口1028,循环液进口1021与循环液出口107连通,循环气进口1022与循环气出口106连通。二次气泡破碎器103具有进料口和出料口1033,该进料口与气液混合物出口1028连通。The main body 10 has a reaction chamber 101 , and the wall of the reaction chamber 101 is provided with through holes, a liquid inlet 104 , an air inlet 105 , a circulating gas outlet 106 , a circulating liquid outlet 107 , and a liquid outlet 108 . A part of the primary bubble breaker 102 passes through the through hole and extends into the reaction chamber 101, wherein the primary bubble breaker 102 has a circulating liquid inlet 1021, a circulating gas inlet 1022 and a gas-liquid mixture outlet 1028, and the circulating liquid inlet 1021 and the circulating liquid The outlet 107 is in communication, and the recycle gas inlet 1022 is in communication with the recycle gas outlet 106 . The secondary bubble breaker 103 has a feed port and a discharge port 1033 , and the feed port communicates with the gas-liquid mixture outlet 1028 .
下面参考图1-图5描述根据本发明实施例的塔式超细气泡反应器1的工作过程。新鲜的料液从进液口104加入到反应腔101内,气体从进气口105加入到反应腔101内直至反应腔101内达到所需的压力。反应腔101内的料液从循环液出口107抽出,在泵的驱动下进入到一次气泡破碎器102内。有利地,在循环料液进入到一次气泡破碎器102内之前,可以对料液进行换热。The working process of the tower-type ultrafine bubble reactor 1 according to the embodiment of the present invention will be described below with reference to FIGS. 1-5 . Fresh feed liquid is fed into the reaction chamber 101 from the liquid inlet 104 , and gas is fed into the reaction chamber 101 from the gas inlet 105 until the required pressure is reached in the reaction chamber 101 . The feed liquid in the reaction chamber 101 is drawn out from the circulating liquid outlet 107 and enters the primary bubble breaker 102 driven by the pump. Advantageously, before the circulating feed liquid enters the primary bubble breaker 102, heat exchange can be performed on the feed liquid.
同时,由于高速的循环料液在一次气泡破碎器102内形成负压,因此高速的循环料液将循环气体带入一次气泡破碎器102内并混合剪切产生大量气泡,以便形成气液混合物。具体而言,循环气体由循环气出口106离开反应腔101,且由循环气进口1022进入到一次气泡破碎器102内。At the same time, since the high-speed circulating feed liquid forms a negative pressure in the primary bubble breaker 102, the high-speed circulating feed liquid brings the circulating gas into the primary bubble breaker 102 and mixes and shears to generate a large number of bubbles to form a gas-liquid mixture. Specifically, the recycle gas leaves the reaction chamber 101 through the recycle gas outlet 106 and enters the primary bubble breaker 102 through the recycle gas inlet 1022 .
该气液混合物由一次气泡破碎器102的气液混合物出口1028喷出并进入到二次气泡破碎器103内,该气液混合物在二次气泡破碎器103内高速旋转,由于密度差异,气体聚集于二次气泡破碎器103的轴线附近,被液体压缩剪切产生大量的直径小于等于50μm的超细气泡,并由二次气泡破碎器103的出料口1033喷出,进入反应腔101内。由于气泡直径越小,气泡在液体中的上升速度越小。因此,反应腔101内会充满大量的超细气泡,以便形成乳状液,从而可以使反应能够快速地进行。The gas-liquid mixture is ejected from the gas-liquid mixture outlet 1028 of the primary bubble breaker 102 and enters the secondary bubble breaker 103. The gas-liquid mixture rotates at a high speed in the secondary bubble breaker 103. Due to the difference in density, the gas gathers Near the axis of the secondary bubble breaker 103 , a large number of ultrafine bubbles with a diameter less than or equal to 50 μm are generated by liquid compression and shearing, and are ejected from the outlet 1033 of the secondary bubble breaker 103 into the reaction chamber 101 . As the diameter of the bubble is smaller, the rising speed of the bubble in the liquid is smaller. Therefore, the reaction chamber 101 will be filled with a large number of ultrafine air bubbles to form an emulsion, so that the reaction can be carried out quickly.
根据本发明实施例的塔式超细气泡反应器1通过设置与一次气泡破碎器102相连的二次气泡破碎器103,从而可以充分地利用一次气泡破碎器102喷出的气液混合物的机械能,将一次气泡破碎器102喷出的气液混合物的机械能转化为气泡的表面能,以便使该气液混合物内的直径2mm的气泡变成直径小于等于50μm的超细气泡。与现有的气液反应器的气液相界面积相比,在相同的输入功率下,根据本发明实施例的塔式超细气泡反应器1的气液相界面积可以提高到40倍以上。According to the tower type ultra-fine bubble reactor 1 of the embodiment of the present invention, by setting the secondary bubble breaker 103 connected to the primary bubble breaker 102, the mechanical energy of the gas-liquid mixture ejected by the primary bubble breaker 102 can be fully utilized, The mechanical energy of the gas-liquid mixture ejected from the primary bubble breaker 102 is converted into the surface energy of the bubbles, so that the bubbles with a diameter of 2 mm in the gas-liquid mixture become ultrafine bubbles with a diameter of 50 μm or less. Compared with the gas-liquid phase boundary area of the existing gas-liquid reactor, under the same input power, the gas-liquid phase boundary area of the tower type ultra-fine bubble reactor 1 according to the embodiment of the present invention can be increased to more than 40 times .
而且,气泡的直径越小,气泡的传质系数越高,从而可以大幅度提高塔式超细气泡反应器1的反应效率。因此,根据本发明实施例的塔式超细气泡反应器1具有传质效率高、反应速率快、能耗低等优点,能大幅度缩短反应时间,减小反应器尺寸。Moreover, the smaller the diameter of the bubbles, the higher the mass transfer coefficient of the bubbles, so that the reaction efficiency of the tower-type ultrafine bubble reactor 1 can be greatly improved. Therefore, the tower-type ultra-fine bubble reactor 1 according to the embodiment of the present invention has the advantages of high mass transfer efficiency, fast reaction rate, and low energy consumption, and can greatly shorten the reaction time and reduce the size of the reactor.
如图1-图3所示,反应腔101的高径比在3-20之间。循环气出口106设在反应腔101的顶壁上,进液口104和进气口105设在反应腔101的侧壁的上部。随着反应产物从循环液出口107采出,可以通过进液口104来补充料液以便维持反应腔101内的液位稳定。通过进气口105来补充气体以便来稳定反应腔101内的压力。As shown in FIGS. 1-3 , the aspect ratio of the reaction chamber 101 is between 3-20. The circulating gas outlet 106 is arranged on the top wall of the reaction chamber 101 , and the liquid inlet 104 and the gas inlet 105 are arranged on the upper part of the side wall of the reaction chamber 101 . As the reaction product is withdrawn from the circulating liquid outlet 107 , the feed liquid can be replenished through the liquid inlet 104 to maintain a stable liquid level in the reaction chamber 101 . Gas is supplemented through the gas inlet 105 to stabilize the pressure in the reaction chamber 101 .
循环液出口107设在反应腔101的侧壁上,循环液出口107位于进液口104和进气口105的下方。有利地,反应腔101的壁上还设有出液口108,出液口108设在反应腔101的底壁的中心位置。The circulating liquid outlet 107 is arranged on the side wall of the reaction chamber 101 , and the circulating liquid outlet 107 is located below the liquid inlet 104 and the gas inlet 105 . Advantageously, a liquid outlet 108 is further provided on the wall of the reaction chamber 101 , and the liquid outlet 108 is arranged at the center of the bottom wall of the reaction chamber 101 .
在本发明的一些实施例中,如图1-图3所示,塔式超细气泡反应器1进一步包括溢流挡板109,溢流挡板109设在反应腔101的壁上且邻近循环液出口107,溢流挡板109的上沿位于循环液出口107的上方。由此可以使塔式超细气泡反应器1的结构更加合理。In some embodiments of the present invention, as shown in FIGS. 1-3 , the tower-type ultra-fine bubble reactor 1 further includes an overflow baffle 109, and the overflow baffle 109 is arranged on the wall of the reaction chamber 101 and adjacent to the circulation The liquid outlet 107 and the upper edge of the overflow baffle 109 are located above the circulating liquid outlet 107 . Thus, the structure of the tower-type ultra-fine bubble reactor 1 can be made more reasonable.
具体而言,溢流挡板109包括水平板和竖直板,该水平板焊接在反应腔101的壁上,该竖直板的下沿焊接在该水平板上,该竖直板的上沿位于循环液出口107的上方Specifically, the overflow baffle 109 includes a horizontal plate and a vertical plate, the horizontal plate is welded on the wall of the reaction chamber 101, the lower edge of the vertical plate is welded on the horizontal plate, and the upper edge of the vertical plate Located above the circulating fluid outlet 107
如图1-图5所示,一次气泡破碎器102包括吸气室1023、混合管1024和喷射管1026。吸气室1023具有循环气进口1022,喷射管1026具有循环液进口1021,喷射管1026的端部构造出喷嘴1025,喷嘴1025伸入吸气室1023内。混合管1024与吸气室1023连通,混合管1024的前端口与喷嘴1025配合。混合管1024具有气液混合物出口1028。As shown in FIGS. 1-5 , the primary bubble breaker 102 includes a suction chamber 1023 , a mixing tube 1024 and an injection tube 1026 . The suction chamber 1023 has a circulating gas inlet 1022 , the injection pipe 1026 has a circulating liquid inlet 1021 , and the nozzle 1025 is formed at the end of the injection pipe 1026 , and the nozzle 1025 extends into the suction chamber 1023 . The mixing tube 1024 communicates with the suction chamber 1023 , and the front port of the mixing tube 1024 cooperates with the nozzle 1025 . The mixing tube 1024 has a gas-liquid mixture outlet 1028 .
具体而言,喷射管1026的前端敞开以便形成循环液进口1021,吸气室1023可以位于反应腔101的外部(如图1所示,相应地,喷嘴1025位于反应腔101的外部)。混合管1024的一部分位于反应腔101内(如图1所示)。其中,循环液从喷射管1026的前端流向喷射管1026的后端。Specifically, the front end of the injection pipe 1026 is open to form a circulating liquid inlet 1021, and the suction chamber 1023 may be located outside the reaction chamber 101 (as shown in FIG. 1 , correspondingly, the nozzle 1025 is located outside the reaction chamber 101). A part of the mixing tube 1024 is located in the reaction chamber 101 (as shown in FIG. 1 ). Wherein, the circulating fluid flows from the front end of the injection pipe 1026 to the rear end of the injection pipe 1026 .
在本发明的一个实施例中,如图1-图2所示,塔式超细气泡反应器1进一步包括固定筋板1027。固定筋板1027的一端设在反应腔101的内壁上,固定筋板1027的另一端设在混合管1024的外壁上。由此可以更加牢固地将一次气泡破碎器102安装在本体10上。In one embodiment of the present invention, as shown in FIGS. 1-2 , the tower-type ultrafine bubble reactor 1 further includes a fixed rib 1027 . One end of the fixed rib 1027 is arranged on the inner wall of the reaction chamber 101 , and the other end of the fixed rib 1027 is arranged on the outer wall of the mixing tube 1024 . Thus, the primary air bubble breaker 102 can be installed on the main body 10 more firmly.
有利地,固定筋板1027为多个,多个固定筋板1027沿一次气泡发生器102的轴线周向均布2-6个。Advantageously, there are multiple fixing ribs 1027 , and the plurality of fixing ribs 1027 are evenly distributed along the axis of the primary air bubble generator 102 in the circumferential direction of 2-6.
吸气室1023、喷射管1026和混合管1024中的每一个均水平地设置。Each of the suction chamber 1023, the injection pipe 1026, and the mixing pipe 1024 are horizontally arranged.
如图1-图2所示,吸气室1023包括彼此相连的前段10231和后段10232,前段10231的侧壁上设有循环气进口1022,前段10231的横截面积沿前后方向保持不变,后段10232的横截面积由前向后减小。As shown in Figures 1-2, the suction chamber 1023 includes a front section 10231 and a rear section 10232 connected to each other. The side wall of the front section 10231 is provided with a circulating air inlet 1022. The cross-sectional area of the front section 10231 remains unchanged along the front and rear directions. The cross-sectional area of the rear section 10232 decreases from front to back.
其中,后段10232的后端部敞开且与混合管1024的前端部相连,喷嘴1025穿过吸气室1023的前壁伸入吸气室1023内。有利地,喷嘴1025邻近混合管1024。更加有利地,喷嘴1025位于混合管1024的前方。Wherein, the rear end of the rear section 10232 is open and connected to the front end of the mixing tube 1024 , and the nozzle 1025 extends into the air suction chamber 1023 through the front wall of the air suction chamber 1023 . Advantageously, the nozzle 1025 is adjacent to the mixing tube 1024 . More advantageously, the nozzle 1025 is located in front of the mixing tube 1024 .
如图1-图4所示,在本发明的一个具体示例中,喷射管1026包括圆柱部以及与该圆柱部相连的圆台部。该圆柱部的直径与该圆台部的最小直径之比为2-6:1,该圆台部的锥顶角为20°-80°。其中,该圆台部构造成喷嘴1025。As shown in FIGS. 1-4 , in a specific example of the present invention, the injection pipe 1026 includes a cylindrical portion and a truncated circular portion connected to the cylindrical portion. The ratio of the diameter of the cylindrical portion to the minimum diameter of the truncated circular portion is 2-6:1, and the apex angle of the truncated circular portion is 20°-80°. Here, the frustum is configured as a nozzle 1025 .
循环液体由循环液进口1021进入到喷射管1026内,并由喷嘴1026喷出,以便形成高速液体。该高速液体在吸气室1023内形成负压,以便将循环气体吸入吸气室1023内。由于喷嘴1025与混合管1024配合,即喷嘴1025与混合管1024相对且位于混合管1024的前方,因此该高速液体将循环气体带入混合管1024内并混合剪切产生大量气泡,以便形成气液混合物。The circulating liquid enters the injection pipe 1026 from the circulating liquid inlet 1021 and is sprayed out from the nozzle 1026 to form a high-speed liquid. The high-velocity liquid creates a negative pressure in the suction chamber 1023 so as to suck the circulating gas into the suction chamber 1023 . Since the nozzle 1025 cooperates with the mixing tube 1024, that is, the nozzle 1025 is opposite to the mixing tube 1024 and is located in front of the mixing tube 1024, the high-speed liquid will bring the circulating gas into the mixing tube 1024 and mix and shear to generate a large number of bubbles to form a gas-liquid mixture.
如图1-图2所示,混合管1024的横截面积沿前后方向保持不变。有利地,气液混合物出口1028设在混合管1024的侧壁上且邻近混合管1024的后端部。As shown in FIGS. 1-2 , the cross-sectional area of the mixing tube 1024 remains constant along the front-to-back direction. Advantageously, the gas-liquid mixture outlet 1028 is provided on the side wall of the mixing tube 1024 adjacent to the rear end of the mixing tube 1024 .
如图3-图5所示,在本发明的一些示例中,二次气泡破碎器103包括连接管1031和容纳腔1032。连接管1031的第一端与气液混合物出口1028相连。容纳腔1032的壁上设有该进料口和出料口1033。As shown in FIGS. 3-5 , in some examples of the present invention, the secondary bubble breaker 103 includes a connecting pipe 1031 and an accommodating chamber 1032 . The first end of the connecting pipe 1031 is connected with the gas-liquid mixture outlet 1028 . The feeding port and the feeding port 1033 are provided on the wall of the accommodating chamber 1032 .
容纳腔1032的在其轴向上相对的第一端和第二端上均设有出料口1033。换言之,容纳腔1032的第一端与容纳腔1032的第二端在容纳腔1032的轴向上相对,容纳腔1032的第一端和第二端上均设有出料口1033。其中,连接管1031的第二端与该进料口相连,连接管1031的长度方向与容纳腔1032的周向相切。A first end and a second end opposite to each other in the axial direction of the receiving chamber 1032 are provided with a material outlet 1033 . In other words, the first end of the accommodation chamber 1032 is opposite to the second end of the accommodation chamber 1032 in the axial direction of the accommodation chamber 1032 , and the first end and the second end of the accommodation chamber 1032 are both provided with a discharge port 1033 . Wherein, the second end of the connecting pipe 1031 is connected to the feeding port, and the length direction of the connecting pipe 1031 is tangent to the circumferential direction of the containing cavity 1032 .
由于连接管1031的长度方向与容纳腔1032的周向相切,因此从一次气泡破碎器102喷射出来的该气液混合物(即从混合管1024喷射出来的该气液混合物)通过连接管1031切向进入容纳腔1032内,由此可以使该气液混合物在容纳腔1032内高速旋转。由于密度差异,气体聚集于容纳腔1032的轴线附近,被液体压缩剪切产生大量的直径小于等于50μm的超细气泡(有利地,该超细气泡的直径小于等于50μm)。含有该超细气泡的液体由容纳腔1032的两端的出料口1033喷出,进入反应腔101。由于气泡直径越小,气泡在液体中的上升速度越小,因此反应腔101内会充满大量的超细气泡,形成乳状液,从而使反应能够快速进行。Since the length direction of the connecting pipe 1031 is tangent to the circumferential direction of the housing chamber 1032, the gas-liquid mixture injected from the primary bubble breaker 102 (that is, the gas-liquid mixture ejected from the mixing pipe 1024) enters tangentially through the connecting pipe 1031. In the containing chamber 1032, the gas-liquid mixture can be rotated at a high speed in the containing chamber 1032. Due to the difference in density, the gas gathers near the axis of the chamber 1032, and is compressed and sheared by the liquid to generate a large number of ultrafine bubbles with a diameter less than or equal to 50 μm (favorably, the diameter of the ultrafine bubbles is less than or equal to 50 μm). The liquid containing the ultrafine bubbles is sprayed out from the outlets 1033 at both ends of the containing chamber 1032 and enters the reaction chamber 101 . Because the smaller the diameter of the bubbles, the slower the rising speed of the bubbles in the liquid, so the reaction chamber 101 will be filled with a large number of ultrafine bubbles to form an emulsion, so that the reaction can proceed quickly.
在本发明的一个示例中,容纳腔1032可以是回转体状。由此可以使二次气泡破碎器103的结构更加合理。容纳腔1032的回转母线可以是一条圆弧线,容纳腔1032的回转母线还可以是一条与容纳腔1032的轴线平行的直线和两条直线组成的曲线。此外,容纳腔1032的回转母线也可以是一条与容纳腔1032的轴线平行的直线和两条圆弧线组成的曲线。有利地,该与容纳腔1032的轴线平行的直线与两条该圆弧线在它们的相交处相切。In an example of the present invention, the accommodating chamber 1032 may be in the shape of a rotating body. Thus, the structure of the secondary bubble breaker 103 can be made more reasonable. The generatrix of rotation of the accommodation chamber 1032 may be a circular arc, and the generatrix of revolution of the accommodation chamber 1032 may also be a straight line parallel to the axis of the accommodation chamber 1032 and a curve composed of two straight lines. In addition, the generatrix of revolution of the accommodation chamber 1032 may also be a straight line parallel to the axis of the accommodation chamber 1032 and a curve composed of two arc lines. Advantageously, the straight line parallel to the axis of the receiving chamber 1032 is tangent to the two arc lines at their intersection.
如图5所示,该进料口在容纳腔1032的轴向上位于容纳腔1032的中部,容纳腔1032的横截面积由容纳腔1032的中部向容纳腔1032的端部减小。具体而言,容纳腔1032的横截面积由容纳腔1032的中部向容纳腔1032的第一端减小,且容纳腔1032的横截面积由容纳腔1032的中部向容纳腔1032的第二端减小。由此可以使二次气泡破碎器103的结构更加合理。有利地,连接管1031的截面为扁平的矩形结构,由此可使气液混合物进入容纳腔1032产生的阻力最小。As shown in FIG. 5 , the feed port is located in the middle of the housing chamber 1032 in the axial direction of the housing chamber 1032 , and the cross-sectional area of the housing chamber 1032 decreases from the middle of the housing chamber 1032 to the end of the housing chamber 1032 . Specifically, the cross-sectional area of the housing chamber 1032 decreases from the middle of the housing chamber 1032 to the first end of the housing chamber 1032, and the cross-sectional area of the housing chamber 1032 decreases from the middle of the housing chamber 1032 to the second end of the housing chamber 1032. decrease. Thus, the structure of the secondary bubble breaker 103 can be made more reasonable. Advantageously, the cross-section of the connecting pipe 1031 is a flat rectangular structure, thereby minimizing the resistance generated by the gas-liquid mixture entering the accommodating cavity 1032 .
有利地,容纳腔1032相对经过容纳腔1032的轴向的中心的横截面对称。由此可以使二次气泡破碎器103的结构更加合理。Advantageously, the accommodating chamber 1032 is symmetrical with respect to a cross section passing through the axial center of the accommodating chamber 1032 . Thus, the structure of the secondary bubble breaker 103 can be made more reasonable.
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。In the description of this specification, references to the terms "one embodiment," "some embodiments," "exemplary embodiments," "example," "specific examples," or "some examples" are intended to mean that the implementation A specific feature, structure, material, or characteristic described by an embodiment or example is included in at least one embodiment or example of the present invention. In this specification, schematic representations of the above terms do not necessarily refer to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。Although the embodiments of the present invention have been shown and described, those skilled in the art can understand that various changes, modifications, substitutions and modifications can be made to these embodiments without departing from the principle and spirit of the present invention. The scope of the invention is defined by the claims and their equivalents.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610641251.7A CN106268544B (en) | 2016-08-05 | 2016-08-05 | Tower type superfine bubble reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610641251.7A CN106268544B (en) | 2016-08-05 | 2016-08-05 | Tower type superfine bubble reactor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106268544A true CN106268544A (en) | 2017-01-04 |
CN106268544B CN106268544B (en) | 2020-03-24 |
Family
ID=57665833
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610641251.7A Active CN106268544B (en) | 2016-08-05 | 2016-08-05 | Tower type superfine bubble reactor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106268544B (en) |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106977379A (en) * | 2017-03-23 | 2017-07-25 | 南京大学盐城环保技术与工程研究院 | High-grade p-t-Butylbenzaldehyde preparation method and preparation facilities |
CN107346378A (en) * | 2017-08-30 | 2017-11-14 | 南京大学 | Micro-interface enhanced reactor mass transfer rate structure imitates regulation-control model modeling method |
CN107561938A (en) * | 2017-08-30 | 2018-01-09 | 南京大学 | Micro-interface enhanced reactor reaction rate structure imitates regulation-control model modeling method |
CN110270282A (en) * | 2019-07-04 | 2019-09-24 | 华东理工大学 | One kind dividing shape bubble configuration controllable type paste state bed reactor |
CN111217671A (en) * | 2018-11-23 | 2020-06-02 | 南京延长反应技术研究院有限公司 | Methyl aromatic hydrocarbon oxidation reaction system and use method thereof |
WO2020155505A1 (en) * | 2019-01-29 | 2020-08-06 | 南京延长反应技术研究院有限公司 | Low-pressure gas-liquid enhanced emulsifying bed reaction device and method |
CN111569684A (en) * | 2020-05-28 | 2020-08-25 | 中国石油大学(华东) | A micro-nano bubble generator |
CN111569788A (en) * | 2020-03-31 | 2020-08-25 | 南京延长反应技术研究院有限公司 | External micro-interface oxidation system and method for preparing terephthalic acid from p-xylene |
CN111875725A (en) * | 2020-06-17 | 2020-11-03 | 南京延长反应技术研究院有限公司 | Micro-interface enhanced reaction system and method for preparing polyethylene by slurry method |
CN111875719A (en) * | 2020-06-17 | 2020-11-03 | 南京延长反应技术研究院有限公司 | Micro-interface reinforced reaction system and method for preparing rubber |
CN111892673A (en) * | 2020-06-17 | 2020-11-06 | 南京延长反应技术研究院有限公司 | Micro-interface enhanced reaction system and method for preparing polypropylene |
CN112062943A (en) * | 2020-09-08 | 2020-12-11 | 南京延长反应技术研究院有限公司 | Micro-interface preparation system and method for polyglycolic acid |
CN112058184A (en) * | 2020-09-08 | 2020-12-11 | 南京延长反应技术研究院有限公司 | Preparation system and method of polyglycolic acid |
CN112156731A (en) * | 2020-09-08 | 2021-01-01 | 南京延长反应技术研究院有限公司 | Reinforced micro-interface preparation system and method for polyglycolic acid |
CN112294222A (en) * | 2019-08-02 | 2021-02-02 | 佛山市顺德区美的洗涤电器制造有限公司 | Air bubble generator and washing equipment |
WO2021047035A1 (en) * | 2019-09-14 | 2021-03-18 | 南京延长反应技术研究院有限公司 | Enhancing system and process for preparing polyethylene on basis of solution method |
WO2021047049A1 (en) * | 2019-09-14 | 2021-03-18 | 南京延长反应技术研究院有限公司 | System and process for strengthening ethylene polymerization |
WO2021047039A1 (en) * | 2019-09-12 | 2021-03-18 | 南京延长反应技术研究院有限公司 | Micro-interface strengthening reaction system for preparing ethylene glycol based on ethylene hydration method and process specification |
WO2021047056A1 (en) * | 2019-09-12 | 2021-03-18 | 南京延长反应技术研究院有限公司 | Enhanced reaction system and process for preparing acetic acid by means of carbonylation methanol |
CN112876453A (en) * | 2021-01-29 | 2021-06-01 | 南京华基塔业有限公司 | Reaction system and method for preparing lactide from lactic acid |
WO2021103460A1 (en) * | 2019-11-25 | 2021-06-03 | 南京延长反应技术研究院有限公司 | System and process for preparation of ethylbenzene by intensified reaction of benzene and ethylene |
CN113387332A (en) * | 2021-07-16 | 2021-09-14 | 南京延长反应技术研究院有限公司 | Micro-interface oxidation system and oxidation method for preparing hydrogen peroxide |
WO2021253311A1 (en) * | 2020-06-17 | 2021-12-23 | 南京延长反应技术研究院有限公司 | Micro-interface strengthened reaction system and method for preparing polyethylene by means of solution method |
WO2022032868A1 (en) * | 2020-08-11 | 2022-02-17 | 南京延长反应技术研究院有限公司 | Reaction system and method for preparing sodium n-methyltaurate |
WO2022041425A1 (en) * | 2020-08-25 | 2022-03-03 | 南京延长反应技术研究院有限公司 | Reinforced micro-interface preparation system and method for cyclic carbonate |
WO2022057004A1 (en) * | 2020-09-17 | 2022-03-24 | 南京延长反应技术研究院有限公司 | Microinterface preparation system for p-methylphenol and method |
WO2022057003A1 (en) * | 2020-09-17 | 2022-03-24 | 南京延长反应技术研究院有限公司 | Enhanced micro-interface preparation system and method for p-methylphenol |
WO2022082622A1 (en) * | 2020-10-21 | 2022-04-28 | 南京延长反应技术研究院有限公司 | Hydrogenation micro-interface system |
WO2022082626A1 (en) * | 2020-10-21 | 2022-04-28 | 南京延长反应技术研究院有限公司 | Wet oxidation micro-interface system |
WO2022082621A1 (en) * | 2020-10-21 | 2022-04-28 | 南京延长反应技术研究院有限公司 | Hydrogenation enhancing micro-interface system |
WO2023284025A1 (en) * | 2021-07-14 | 2023-01-19 | 南京延长反应技术研究院有限公司 | Apparatus and method for enhancing biological fermentation by using atmospheric air source micro-interface |
JP2023508488A (en) * | 2020-06-17 | 2023-03-02 | 南京延長反応技術研究院有限公司 | Micro-interfacial reinforcement reaction system and method for producing poly-α-olefin |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1431927A (en) * | 2000-06-23 | 2003-07-23 | 池田好明 | Fine air bubble generator and fine air bubble generating device with generator |
CN101164680A (en) * | 2006-10-17 | 2008-04-23 | 金强 | High speed rotary type gas-liquid mixed type micro-nano foam generating device |
CN101254485A (en) * | 2007-12-13 | 2008-09-03 | 昆明理工大学 | Development method and application of a microbubble generator |
CN101450291A (en) * | 2007-11-29 | 2009-06-10 | 金强 | High-speed cyclic gas-liquid mixing type micro-bubble generation device |
CN201981065U (en) * | 2010-11-16 | 2011-09-21 | 北京英特环科水处理工程设备有限公司 | Micro-nano jet aerator |
CN102688709A (en) * | 2006-10-17 | 2012-09-26 | 金强 | High-speed cyclic gas-liquid mixed micro-nano foam generating device |
CN102863058A (en) * | 2011-07-08 | 2013-01-09 | 蓝星环境工程有限公司 | Air-floatation water treatment system |
CN103920444A (en) * | 2014-04-21 | 2014-07-16 | 南京大学 | Spraying reaction device, integrated spraying reactor system and operation method of integrated spraying reactor system |
CN204981362U (en) * | 2015-07-24 | 2016-01-20 | 广西益江环保科技有限责任公司 | Micro -nano aeration oxygenates device |
CN105289219A (en) * | 2015-11-20 | 2016-02-03 | 广东伟创科技开发有限公司 | Micronano bubble generator nozzle |
-
2016
- 2016-08-05 CN CN201610641251.7A patent/CN106268544B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1431927A (en) * | 2000-06-23 | 2003-07-23 | 池田好明 | Fine air bubble generator and fine air bubble generating device with generator |
CN101164680A (en) * | 2006-10-17 | 2008-04-23 | 金强 | High speed rotary type gas-liquid mixed type micro-nano foam generating device |
CN102688709A (en) * | 2006-10-17 | 2012-09-26 | 金强 | High-speed cyclic gas-liquid mixed micro-nano foam generating device |
CN101450291A (en) * | 2007-11-29 | 2009-06-10 | 金强 | High-speed cyclic gas-liquid mixing type micro-bubble generation device |
CN101254485A (en) * | 2007-12-13 | 2008-09-03 | 昆明理工大学 | Development method and application of a microbubble generator |
CN201981065U (en) * | 2010-11-16 | 2011-09-21 | 北京英特环科水处理工程设备有限公司 | Micro-nano jet aerator |
CN102863058A (en) * | 2011-07-08 | 2013-01-09 | 蓝星环境工程有限公司 | Air-floatation water treatment system |
CN103920444A (en) * | 2014-04-21 | 2014-07-16 | 南京大学 | Spraying reaction device, integrated spraying reactor system and operation method of integrated spraying reactor system |
CN204981362U (en) * | 2015-07-24 | 2016-01-20 | 广西益江环保科技有限责任公司 | Micro -nano aeration oxygenates device |
CN105289219A (en) * | 2015-11-20 | 2016-02-03 | 广东伟创科技开发有限公司 | Micronano bubble generator nozzle |
Non-Patent Citations (4)
Title |
---|
华平等: "《化工原理 上册》", 31 August 2014, 南京大学出版社 * |
曲文海等: "《压力容器与化工设备 实用手册》", 31 March 2000, 化学工业出版社 * |
王振中等: "《中等专业学校试用教材 化工原理 (下册)》", 30 June 1990, 化学工业出版社 * |
薛海波: "《化学反应工程 第2版》", 31 March 2012, 中国石化出版社 * |
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106977379A (en) * | 2017-03-23 | 2017-07-25 | 南京大学盐城环保技术与工程研究院 | High-grade p-t-Butylbenzaldehyde preparation method and preparation facilities |
CN107561938B (en) * | 2017-08-30 | 2020-12-04 | 南京大学 | Modeling method of micro-interface enhanced reactor reaction rate structure-effect control model |
CN107346378A (en) * | 2017-08-30 | 2017-11-14 | 南京大学 | Micro-interface enhanced reactor mass transfer rate structure imitates regulation-control model modeling method |
CN107346378B (en) * | 2017-08-30 | 2020-09-04 | 南京大学 | Modeling method for structure-effect control model of mass transfer rate in micro-interface-enhanced reactor |
CN107561938A (en) * | 2017-08-30 | 2018-01-09 | 南京大学 | Micro-interface enhanced reactor reaction rate structure imitates regulation-control model modeling method |
CN111217671A (en) * | 2018-11-23 | 2020-06-02 | 南京延长反应技术研究院有限公司 | Methyl aromatic hydrocarbon oxidation reaction system and use method thereof |
WO2020155505A1 (en) * | 2019-01-29 | 2020-08-06 | 南京延长反应技术研究院有限公司 | Low-pressure gas-liquid enhanced emulsifying bed reaction device and method |
CN110270282A (en) * | 2019-07-04 | 2019-09-24 | 华东理工大学 | One kind dividing shape bubble configuration controllable type paste state bed reactor |
CN112294222B (en) * | 2019-08-02 | 2025-01-21 | 佛山市顺德区美的洗涤电器制造有限公司 | Bubble generating device and washing equipment |
CN112294222A (en) * | 2019-08-02 | 2021-02-02 | 佛山市顺德区美的洗涤电器制造有限公司 | Air bubble generator and washing equipment |
WO2021047056A1 (en) * | 2019-09-12 | 2021-03-18 | 南京延长反应技术研究院有限公司 | Enhanced reaction system and process for preparing acetic acid by means of carbonylation methanol |
WO2021047039A1 (en) * | 2019-09-12 | 2021-03-18 | 南京延长反应技术研究院有限公司 | Micro-interface strengthening reaction system for preparing ethylene glycol based on ethylene hydration method and process specification |
WO2021047049A1 (en) * | 2019-09-14 | 2021-03-18 | 南京延长反应技术研究院有限公司 | System and process for strengthening ethylene polymerization |
WO2021047035A1 (en) * | 2019-09-14 | 2021-03-18 | 南京延长反应技术研究院有限公司 | Enhancing system and process for preparing polyethylene on basis of solution method |
WO2021103460A1 (en) * | 2019-11-25 | 2021-06-03 | 南京延长反应技术研究院有限公司 | System and process for preparation of ethylbenzene by intensified reaction of benzene and ethylene |
CN111569788A (en) * | 2020-03-31 | 2020-08-25 | 南京延长反应技术研究院有限公司 | External micro-interface oxidation system and method for preparing terephthalic acid from p-xylene |
CN111569684B (en) * | 2020-05-28 | 2022-04-15 | 中国石油大学(华东) | Micro-nano bubble generator |
CN111569684A (en) * | 2020-05-28 | 2020-08-25 | 中国石油大学(华东) | A micro-nano bubble generator |
CN111875725A (en) * | 2020-06-17 | 2020-11-03 | 南京延长反应技术研究院有限公司 | Micro-interface enhanced reaction system and method for preparing polyethylene by slurry method |
CN111892673A (en) * | 2020-06-17 | 2020-11-06 | 南京延长反应技术研究院有限公司 | Micro-interface enhanced reaction system and method for preparing polypropylene |
CN111875719A (en) * | 2020-06-17 | 2020-11-03 | 南京延长反应技术研究院有限公司 | Micro-interface reinforced reaction system and method for preparing rubber |
JP2023508488A (en) * | 2020-06-17 | 2023-03-02 | 南京延長反応技術研究院有限公司 | Micro-interfacial reinforcement reaction system and method for producing poly-α-olefin |
JP7370646B2 (en) | 2020-06-17 | 2023-10-30 | 南京延長反応技術研究院有限公司 | Micro-interface enhanced reaction system and method for producing poly-α-olefins |
WO2021253311A1 (en) * | 2020-06-17 | 2021-12-23 | 南京延长反应技术研究院有限公司 | Micro-interface strengthened reaction system and method for preparing polyethylene by means of solution method |
WO2022032868A1 (en) * | 2020-08-11 | 2022-02-17 | 南京延长反应技术研究院有限公司 | Reaction system and method for preparing sodium n-methyltaurate |
WO2022041425A1 (en) * | 2020-08-25 | 2022-03-03 | 南京延长反应技术研究院有限公司 | Reinforced micro-interface preparation system and method for cyclic carbonate |
CN112062943A (en) * | 2020-09-08 | 2020-12-11 | 南京延长反应技术研究院有限公司 | Micro-interface preparation system and method for polyglycolic acid |
WO2022052223A1 (en) * | 2020-09-08 | 2022-03-17 | 南京延长反应技术研究院有限公司 | Intensified microinterface preparation system and method for polyglycolic acid |
CN112058184A (en) * | 2020-09-08 | 2020-12-11 | 南京延长反应技术研究院有限公司 | Preparation system and method of polyglycolic acid |
CN112156731A (en) * | 2020-09-08 | 2021-01-01 | 南京延长反应技术研究院有限公司 | Reinforced micro-interface preparation system and method for polyglycolic acid |
WO2022057004A1 (en) * | 2020-09-17 | 2022-03-24 | 南京延长反应技术研究院有限公司 | Microinterface preparation system for p-methylphenol and method |
WO2022057003A1 (en) * | 2020-09-17 | 2022-03-24 | 南京延长反应技术研究院有限公司 | Enhanced micro-interface preparation system and method for p-methylphenol |
WO2022082622A1 (en) * | 2020-10-21 | 2022-04-28 | 南京延长反应技术研究院有限公司 | Hydrogenation micro-interface system |
WO2022082621A1 (en) * | 2020-10-21 | 2022-04-28 | 南京延长反应技术研究院有限公司 | Hydrogenation enhancing micro-interface system |
WO2022082626A1 (en) * | 2020-10-21 | 2022-04-28 | 南京延长反应技术研究院有限公司 | Wet oxidation micro-interface system |
CN112876453A (en) * | 2021-01-29 | 2021-06-01 | 南京华基塔业有限公司 | Reaction system and method for preparing lactide from lactic acid |
WO2023284025A1 (en) * | 2021-07-14 | 2023-01-19 | 南京延长反应技术研究院有限公司 | Apparatus and method for enhancing biological fermentation by using atmospheric air source micro-interface |
CN113387332A (en) * | 2021-07-16 | 2021-09-14 | 南京延长反应技术研究院有限公司 | Micro-interface oxidation system and oxidation method for preparing hydrogen peroxide |
Also Published As
Publication number | Publication date |
---|---|
CN106268544B (en) | 2020-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106268544A (en) | Tower ultra-fine bubble reactor | |
CN105903425B (en) | Injection reactor | |
CN101185859B (en) | Jet atomizer mixer for bioreactor | |
CN106000147B (en) | A kind of mortar mixed stirring device | |
CN108970183A (en) | A kind of high-efficiency thickener charging gear | |
CN209865796U (en) | A Fluid Synergistic Forced Mixing and Conditioning Device | |
CN207891060U (en) | A kind of processing unit of alumina producing exsolution red mud | |
CN104826515A (en) | Tank liquid stirring device and tank liquid stirring method | |
CN210787321U (en) | Stirring reaction kettle | |
CN205146085U (en) | Be used for solid -liquid mixture agitator | |
CN209456088U (en) | A kind of micro-nano production of aluminum hydroxide seed precipitation tank of aluminium system | |
CN211595530U (en) | Special asphalt emulsification processing preparation facilities | |
CN212039904U (en) | A high-efficient gas-liquid mixture device for xylene oxidation reaction | |
CN214915027U (en) | Dissolving tank for producing potassium chloride for feed additives | |
CN208427013U (en) | A kind of synthesis Tower System with circulating pump | |
CN207254239U (en) | A kind of efficient ammonium nitrate-fuel oil mixture production mixer | |
CN106731971A (en) | A kind of low-viscosity (mobile) liquid mixing arrangement | |
CN209138493U (en) | Efficient Agitator is used in a kind of preparation of construction material | |
CN214598329U (en) | A high pressure homogeneity device for preparing walnut thick liquid | |
CN105728201A (en) | Coal slime water flotation reagent vaporizing device and vaporizing method thereof | |
CN215996248U (en) | Fertilizer mixer | |
CN206635304U (en) | A kind of blending device of Coal dressing | |
CN112827443A (en) | Microemulsion stirring intelligence reation kettle for heating | |
CN208373019U (en) | A kind of rare earth solution allocation device | |
CN105772239B (en) | A kind of classification of black water microvesicle and desliming device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |